US 20050071336A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2005/0071336 Al

Najork et al. (43) Pub. Date: Mar. 31, 2005
(54) SYSTEMS AND METHODS FOR LOGGING (52) ULS. ClLi e seensecisec e 707/8
AND RECOVERING UPDATES TO DATA
STRUCTURES
(75) Inventors: Marc A. Najork, Palo Alto, CA (US);
Chandramthan A. Thekkath, Pglo) 7 ABSTRACT
Alto, CA (US); Lidong Zhou,
Sunnyvale, CA (US) Systems and methods for logging and recovering updates to
Correspondence Address: data structures in the event of failure of an information
WOODCOCK WASHBURN LLP management system are provided. In exemplary implemen-
ONE LIBERTY PLACE - 46TH FLOOR tations, methods for implementing an efficient redo log for
PHILADELPHIA, PA 19103 (US) a data structure that is concurrently accessed by multiple
(73) Assignee: Microsoft Corporation clients is provided. The data slr.uclure is impl(.amen.ted in two
layers: the data structure algorithm layer which sits atop an
(21) Appl. No.: 10/674,676 allocator that provides distributed, persistent, and replicated
storage allocation. Both the B-link tree algorithm layer and
(22) Filed: Sep. 30, 2003 the allocator use the service of the logging mechanism to
Publication Classification implement fault-tolerance and atomicity guarantees. The
present invention uses a single log and allows periodic
(51) Int. CL7 oo GO6F 7/00 truncation of that log for space efficiency.

Object
- 110¢c
Computing ‘
Device =PRI 3
110a Computing Device

. 14
Object COMpyting
110d | T7™=_ | Communications Device
Network/Bus 110e

Server Object

I\J
| =
o

Server Object

Y
S———

Database 20

Patent Application Publication Mar. 31,2005 Sheet 1 of 11 US 2005/0071336 Al

[1100
": Object
110c

Computing =) ‘
Device ')
110a Computing Device
s 14
Object Compyting
110d [=__ | Communications Device
Network/Bus 110e

NL—1
Server Object

Server Object

Database 20

US 2005/0071336 A1

Patent Application Publication Mar. 31,2005 Sheet 2 of 11

[oo] [oo0o0o] [0]

S8l SWNVHOO0¥d

a1l "Old

= = (<> NOILVOIlddV
H J1LON3IH L9l
= asinaqg == = —
¥31NdWOD 291 pieoqhay Bunuiog “tyiva ©ﬂ<my_o%o_@ 4 mvms_,qmooza .mﬂs_m._w>m
3LOW3N 7] Wv¥o0oNd | T P € | NOILYOMAY | ONILYH3dO
<—< {EL i
¥IOM)aN .
“ [oo] [oo0000] [0] "
m ! 7T = | = !
_J _ e Ze1 smo |
“ 0BT aosepajy) teiBeid !
HIOMION aJeuajuy adepay| Kowapy
ealy |ed07) l_v yomioN induj sesn 3]11e|OA-UON QINEIOA-UON @M_ﬁmw%n_huﬂﬂc “
“ a|qeAoway a|qeAoway-uoN d 1940 I
| . A — “
— _ o |9t} swesBoigd |
tblsiayeads ; 1Z1 sng wayshg uonesyddy !
! L 061 ST - r !
“ 561 aoepiaul aoeau| adeua)u| ozt Vel wajsAg “
_oﬂm Jajund [« r jesaydusad 09pIA soydeiy nn Bunesado |
| indinp y y Buissao0.d T (avy) “
| y .+ == T I
V6L IOWTOW o1 ! % 78T - Eet_som |1
= — | owap |« Ndo .
[09pIA 0eL 1€ (wow) | |
I

Patent Application Publication Mar. 31,2005 Sheet 3 of 11 US 2005/0071336 Al

210
200 — 202y

204 ALL T0

PERSISTENT 1) allocate(n);
STORE 3 2) deallocate(h);
204 W% 3) read(h);
LS 4) write(h, A).
SERVER
206 »—— 208
N BLINKDATASTRUCTURE pynctions Supported:
ROOT NODE 1) insert(k, v);

2) lookup(k);
3) delete(k).

LINKTO

FIG. 2A
(PRIOR ART)

Patent Application Publication Mar. 31,2005 Sheet 4 of 11 US 2005/0071336 Al

B-LINK TREE DATA STRUCTURE

300 -\‘
304
INDEX NODES: <k, hy, k;, hy, ky; ...y 302 (LINK TO RIGHT
s Ko Pos Knas Prigne ? SIBLING)

306
DATA NODES: <k, d>»

FIG. 2B
(PRIOR ART)

Patent Application Publication Mar. 31,2005 Sheet 5 of 11

Log 312

304

PERSISTENT
STORE

US 2005/0071336 A1

Log Entry
314

] Operation

Node(s)

Data

v._B

-

306 >
\“/ N1 SERVER 30
N2 » N3
N4 Ne NS
N5 N7 N8
DATA STRUCTURE

FIG. 3A

Patent Application Publication Mar. 31,2005 Sheet 6 of 11 US 2005/0071336 Al

Server 302
Log (Head) B-Link |Log Entries
300 ~ 312a Layer310| 314
Cache Memory 335
330 :__'Y
304
Log (Tail)
PERSISTENT 312b
STORE
306 N1
y
N2 » N3
ki N6 N9
N5 N7 N8
DATA STRUCTURE

FIG. 3B

Patent Application Publication Mar. 31,2005 Sheet 7 of 11 US 2005/0071336 Al

Cache 330
r--TT T l
Update 316d| «——«—» | |

. Log Entry 314d
Update 316¢c| «——» | Iall ?;f12b |
)

Update 316b : Log Entry 314c :
Update 316a | 435 |
\ oo |

\

| RN
| | Log 312
| I (3122 +
| | 312b)
\ Persistent Storag:e 304 :
Data Structyre 306 |_ __________ l
| I
r————- | |
| | Headof |Log Entry 314b]
————— 312
!: I | Log31za Log Entry 314a| |
————— I |

FIG. 3C

Patent Application Publication Mar. 31,2005 Sheet 8 of 11 US 2005/0071336 Al

Tail of the Log 312a

Log Entry 3140 | Log Entry 314p**
.

Persistent StoraglF 304

Head of the Log rlaub

Log Entry 314a’

Log Entry 314b2

Log 'Entry 314¢?

Log Entry 314d*

Log Entry 314e5

Log Entry 314f%

Log 'Entry 314g7

Log Entry 314h®

Log Entry 314i®

Log Entry 314j'°

Log E‘ltry5314k“

Log Entry 31412

Log Entry 314n'¢

v

LogEntry 314m® | Log Entey 314n*| VT . I)
i ;Data Structure 306 i
Update 316a Update 316b Update 316c Update 316d
Update 316e Update 316f | Update 316g | Update 316h
Update 316i Update 316j \ v
& Yy —-— F————= 1

Patent Application Publication Mar. 31,2005 Sheet 9 of 11
List 322
Dataentry_a Data entry_b Data entry_c Data entry_d
Data entry_e Data entry_f Data entry_g Data entry_h
Data entry_i Data entry_j

Persistent Storage 304

Log 312

Log Entry 314a’

Log Entry 314b!

Log Entry 314¢?

Log Entry 314d*

Log Entry 314e°

Log Entry 314f¢

Log Entry 3149’

Log Entry 314h®

Log Entry 314i°

Log Entry 314j'"°

Log Entry 314k

Log Entry 314"

Log Entry 314m1°

Log Entry 314n'®

_____) U |
Data Structure 306
Update 316a Update 316b Update 316¢ Update 316d
Update 316e Update 316f Update 316g Update 316h
Update 316i Update 316j .'_ '

US 2005/0071336 A1

Patent Application Publication Mar. 31,2005 Sheet 10 of 11 US 2005/0071336 Al

] B-Link Layer
’ Log 315
300
= %
304 B-Link Layer 310

PERSISTENT
STORE

“{ Allocator Layer 320

Allocator
Layer Log
325

| N7 || N8 |

DATA STRUCTURE

FIG. 3F

Patent Application Publication Mar. 31, 2005 Sheet 11 of 11 US 2005/0071336 Al

Primary Secondary
Server 302a Server 302b

B-Link Layer 310

Allocator Layer | | Allocator Layer
320a 320b

BT' | AL | BT? | BT?

v
BT'| AL | BT?|BT? BT'{AL'|BT2|BT?
___/ v
Persistent Store 304a Persistent Store 304b

N2

FIG. 4

US 2005/0071336 Al

SYSTEMS AND METHODS FOR LOGGING AND
RECOVERING UPDATES TO DATA STRUCTURES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is generally related by
subject matter to copending application Ser. No. 10/308,293
(attorney docket MSFT-1411/301600.1), entitled “Algo-
rithm for Tree Traversals Using Left Links” and to copend-
ing application Ser. No. 10/308,291 (attorney docket MSFT-
1410/301,252.1), entitled “Deletion and Compaction Using
Versioned Nodes,” both filed on Dec. 2, 2002.

COPYRIGHT NOTICE AND PERMISSION

[0002] A portion of the disclosure of this patent document
may contain material that is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever. The following notice shall apply to this
document: Copyright© 2002-2003, Microsoft Corp.

FIELD OF THE INVENTION

[0003] This invention relates to the logging and recovery
of data structures used in the field of data management.
More particularly, the invention relates to the logging and
(post failure) recovery of updates to data structures, such as
B-trees and B-link trees.

BACKGROUND

[0004] Data structures, such as B-trees, B-link trees,
B*trees, B+ trees, etc., are a core technology to relational
and non-relational databases, as well as to file systems and
other systems in which a data structure including a set of
linked nodes is employed as a way to index and access large
amounts of data. A database management system is one
example of an information management/retrieval system of
the kind for which the present invention is suited. Since the
present invention is well suited for use in connection with a
database, although by no means limited thereto, the back-
ground of the invention and exemplary embodiments are
discussed with reference to a database.

[0005] A B-link tree is a data structure that maintains an
association of “keys” (such as employee numbers) to “val-
ues” (such as employee records). A B-link tree is a variant
of a B-tree, typically stored on disk, which is at the foun-
dation of relational database systems. B-link trees are par-
ticularly well suited to distributed and fault-tolerant imple-
mentations. Further background information about linked
data structures, such as B-trees and B-link trees, may be
found in the following documents:

[0006] 1. R. Bayer and E. McCreight. Organization
and Maintenance of Large Ordered Indexes. Acta
Informatica, 1(3):173-189, 1972.

[0007] 2. D. Corner. The Ubiquitous B-Tree. ACM
Computing Surveys, 11(2):121-128, June 1979.

[0008] 3. P. L. ILehman and S. B. Yao. Efficient
Locking for Concurrent Operations on B-Trees.
ACM Transactions on Information retrieval systems,
6(4):650-670, December 1981.

Mar. 31, 2005

[0009] 4. Yehoshua Sagiv. Concurrent Operations on
B-Trees with Overtaking. Journal of Computer and
System Sciences, Vol. 3, No. 2, October 1986.

[0010] 5. Paul Wang. An In-Depth Analysis of Con-
current B-Tree Algorithms. Technical report MIT/
LCS/TR496, Laboratory for Computer Science,
Massachusetts Institute of Technology, Feb. 1991.

[0011] 6. H. Wedekind. On the selection of access
paths in an information retrieval system. In J. W.
Klimbie and K. L. Koffman, editors. Database Man-
agement, pages 385-397. North Holland Publishing
Company, 1974.

[0012] Efficient implementations of such distributed data
structures are of strategic importance to companies wishing
to deploy scalable storage repositories, e.g., file systems,
databases and general indexes. Distributing relations over
multiple machines makes it possible to build scalable data-
bases, where the size of the database can be increased simply
by adding more hardware. Providing reliability guarantees
of the data in B-link trees in the presence of hardware (e.g.,
disk, network, and machine) failures and in the presence of
concurrent updates is crucial for any realistic use of these
data structures. The existing art describing techniques relat-
ing to B-trees and B-link trees, however, does not deal
specifically with logging and recovery of a distributed data
structure in the presence of potentially concurrent update
operations.

[0013] Information retrieval systems typically support
concurrent access to and updating of the data maintained by
them, which means that there may be multiple concurrent
lookup and/or update operations on the underlying B-tree. In
order to prevent these concurrent operations from corrupting
the B-tree, some synchronization scheme is required. Thus,
one way to handle concurrent updates of a B-tree is to order
traversal of and operations on the tree according to prede-
termined rules when updating or modifying the tree. Typical
concurrent B-tree algorithms synchronize concurrent opera-
tions at the node-level of the tree; that is, an operation that
wants to modify a node of the tree has to acquire a lock on
that node, in order to guarantee that it does not interfere with
another concurrent update (or other) operation on the same
node.

[0014] Lock acquisition is expensive in several respects: It
can be computationally expensive, especially when the
B-tree is replicated, or distributed, across multiple comput-
ers, meaning that locks have to be acquired from a remote
lock server, and it limits concurrency. Thus, there are a
number of existing efforts to minimize the number of lock
acquisitions without compromising the correctness of the
algorithm. Much research has been devoted to this topic. For
example, Paul Wang, An In-Depth Analysis of Concurrent
B-Tree Algorithms, cited above, contains a good survey of
work on this problem. Thus, applying algorithms to concur-
rent B-trees with minimal locking is one way of building
distributed databases, where a single relation may span
multiple machines. A B-Tree algorithm that is sometimes
used with respect to minimizing lock acquisitions when
traversing a tree is the Sagiv algorithm (see Yehoshua Sagiv,
Concurrent Operations on B-Trees with Overtaking, cited
above). However, Sagiv’s algorithm is imperfect in at least
two respects: First, with Sagiv’s algorithms, operations may
get “lost” while trying to locate a data record and have to be

US 2005/0071336 Al

restarted. Second, Sagiv’s algorithm requires additional lock
acquisitions when garbage-collecting deleted nodes. The
systems and methods described in commonly assigned
copending U.S. patent application Ser. Nos. 10/308,291 and
10/308,293 improve upon the Sagiv algorithm in various
ways.

[0015] Nevertheless, while an extensive body of prior art
focuses on how to traverse a tree and when to acquire a lock
on a node when updating the tree in order to ensure
reliability when recovering from failure, to date, no cur-
rently existing work focuses on the problems associated with
logging and recovering updates to a significantly scalable
distributed data structure after failure of the system in the
presence of concurrent updates. In essence, no one has
focused on optimizing logging in connection with a distrib-
uted data structure. Accordingly, there is a great need in the
art for improved logging in connection with distributed data
structures to ensure reliability and scalability of the under-
lying system in the presence of concurrent updates.

SUMMARY OF THE INVENTION

[0016] In consideration of the above-identified shortcom-
ings of the art, the present invention provides systems and
methods for logging and recovering updates to data struc-
tures in the event of failure of an information management
system. The invention is a method for implementing an
efficient redo log for a B-link tree data structure that is
concurrently accessed by multiple clients. The B-link tree
data structure is implemented in two layers: the B-link tree
algorithm layer which sits atop an allocator that provides
distributed, persistent, and replicated storage allocation.
Both the B-link tree algorithm layer and the allocator use the
service of the logging mechanism to implement fault-toler-
ance and atomicity guarantees. The present invention uses a
single log and allows periodic truncation of that log for
space efficiency.

[0017] Other advantages and features of the invention are
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The systems and methods for logging and recov-
ering updates to data structures in accordance with the
present invention are further described with reference to the
accompanying drawings in which:

[0019] FIG. 1A is a block diagram representing an exem-
plary network environment having a variety of computing
devices in which the present invention may be implemented,

[0020] FIG. 1B is a block diagram representing an exem-
plary non-limiting computing device in which the present
invention may be implemented;

[0021] FIGS. 2A and 2B describe some exemplary
aspects of exemplary distributed data structures, such as
B-trees and B-link trees, utilized in connection with exem-
plary embodiments of the invention;

[0022] FIGS. 3A to 3F illustrate exemplary aspects of the
derivation of the present invention in accordance with
optimal requirements of a logging and recovery system; and

[0023] FIG. 4 illustrates an exemplary handling of data
replication built into embodiments of the invention.

Mar. 31, 2005

DETAILED DESCRIPTION OF THE
INVENTION

[0024] Overview

[0025] As mentioned, no currently existing work focuses
on the problems associated with logging and recovering
updates to a significantly scalable data structure after failure
of the system in the presence of concurrent updates. In
essence, no one has focused on optimizing logging in
connection with a distributed data structure. While prior art
systems have effectively provided an infinite log by
archiving logging data when the log becomes full, the
invention presents a solution with a single finite log that can
be used in the event of failure of an information management
system. The invention is a method for implementing an
efficient redo log for a B-link tree data structure that may be
distributed across multiple machines and is concurrently
accessed by multiple clients. The B-link tree data structure
is implemented in two layers: the B-link tree algorithm layer
and an allocator layer. Both the B-link tree algorithm layer
and the allocator use the service of the logging mechanism
to implement fault-tolerance and atomicity guarantees. The
present invention uses a single log and allows periodic
truncation of that log for space efficiency.

[0026] Exemplary Networked and Distributed Environ-
ments

[0027] One of ordinary skill in the art can appreciate that
the invention can be implemented in connection with any
computer or other client or server device, which can be
deployed as part of a computer network, or in a distributed
computing environment. In this regard, the present invention
pertains to any computer system or environment having any
number of memory or storage units, and any number of
applications and processes occurring across any number of
storage units or volumes, which may be used in connection
with processes for logging and recovering updates in accor-
dance with the present invention. The present invention may
apply to an environment with server computers and client
computers deployed in a network environment or distributed
computing environment, having remote or local storage. The
present invention may also be applied to standalone com-
puting devices, having programming language functionality,
interpretation and execution capabilities for generating,
receiving and transmitting information in connection with
remote or local services. Ensuring reliability and scalability
of a distributed data structure is particularly relevant to those
computing devices operating in a network or distributed
computing environment, and thus the techniques for logging
and recovering updates in accordance with the present
invention can be applied with great efficacy in those envi-
ronments.

[0028] Distributed computing facilitates sharing of com-
puter resources and services by exchange between comput-
ing devices and systems. These resources and services
include, but are not limited to, the exchange of information,
cache storage, and disk storage for files. Distributed com-
puting takes advantage of network connectivity, allowing
clients to leverage their collective power to benefit the entire
enterprise. In this regard, a variety of devices may have
applications, objects or resources that may implicate pro-
cessing performed in connection with the logging and recov-
ering of updates in accordance with the invention.

[0029] FIG. 1A provides a schematic diagram of an
exemplary networked or distributed computing environ-

US 2005/0071336 Al

ment. The distributed computing environment comprises
computing objects 10a, 10b, etc. and computing objects or
devices 110a, 1105, 110c, etc. These objects may comprise
programs, methods, data stores, programmable logic, etc.
The objects may comprise portions of the same or different
devices such as PDAs, televisions, MP3 players, personal
computers, etc. Each object can communicate with another
object by way of the communications network 14. This
network may itself comprise other computing objects and
computing devices that provide services to the system of
FIG. 1A, and may itself represent multiple interconnected
networks. In accordance with an aspect of the invention,
each object 10a, 10b, etc. or 110a, 1105, 110c, etc. may
contain an application that might make use of an API, or
other object, software, firmware and/or hardware, to request
use of the processes used to implement the logging and
recovering of updates in accordance with the invention.

[0030] It can also be appreciated that an object, such as
110c¢, may be hosted on another computing device 10a, 105,
etc. or 110a, 110b, etc. Thus, although the physical envi-
ronment depicted may show the connected devices as com-
puters, such illustration is merely exemplary and the physi-
cal environment may alternatively be depicted or described
comprising various digital devices such as PDAs, televi-
sions, MP3 players, etc., software objects such as interfaces,
COM objects and the like.

[0031] There are a variety of systems, components, and
network configurations that support distributed computing
environments. For example, computing systems may be
connected together by wired or wireless systems, by local
networks or widely distributed networks. Currently, many of
the networks are coupled to the Internet, which provides the
infrastructure for widely distributed computing and encom-
passes many different networks. Any of the infrastructures
may be used for exemplary communications made incident
to logging and recovering updates in accordance with the
present invention.

[0032] In home networking environments, there are at
least four disparate network transport media that may each
support a unique protocol, such as Power line, data (both
wireless and wired), voice (e.g., telephone) and entertain-
ment media. Most home control devices such as light
switches and appliances may use power lines for connec-
tivity. Data Services may enter the home as broadband (e.g.,
either DSL or Cable modem) and are accessible within the
home using either wireless (e.g., HomeRF or 802.11B) or
wired (e.g., Home PNA, Cat 5, Ethernet, even power line)
connectivity. Voice traffic may enter the home either as
wired (e.g., Cat 3) or wireless (e.g., cell phones) and may be
distributed within the home using Cat 3 wiring. Entertain-
ment media, or other graphical data, may enter the home
either through satellite or cable and is typically distributed in
the home using coaxial cable. IEEE 1394 and DVI are also
digital interconnects for clusters of media devices. All of
these network environments and others that may emerge as
protocol standards may be interconnected to form a network,
such as an intranet, that may be connected to the outside
world by way of the Internet. In short, a variety of disparate
sources exist for the storage and transmission of data, and
consequently, moving forward, computing devices will
require ways of sharing data, such as data in a distributed
data structure, or data accessed by, generated by or utilized

Mar. 31, 2005

incident to program objects, which make use of or imple-
ment the logging and recovery of updates in accordance with
the present invention.

[0033] The Internet commonly refers to the collection of
networks and gateways that utilize the TCP/IP suite of
protocols, which are well-known in the art of computer
networking. TCP/IP is an acronym for “Transmission Con-
trol Protocol/Internet Protocol.” The Internet can be
described as a system of geographically distributed remote
computer networks interconnected by computers executing
networking protocols that allow users to interact and share
information over the network(s). Because of such wide-
spread information sharing, remote networks such as the
Internet have thus far generally evolved into an open system
for which developers can design software applications for
performing specialized operations or services, essentially
without restriction.

[0034] Thus, the network infrastructure enables a host of
network topologies such as client/server, peer-to-peer, or
hybrid architectures. The “client” is a member of a class or
group that uses the services of another class or group to
which it is not related. Thus, in computing, a client is a
process, i.e., roughly a set of instructions or tasks, that
requests a service provided by another program. The client
process utilizes the requested service without having to
“know” any working details about the other program or the
service itself. In a client/server architecture, particularly a
networked system, a client is usually a computer that
accesses shared network resources provided by another
computer, e.g., a server. In the example of FIG. 1A, com-
puters 110a, 1105, etc. can be thought of as clients and
computer 10a, 10b, etc. can be thought of as servers where
servers 10a, 10b, etc. maintain the data that is then replicated
in the client computers 110a, 110b, etc., although any
computer could be considered a client, a server, or both,
depending on the circumstances. Any of these computing
devices may be processing data, such as data from a dis-
tributed data structure, or requesting services or tasks that
may implicate the logging techniques of the invention.

[0035] A server is typically a remote computer system
accessible over a remote or local network, such as the
Internet. The client process may be active in a first computer
system, and the server process may be active in a second
computer system, communicating with one another over a
communications medium, thus providing distributed func-
tionality and allowing multiple clients to take advantage of
the information-gathering capabilities of the server. Any
software objects utilized pursuant to the logging and recov-
ery of updates in accordance with the invention may be
distributed across multiple computing devices or objects.

[0036] Client(s) and server(s) communicate with one
another utilizing the functionality provided by a protocol
layer. For example, HyperText Transfer Protocol (HTTP) is
a common protocol that is used in conjunction with the
World Wide Web (WWW), or “the Web.” Typically, a
computer network address such as an Internet Protocol (IP)
address or other reference such as a Universal Resource
Locator (URL) can be used to identify the server or client
computers to each other. The network address can be
referred to as a URL address. Communication can be pro-
vided over any available communications medium.

[0037] Thus, FIG. 1A illustrates an exemplary networked
or distributed environment, with a server in communication

US 2005/0071336 Al

with client computers via a network/bus, in which the
present invention may be employed. In more detail, a
number of servers 10a, 10b, etc., are interconnected via a
communications network/bus 14, which may be a LAN,
‘WAN, intranet, the Internet, etc., with a number of client or
remote computing devices 110a, 110b, 110c, 110d, 110e,
etc., such as a portable computer, handheld computer, thin
client, networked appliance, or other device, such as a VCR,
TV, oven, light, heater and the like in accordance with the
present invention. It is thus contemplated that the present
invention may apply to any computing device in connection
with which it is desirable to maintain a distributed data
structure.

[0038] In a network environment in which the communi-
cations network/bus 14 is the Internet, for example, the
servers 10a, 10b, etc. can be servers with which the clients
110a, 1105, 110c, 1104, 10e, etc. communicate via any of a
number of known protocols such as HTTP. Servers 10a, 105,
etc. may also serve as clients 110z, 1105, 110c, 1104, 110e,
etc., as may be characteristic of a distributed computing
environment.

[0039] Communications may be wired or wireless, where
appropriate. Client devices 110a, 1105, 110c, 110d, 110e,
etc. may or may not communicate via communications
network/bus 14, and may have independent communications
associated therewith. For example, in the case of a TV or
VCR, there may or may not be a networked aspect to the
control thereof. Each client computer 110a, 1105, 110c,
1104, 110e, etc. and server computer 10a, 105, etc. may be
equipped with various application program modules or
objects 135 and with connections or access to various types
of storage elements or objects, across which files or data
streams may be stored or to which portion(s) of files or data
streams may be downloaded, transmitted or migrated. Any
computer 10z, 10b, 110a, 1105, etc. may be responsible for
the maintenance and updating of a database, memory, or
other storage element 20 for storing data processed accord-
ing to the invention. In this regard, a distributed data
structure may be stored across a plurality of databases 20.
Thus, the present invention can be utilized in a computer
network environment having client computers 110a, 11105,
etc. that can access and interact with a computer network/
bus 14 and server computers 10a, 105, etc. that may interact
with client computers 110a, 11105, etc. and other like
devices, and databases 20.

[0040]

[0041] FIG. 1B and the following discussion are intended
to provide a brief general description of a suitable comput-
ing environment in connection with which the invention
may be implemented. It should be understood, however, that
handheld, portable and other computing devices and com-
puting objects of all kinds are contemplated for use in
connection with the present invention, i.e., anywhere from
which data may be generated, processed, received and/or
transmitted in connection with one or more distributed data
structures in a computing environment. While a general
purpose computer is described below, this is but one
example, and the present invention may be implemented
with a thin client having network/bus interoperability and
interaction. Thus, the present invention may be implemented
in an environment of networked hosted services in which
very little or minimal client resources are implicated, e.g., a

Exemplary Computing Device

Mar. 31, 2005

networked environment in which the client device serves
merely as an interface to the network/bus, such as an object
placed in an appliance. In essence, anywhere that data may
be stored or from which data may be retrieved or transmitted
to another computer is a desirable, or suitable, environment
for operation of the logging and recovery techniques in
accordance with the invention.

[0042] Although not required, the invention can be imple-
mented via an operating system, for use by a developer of
services for a device or object, and/or included within
application or server software that operates in connection
with the logging and recovery techniques in accordance with
the invention. Software may be described in the general
context of computer-executable instructions, such as pro-
gram modules, being executed by one or more computers,
such as client workstations, servers or other devices. Gen-
erally, program modules include routines, programs, objects,
components, data structures and the like that perform par-
ticular tasks or implement particular abstract data types.
Typically, the functionality of the program modules may be
combined or distributed as desired in various embodiments.
Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system
configurations and protocols. Other well known computing
systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not
limited to, personal computers (PCs), automated teller
machines, server computers, hand-held or laptop devices,
multi-processor systems, microprocessor-based systems,
programmable consumer electronics, network PCs, appli-
ances, lights, environmental control elements, minicomput-
ers, mainframe computers and the like. The invention may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network/bus or other
data transmission medium. In a distributed computing envi-
ronment, program modules may be located in both local and
remote computer storage media including memory storage
devices, and client nodes may in turn behave as server
nodes.

[0043] FIG. 1B thus illustrates an example of a suitable
computing system environment 100 in which the invention
may be implemented, although as made clear above, the
computing system environment 100 is only one example of
a suitable computing environment and is not intended to
suggest any limitation as to the scope of use or functionality
of the invention. Neither should the computing environment
100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 100.

[0044] With reference to FIG. 1B, an exemplary system
for implementing the invention includes a general purpose
computing device in the form of a computer 110. Compo-
nents of computer 110 may include, but are not limited to,
a processing unit 120, a system memory 130, and a system
bus 121 that couples various system components including
the system memory to the processing unit 120. The system
bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such archi-
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA

US 2005/0071336 Al

(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus).

[0045] Computer 110 typically includes a variety of com-
puter readable media. Computer readable media can be any
available media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media include both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules or other data.
Computer storage media include, but are not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CDROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computer 110.
Communication media typically embody computer readable
instructions, data structures, program modules or other data
in a modulated data signal such as a carrier wave or other
transport mechanism and include any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such
a manner as to encode information in the signal. By way of
example, and not limitation, communication media include
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of any of the above
should also be included within the scope of computer
readable media.

[0046] The system memory 130 includes computer stor-
age media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer
information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 120. By way of example, and not
limitation, FIG. 1B illustrates operating system 134, appli-
cation programs 135, other program modules 136, and
program data 137.

[0047] The computer 110 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 1B illustrates a hard
disk drive 141 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that
reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or
writes to a removable, nonvolatile optical disk 156, such as
a CD-RW, DVD-RW or other optical media. Other remov-
able/non-removable, volatile/nonvolatile computer storage
media that can be used in the exemplary operating environ-
ment include, but are not limited to, magnetic tape cassettes,
flash memory cards, digital versatile disks, digital video
tape, solid state RAM, solid state ROM and the like. The
hard disk drive 141 is typically connected to the system bus
121 through a non-removable memory interface such as

Mar. 31, 2005

interface 140, and magnetic disk drive 151 and optical disk
drive 155 are typically connected to the system bus 121 by
a removable memory interface, such as interface 150.

[0048] The drives and their associated computer storage
media discussed above and illustrated in FIG. 1B provide
storage of computer readable instructions, data structures,
program modules and other data for the computer 110. In
FIG. 1B, for example, hard disk drive 141 is illustrated as
storing operating system 144, application programs 145,
other program modules 146 and program data 147. Note that
these components can either be the same as or different from
operating system 134, application programs 135, other pro-
gram modules 136 and program data 137. Operating system
144, application programs 145, other program modules 146
and program data 147 are given different numbers here to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 110
through input devices such as a keyboard 162 and pointing
device 161, such as a mouse, trackball or touch pad. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite dish, scanner, or the like. These and
other input devices are often connected to the processing
unit 120 through a user input interface 160 that is coupled to
the system bus 121, but may be connected by other interface
and bus structures, such as a parallel port, game port or a
universal serial bus (USB). A graphics interface 182, such as
Northbridge, may also be connected to the system bus 121.
Northbridge is a chipset that communicates with the CPU, or
host processing unit 120, and assumes responsibility for
accelerated graphics port (AGP) communications. One or
more graphics processing units (GPUs) 184 may commu-
nicate with graphics interface 182. In this regard, GPUs 184
generally include on-chip memory storage, such as register
storage and GPUs 184 communicate with a video memory
186, wherein the application variables of the invention may
have impact. GPUs 184, however, are but one example of a
coprocessor and thus a variety of coprocessing devices may
be included in computer 110, and may include a variety of
procedural shaders, such as pixel and vertex shaders. A
monitor 191 or other type of display device is also connected
to the system bus 121 via an interface, such as a video
interface 190, which may in turn communicate with video
memory 186. In addition to monitor 191, computers may
also include other peripheral output devices such as speakers
197 and printer 196, which may be connected through an
output peripheral interface 195.

[0049] The computer 110 may operate in a networked or
distributed environment using logical connections to one or
more remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 110,
although only a memory storage device 181 has been
illustrated in FIG. 1B. The logical connections depicted in
FIG. 1B include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networks/buses. Such networking environments are com-
monplace in homes, offices, enterprise-wide computer net-
works, intranets and the Internet.

[0050] When used in a LAN networking environment, the
computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN

US 2005/0071336 Al

networking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet.
The modem 172, which may be internal or external, may be
connected to the system bus 121 via the user input interface
160, or other appropriate mechanism. In a networked envi-
ronment, program modules depicted relative to the computer
110, or portions therecof, may be stored in the remote
memory storage device. By way of example, and not limi-
tation, FIG. 1B illustrates remote application programs 185
as residing on memory device 181. It will be appreciated that
the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

[0051] Exemplary Distributed Computing Frameworks or
Architectures

[0052] Various distributed computing frameworks have
been and are being developed in light of the convergence of
personal computing and the Internet. Individuals and busi-
ness users alike are provided with a seamlessly interoperable
and Web-enabled interface for applications and computing
devices, making computing activities increasingly Web
browser or network-oriented.

[0053] For example, MICROSOFT®’s managed code
platform, i.e., .NET, includes servers, building-block ser-
vices, such as Web-based data storage and downloadable
device software. Generally speaking, the .NET platform
provides (1) the ability to make the entire range of comput-
ing devices work together and to have user information
automatically updated and synchronized on all of them, (2)
increased interactive capability for Web sites, enabled by
greater use of XML rather than HTML, (3) online services
that feature customized access and delivery of products and
services to the user from a central starting point for the
management of various applications, such as e-mail, for
example, or software, such as Office .NET, (4) centralized
data storage, which increases efficiency and ease of access to
information, as well as synchronization of information
among users and devices, (5) the ability to integrate various
communications media, such as e-mail, faxes, and tele-
phones, (6) for developers, the ability to create reusable
modules, thereby increasing productivity and reducing the
number of programming errors and (7) many other cross-
platform and language integration features as well.

[0054] While some exemplary embodiments herein are
described in connection with software residing on a com-
puting device, one or more portions of the invention may
also be implemented via an operating system, application
programming interface (API) or a “middle man” object, a
control object, hardware, firmware, intermediate language
instructions or objects, etc., such that the methods for
logging and recovery techniques of the invention may be
included in, supported in or accessed via all of the languages
and services enabled by managed code, such as .NET code,
and in other distributed computing frameworks as well.

[0055] Overview—Exemplary B-Tree Data Structures and
Operations

[0056] Initially, to set forth an exemplary non-limiting
context in which the present invention may be implemented,
an overview of an exemplary distributed data structure and
the operations that are typically performed on the data
structure are presented.

Mar. 31, 2005

[0057] FIG. 2A depicts a typical information retrieval
system 200. As shown, such a system can include a server
202 and a persistent store 204, such as a database. In
addition, the data residing in the store 204 may be organized
in the form of a tree, e.g., a B-link tree 206. Such a data
structure includes nodes, N1, N2, N3 and so on, and, in the
case of index nodes, links from each node to at least one
other node (data nodes typically have only incoming links).
The nodes may be sized to correspond to a disk block, or
may be bigger or smaller, and may be formed as data nodes
and index nodes (discussed further below in connection with
FIG. 2B). Further, there is a root node (node N1 in FIG. 2A)
and children nodes, with sibling nodes being those nodes
that have a common parent (e.g., nodes N2 and N3 are
siblings). Index nodes may also be linked to their right
siblings, as shown.

[0058] A B-Tree is a data structure that maintains an
association of keys with values. A prerequisite is that there
exists a total ordering over the keys, i.e., that it is always
possible to decide whether one key is larger than the other.
As indicated in FIG. 2A, reference number 208, B-trees
support three basic operations:

[0059] 1)insert(k, v), which associates the key k with
the value v;

[0060] 2) lookup(k), which returns the value v asso-
ciated with the key k; and

[0061] 3) delete(k), which disassociates the key k
from its associated value.

[0062] B-trees were first described by Bayer and
McCreight (R. Bayer and E. McCreight, Organization and
Maintenance of Large Ordered Indexes, cited above). There
are many variations of B-Trees, including B*-trees (see H.
Wedekind, On the selection of access paths in an informa-
tion retrieval system, cited above), B+-Trees (see D. Comer,
The Ubiquitous B-Tree, ACM Computing Surveys, cited
above), and B-Link Trees (see P. L. Lehman and S. B. Yao,
Efficient Locking for Concurrent Operations on B-Trees,
cited above). The present invention is applicable to all types
of B-Trees and variations thereof, and the term B-tree as
used herein in describing the invention is intended to encom-
pass all variants of the basic B-tree structure.

[0063] A B-tree stores keys and values as well as metadata
in nodes. Nodes are kept on disk or some other storage
device (B-Trees make sense for any slow and cheap storage
device), and are read into main memory on demand, and
written back to disk if modified. Nodes on disk are identified
by handles. For the purpose of this discussion, it is sufficient
to think of handles as the addresses of contiguous ranges of
storage blocks (e.g., disk block addresses) plus optional
metadata. As indicated in FIG. 2A, reference numeral 210,
an allocator is a software component that maintains nodes on
disk and supports four operations:

[0064] 1) allocate(n), which reserves space on the
disk for a node with a maximum size of n bytes and
returns a handle to it;

[0065] 2) deallocate(h), which relinquishes the space
at the disk location identified by the handle h;

[0066] 3) read(h), which reads the node from the disk
location identified by the handle h and returns it; and

US 2005/0071336 Al

[0067] 4) write(h, A), which writes the node A from
main memory to the disk location identified by
handle h.

[0068] Herein, it is assumed that allocator operations are
atomic, that is, two concurrent operations on the same
handle do not interfere with each other.

[0069] Nodes in a B-Tree may contain handles referring to
other nodes. In most B-Tree variants, the handles connect
the nodes to form a tree (hence the name), a directed,
connected, and acyclic graph. It is noted that every tree is a
directed acyclic graph, but not every directed acyclic graph
is a tree. For instance, a B-Link Tree, discussed below, is a
directed acyclic graph, but not a tree. In the following, the
reader is assumed to be familiar with the definition of a tree
and the terms subtree, link, root, leaf, parent, child, and
sibling. B-Link Trees differ from proper trees in that in
addition to the links from parents to children, every node has
a link to its directly adjacent right sibling (if such a sibling
exists). This can be seen in the exemplary B-Link Tree 300
of FIG. 2B, where the “right link” (link to right sibling) is
represented by reference numeral 302.

[0070] A B-link tree can be thought of as composing two
different kinds of nodes: data nodes and index nodes,
reference numerals 304 and 306, respectively, of FIG. 2B.
Adata node is simply a key-value pair of the form <k,d>. An
index node is of the form:

[0071] <k,;., by, ky, By, kg, o
max> Dright™

[0072] In the following, we refer to field x of node A as
Ax. Given an index node A, A.h, . . . A.h, are handles to the
n+1 children of A, and A h,;,, is a handle to its right sibling.
AK; (for 02i<n) is the largest key in the subtree rooted at
handle Ah;., and Ak, ; (or Ak, if i=0) is less than the
smallest key in the subtree rooted at handle A.h;. Ak, is
greater or equal to the largest key in any subtree of A (and
per definition cif A does not have a right sibling), and Ak, ;.
is equal to Bk .., where B is the left sibling of A (or —ooif
A does not have a left sibling). Moreover, Ak ; <Ak <. .
. <Ak, =k, Finally, there is a limit on the size of n (which
indicates the number of keys and handles in an index node).
If n reaches a maximum value (say, 2t), then the index node
is said to be full. Likewise, if n falls below a certain number
(say, t), the node is said to be underfull.

[0073] Because of the constraints on the keys in an index
node and the keys in the subtrees rooted at that node, B-Link
trees are search trees, that is, trees where one can find a
particular key by descending into the tree. Intuitively, look-
up(k) starts at the root handle, reads in the corresponding
node A, and identifies a value i such that Ak, , (or Ak, if
i=0)<k= A k; (or Ak, if i=n). It then recursively proceeds
along the handle A.h; until it reaches a data node B, and
returns B’s value if B’s key is indeed k, or null otherwise.

[0074] The delete operation is similar to the lookup opera-
tion: delete(k) descends into the tree until a data node D with
key k is discovered (if such a node exists). The operation
then marks D as deleted (D is not immediately deallocated,
because other ongoing operations may have a handle to D
but not yet have read D), and removes the handle to D from
D’s parent node A. This may cause A to become underfull.

[0075] The insert operations is more complicated: insert(k,
v) allocates a new data node D with handle h, writes the pair

,hy ko, k, by,

n’ T n

Mar. 31, 2005

(k,v) to it, and then recursively descends into the tree the
same way as lookup does, until it finds the leaf index node
A (the index node whose children are data nodes) that should
receive h. If A is not full, insert(k,v) simply inserts h and k
at the appropriate places into A; otherwise, it allocates a new
index node A, moves half of A’s key-handle pairs over to A,
inserts k and h into A or A, and finally adds the handle to A
and A’s new k___to A’s parent (this may in turn cause A’s
parent to become overfull, causing the node splitting process
to move up the tree).

[0076] As mentioned above, the delete operation may
cause nodes to become underfull. To prevent too many
nodes from becoming underfull (which would cause the tree
to become deeper than it needs to be, which would increase
the number of disk accesses required by each operation), a
compression thread is run in the background. The thread
repeatedly traverses the tree, searching for underfull nodes.
When it locates an underfull node A, it either rebalances it
with its left or right sibling (which entails moving key-
handle pairs from the sibling to A, and adjusting a key in the
parent node), or it outright merges A with its left or right
sibling (which entails moving all of A’s content to the
sibling, marking A as deleted, and removing A’s handle and
corresponding key from A’s parent, which in turn may cause
the parent to become underfull).

[0077] Systems and Methods for Logging and Recovering
Updates

[0078] As mentioned, building scalable databases, where
the size of the database can be increased simply by adding
more hardware is desirable. However, when more and more
hardware is added to an information management system,
the problems associated with reliability and recovery from a
crash or failure of the hardware can become more acute.

[0079] Accordingly, the invention considers and optimizes
how to log entries, or updates, to a data structure, such that
in the event of a system failure, the state of the data structure
can be recovered to the point of failure by resorting to the
log. In this section, a derivation of the present invention is
illustrated, and then exemplary embodiments for implement-
ing the invention are presented.

[0080] The derivation of the present invention begins by
analyzing the nature and requirements springing from the
notions of an infinite persistent log, caching of data records
and a finite log.

[0081] With respect to an infinite persistent log, logging
for a single server is first considered. In this scenario, it is
ideally assumed that an infinite persistent log is available,
i.e., that a log exists that is persistent and has no bounds/
memory constraints. FIG. 3A depicts an information
retrieval system 300 that utilizes an infinite persistent log
312. As shown, such a system can include a server 302 and
a persistent store 304, such as a database. In addition, the
data residing in the store 304 may be organized the form of
a tree, .g., a B-link tree 306. Such a data structure includes
nodes, N1, N2, N3 and so on, and, in the case of index nodes,
links from each node to at least one other node. While log
312 is depicted as included in persistent store 304, log 312
could be provided in separate persistent storage.

[0082] In this case, a simple write-ahead redo log performs
adequately. With a simple write-ahead redo log, before each
(atomic) operation is carried out, a log entry for this opera-

US 2005/0071336 Al

tion is written to log 312 in the persistent storage 304. Such
a log entry may include data identifying the operation to be
performed on the data structure 306, the node(s) affected by
the operation and possibly the data to be applied (if adding
or modifying data). To recover the state of the server from
the log after server failure, assuming that each operation is
idempotent, the recovery process involves simply going
through the log and re-applying the operations in the same
order.

[0083] If not all operations are idempotent, then a version
number can be associated with each piece of data. A log
entry, such as log entry 314, in addition to recording
information about the operation to be performed on the data
structure 306, records V_B, the version number of the data
before the operation. Then, an operation is re-applied during
recovery only if the version number of the data on disk
matches that of the version number before the operation
recorded in the log. This ensures that an operation is never
applied more than once. It is noted that, for this simple
write-ahead redo log to work, the operation being logged
must be atomic; that is, a failure will not leave the system in
an intermediate state that is neither the state before the
operation nor the state after.

[0084] This leads to the conclusion that effective and
reliable logging (and recovery) in an information manage-
ment system has a first requirement—(1) Before the result of
an operation is committed to persistent storage, the log entry
corresponding to that operation must be written to the log.

[0085] With respect to caching, FIG. 3B depicts another
embodiment of information retrieval system 300. In a typi-
cal implementation, server 302 (which may comprise mul-
tiple computing devices) includes a B-link tree layer 310
generating log entries 314, a memory 335 and cache
memory 330, which raises the question of how to log the
operations of the B-link tree layer 310, some of which may
be present in cache memory 330 as an intermediate step, i.e.,
how to handle log entries 314 describing data transactions to
be performed on data structure 306 in such a system.
Described in more detail below, one way to handle logging
is to utilize memory 335 to stores log entries 314 that are not
yet committed to persistent storage 304 while utilizing cache
memory 330 to store updated records of data structure 306
as an intermediate step before commission to persistent
storage 304.

[0086] Performance is improved in such a system because
not all updates from the B-link tree layer 310 need go
directly to persistent storage 304 as changes to data structure
306. Thus, as illustrated in FIG. 3B, if the operations are
organized in transactions, the log record updates corre-
sponding to a transaction are written to the persistent storage
304 when the corresponding transaction commits. In the
meantime, they can be cached in cache storage 330.

[0087] Similarly, while a log entry 314 is generated for
each operation by B-link layer 310, the log entry 314 does
not need to be written to the persistent storage 304 imme-
diately, and thus, a tail 312b of the log can be stored in
memory 335 as an intermediate step. Memory 335, in a
typical non-limiting implementation, comprises volatile
storage. It follows from the first requirement formulated in
connection with a theoretically existing infinite persistent
log, however, that a log entry 314 must be written to
persistent storage 304 before the changes (e.g., update 316)

Mar. 31, 2005

corresponding to a log entry 314 are reflected in the persis-
tent storage 304. For example, as shown in FIG. 3C wherein
memory 335 comprises volatile storage, log entries 314a
and 314b, corresponding to updates 316a and 316b, respec-
tively, have been written to the head of the log 312a in
persistent storage before updates 316a and 3165 have been
committed as changes to data structure 306. Accordingly, at
any time thereafter, updates 316a and 3165 from cache 330
can be committed to data structure 306 in persistent storage
304.

[0088] This observation leads to the construction of a
partially persistent log, where the tail of the log 3125 is in
memory 335. The boundary B between the persistent part of
the log (e.g., in persistent storage 304) and the in-memory
log changes over time as the entries 314 in the in-memory
log are written to the persistent storage 304.

[0089] One way to ensure that this data block caching
scheme works is to keep track of the log entry corresponding
to the last update on a data block so that before the updates
to the data block are committed to the disk, the log entries
must be written out first. In various embodiments, this can
be done by maintaining, with each cache entry, a LSN (log
sequence number) corresponding to the log entry for the last
update. LSNs uniquely identify log entries. This is illus-
trated in FIG. 3D, wherein the LSN numbers for a series of
log entries 314a to 314p are written in superscript. The last
update committed to disk is update 316j corresponding to
log entry 314j (having LSN 10). Subsequent log entries are
assigned the next LSN in the sequence. Before a cache entry
with LSN number K is written to persistent storage, all log
entries in the volatile portion of the log with LSN values less
than or equal to K must be written to disk first.

[0090] In reality, logs are not infinite, i.e., memory con-
straints bound the size of real world logs. Thus, eventually
when the log does wrap around, some log entries will be
discarded to make room for new entries. To maintain cor-
rectness, the system must make sure that log entries that are
discarded are useless.

[0091] By definition, log entries become useless when the
corresponding updates to the data have been committed to
persistent storage since after that the log entries are no
longer needed during a recovery process. So, if the system
finds no space available on the log when intending to write
a new log entry into the log, then the system ftries to
eliminate log entries from the head of the log.

[0092] For ecach log entry to be discarded, the system
checks whether the corresponding updates have been com-
mitted to the persistent storage. If not, the corresponding
cache entry will have to be flushed to the persistent storage
first. For this scheme to work, for each log entry, a list is
recorded of data entries (each identified by a handle) that
have been updated by the operations corresponding to the
log entries. Thus, for example, in FIG. 3E, list 322 includes
handles to the data entries that have been updated by the
operations of the log entries.

[0093] This leads to an observation for a second require-
ment—(2) A log entry can be discarded from the log-if and
only if the changes made by the corresponding operation
have been committed to the disk.

[0094] It is noted that flushing the cache could also cause
some in-memory log entries to commit to the persistent

US 2005/0071336 Al

storage (to satisfy the first requirement) because the data in
the cache could have been updated by later operations whose
logs are still in the memory. This could in turn require more
space in the already full log.

[0095] There are two approaches to break the circularity:
reservation and log flush. With reservation, the system can
always reserve enough space on the disk for the log entries
in memory. This way, the log-flush will not lead to insuffi-
cient space on the log. With log flush, before generating a
new log for an operation, the system flushes all existing
in-memory log entries to the disk. The second option is
inefficient because it defeats the whole purpose of having
logs in memory. So, the first option is more desirable.

[0096] Further complication arises if the system supports
transactions that each consists of a sequence of atomic
operations (each with a corresponding log entry.) For
instance, an insert operation into a B-tree may have to
perform several atomic operations, e.g., splitting several
nodes and inserting data. When recovering from failure, an
incomplete transaction might need to be undone. Thus, no
log entries for a transaction can be discarded from the log
before the transaction is complete. This leads to a third
requirement—(3) All log entries of a transaction must
remain in the log until the transaction is committed or
aborted.

[0097] Consistent with the above-described requirements
of logging systems, various embodiments of the invention
are now described. FIG. 3F depicts an information retrieval
system 300. As shown, such a system can include a server
302 and a persistent store 304, such as a database. In many
cases, the data residing in persistent store 304 is distributed
and/or duplicated in a plurality of databases. In addition, the
data residing in the store 304 may be organized the form of
a tree, €.g., a B-link tree 306. Such a data structure includes
nodes, N1, N2, N3 and so on, and, in the case of index nodes,
links from each node to at least one other node. In a typical
implementation, server 302 (which may comprise a plurality
of computing devices) includes a B-link tree layer 310 and
an allocation layer 320, which raises the question of how to
log the operations of the B-link tree layer 310 and the
allocation layer 320 so that examining the logging informa-
tion after a failure enables unambiguous reconstruction of
the data structure 306 to the appropriate point relating to the
time of the failure.

[0098] Anaive implementation of the logging might resort
to keeping two separate logs: a log 315 for the B-link tree
layer 310 and a log 325 for allocation layer 320. However,
in a large scale system, this leads to bad performance
because two log writes (one to each log 315 and 325) must
be performed. This involves positioning the actuator of a
disk to a first position for the first log and then seeking and
writing to a second position for the second log, and even-
tually re-seeking to the first position for the next logging
operation. Thus, the present invention uses a single log and
allows periodic truncation of that log for space efficiency.
Unlike prior art B-tree or B-link tree systems, the invention
coordinates the truncation of the log with periodic flushing
of data to disk. The invention thus enables the maintenance
of a small log, which translates to fast recovery.

[0099] In accordance with the present invention, server
302 includes a B-link tree layer 310 and an allocator layer
320. The B-link tree layer 310 handles B-link tree opera-

Mar. 31, 2005

tions. The allocator layer 320 is in charge of allocating and
de-allocating disk space, as well as reading from and writing
to the allocated disk space, in response to B-link tree
operations. While exemplary embodiments are described in
connection with B-link trees, the invention may be applied
to any data structure.

[0100] The logging of the invention ensures the atomicity
of the B-link tree operations and facilitates fast recovery in
case of failure. Because user-initiated B-link tree operations
are not atomic, each B-link tree operation is treated as a
transaction consisting of a sequence of atomic operations.
For example, an insert operation for the B-link tree could not
only cause a new data entry to be inserted, but could also
lead to the split of one or more nodes along the path to the
root. Manipulation of each single node will have a corre-
sponding log record.

[0101] Even modifying a single node in a B-link tree
might not be an atomic operation because the node can span
multiple sectors on the disk. Usually, it can only be assumed
that writing to a single sector is atomic. To make a multi-
sector write atomic, the invention uses the following tech-
nique. The number of concurrent write operations to a disk
are limited to a pre-fixed number. Then, an area on the disk
large enough to hold the corresponding number of writes is
reserved. A write spanning multiple sectors is first written to
the reserved area and then to the actual sectors on disk. In
this way, the invention enables recovery from a disk write
failure at any point and the write appears atomic.

[0102] Furthermore, in accordance with the invention,
allocation and de-allocation of disk space are logged at the
allocator layer 320. Allocator layer 320 also maintains data
structures for keeping track of disk allocation. Such infor-
mation corresponds to the data being modified by allocation
and deallocation operations, and therefore is written to the
disk when the corresponding operations become persistent.

[0103] The insert and delete operations can be undone
logically using a dual operation. For example, insertion of an
entry can be undone by the deletion of that entry. However,
a B-link tree insert operation requires multiple log records.
Thus, the nature of the B-link tree insert operation is such
that if a prefix of these log records is found, the insert
operation can be logically completed. But when it is known
that the operation did not complete, as evidenced by a partial
prefix in the log, a logical undo of the insert operation is
performed. The other B-link tree operation, i.e., delete, has
only one log record, so the issue of a prefix does not arise.

[0104] Two classes of failures from which the invention
may advantageously be used to recover include: (A) failure
that does not include the failure of the disk medium (e.g.,
when the power goes off on a machine) and (B) failure that
does include failure of the disk medium. Failure not includ-
ing disk medium failure is addressed above by using a log
as described in the various embodiments of the invention.

[0105] For failure involving media failure, however,
merely logging data is not going to be adequate because the
disk to which the log is being written could fail. So, to
handle both types of failures (non-media failure and media
failure), in one embodiment, the invention replicates the data
and the log on independently failing components.

[0106] For simplicity, the data replication mechanism of
the invention may be thought of as mirroring. An exemplary

US 2005/0071336 Al

embodiment of the data replication of the invention is
depicted in FIG. 4. Each B-link tree node, e.g., node N2, is
maintained by both a primary server 302z and a secondary
server 302b. Each operation on that B-link tree node is
performed on both the primary and the secondary data stores
30442 and 304b. B-link tree log entries are thus automatically
replicated as the B-link tree is. The allocator log entries are
specific to a server and are not replicated. Thus, the single
log of the invention includes B-link tree transaction entries
BT, BT? and BT generated by B-link tree layer 310, which
are replicated to each of the stores 304a and 304b, but the
allocator entries AL and AL' are specific to the allocation
and deallocation of disk space by allocators 320a and 320b.

[0107] Advantageously, this embodiment of the invention
provides that the allocator logs are local and the B-tree logs
are distributed across multiple servers. Thus, the recovery of
the system can be done by replaying the log entries stored
locally to each server (which include both allocator log
entries and B-tree log entries.)

[0108] There are multiple ways of implementing the
present invention, e.g., an appropriate API, tool kit, driver
code, operating system, control, standalone or downloadable
software object, etc. which enables applications and services
to log and recover updates in accordance with the invention.
The invention contemplates the use of the invention from the
standpoint of an API (or other software object), as well as
from a software or hardware object that generates, accesses,
retrieves or updates data for a distributed data structure.
Thus, various implementations of the invention described
herein may have aspects that are wholly in hardware, partly
in hardware and partly in software, as well as in software.

[0109] As mentioned above, while exemplary embodi-
ments of the present invention have been described in
connection with various computing devices and network
architectures, the underlying concepts may be applied to any
computing device or system in which it is desirable to
implement a distributed data structure. For instance, the
algorithm(s) and hardware implementations of the invention
may be applied to the operating system of a computing
device, provided as a separate object on the device, as part
of another object, as a reusable control, as a downloadable
object from a server, as a “middle man” between a device or
object and the network, as a distributed object, as hardware,
in memory, a combination of any of the foregoing, etc.
While exemplary programming languages, names and
examples are chosen herein as representative of various
choices, these languages, names and examples are not
intended to be limiting. One of ordinary skill in the art will
appreciate that there are numerous ways of providing object
code and nomenclature that achieves the same, similar or
equivalent functionality achieved by the various embodi-
ments of the invention.

[0110] As mentioned, the various techniques described
herein may be implemented in connection with hardware or
software or, where appropriate, with a combination of both.
Thus, the methods and apparatus of the present invention, or
certain aspects or portions thereof, may take the form of
program code (i.c., instructions) embodied in tangible
media, such as floppy diskettes, CD-ROMs, hard drives, or
any other machine-readable storage medium, wherein, when
the program code is loaded into and executed by a machine,
such as a computer, the machine becomes an apparatus for

Mar. 31, 2005

practicing the invention. In the case of program code execu-
tion on programmable computers, the computing device
generally includes a processor, a storage medium readable
by the processor (including volatile and non-volatile
memory and/or storage elements), at least one input device,
and at least one output device. One or more programs that
may implement or utilize the techniques of the present
invention, e.g., through the use of a data processing API,
reusable controls, or the like, are preferably implemented in
a high level procedural or object oriented programming
language to communicate with a computer system. How-
ever, the program(s) can be implemented in assembly or
machine language, if desired. In any case, the language may
be a compiled or interpreted language, and combined with
hardware implementations.

[0111] The methods and apparatus of the present invention
may also be practiced via communications embodied in the
form of program code that is transmitted over some trans-
mission medium, such as over electrical wiring or cabling,
through fiber optics, or via any other form of transmission,
wherein, when the program code is received and loaded into
and executed by a machine, such as an EPROM, a gate array,
a programmable logic device (PLD), a client computer, etc.,
the machine becomes an apparatus for practicing the inven-
tion. When implemented on a general-purpose processor, the
program code combines with the processor to provide a
unique apparatus that operates to invoke the functionality of
the present invention. Additionally, any storage techniques
used in connection with the present invention may invari-
ably be a combination of hardware and software.

[0112] While the present invention has been described in
connection with the preferred embodiments of the various
figures, it is to be understood that other similar embodiments
may be used or modifications and additions may be made to
the described embodiment for performing the same function
of the present invention without deviating therefrom. For
example, while exemplary network environments of the
invention are described in the context of a networked
environment, such as a peer to peer networked environment,
one skilled in the art will recognize that the present invention
is not limited thereto, and that the methods, as described in
the present application may apply to any computing device
or environment, such as a gaming console, handheld com-
puter, portable computer, etc., whether wired or wireless,
and may be applied to any number of such computing
devices connected via a communications network, and inter-
acting across the network. Furthermore, it should be empha-
sized that a variety of computer platforms, including hand-
held device operating systems and other application specific
operating systems are contemplated, especially as the num-
ber of wireless networked devices continues to proliferate.
Still further, the present invention may be implemented in or
across a plurality of processing chips or devices, and storage
may similarly be effected across a plurality of devices or
storage units, such as databases. Therefore, the present
invention should not be limited to any single embodiment,
but rather should be construed in breadth and scope in
accordance with the appended claims.

What is claimed:

1. A method for logging while updating a B-link tree via
a plurality of data transactions, whereby a current state of the
data structure is recovered by re-performing data transac-
tions represented by the logging, comprising:

US 2005/0071336 Al

generating at least one log entry corresponding to a data
transaction of the plurality of data transactions, the data
transaction to be carried out on said B-link tree; and

storing said at least one log entry into a log.

2. A method according to claim 1, further including
periodically truncating the log.

3. A method according to claim 1, wherein said at least
one log entry includes at least one of (A) at least one entry
from an allocation layer and (B) at least one entry from a
B-link tree layer.

4. A method according to claim 1, further including
discarding said at least one log entry from the log when the
data transaction has been carried out on said B-link tree.

5. A method according to claim 1, wherein said storing
includes storing said at least one log entry into the log before
the data transaction is carried out on said B-link tree.

6. A method according to claim 1, further including
caching data of said data transaction before said data trans-
action is carried out on said B-link tree.

7. A method according to claim 1, further including
storing said at least one log entry in an intermediate memory
previous to storing said at least one log entry in the log.

8. A method according to claim 7, wherein said at least
one log entry is moved from intermediate memory to the log
after the data transaction commits.

9. A method according to claim 1, further including
maintaining a log sequence number with each of said at least
one log entry, uniquely identifying said at least one log entry.

10. A computer readable medium comprising computer
executable instructions for performing the method of claim
1.

11. A modulated data signal carrying computer executable
instructions for performing the method of claim 1.

12. A method for logging while updating a B-link tree via
a plurality of data transactions, whereby a current state of the
data structure is recovered by re-performing data transac-
tions represented by the logging, comprising:

generating at least one log entry corresponding to a data
transaction of the plurality of data transactions, the data
transaction to be carried out on said B-link tree;

storing said at least one log entry into a finite log;

periodically flushing data corresponding to data transac-
tions represented by the finite log to persistent storage;
and

truncating said finite log in coordination with said flush-

ing.

13. A method according to claim 12, wherein said at least
one log entry includes at least one of (A) at least one entry
from an allocation layer and (B) at least one entry from a
B-link tree layer.

14. A method according to claim 12, further including
discarding said at least one log entry from the finite log when
the data transaction has been carried out on said B-link tree.

15. A method according to claim 12, wherein said storing
includes storing said at least one log entry into the finite log
before the data transaction is carried out on said B-link tree.

16. A method according to claim 1, further including
caching data of said data transaction before said data trans-
action is carried out on said B-link tree.

17. A method according to claim 12, further including
storing said at least one log entry in an intermediate memory
previous to storing said at least one log entry in the finite log.

11

Mar. 31, 2005

18. A method according to claim 17, wherein said at least
one log entry is moved from intermediate memory to the
finite log after the data transaction commits.

19. A method according to claim 12, further including
maintaining a log sequence number with each of said at least
one log entry, uniquely identifying said at least one log entry.

20. A computer readable medium comprising computer
executable instructions for performing the method of claim
12.

21. Amodulated data signal carrying computer executable
instructions for performing the method of claim 12.

22. A method for logging while updating a data structure
via a plurality of data transactions, whereby a current state
of the data structure is recovered by re-performing data
transactions represented by the logging, comprising:

replicating updates to the data structure to a first server
location and a second server location;

generating at least one log entry corresponding to a data
transaction of the plurality of data transactions, the data
transaction to be carried out on said data structure; and

maintaining a single log, where the log is partitioned into
an upper layer and an allocation layer, at each of said
first and second server locations, wherein the single log
includes log entries from both the upper layer and
allocation layer.

23. A method according to claim 22, further including
recovering the data structure after a failure by performing
parallel recovery operations by each of said first and second
server locations.

24. A method according to claim 22, wherein said data
structure is a B-link tree.

25. A method according to claim 24, wherein the upper
layer is a B-link tree layer that handles B-link tree opera-
tions.

26. A method according to claim 22, wherein the allocater
layer handles at least one of (A) an allocate disk space
operation, (B) a deallocate disk space operation, (C) a read
from the allocated disk space operation and (D) a write to the
allocated disk space operation.

27. A computer readable medium comprising computer
executable instructions for performing the method of claim
22.

28. A modulated data signal carrying computer executable
instructions for performing the method of claim 22.

29. A server for maintaining a log while updating a B-link
tree via a plurality of data transactions, whereby a state of
the data structure is recovered by re-performing data trans-
actions represented by the logging, comprising:

a logging object that generates at least one log entry
corresponding to a data transaction of the plurality of
data transactions, the data transaction to be carried out
on said B-link tree; and

a storage log for storing said at least one log entry.

30. A server according to claim 29, wherein the finite
storage log including said at least one log entry is periodi-
cally truncated.

31. A server according to claim 29, further comprising:

an allocation layer object for said B-link tree; and

a B-link tree layer object,

US 2005/0071336 Al

wherein said at least one log entry includes at least one of
(A) at least one entry from the allocation layer object
and (B) at least one entry from the B-link tree layer
object.

32. A server according to claim 29, wherein said at least
one log entry is discarded from the storage log when the data
transaction has been carried out on said B-link tree.

33. A server according to claim 29, wherein said at least
one log entry is stored in the storage log before the data
transaction is carried out on said B-link tree.

34. A server according to claim 29, wherein data of said
data transaction is cached in a cache memory before said
data transaction is carried out on said B-link tree.

35. A server according to claim 29, further including
storing said at least one log entry in an intermediate memory
previous to storing said at least one log entry in the storage
log.

36. A server according to claim 35, wherein said at least
one log entry is moved from intermediate memory to the
storage log after the data transaction commits.

37. A server according to claim 29, wherein said logging
object generates a log sequence number with each of said at
least one log entry, uniquely identifying said at least one log
entry.

38. A server for logging while updating a B-link tree via
a plurality of data transactions, whereby a state of the data
structure is recovered by re-performing data transactions
represented by the logging, comprising:

a first object for generating at least one log entry corre-
sponding to a data transaction of the plurality of data
transactions, the data transaction to be carried out on
said B-link tree;

a finite storage log for storing said at least one log entry;

a second object for periodically flushing data correspond-
ing to data transactions represented by the at least one
log entry in the finite storage log to persistent storage;

a third object for truncating said finite storage log in
coordination with the operation of the flushing of the
second object.

39. A server according to claim 38, further including:

an allocation layer and a B-link tree layer, wherein said at
least one log entry includes at least one (A) at least one
entry from the allocation layer and (B) at least one entry
from the B-link tree layer.

40. A server according to claim 38, wherein said at least
one log entry is discarded from the finite storage log when
the data transaction has been carried out on said B-link tree.

41. A server according to claim 38, wherein said at least
one log entry is stored in the finite storage log before the data
transaction is carried out on said B-link tree.

42. A server according to claim 38, wherein data of said
data transaction is cached in a cache memory before said
data transaction is carried out on said B-link tree.

43. A server according to claim 38, further including
storing said at least one log entry in an intermediate memory
previous to storing said at least one log entry in the finite
storage log.

44. A server according to claim 43, wherein said at least
one log entry is moved from intermediate memory to the
finite storage log after the data transaction commits.

Mar. 31, 2005

45. A server according to claim 38, wherein said first
object generates a log sequence number with each of said at
least one log entry, uniquely identifying said at least one log
entry.

46. A server for logging while updating a data structure
via a plurality of data transactions, whereby a state of the
data structure is recovered by re-performing data transac-
tions represented by the logging, comprising:

a replication object that replicates updates to the data
structure to a first server location and a second server
location;

a logging object that generates at least one log entry
corresponding to a data transaction of the plurality of
data transactions, the data transaction to be carried out
on said data structure; and

a storage element within which a single log is maintained,
wherein the single log is partitioned into an upper layer
and an allocation layer, at each of said first and second
server locations, and wherein the single log includes
log entries from both the upper layer and allocation
layer.

47. A server according to claim 46, wherein the data
structure is recovered after a failure via parallel recovery
operations by each of said first and second server locations.

48. A server according to claim 46, wherein said data
structure is a B-link tree.

49. A server according to claim 48, wherein the upper
layer is a B-link tree layer that handles B-link tree opera-
tions.

50. A server according to claim 46, wherein the allocater
layer handles at least one of (A) an allocate disk space
operation, (B) a deallocate disk space operation, (C) a read
from the allocated disk space operation and (D) a write to the
allocated disk space operation.

51. A computing device for logging while updating a
B-link tree via a plurality of data transactions, whereby a
current state of the data structure is recovered by re-per-
forming data transactions represented by the logging, com-
prising:

means for generating at least one log entry corresponding
to a data transaction of the plurality of data transac-
tions, the data transaction to be carried out on said
B-link tree; and

means for storing said at least one log entry into a log.

52. A computing device according to claim 51, further
including means for truncating the log periodically.

53. A computing device for logging while updating a
B-link tree via a plurality of data transactions, whereby a
current state of the data structure is recovered by re-per-
forming data transactions represented by the logging, com-
prising:

means for generating at least one log entry corresponding
to a data transaction of the plurality of data transac-
tions, the data transaction to be carried out on said
B-tree;

means for storing said at least one log entry into a finite
log;

US 2005/0071336 Al

means for periodically flushing data corresponding to data
transactions represented by the finite log to persistent
storage; and

means for truncating said finite log in coordination with

said means for periodically flushing.

54. A computing device according to claim 53, further
including means for discarding said at least one log entry
from the finite log when the data transaction has been carried
out on said B-link tree.

55. A computing device for logging while updating a data
structure via a plurality of data transactions, whereby a
current state of the data structure is recovered by re-per-
forming data transactions represented by the logging, com-
prising:

means for replicating updates to the data structure to a first
server location and a second server location;

Mar. 31, 2005

means for generating at least one log entry corresponding
to a data transaction of the plurality of data transac-
tions, the data transaction to be carried out on said data
structure; and

means for maintaining a single log, where the log is
partitioned into an upper layer and an allocation layer,
at each of said first and second server locations,
wherein the single log includes log entries from both
the upper layer and allocation layer.

56. A computing device according to claim 55, wherein
said data structure is recoverable after a failure by perform-
ing parallel recovery operations by each of said first and
second server locations.

