US008209305B2

a2 United States Patent 10) Patent No.: US 8,209,305 B2
Najork (45) Date of Patent: Jun. 26, 2012
(54) INCREMENTAL UPDATE SCHEME FOR 2,2(7)?,822 g} ggggg]S)miﬂl ;:{t eﬁ 70%272/451
,601, avis-Hall
HYPERLINK DATABASE 6,606,653 Bl 8/2003 Ackermann, Jr. et al. 709/219
. 6,638,314 B1 10/2003 Meyerzon et al. 715/513
(75) Inventor: Mare A. Najork, Palo Alto, CA (US) 6,681,309 B2* 1/2004 Szendyetal. ... 711173
6,754,873 Bl 6/2004 Lawetal. .. 715/501.1
(73) Assignee: Microsoft Corporation, Redmond, WA 6,772,141 B1* 82004 Prattetal. 707/999.003
(US) 6,820,085 B2 11/2004 Nishizawa et
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 743 days. WO WO 97/42576 11/1997
(21) Appl. No.: 11/408,283 OTHER PUBLICATIONS
) Adler, M. et al., “Towards Compressing Web Graphs”, CMPSCI
(22) Filed: Apr. 19, 2006 Technical Report, 2000, 5 pages.
(65) Prior Publication Data (Continued)
US 2007/0250480 Al Oct. 25, 2007 Primary Examiner — Charles Rones
(51) Int.CI Assistant Examiner — Rezwanul Mahmood
Gll0;$F }7/00 (2006.01) (74) Attorney, Agent, or Firm — Woodcock Washburn LLP
(2? gSldle Cl ﬁ707/692; 7071/1715; 707/8072677/(3)7/1%202 (57) ABSTRACT
i i tion Search s E
(58) Field o 702713310;39;09111 (;Zr;om 999 004. 616. 641 A database of hyperlinks, stored in a hyperlink store or dis-
707/646. 690. 696. 713. 715. 736. 752. 776, tributed across multiple machines such as a scalable hyper-
" 707/302. 808. 812. 822. 917. 922 link store, may be incrementally updated. When data is
See application file for ¢ oml;l cte search his£ory ’ added, instead of modifying an existing data store, a hierarchy
' of data stores is built. The data stores are merged together,
(56) References Cited such that a new store is a suffix on an old store. Additions and

U.S. PATENT DOCUMENTS

5,086,408 A
6,049,799 A
6,098,081 A
6,112,203 A
6,253,198 Bl
6,301,614 Bl
6,321,242 Bl
6,338,059 Bl
6,363,396 Bl
6,505,191 Bl

*2/1992
4/2000
8/2000
8/2000
6/2001

10/2001
11/2001
1/2002
3/2002
1/2003

Sakatacocoevrrennnn 707/999.2
Mangat etal.cc......... 707/10
Heidorn et al.

Bharatetal.c.ccoeevrnne 707/5
Perkins

Najork etal. ... 709/223
Foggetal.ccocoueennn 707/513
Fields et al.

Klots et al.

Baclawskicccooeevvviinnne 707/3

New store is to be added

l

Determine size of store to
be added

Mark both stores for
merging

Mark stores for merging

L 1

updates go into new stores, which are relatively small. Look-
ups consult new stores first. A background thread merges
adjacent stores. For example, a batch of updates is collected
and incorporated into a new store and then the store is sealed.
Subsequent updates are added to yet another new store. Stores
are merged occasionally to prevent the chain of stores from
becoming too long. Once the batch has been integrated, the
new stores are sealed and are used to answer subsequent
queries.

18 Claims, 8 Drawing Sheets

410

420

435
Create the store

490
Create the merged store

460

US 8,209,305 B2
Page 2

U.S. PATENT DOCUMENTS

6,886,129 Bl 4/2005 Raghavan et al.

6,931,397 Bl 8/2005 Sundaresan 707/5
6,952,730 B1* 10/2005 Najork etal.ccocc.... 709/225
6,954,776 B1 10/2005 Cruanes et al.

7,032,168 Bl 4/2006 Gerace et al.

7,114,128 B2 9/2006 Koppolu et al.

7,139,933 B2 11/2006 Hsu et al.

7,158,926 B2 1/2007 Kampe

7,277,929 B2 10/2007 Ohara

7,337,297 B2* 2/2008 Chenetal.ccccooneen. 711/170
7,340,467 B2 3/2008 Najork

7,376,724 B2 5/2008 Goyal et al.

7.439,970 B1* 10/2008 Clarkecccovvvrvvrnrnnnn. 345/419

7,689,574 B2 *
7,730,070 B2 *
7,779,045 B2 *
7,917,494 B2 *
8,005,869 B2*
2002/0004803 Al
2002/0091727 Al 7/2002 Kerr et al.
2002/0133697 Al 9/2002 Royeretal. 713/150
2002/0152230 Al* 10/2002 Gusleretal. 707/204
2003/0033378 Al 2/2003 Needham et al.
2003/0093412 Al 5/2003 Urkumyan
2003/0229626 Al* 12/2003 Nayak ... 707/3

3/2010 Chenetal.cooevevnnne 707/715
6/2010 Hoernkvist 707/741
8/2010 Mohamed et al . 707/802
3/2011 Muller 707/711
8/2011 Corletal.ccvevnrenen. 707/797
1/2002 Serebrennikov

2004/0044659 Al* 3/2004 Juddetal. ... 707/3
2004/0103105 Al* 5/2004 Lindblad et al. ... 707/100
2004/0210826 Al* 10/2004 Najorkccccovne. 715/501.1
2005/0036482 Al 2/2005 Goroshevsky

2005/0251526 Al* 11/2005 Nayakccoovevnvinnn 707/100
2005/0256860 Al 11/2005 Eiron et al.

2006/0010146 Al* 1/2006 Nayakcccoovvnne 707/100

2006/0170948 Al* 8/2006 Kobashi
2006/0288181 Al* 12/2006 Wyles

358/1.13
. 711/163

2007/0124277 Al* 5/2007 Chenetal.ccooevnninnn. 7072
2007/0271242 Al1* 11/2007 Lindblad 707/3
2008/0010256 Al* 1/2008 Lindbladetal. 707/3

2008/0059507 Al 3/2008 Najork

2008/0098300 Al* 4/2008 Corralesetal.c........... 707/3

2009/0228528 Al* 9/2009 Ercegovac et al. . . 707/203

2010/0031003 Al* 2/2010 Chenetal. ..o 707/7

2010/0094870 Al* 4/2010 Narang et al. . 707/736

2011/0320692 Al* 12/2011 Maedaetal. ... 711/103
OTHER PUBLICATIONS

Arasu, A. et al., “PageRank Computation and the Structure of the
Web: Experiments and Algorithms”, Technical Report, IBM Almaden
Research Center, Nov. 2001, 3 pages.

Bharat, K. et al., “Improved Algorithms for Topic Distillation in a
Hyperlinked Environment”, 21 ACM SIGIR Conference on
Research and Development in Information Retrieval, 1998, 5 pages.
Bharat, K. et al., “The Connectivity Server: fast access to linkage
information on the Web”, Computer Networks and ISDN Systems,
1998, 30, 469-477.

Brin, S. etal., “The Anatomy of a large-scale hypertextual Web search
engine”, computer Networks and ISDN Systems, 1998, 30, 107-117.
Chen, Y-Y. et al., “T/O-Efficient Techniques for Computing
Pagerank”, CIKM, 2002, S pages.

Cormen, T.H. et al., “Introduction to Algorithms”, MIT Press/
McGraw-Hill, 1990, 337-344.

Ding, C. et al., “PageRank, HITS and a Unified Framework for Link
Analysis”, Lawrence Berkeley National Laboratory, Nov. 2001,
1-12.

Fielding, R.T., “Maintaining Distributed Hypertext Infostructures:
Welcome to MOMspider’s Web”, Proceedings of the I* Interna-
tional Conference on the World Wide Web, 1994, 11 pages, http://
scholar.google.com.

Haveliwala, T. H. et al., “Efficient Computation of PageRank”, Oct.
18, 1999, 1-15.

Hoschek, W., “A Database for Dynamic Distributed Content and its
Application for Service and Resource Discovery”, Proc. of the Int’l.
IEEE Symposium on Parallel and Distributed Computing (ISPDC
2002), Iasi, Romania, Jul. 2002, 16 pages.

Hsu, C-L. et al., “A Web Database Application Model for Software
Maintenance”, http://www.scit.wlv.ac.uk/~f9679743/more-disc-
space/public__html/journals/database, 1999, 7 pages.

Kappe, F., “A Scalable Architecture for Maintaining Referential
Integrity in Distributed Information Systems”, ftp:/ftp.iicm.edu/
pub/papers/p-flood.pdf, 1995, 21 pages.

Kleinberg, J.M. “Authoritative Sources in a Hyperlinked Environ-
ment”, Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, 1998, 1-31.

Lempel, R. et al., “The Stochastic Approach for Link-Structure
Analysis (SALSA) and the TKC Effect”, Department of Computer
Science, The Technion, 1-39.

“The PageRank Citation Ranking: Bringing Order to the Web”, Jan.
29, 1998, 1-17.

Pitkow, J.E. et al., “Supporting the Web: A Distributed Hyperlink
Database System”, Fifth International World Wide Web Conference,
1996, http:/pitkow.com/docs/1996-WWW5-HyperlinkDatabase.
pdf, 1-10 .

Randall, K.H. et al., “The Link Database: Fast Access to Graphs of
the Web”, SRC Research Report, www.research.compaq.com/SRC,
Nov. 16, 2001, 1-16.

Suel, T. et al., “Compressing the Graph Structure of the Web”, pp.
1-10.

In the United States Patent and Trademark Office, Non-Final Office
Action in re:. U.S. Appl. No. 11/512,887, filed Aug. 29, 2006, dated
Feb. 4, 2009, 20 pages.

Heimeriks, G. et al., “Analyzing Hyperlinks Networks: The Meaning
of Hyperlink Based Indicators of Knowledge”, Cybermetrics, Issue
Contents, 2006, 10, 19 pages, http://www.cindoc.csic.es/
cybermetrics/articles/v10ilp1.pdf.

Dipl. Ing. Wolfgang Hoschek, “A Unified Peer-to-Peer Database
framework for Xqueries over Dynamic Distributed Content and Its
Application for Scalable Service Discovery”, Mar. 2002, http://www.
big.tuwien.ac.at/research/publications/phdtheses/hoschek.pdf, 157
pages.

Palmer, C.R. et al., “ANF: A Fast and Scalable Tool for Data Mining
in Massive Graphs”, SIGKDD, 2002, 81-90, http://delivery.acm.org.
Weiss, R. et al., “HyPursuit: A Hierarchical Network Search Engine
that Exploits Content-Link Hypertext Clustering”, Hypertext, 1996,
180-193, http://delivery.acm.org.

United States Patent and Trademark Office, Non-Final Office Action
dated Oct. 5, 2005, in U.S. Appl. No. 10/413,645, filed Apr. 15, 2003.
United States Patent and Trademark Office, Final Office Action dated
Feb. 2, 2006, in U.S. Appl. No. 10/413,645, filed Apr. 15, 2003.
United States Patent and Trademark Office, Non-Final Office Action
dated Aug. 18, 2006, in U.S. Appl. No. 10/413,645, filed Apr. 15,
2003.

United States Patent and Trademark Office, Final Office Action dated
Feb. 1, 2007, in U.S. Appl. No. 10/413,645, filed Apr. 15, 2003.
United States Patent and Trademark Office, Notice of Allowance
dated Oct. 9,2007,in U.S. Appl. No. 10/413,645, filed Apr. 15, 2003.
United States Patent and Trademark Office, Notice of Allowance
dated Dec. 13, 2007, in U.S. Appl. No. 10/413,645, filed Apr. 15,
2003.

United States Patent and Trademark Office, Final Office Action dated
Jul. 16,2009, in U.S. Appl. No. 11/512,887, filed Aug. 29, 2006.

In the United States Patent and Trademark Office, Non-final Office
Action dated Nov. 8, 2011, in U.S. Appl. No. 11/512,887, filed Aug.
29, 2006.

In the United States Patent and Trademark Office, Final Office Action
dated Aug. 20, 2010, in U.S. Appl. No. 11/512,887, filed Aug. 29,
2006.

* cited by examiner

U.S. Patent Jun. 26, 2012 Sheet 1 of 8 US 8,209,305 B2

5 6 7

/ / /
/ / £

URL store Forward link store Backward link
store

URL - UID

Distributed database

7 .

2
Client /
FIG. 1
/ 22 / 26
Partition ID Partition-relative 1D
UID 20

FIG. 3

U.S. Patent Jun. 26, 2012 Sheet 2 of 8 US 8,209,305 B2
/10
URL store Forward link store Backward link
partition O partition O store partition 0
Machine O
URL store Forward link store Backward link
partition 1 partition 1 store partition 1
Machine 1
URL store Forward link store Backward link
partition 2 partition 2 store partition 2
Machine 2
URL store Forward link store Backward link
partition n-1 partition n-1 store partition n-1
Machine n-1
12 14

Failure detector

FIG. 2

Fault-tolerant
distributed state
machine

U.S. Patent

430

Jun. 26, 2012

Sheet 3 of 8 US 8,209,305 B2

New store is to be added

410

l

Determine size of store to
be added

420

Size already exists?

435
Create the store /

Mark both stores for
merging

440

Size already exists?

490
Create the merged store /

Mark stores for merging

460

FIG. 4

US 8,209,305 B2

Sheet 4 of 8

Jun. 26, 2012

U.S. Patent

»C »C 4 4
v v v v
e€ eC 2C 2C
IH09 IH08 3308 3a09
A
o€ o oC
r 94 o4
oC
H
4
4 oC o€
r I H

S "Old
00S
4 Z 4 4 4 Z
14 14 14 14 14
v [T v |y [T v v (T v
A
zC 2C C C oC
3309 30049 05| 04 d
A Omm 0LS A A
oC o¢
E| a
0¢s
Buiae
ovs
) E| 3 d 0 g

US 8,209,305 B2

Sheet 5 of 8

Jun. 26, 2012

U.S. Patent

9 'OI4d
€ {5 € € € € € € € €
Z 4 4 4 4 [4 Z 4 4 4
v v v v v || v v v v | v
A
riay aod aod aogd aog Qo4 aog g d
A A
3> € & o€ of of
943 043 943 3 3 J
of of o€
H H 4 Buialie
1 A
o.m omw om” oMU om om om omu om”
_ | H) E 3 a 0 g
A
o€
r

U.S. Patent Jun. 26, 2012 Sheet 6 of 8 US 8,209,305 B2

700
New store is to be added /

790

710 /
Will adding the
store cause there to be b stores
of size b*?

Create the new store

720
Mark the b stores for /
merging

|

FIG. 7

800
Receive a batch of /
updates

!

Incorporate the updates /
into new stores

810 830
Merge with other sealed /
stores; seal merged store

I
|
1
|
|
' | l
I
t
Seal the stores and use to !
answer queries

820

840
Delete old stores /

FIG. 8

U.S. Patent

Merge the URL
stores

l

Read through
stores in a single
linear scan

l

Do not include
URLs marked as
deleted

l

Wirite out a merged
store

Jun. 26, 2012

900

910

920

930

Sheet 7 of 8

FIG. 9

v

Merge the
forward link stores,
in a single pass

l

Discard records
with same key,
except for newest

l

Merge backward
link stores, in a
single pass

l

Form single result
record for records
with same key

US 8,209,305 B2

940

950

960

970

US 8,209,305 B2

Sheet 8 of 8

Jun. 26, 2012

U.S. Patent

%81 SAVEo0Yd
oo] loococoflolle " NOIVOTIdAY 0l 94
f JIOW3Y
o8t 191 22 ovi- i [71
YIINdN0D 91 PIECAASY Bsmopy vIvd % SWVOD0ud | WIISAS
JIOW3Y NWVH90dd Y3010 NOILVYOIddY | 9NILvY3dO
o === o)@ o
NOMSN €9V opP, TLePOW [«— | 4+ N~) - e
“ 00 oooooo_ _.ol_ -
— | 1523 - —_—
LE _ €1 Eeg
b — — —— Y — y Weiboig
| 10ZV 091 051 a5epsy] OVl Soepa]
SoREN |] EREIE| Riowsiy LIIIET [oeT sampon
Boly [B30] || SOMPBN nduresn SIMEOA-UON 3EIOA-UON WeIboIg 13U
ET L ED] 3[GEeAOWISY-UON

A S ENEED

A

A

Yo,

¢} sweiboig

v

9%l =ong

161 JOJUOW

—————

T T

121 Snyg WIlSAS uonesnday
A y
6! soepEm omelQ.ﬂ Ocl 7Ep WoIsAS
BENCDER] ooﬁ i gl SIIEL (o)
fnaimno . BUSS3001d ZeT TAvY
[T som |

AIowspy WajsAS

001 juswuodiauz bunnawo)

US 8,209,305 B2

1
INCREMENTAL UPDATE SCHEME FOR
HYPERLINK DATABASE

BACKGROUND

Web search services allow users to submit queries, and in
response, they return a set of links to web pages that satisfy
the query. Because a query may potentially produce a large
number of results, search engines typically display the results
in a ranked order. There are many ways to rank-order the links
resulting from a query, including content-based ranking,
usage-based ranking, and link-based ranking. Content-based
ranking techniques determine how relevant the content of a
document is to a particular query. Usage-based ranking tech-
niques monitor which result links users actually follow, and
boost the rank of these result links for subsequent queries.
Link-based ranking techniques examine how many other web
pages link to a particular web page, and assign higher ranks to
pages with many incoming links. Examples of link-based
ranking algorithms include PageRank, HITS, and SALSA.

Link-based ranking algorithms view each page on the web
as anode in a graph, and each hyperlink from one page to the
other as a directed edge between the two corresponding nodes
in the graph. There are two variants of link-based ranking
algorithms: query-independent ones (such as PageRank) that
assign an importance score (independent of any particular
query) to all the web pages in the graph, and query-dependent
ones (such as HITS and SALSA) that assign a relevance score
with respect to a particular query to each web page returned in
the result set of a query. Query-independent scores can be
computed prior to the arrival of any query, while query-
dependent scores can only be computed once the query has
been received.

Users expect to receive answers to a query within a few
seconds, and all major search engines strive to provide results
in less than one second. Therefore, any query-dependent
ranking algorithm desirably has to compute scores for all
pages in the result set in under one second, and ideally within
less than 100 milliseconds. However, the seek time of modern
hard disks is on the order of 10 milliseconds, making them too
slow to be used as a medium to store the web graph. In order
to meet the time constraints, the web graph (or at least the
most frequently used portions of it) has to be stored in
memory, such as RAM, as opposed to disk storage.

A graph induced by the web pages stored in the corpus of
a major search engine is extremely large. For example, the
MSN Search corpus contains 5 billion web pages, which in
turn contain on the order of 100 billion hyperlinks; the Google
corpus is believed to contain about 20 billion web pages
containing on the order of 400 billion hyperlinks. A web
graph of this size cannot be stored in the memory of a single
machine, even if the most effective compression techniques
are applied. Therefore, the graph is distributed (“partitioned”)
across multiple machines. Distributing the graph is orthogo-
nal to compressing it; in practice, one does both.

U.S. patent application Ser. No. 10/413,645, filed Apr. 15,
2003, entitled “System and method for maintaining a distrib-
uted database of hyperlinks™, and incorporated herein by
reference in its entirety, describes a scheme for distributing a
database of hyperlinks across multiple machines, such as
database processors. An embodiment is referred to as the
Scalable Hyperlink Store, or SHS (used herein to refer to any
distributed hyperlink database).

SHS represents a web graph as three databases or “stores”™:
a uniform resource locator (URL) store, a forward link store,
and a backward link store. Each store is partitioned across

20

25

30

35

40

45

50

55

60

65

2

multiple machines; each machine will hold corresponding
fractions (“partitions”) of each store in main memory to serve
queries.

Major search engines crawl the web continuously, causing
their view of the web to change over time. These changes are
reflected in the search engine’s index in a timely fashion. A
hyperlink database such as SHS is also timely updated.

Continuous crawling can change the search engine’s view
of'the web graph as new pages are discovered that should be
added to the hyperlink database, pages become irretrievable
and should be deleted from the hyperlink database, the links
in newly discovered pages should be added to the hyperlink
database, the links in deleted pages should be deleted from the
hyperlink database, and the links contained in changed pages
should be updated in the hyperlink database. Currently, it is
prohibitively complex and expensive to perform incremental
updates on an existing hyperlink database or URL store, for
example. Supporting incremental updates in hyperlink data-
bases is challenging and expensive because of, for example,
the linear data structures used and the order of the URLs or
links.

SUMMARY

A database of hyperlinks, whether stored in a hyperlink
store or distributed across multiple machines such as a scal-
able hyperlink store, may be incrementally updated. This
increases the freshness of the data in the database or store. The
database or store may store contents of URLs/links in a linear
sequence in memory that is compressed. A chain of stores of
decreasing vintage is maintained, along with a technique for
merging suffixes of the chain in order to bound its length.
More particularly, when data is added, instead of modifying
an existing data store, a hierarchy of data stores is built. The
data stores are merged together, such that a new store is a
suffix on an old store. Additions and updates go into new
stores, which are relatively small. Lookups consult new stores
first. A background thread merges adjacent stores.

For example, a batch of updates is collected and incorpo-
rated into a new store (e.g., URL, forward link, backward
link), and then the store is sealed. Subsequent updates are
added to yet another new store. Because every batch of
updates creates a new store, the number of stores would
otherwise go towards infinity; however, stores are merged
occasionally to prevent the chain of stores from becoming too
long. Once the batch of updates has been integrated, the new
stores are sealed and are used to answer subsequent queries.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a high level block diagram of an example distrib-
uted database system.

FIG. 2 is a more detailed block diagram of the example
system of FIG. 1.

FIG. 3 is a diagram of an example unique identifier (UID)
format.

FIG. 4 is a flow diagram of an example merge method.

FIG. 5 is a diagram useful for explaining an example tech-
nique.

FIG. 6 is a diagram useful for explaining another example
technique

US 8,209,305 B2

3

FIG. 7 is a flow diagram of another example merge method.

FIG. 8 is a flow diagram of an example update method.

FIG. 9 is a flow diagram of another example merge method.

FIG. 10 is a block diagram of an example computing envi-
ronment in which example embodiments and aspects may be
implemented.

DETAILED DESCRIPTION

Web pages are identified by uniform resource locators
(URLs). A typical URL is of the form http://xyz.com/a/b,
where xyz.com (the “host” of the URL) identifies the web
server providing this web page, and /a/b (the “path” of the
URL) identifies the page itself (relative to web server xyz-
.com). Major search engines index pages drawn from on the
order of 50 million hosts. As used herein, host(u) denotes the
host of URL u.

URLs are on average about 80 characters long. In order to
compress the web graph efficiently, a distributed database for
maintaining hyperlinks stores hyperlinks not as URLs, but
rather as 64-bitintegers called unique identifiers (UIDs). FIG.
1 is a high level block diagram of an example distributed
database system. There is a one-to-one mapping between
URLSs and UIDs. This mapping is maintained by a URL store
5 in the distributed database system 10. The URL store 5
provides a method UrlToUid for mapping a URL to its cor-
responding UID, and a method UidToUrl for mapping a UID
back to its corresponding URL.

In addition to the URL store 5, a distributed database sys-
tem 10 for maintaining hyperlinks maintains a forward link
store 6 and a backward link store 7. The forward link store 6
provides a method, GetLinks, which, given a UID (represent-
ing a URL), returns a list of the UIDs (representing URLs)
that the given UID links to. Similarly, the backward link store
7 provides a method, GetLinks, which, given a UID, returns a
list of UIDs that link to the given UID. A client 2 may interact
with the servers that are comprised within the database sys-
tem 10.

Describing the three stores in terms familiar to a mathema-
tician, the URL store contains the node set of the web graph,
the forward link store contains the adjacency matrix induced
by the edge set, and the backward link store contains the
transpose of the adjacency matrix.

FIG. 2 is a more detailed block diagram of the example
system of FIG. 1. A distributed database system 10 running on
a cluster of machines, such as servers and/or database pro-
cessors, for example, connected by a high speed network, is
provided, and each of'the three stores is partitioned across the
machines or servers in the clusters. Assume that the cluster
comprises n machines, numbered 0 to n-1. The URL, back-
ward link, and forward link store partitions are numbered
accordingly.

The distributed database system uses a hash function H,
mapping host names to the integer range [0 . . . n—1] to place
URLs into URL store partitions. A URL u is placed in the
URL store partition numbered H,(host(u)). So all URLs
belonging to a particular host (web server) are placed in the
same URL store partition. Furthermore, a simple hash func-
tion application may be used to determine which URL store
partition contains a particular URL.

An example UID format is shown in FIG. 3. The most
significant few (e.g., 8) bits of a UID 20 encode the identity of
the store partition containing the corresponding URL as a
partition ID in portion 22. The remaining bits encode a num-
ber that is unique relative to that machine as a partition-
relative ID in portion 26.

20

25

30

35

40

45

50

55

60

65

4

For example, given a URL http://xyz.com/a/b and assum-
ing that H, (xyz.com) is 17, this URL is placed in URL store
partition 17 on machine 17 of the cluster of machines, and the
highest few bits, corresponding to portion 22 in FIG. 3, of the
corresponding UID encode the number 17. So given a UID, it
is straightforward to determine the URL store partition that
maintains the mapping between this UID and its correspond-
ing URL.

The partition-relative ID is drawn from a densely packed
space, by sorting all URLs placed in a given URL store
partition in lexicographic order and using their position in that
ordering as the partition-relative identifier. So all UIDs refer-
ring to web pages on the same host desirably occupy a densely
populated numeric interval, with no UID referring to a web
page on a different host falling into that interval.

Both the forward link store and the backward link store
implement mappings from UIDs to lists of UIDs. The forward
link store maps a UID u to the list of UIDs linked to by u, and
the backward link store maps a UID u to the list of UIDs
linking to u. Both stores are partitioned according to the
partition ID of u (that is, the UID that is the argument to the
mapping). Given a UID u whose partition ID is x, partition x
of the forward link store contains the mapping of u to the
pages u links to, and partition x of the backward link store
contains the mapping of u to the pages linking to u.

Clients of a distributed database system hash the host com-
ponent of a URL or extract the partition ID of a UID in order
to determine which machine in the cluster to contact, and then
send their UrlToUid, UidToUrl, or GetLinks requests to the
appropriate machine.

The URL store maintains a bijective mapping between
string-typed URLs and integer-typed UIDs. Such a data struc-
ture may be realized in several ways, including maintaining a
hash table mapping URLs to UIDs, and a second table map-
ping UIDs back to URLs, and using a data structure that keeps
the URL/UID pairs in sorted order, and performing both
URL-to-UID and UID-to-URL mappings using this single
data structure. Examples of such data structures include
binary search trees, B-trees, and sorted lists of URL/UID
pairs.

Here, the URL store is desirably maintained as a sorted list
of URL/UID pairs because this implementation is space-
efficient and efficient memory utilization is desirable.

A current URL store implementation uses slightly less than
15 bytes per URL, and is very space-efficient. It achieves this
space-efficiency by using the following techniques. It keeps
the URLs in lexicographic sorted order, thereby opting for a
search-based as opposed to a hash-based URL lookup
scheme. It replaces the prefix of a URL that is common with
the prefix of the previous URL by the length of that shared
prefix. This technique is beneficial because the URLs are
stored in lexicographically sorted order, and therefore tend to
have substantial shared prefixes. The store implementation
does not store the UID explicitly; instead, UIDs are implied
by the position of the URL in the list. This means that the
numbering of UIDs reflects the lexicographic ordering of
URLS; URLs that belong to the same host will have UIDs that
are numerically close. It linearizes the URL list in memory,
thereby avoiding any pointer overhead. In addition to the
URL store, SHS maintains two other main stores as noted
above: a forward link store and a backward link store.

A link store is a mapping from UIDs to lists of UIDs. Any
implementation of link stores should provide a time-efficient
method for mapping UIDs to lists, and it should represent the
mapping in a space-efficient form. Link stores could be real-
ized as hash tables, search trees (e.g. binary search trees or
B-trees), or sorted lists. Sorted lists are very space-efficient,

US 8,209,305 B2

5

and are used herein. Link stores are represented as follows. A
link store consists of a sequence of UID-to-UID-list records.
The sequence is linearized in memory, i.e., there are no point-
ers (and thus no space overhead due to pointers). The records
may have varying lengths, so it is not straightforward to locate
the nth record. The UIDs (the keys of the mapping) are
arranged in a numerically sorted order. Because UIDs indi-
cate the position of a URL in the URL store, the set of UIDs
forms an uninterrupted interval. Because the UID of each
record can be inferred from the position of each record in the
link store, the UID can be omitted.

The system maintains an index on the side that records the
beginning of every kth record in the link store (k is fixed,
typical values range from 10 to 1000). In order to locate a
particular UID-to-UID-list record r in the link store, the sys-
tem consults the index to determine the beginning of the
closest record ahead of r in the store, and then sequentially
reads through the link store to retrieve r. A UID-list consists of
a number indicating the number of elements in the list, fol-
lowed by the UlDs. Instead of storing absolute UIDs, each
UID x is represented by the difference (“gap”) between x and
its predecessor in the list. As a special case, the first UID x is
represented in the list as the difference between x and the
(implicit and omitted) UID that is the key of that record. This
encoding is known in the art as “gap encoding”. Since the
UID-list is arranged in sorted order, all but the first gap in the
list are positive.

As mentioned above, UIDS reflect the position of URLs in
the URL store, which is kept in lexicographic sorted order.
Hence, URLs belonging to the same host will have UIDs that
are numerically close, which means that the difference
between two such UIDs will be small. On average, over 80%
of all hyperlinks on a web page point to other web pages on
the same host. So, the gap values in UID-lists tend to be
numerically small. This property may be exploited by
employing variable-length number encoding schemes such as
variable-byte-length codes, variable-nybble-length codes,
Huffmann codes, or arithmetic codes. The choice of coding
scheme reflects a trade-off between space-efficiency and
time-efficiency—e.g., arithmetic codes are highly space-ef-
ficient, but expensive to decode, while variable-byte-length
codes are less space-efficient, but also much faster to decode.

Using variable-nybble-length codes and an index entry for
every 32"/ record, a forward link can be represented using
about 2 bytes and a backward link using about 2.75 bytes. In
other words, the 8-byte UIDs representing forward and back-
ward links may be compressed by 75% and 66%, respec-
tively.

The corpus of most major search engines changes continu-
ously. For example, MSN Search crawls about 500 million
web pages per day and incorporates these updates into the
index. Some of these pages will not have been in the index
before, while others will have been re-crawled. Because the
update frequency of web pages is fairly high, the hyperlinks
of a substantial fraction of the re-crawled pages will have
changed. It is desirable that a timely view of the web graph is
presented. Continuous crawling can change the search
engine’s view of the web graph as new pages are discovered,
as pages should be deleted, as links should be added, etc.

The above described implementation of URL stores and
link stores is not well-suited to support update operations.
Because the URLs in the URL store are in lexicographic
sorted order, any new URLs would have to be inserted into the
middle of the store, and because the URLs are linearized in
memory, this would require copying substantial amounts of
data (e.g., several gigabytes) from one memory location to
another. Also, inserting a new URL into the middle of the

20

25

30

35

40

45

50

55

60

65

6

URL store changes the URL-to-UID mapping—the UID of
any URL past the insertion point is implicitly incremented by
1 (since UIDs indicate the position of the corresponding URL
in the URL store). So inserting a new URL in the URL store
would also require scanning all link stores for any occur-
rences of UIDs corresponding to URLs beyond the insertion
point, and incrementing these UIDs accordingly. Because the
link stores are compressed and because incrementing a UID
may change the size of the compressed representation, this
might furthermore necessitate completely rewriting each link
store. In any event, the link store would also have to be
rewritten in order to accommodate the new UID-to-UID-list
record that goes along with the new URL. Thus, updating the
database stores in the manner described above would be pro-
hibitively expensive.

It is desirable to instead incorporate the updates into new
stores, and to subsequently use both new and old stores to
answer queries to the SHS system. It is not desirable to
maintain just a single new URL, forward link, and backward
link store. Ifthis strategy were pursued, each new store would
eventually grow to be comparable in size to the old store,
meaning that updates to the new store would be as expensive
as updates to the old store. Instead, a batch of updates is
collected, and then incorporated into a new store (e.g., URL,
forward link, backward link). The store is then sealed. Sub-
sequent updates are added to yet another new store. The MSN
Search crawler bundles up crawled pages in files, each typi-
cally containing 65536 (2*5) pages, giving an appropriately-
sized batch of updates. Given that the MSN Search crawler
produces one of these files approximately every 15 seconds, it
would also be acceptable to use a larger number of such files
to perform slightly less frequent updates to SHS.

It is noted that using the technique described above, every
batch of updates creates a new store, so in the fullness of time
the number of stores would go towards infinity. This is unac-
ceptable because some types of queries require consulting all
existing stores. Stores may be occasionally merged (e.g.,
every 15 seconds) to prevent the chain of stores from becom-
ing too long. The time required to merge a set of stores is
proportional to the size of the stores (the stores contain data in
sorted order, so merging stores involves a single linear pass
through the stores to be merged, producing a merged store).
Thus, merging a set of small stores takes less time than merg-
ing large stores (e.g., a large store may be about 100 times a
large as a small store). Newer stores are typically small since
they include the set of updates delivered by the web crawler in
the last few minutes or hours, which are dwarfed by the full
corpus. Therefore, it is desirable to maintain a chain of stores
of various sizes, and to merge the smaller and newer stores
more often than the larger and older ones. A technique is
provided that maintains a chain of stores such that the chain is
of a logarithmically bounded length relative to the aggregate
size of the stores, and the size of the stores is monotonically
non-increasing along the chain.

Itis desirably determined how many stores there should be,
what their size ratio should be, and which stores should be
merged when. There are many possible techniques for doing
this and examples are described herein, along with a gener-
alized case together with an analysis of the average merge
cost and the average chain length.

FIG. 4 is a flow diagram of an example merge method. In
this example, a new storeis to be added at step 410, and its size
is determined at step 420. At step 430, it is determined if this
size store already exists. I[f not, the store is created at step 435.
If'so, the two stores are marked for merging into a new merged
store at step 440. The size of the new merged store is then
checked to determine if that size already exists at step 450. If

US 8,209,305 B2

7

not, the new merged store is created at step 490. Otherwise,
the existing store of the new size is marked for merging at step
460. Steps 450 and 460 repeat until it would produce a store
having a size that does not already exist. At this point, all the
marked stores are merged into a new store at step 490.

Consider FIG. 5, which shows how new stores B, C, D, E,
F, G, H, I, and] may be added to a chain consisting initially of
a single large store A to form a hierarchy of stores 500. The
new stores have size 1 (or 2°), meaning they hold one batch
worth of updates, which could translate to tens of thousands
or a few million new web pages and hyperlinks; the old store
A has size 16 (or 2*), meaning it holds data equivalent to 16
batches of updates.

For example, whenever adding a new store would cause
there to be two stores of size 1 (2°) (e.g., stores D 520 and E
540), the two stores are marked for merging. The merge
would produce a store of size 2 (21). If there already is a store
of'size 2 (e.g., store BC 510), that store is marked for merging
as well, which would produce a store of size 4 (2%) (e.g., store
BCDE 550). This marking process is repeated until it would
produce a store of size 2* and there is not already a store of that
size. At this point, all the marked stores are merged into a new
store.

A chain of stores may be viewed as a binary number. In the
example of FIG. 5, the initial left-most chain of stores (con-
sisting of a single store A of size 2*) would correspond to the
number 10000, and the final right-most chain of stores (con-
sisting of stores A, BCDEFGHI, and J with sizes 2%, 2%, and
2°, respectively) would represent the number 110001. Adding
a new store to a store chain corresponds to adding 1 to the
binary number describing the chain.

This technique may be generalized to stores whose sizes
are powers of an arbitrary integer b. For example, FIG. 6
shows a chain consisting initially ofa single store A of size 3,
and a sequence of additions to the chain and resulting merges.
In this example, whenever adding a new store would cause
there to be 3 stores of size 1 (3°), the 3 stores are marked for
merging. The merge would produce a store of size 3 (3'). If
there already are two (or 3-1) stores of size 3, these stores are
marked for merging as well, which would produce a store of
size 9 (3%). This marking process is repeated until it would
produce a store of size 3* and there are not already two stores
of'thatsize. At this point, all the marked stores are merged into
a new store.

As in the previous example, one can view these store chains
as a number, but now the base of the number system is 3. The
initial left-most chain of stores (consisting of a single store A
of size 3%) would correspond to the number 100, the next eight
configurations the numbers 101, 102,110,111, 112,120, 121,
and 122, and the final right-most chain of stores (consisting of
stores A and BCDEFGHIJ, both of size 3%) would represent
the number 200. Adding a new store to a store chain corre-
sponds to adding 1 to the ternary number describing the chain.

In general, if it is determined that the size of each store in
achain should be a power of b, an example method for adding
stores to a chain is as follows, described with respect to FIG.
7. A new store is desired to be added at step 700. Whenever
adding a new store would cause there to be b stores of size b°,
as determined at step 710, the b stores are marked for merging
at step 720. The marking process is repeated until it would
produce a store of size b* and there are not already b-1 stores
of' that size. At this point, the marked stores are merged into a
new store at step 790. One can view such a configuration as a
number written in base b. Adding a new store to a store chain
corresponds to adding 1 to the base-b number describing the
chain.

20

25

30

35

40

45

50

55

60

65

8

Averaging over all possible store chains whose combined
size is at most n and where the size of each individual store is
a power of b, the average chain length is:

of(25 oo -1)

And the average merge cost (where merging a set of stores of
combined size x has cost X) is:

of L. b=l
5+ 5]

Choosing a value for b represents a tradeoff: the smaller b,
the higher the average merge cost, but the lower the average
store chain length. From the description above, it is shown
that minimizing the merge cost is desirable; minimizing the
store chain length is also desirable, since some types of que-
ries may have to consult every store in the chain. So the
concrete choice of b is dependent on the expected update and
query rates.

It is now described how the different kinds of updates are
incorporated into new stores. As explained above, each URL
store defines a numeric UID space. The UID spaces of the
different URL stores in a chain are non-overlapping. This can
be achieved by using some bits of the UID to encode an URL
store identifier, or for a non-distributed setting where URL
stores are not partitioned across multiple machines, by start-
ing the UID space of a new store past the largest UID of the
newest store that is of older vintage. For a distributed setting
with partitioned stores, the UID spaces of the different URL
stores in a chain may be made non-overlapping by starting the
partition-relative ID space of a new URL store partition past
the largest partition-relative ID of the newest URL store par-
tition on that machine.

FIG. 8 is a flow diagram of an example update method. A
batch of updates is received at step 800, and incorporated into
a new store at step 810. In an SHS example, each batch of
updates is desirably incorporated into a new URL store, for-
ward link store, and backward link store. Once the batch has
been integrated, the new stores are sealed at step 820 and may
be used to answer subsequent queries. Sealed stores are desir-
ably never mutated, but they may eventually be merged with
other sealed stores at step 830 (resulting in a new merged store
that may be sealed), and subsequently deleted at step 840. The
term new store refers to a store under construction that
receives the data contained in the current batch of updates.

There are two kinds of updates that can go into a new URL
store: new URLs may be added, and old URLs may be deleted
because the web page they refer to has disappeared (e.g.,
deleted by the content provider). Adding a new URL is
straightforward: the URL is added to the new URL store.
Deleting a URL is more complicated: by definition, the URL
is part of an existing older URL store, and it is desirable that
existing stores are not modified (other than completely delet-
ing them once they have been merged into another store). So
it is desirable to keep track of the fact that the URL should
eventually be deleted, once the existing old URL store is
merged with all URL stores of more recent vintage. A tech-
nique to do so is to append a special character (e.g., a carriage
return) that cannot appear in any legal URL to the end of the
URL that is to be deleted, and adding the resulting string into
the URL store. Appending the special character to the end
means that the lexicographic ordering of the URLs is not

US 8,209,305 B2

9

perturbed, the system can locate the deleted URL in the URL
store using the techniques described herein, and can deter-
mine that the URL is deleted. Eventually, the deleted URL
will be merged into the same store as the undeleted URL, at
which point both entries can be discarded.

An update to the forward link store consists of a UID u
(identifying a web page that may be newly discovered or may
have been previously known) together with a list of UIDs
uy, ..., u,identifying the hyperlinks contained in that page.
Because umay referto a URL inany URL store (the new store
or any of the older stores), and because references to URLs in
old stores will be sparse, it becomes desirable to store u
explicitly (whereas in the absence of updates, where there is
a single URL store, the link database contains an uninter-
rupted list to UID lists sorted by u, and u can therefore be
omitted).

If an existing page was deleted (e.g., ithas a “deleted URL”
record in the new URL store), this may be represented in the
forward link store by associating its existing UID u, associ-
ated with a URL in an older URL store, with an empty list of
link UIDs. This association can eventually be deleted, once
the older URL store is merged with all URL stores of more
recent vintage, causing the URL to be deleted and u to become
invalid.

Regarding updates to the backward link store, the back-
ward link store captures the transposed adjacency matrix of
the web graph, i.e., it allows to “follow hyperlinks back-
wards” and determining for a page u which other pages link to
u. However, web crawlers deliver pages that contain forward
links. Adding a crawled or re-crawled web page to the data-
base system introduces or affects a single record in the for-
ward link stores, but it affects many records in the backward
link stores. A page crawled for the first time and containing m
links will affect m records in the backward link stores. A page
that is re-crawled and that contains m links that were not
present in the previous version of the page, while n links that
were previously present have now disappeared, will affect
m+n records in the backward link store.

Given a crawled page p with associated UID u, one way to
implement this would be to retrieve all the affected records
from older backward stores, add u to each record (or remove
u from the record if p no longer links to the page associated
with the record), and add the modified records to the new
backward link store. This scheme is inefficient, given that
some pages are linked to by millions of other pages. A page
containing a new link to such a popular page would require
the very large record of that popular page to be added to the
new store. Also, extremely popular pages are much more
likely to experience change in their set of linkers than less
popular pages. Therefore, a more desirable example tech-
nique is to not add the entirety of every affected record to the
new backward link store, but rather just the difference from
recent versions, i.e., added and deleted backward links.

Given a crawled page p, its UID u, and the UIDs u,, ... ,u,
of the hyperlinks contained in p, it is determined if u is
associated with the new URL store (e.g., in a non-distributed
setting, if u’s numeric value falls into the interval associated
with the new store, meaning that p was crawled for the first
time). If this is the case, k new records are added to the
backward link store, each record mapping u, (for 1 =i=k) to
the UID list containing just u. Otherwise, the old forward link
set U of u is retrieved from the older forward link stores (by
calling GetLinks, for example), and it is determined how the
set {u,, . . ., u,} differs from U. Specifically, the set of
additions A={u,, ..., u, \U to the old link set is determined,
along with the set of deletions D=U\{u,, .. .,u,}. Foreach ve
A, arecord is added to the backward link store, the record

20

25

30

35

40

45

50

55

60

65

10

mapping v to the UID list containing justu. For each ve D, the
same is performed, except the link may be marked as having
been deleted by setting a designated “deleted-link™ bit in u.

It is now described how example query methods may be
performed. An example UrlToUid method, given a URL u,
will desirably consult the stores in the URL store chain,
starting at the most recent store. The store is checked to
determine whether it contains u, using the method described
above, for example. If u is found, the associated UID (that is,
u’s position in this store plus the first UID associated with this
store) is returned. However, if u followed by the special
character indicating URL deletion is found in the store, a
special “URL not found” value is returned or an exception is
raised, for example. Conversely, if u is not found, the search
progresses to the next-older store in the URL store chain. Ifu
is not found in any store along the chain, a special “URL not
found” value is returned or an exception is raised, for
example.

An example UidToUrl method, given a UID u, will desir-
ably determine which URL store in the chain of stores con-
tains the URL associated with u, by checking which of the
numeric UID intervals associated with each store contains u.
Then it will map u to its associated URL and return the result.

An example GetLinks method for forward links, given a
UID u, will desirably consult the stores in the forward link
store chain, starting at the most recent store. The store is
checked to determine whether it contains a record with key u.
If it does, the UID list portion of that record is returned.
Otherwise, the search progresses to the next-older store in the
forward link store chain. u will be found in some store along
the chain, provided that it is a valid UID.

An example GetLinks method for backward links, given a
UID u, desirably searches the backward link store chain start-
ing at the store of u’s vintage, that is, the backward link store
of the same vintage as the URL store whose numeric UID
interval contains u. A record with key u will be found in that
store. The UID list associated with that record forms a pre-
liminary result set S. Next, GetLinks searches the next-newer
backward store along the chain. Ifthat store contains a record
with key u, the elements u,, . . ., u, in the UID list of that
record are extracted. For each u,, if the “deleted-link™ bit is
set, 1, is removed from S, otherwise it is added to S. GetLinks
continues to search the chain of stores until it has processed
the most recent backward link store, and returns S.

An example merge operation is described with respect to
FIG. 9. The URL stores are merged (step 900), then the
forward link stores (step 940), and then the backward link
stores (step 960). Merging the URL stores is fairly straight-
forward. The URLs in each store are already in lexicographi-
cally sorted order, so the stores can be merged by reading
through all stores in a single linear scan at step 910, and
writing out a merged store in the process, at step 930. If a
deleted URL (marked by an appended special character, for
example) and its non-deleted counterpart are encountered, the
deleted URL and its non-deleted counterpart are dropped, i.e.,
not included into the merged URL store, at step 920. As the
merge progresses, one UID translation table per input URL
store is being built up in memory. Each table is an array of
UIDs, the length of the array being the number of URLs in the
corresponding URL store. When a URL is copied from an
input store to the merged store, the corresponding slot in the
corresponding UID translation table is set to contain the
URL’s position in the merged store (that is, the URL’s future
UID). If a URL is not included in the merged store (because
it is a deleted URL or its non-deleted counterpart), the corre-
sponding slot in the UID translation table is set to a special
value indicating that the URL has been deleted.

US 8,209,305 B2

11

Next, the forward link stores are merged. Because the keys
of'therecords in each forward link store are arranged in sorted
order, the stores can be merged in a single pass, at step 940. If
there are multiple records with the same key, the record drawn
from the newest store is copied to the merged store, and all
other records with the same key are discarded, at step 950.
The UIDs in all records that are being copied to the merged
store may be rewritten as follows: If the UID belongs to one
of'the UID stores that were merged in the previous steps, it is
used to reference a slot in the UID translation table associated
with that store, and the value in that slot replaces the old UID
in the record (if the value is the special “deleted UID” value,
the UID is removed from the record). Otherwise (if the UID is
of older vintage), the UID remains unchanged.

The backward link stores are then merged. Since the keys
of the records in each backward link store are arranged in
sorted order, the stores can be merged in a single pass, at step
960. If there are multiple records with the same key, the UID
lists in all the records are merged to form a single result
record, at step 970. Any UID that has its “deleted-link™ bit set
cancels out one UID that differs only in the “deleted-link™ bit,
such UID pairs are not included in the merged UID list.
However, any UID that has its “deleted-link™ bit set and that
does not have a counterpart differing only in the “deleted-
link” bit is included in the merged UID list. The UIDs in all
records that are being copied to the merged store may be
rewritten using the same method as described above, for
example.

Merging a number of URL stores causes the UID space to
change (hence the need for UID translation tables when merg-
ing the corresponding link stores). This poses a problem to
clients, which might translate URLs to UIDs using the old
(pre-merge) store and then use these UIDs to look up links in
the new (post-merge) stores. In order to overcome this prob-
lem, client applications desirably use transactional semantics
of some kind. Example embodiments include “transaction
fails if merge intervenes” and “old stores are deallocated once
last transaction has finished”.

“Transaction fails if merge intervenes”: here, the database
service provides a method GetEpoch() which returns an
epoch identifier (e.g., a 64-bit integer). Clients can obtain the
current epoch by calling this method. Whenever a number of
stores have been merged and the old pre-merge stores are
unloaded from memory and discarded, the epoch identifier is
changed (e.g., the 64-bit integer is incremented). Other meth-
ods provided by the service (e.g., UrlToUid, UidToUrl,
GetLinks etc.) take the epoch identifier as an argument. When
a client calls one of these methods and provides an outdated
epoch identifier, the service reports back to the client that the
epoch has changed (this could be done by the method throw-
ing an exception, for example).

In this example, clients start a transaction by obtaining an
epoch identifier, and then use the epoch identifier throughout
the transaction. If any of the services called during the trans-
action fails, the client restarts the transaction from the begin-
ning.

“Old stores are deallocated once last transaction has fin-
ished”: here, the database service provides two methods:
BeginTransaction(), which returns a transaction identifier
(e.g., a 64-bit integer), and EndTransaction(t), which takes a
transaction identifier t as an argument. Other methods pro-
vided by the service (e.g., UrlToUid, UidToUrl, GetLinks
etc.) take the transaction identifier as an argument.

In this example, clients start a transaction by obtaining a
transaction identifier, using the transaction identifier through-
out the transaction, and calling EndTransaction once the
transaction is complete. The service (e.g., the collection of

20

25

30

35

40

45

50

55

60

65

12

servers) desirably maintains a list of unfinished transactions.
When a number of stores have been merged, the old pre-
merge stores are desirably not immediately unloaded and
discarded. Rather, the service continues to service all requests
with transaction identifiers that were given out before the
merger was completed. BeginTransaction requests that arrive
after the merger was completed are temporarily suspended.
Once the last unfinished transaction has been completed (e.g.,
the client has called the EndTransaction method), the old
stores are discarded, the new stores are loaded, and the sus-
pended BeginTransaction requests are serviced, for example.

Although examples described herein may use a distributed
database, any hyperlink database may be used, distributed or
not.

Exemplary Computing Arrangement

FIG. 10 shows an exemplary computing environment in
which example embodiments and aspects may be imple-
mented. The computing system environment 100 is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality. Neither should the computing environment 100
be interpreted as having any dependency or requirement relat-
ing to any one or combination of components illustrated in the
exemplary operating environment 100.

Numerous other general purpose or special purpose com-
puting system environments or configurations may be used.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use include, but
are not limited to, personal computers, server computers,
hand-held or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainframe
computers, embedded systems, distributed computing envi-
ronments that include any of the above systems or devices,
and the like.

Computer-executable instructions, such as program mod-
ules, being executed by a computer may be used. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Distributed comput-
ing environments may be used where tasks are performed by
remote processing devices that are linked through a commu-
nications network or other data transmission medium. In a
distributed computing environment, program modules and
other data may be located in both local and remote computer
storage media including memory storage devices.

With reference to FIG. 10, an exemplary system includes a
general purpose computing device in the form of a computer
110. Components of computer 110 may include, but are not
limited to, a processing unit 120, a system memory 130, and
a system bus 121 that couples various system components
including the system memory to the processing unit 120. The
processing unit 120 may represent multiple logical process-
ing units such as those supported on a multi-threaded proces-
sor. The system bus 121 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus). The system bus
121 may also be implemented as a point-to-point connection,
switching fabric, or the like, among the communicating
devices.

US 8,209,305 B2

13

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CDROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
computer 110. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of any
of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during start-
up, is typically stored in ROM 131. RAM 132 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 10
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 10 illustrates a hard disk drive 140
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov-
able, nonvolatile optical disk 156, such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 is typically
connected to the system bus 121 through a non-removable
memory interface such as interface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 10, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 10, for
example, hard disk drive 141 is illustrated as storing operating
system 144, application programs 145, other program mod-

20

25

30

35

40

45

50

55

60

65

14

ules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data
147 are given different numbers here to illustrate that, at a
minimum, they are different copies. A user may enter com-
mands and information into the computer 20 through input
devices such as a keyboard 162 and pointing device 161,
commonly referred to as a mouse, trackball or touch pad.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing
unit 120 through a user input interface 160 that is coupled to
the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 191 or other type of display
device is also connected to the system bus 121 via an inter-
face, such as a video interface 190. In addition to the monitor,
computers may also include other peripheral output devices
such as speakers 197 and printer 196, which may be con-
nected through an output peripheral interface 195.

The computer 110 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 180. The remote computer
180 may be a personal computer, a server, a router, a network
PC, a peer device or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 110, although only a memory storage
device 181 has been illustrated in FIG. 10. The logical con-
nections depicted in FIG. 10 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

When used in a LAN networking environment, the com-
puter 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be internal or external, may be connected to the system bus
121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 10 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A computer implemented method comprising:

receiving an update to a database of hyperlinks comprising

a first data store;

determining if a size of the update is equivalent to a size of

the first data store;

when the size of the update is not equivalent to the size of

the at least one first data store, then storing the update in
a new data store; and, if not,

US 8,209,305 B2

15

when the size of the update is equivalent to the size of the
first data store, marking the update and the first data store
for merging into a new merged data store, wherein stor-
ing the update in the new merged data store creates a
hierarchy of data stores in the database comprising the
new merged data store and the first data store; and

when the at least one first data store has been marked for
merging and a determined size of the new merged data
store is equivalent to a size of at least one other data
store, marking the at least one other data store for merg-
ing with the new merged data store.

2. The method of claim 1, further comprising creating a
merged data store comprising the new data store and the first
data store pursuant to a condition.

3. The method of claim 1, further comprising sealing the
new data store.

4. The method of claim 3, further comprising receiving a
second update after the new data store has been sealed, and
storing the second update in a second new data store.

5. The method of claim 2, further comprising sealing the
merged data store.

6. The method of claim 2, further comprising deleting the
new data store and the first data store after creating the merged
data store.

7. The method of claim 2, wherein the condition is based on
the size of the new data store.

8. The method of claim 1, wherein the new data store
comprises a new uniform resource locator (URL) store, a new
forward link store, and a new backward link store.

9. A processor comprising memory having executable
instructions stored thereon, the instructions when executed by
the processor perform operations comprising:

receiving an update to a database of hyperlinks comprising

a first data store;

determining if a size of the update is equivalent to a size of

the first data store;
when the size of the update is not equivalent to the size of
the first data store, storing the update in a new data store;

when the size of the update is equivalent to the size of the
first data store, marking the update and the first data store
for merging into a new merged data store, wherein stor-
ing the update in the new merged data store creates a
hierarchy of data stores in the database comprising the
new merged data store and the first data store; and

when the first data store has been marked for merging and
the size of the new merged data store is equivalent to a
size of at least one other data store, marking the at least
one other data store for merging with the new merged
data store.

20

25

30

35

40

45

16

10. The processor of claim 9, the operations further com-
prising creating a merged data store comprising the new data
store and the first data store pursuant to a condition.

11. The processor of claim 9, the operations further com-
prising sealing the new data store.

12. The processor of claim 11, the operations further com-
prising receiving a second update after the new data store has
been sealed, and storing the second update in a second new
data store.

13. The processor of claim 9, wherein the new data store
comprises a new uniform resource locator (URL) URL store,
a new forward link store, and a new backward link store.

14. The processor of claim 10, wherein the condition is
based on the size of the new data store.

15. A computer-readable storage medium, that is not a
signal per se, the computer-readable medium having stored
thereon executable instructions that when executed by a pro-
cessor perform operations comprising:

receiving an update to a database of hyperlinks comprising

a first data store;

determining if a size of the update is equivalent to a size of

the first data store;
when the size of the update is not equivalent to the size of
the first data store, storing the update in a new data store;

when the size of the update is equivalent to the size of the
first data store, marking the update and the first data store
for merging into a new merged data store, wherein stor-
ing the update in the new merged data store creates a
hierarchy of data stores in the database comprising the
new merged data store and the first data store; and

when the first data store has been marked for merging and
the size of the new merged data store is equivalent to a
size of at least one other data store, marking the at least
one other data store for merging with the new merged
data store.

16. The computer-readable storage medium of claim 15,
the operations further comprising creating a merged data
store comprising the new data store and the first data store
pursuant to a condition.

17. The computer-readable storage medium of claim 15,
the operations further comprising sealing the new data store.

18. The computer-readable storage medium of claim 17,
the operations further comprising receiving a second update
after the new data store has been sealed, and storing the
second update in a second new data store.

