
111
US007340467B2

(12) United States Patent
Najork

(10) Patent No.:
(45) Date of Patent:

US 7,340,467 B2
Mar. 4,2008

(*) Notice:

(54) SYSTEM AND METHOD FOR MAINTAINING
A DISTRIBUTED DATABASE OF
HYPERLINKS

(75) Inventor: Marc A. Najork, Palo Alto, CA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 356 days.

(21) Appl. No.: 10/413,645

Arasu, A. et aI., "PageRank Computation and the Structure of the
Web: Experiments and Algorithms", Technical Report, IBM
Almaden Research Center, Nov. 2001, 3 pages.

Bharat, K. et aI., "Improved Algorithms for Topic Distillation in a
Hyperlinked Environment", 2rt ACM SIGIR Conference on
Research and Development in Information Retrieval, 1998, 5 pages.

Bharat, K. et aI., "The Connectivity Server: fast access to linkage
information on the Web", Computer Networks and ISDN Systems,
1998, 30, 469-477.

Brin, S. et aI., "The Anatomy of a large-scale hypertextual Web
search engine", computer Networks and ISDN Systems, 1998, 30,
107-117.

(Continued)

(22) Filed:

(65)

Apr. 15, 2003

Prior Publication Data

Primary Examiner-Don Wong
Assistant Examiner-Sheree N Brown
(74) Attorney, Agent, or Firm-Woodcock Washburn LLP

US 2004/0210826 Al Oct. 21, 2004
(57) ABSTRACT

OTHER PUBLICATIONS

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) U.S. Cl. 707/10; 707/1
(58) Field of Classification Search 707/1-10,

707/100; 709/223; 713/150
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,098,081 A *
6,112,203 A
6,301,614 Bl *
6,505,191 Bl
6,601,066 Bl *
7,032,168 Bl *

2002/0103824 Al *
2002/0133697 Al *

8/2000 Heidorn et al. 715/501.1
8/2000 Bharat et al. 707/5

10/2001 Najork et al 709/223
112003 Baclawski . 707/3
7/2003 Davis-Hall 707/5
4/2006 Gerace et al. 715/501.1
8/2002 Koppolu et al 707/501.1
9/2002 Royer et al 713/150

Nodes of a web graph are distributed over a cluster of
computers. Tables distributed over the computers map
source (destination) locations to lists of destination (source)
locations. To accommodate traversing hyperlinks forward, a
table maps the location of a web page "X" to locations of all
the web pages "X" links to. To accommodate traversing
hyperlinks backward, a table maps the location of a web
page "Y" to locations of all web pages that link to Y. URLs
identifying web pages are mapped to fixed-sized checksums,
reducing the storage required for each node, while providing
a way to map a URL to a node. Mapping is chosen to
preserve infonnation about the web server component of the
URL. Nodes can then be partitioned across the machines in
the cluster such that nodes corresponding to URLs on the
same web server are assigned to the same machine in the
cluster.

Adler, M. et aI., "Towards Compressing Web Graphs", CMPSCI
Technical Report, 2000, 5 pages. 12 Claims, 17 Drawing Sheets

73
"--

Database Processor

URL Receiving
Portion

,---------,v 77

I+-

UID Generator

76"

78 "'"

Parser

Data Providing +-

Portion
'-------'-------75

Compressor Data
Storage

US 7,340,467 B2
Page 2

OTHER PUBLICATIONS

Chen, Y-Y. et aI., "I/O-Efficient Techniques for Computing
Pagerank", CIKM, 2002, 5 pages.
Cormen, TH. et aI., "Introduction to Algorithms", MIT Press/
McGraw-Hill, 1990, 337-344.
Ding, C. et aI., "PageRank, HITS and a Unified Framework for Link
Analysis", Lawrence Berkeley National Laboratory, Nov. 2001,
1-12.
Haveliwala, T H. et aI., "Efficient Computation of PageRank", Oct.
18, 1999, 1-15.
Kleinberg, J.M. "Authoritative Sources in a Hyperlinked Environ­
ment", Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, 1998, 1-31.
"The PageRank Citation Ranking: Bringing Order to the Web", Jan.
29, 1998, 1-17.
Randall, K.H. et al., "The Link Database: Fast Access to Graphs of
the Web", SRC Research Report, www.research.compaq.com/SRC.
Nov. 16,2001, 1-16.
Adler, M. et aI., "Towards Compressing Web Graphs", CMPSCI
Technical Report, 2000, 5 pages.
Arasu, A. et aI., "PageRank Computation and the Structure of the
Web: Experiments and Algorithms", Technical Report, IBM
Almaden Research Center, Nov. 2001, 3 pages.
Bharat, K. et aI., "Improved Algorithms for Topic Distillation in an
Hyperlinked Environment", 2r'ACM SIGIR Conference on
Research and Development in Information Retrieval, 1998, 5 pages.
Bharat, K. et aI., "The Connectivity Server: fast access to linkage
information on the Web", Computer Networks and ISDN Systems,
1998, 30, 469-477.

Brin, S. et aI., "The Anatomy of a large-scale hypertextual Web
search engine", computer Networks and ISDN Systems, 1998, 30,
107-117.

Chen, Y-Y. et aI., "I/O-Efficient Techniques for Computing
Pagerank", CIKM, 2002, 5 pages.

Cormen, TH. et aI., "Introduction to Algorithms", MIT Press/
McGraw-Hill, 1990, 337-344.

Ding, C. et aI., "PageRank, HITS and a Unified Framework for Link
Analysis", Lawrence Berkeley National Laboratory, Nov. 2001,
1-12.

Haveliwala, TH. et aI., "Efficient Computation of PageRank", Oct.
18, 1999, 1-15.

Kleinberg, J.M. "Authoritative Sources in a Hyperlinked Environ­
ment", Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, 1998, 1-31.

Lempel, R. et al., "The Stochastic Approach for Link-Structure
Analysis (SALSA) and the TKC Effect", Department ofComputer
Science, The Technion, 1-39, Jun. 18, 1998.

"The PageRank Citation Ranking: Bringing Order to the Web", Jan.
29, 1998, 1-17.

Randall, K.H. et aI., "The Link Database: Fast Access to Graphs of
the Web", SRC Research Report, www.research.compaq.com/SRC.
Nov. 16,2001, 1-16.

Suel, T et al., "Compressing the Graph Structure of the Web", pp.
1-10, 2001.

* cited by examiner

u.s. Patent Mar. 4,2008 Sheet 1 of 17 US 7,340,467 B2

~I

u.s. Patent Mar. 4,2008 Sheet 2 of 17 US 7,340,467 B2

N ~
It) It)

N

CD W
It) ~

::l
C)-LL.

"Il""" It)It)
It)

,
.._ _ _ J

~I

u.s. Patent Mar. 4,2008 Sheet 3 of 17 US 7,340,467 B2

! " .. , -_ .

N
......

,

'''''-'''' - ..-_ _ _ - - _._.--_..•.._._._._ _ -;

o
......

L _._ _ .

~I

u.s. Patent Mar. 4,2008

/
00
to-

Sheet 4 of 17

0)
ctl 0)
..... ctl
ctl ~

0.9
en

US 7,340,467 B2

~

0 enC/) ~

C/) to- O
~0)

"'"
C/)

u ~ C/)

e 0 Q) w.....
~a.. ctl

/
a. It:~

0) E0) c U) 0 :JC/)

CO 0) to- O C)..0 (!)
ctl 0 II) -.....

LLctl - to-
O to- =>

~/
to-

\ ~

0) 0)c c
'S; "C.- C .- C
0) 0 ~ > 0u ._ 0) o .-O)t:: C/) ~t::
0:: 0 ~ a.. 0

/' ctl-Jo.. a.. ctlo.......M 0:: ~ ctl,.....
::J to- O

80

/
URLA->URL1, URL2, .
URLB->URL7, URL8, .

•
•
•

URLC->URL14, URL21, ...

82

HASH

FIGURE 5

84

UID Table(s)
(Mapping UIDs to Lists Of UIDs

Indicating Forward Link Structures)

H(URLA) : H(URL1), H(URL2)
H(URLB) : H(URL7), H(URL8)

•
•
•

H(URLC): H(URL14), H(URL21)

\.. ./
V

86
UIDs

e
•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.....
Ul

o........
......:J

d
rJl
......:J
W
~=
~
0'1
......:J

=N

List of URLs/Links

URLA->URL1, URL2, .
URLB->URL7, URL8, .

•
•
•

URLC->URL14, URL21, ...

/
90

/
100

UIDs Indicating Links to URLs
Indicating Forward Link Structures

H(URL) : H(URL), H(URL)
H(URL) : H(URL), H(URL)

•
•
•

~ H(URL) : H(URL), H(URL)

102

HASH

UIDs Indicating Links From URLs
Indicating Reverse Link Structures

104
~ H(URL) : H(URL), H(URL)

H(URL) : H(URL), H(URL)

•
•
•

H(URL) : H(URL), H(URL)

FIGURE 6

e•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.....
0\

o........
......:J

d
rJl

",......:I
W
~=
~
0'1
......:I

=N

u.s. Patent Mar. 4,2008 Sheet 7 of 17 US 7,340,467 B2

:c
(J)
«:c

M
o...

/
o
o...

111111----------,1

t/}
...J
c::
:::>
o
I-

-g ,-----------------------,
<t:
Ee

LL
t/}
~

C
...J
C>
C...
CO
~ L...------/--,- -.- --.J..-....

W
0::
:J
C)-LL

.---
en
-J'-----------l0::1------------1

0/ :::>en '--

List of URLs

111

Integer Map
(Maps URLs to UIDs)

-7
113

FIGURE 8

UIDs Indicating Links to URLs
(Maps UIDs to List Of UIDs)

~
115

UIDs Indicating Links From URLs
(Maps UIDs To Lists Of UIDs)

117~

e
•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.....
QO

o........
......:J

d
rJl
......:J
W
~=
~
0'1
......:J

=N

I-Li~tOf URLs I~
·-------rl- 112

HASH

\
120

Integer
Map

\
114

FIGURE 9

UIDs Indicating Links to URLs
I

.--'

.v

116/

UIDs Indicating Links From URLs
I

118

~

--"'

e
•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.....
\0

o........
......:J

d
rJl
......:J
W
~=
~
0'1
......:J

=N

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.........
o
o........
......:J

~
~
~

~=~

d
rJl
......:J
W
~=
~
0'1
......:J

=N

e
•
7J).
•

156

158

UIDs Indicating
Links to URLs

(Local)
160

FIGURE 10

IUU

/
IList of URLsl

/

~152

Integer Map

IDs Indicating
(Hash)

UIDs Indicatin!
Iks From URLs Links From URI

(remote) \ (Local)
150

1"---154

UIDs Indicating
Links to URLs

(Remote)

U
Li

I '.' ~164
Form Location Identifiers (UIDs) I~

7
Distribute UIDs Over Plurality of Database Processors
Available Options:

- StoreUIDs Indicative of a Common Source Location
in a Common Database Processor

- Store UIDS Indicative of a Common Destination Location
in a Common Database Processor

- Store UIDS Indicative of a Common Web Server
in a Common Database Processor

FIGURE 11

/166

e
•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.............
o........
......:J

d
rJl
......:J
W
~=
~
0'1
......:J

=N

e
•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

174

rFJ

176
=-('D
('D.........
N

0....

178
....
......:J

172

170

168

Compress URLs
- Hash
- Map to Numeric Value

(e.g., Integer or Floating Point)

Perform Multiple Compression Functions (Optional)
i

Parse URLs/UIDs Into "Local" and "Remote" Categories

Store Parsed Categories in Respective Database Tables Lists
i

Parse URLs/UIDs Into "Linked To" and "Linked From" Categories
i

Create and Insert Processor/Node Identifier in UID

FIGURE 12

180 d
rJl
......:J
W
~=
~
0'1
......:J

=N

u.s. Patent Mar. 4,2008 Sheet 13 of 17 US 7,340,467 B2

w
a:::
::)
C)-ILI

!
I

I
1

I
!
[

! r---­
! IE
118
i luji i

! I1 ,

1 i

I I
I I
I Ii ,

i !
i
I

I
!

i

__J~'- -1 L__=::::t--.::::::t;::"_==::t

: __.._ __.._.._.--..._ __.P.J i·····-·-----~

E Ii E !

8 Ii 8. II .
c(lj a::I

II
~ i

j I
I!

I!,I
i j
i I

~ ~, ;

{ (
I ~
i j

11
! I

I:
~ ,
j!
Ir

! l
II
i j
l i

I!
j!
I!
II
II
It

II
I',II.
Ii
j f

I!
i!
II
! !

DBP1 DBP2
e
•
7J).
•
~
~
~

J "Links To" Table L2
~

"Links To" Table L1 J I =~
A1->A2,A3,81 01->02,03,E1

A2-> 02->D1 ~
~

A3->A1,A2 03->01
:-:
~...

81->82,83,C1 E1->C1,E2
N
0
0

82->83 E2->
QO

83->81 rFJ

C1->A1,C2,D1
=-('D
('D.....

C2->C1
.......
0........
......:J

FIGURE 1~~

d
rJl
......:J
W
~=
~
0'1
......:J

=N

DBP1

"Links To" Table L1
U(A1)->(1 ,U(A2»,(1 ,U(A3»,(1 ,U(B1»
U(A2)->
U(A3)->(1,U(A1»,{1,U(A2»
U(B1)->(1,U(B2»,(1,U(B3»,(1,U(C1»
U(B2)->(1,U(B3»
U(B3)->(1,U(B1 »
U(C1)->(1,U(A1»,(1,U(C2»),(2,U(D1»
U(C2)->(1,U(C1 »

FIGURE 15

DBP2

"Links To" Table L2
U(D1)->(2.U(D2»,{2,U(D3»,(2.U(E1»
U(D2)->(2,U(D1 »
U(D3)->(2,U(D1 »
U(E1)->(1,U(C1 »,(2,U(E2»
U(E2)->

e
•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.........
Ul

o........
......:J

d
rJl
......:J
W
~=
~
0'1
......:J

=N

DBP1

ULinks To" TableL1

T(A1)->(1,T(A2»,(1,T(A3»,(1,T(B1»
T(A2)->
T(A3)->(1,T(A1»,(1,T(A2»
T(B1)->(1,T(B2»,(1,T(B3»,(1,T(C1»
T(B2}->(1.T(B3»
T(B3}->(1,T(81»
T(C1 }->(1,T(A1»,(1,T(C2»,(2,T(01»
T(C2}->(1,T(C1»

FIGURE 16

DBP2

"Links To" Table L2

T(01)->(2,T(02»,(2,T(03»,(2,T(E1»
T(02)->(2,T(01 »
T(03)->(2,T(01»
T(E1 }->(1,T(C1 »,(2,T(E2»
T(E2}->

e•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.........
0\

o........
......:J

d
rJl

",......:I
W
~=
~
0'1
......:I

=N

DBP1

Backlink Table 1
(Is Linked To By)

I

A1->A3,C1
A2->A1,A3
A3->A1
B1->A1,B3
82->81
B3->81 ,82
C1->81,C2,E1
C2->C1

FIGURE 17

DBP2

Backlink Table 2
(Is Linked To By)

I
01->C1,02,03
D2->D1
03->01
E1->01
E2->E1

e•
7J).
•
~
~
~

~=~

~
~

:-:
~...
N
o
o
QO

rFJ

=­('D
('D.........
......:J
o........
......:J

d
rJl

",......:I
W
~=
~
0'1
......:I

=N

US 7,340,467 B2
2

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will
be best understood when considering the following descrip­
tion in conjunction with the accompanying drawings, of
which:

FIG. 1 is an illustration of the nodes and links of a
web-graph partitioned into clusters in accordance with an
exemplary embodiment of the present invention;

FIG. 2 is a web-graph depicting destination nodes linked
to a common source node stored in the same database
processor, in accordance with an exemplary embodiment of
the present invention;

FIG. 3 is a web-graph of nodes having common web
servers maintained by a database processor, in accordance
with an exemplary embodiment of the present invention;

FIG. 4 is a functional block diagram of a database
processor in accordance with an exemplary embodiment of
the present invention;

FIG. 5 is a diagram illustrating hashed URLs stored in a
table of a database processor, in accordance with an exem­
plary embodiment of the present invention;

FIG. 6 is a diagram of a database processor having each
database table being indicative ofdifferent aspects ofa URL,
in accordance with an exemplary embodiment of the present
invention;

FIG. 7 is a diagram of a database processor having a
single database table in accordance with an exemplary
embodiment of the present invention;

FIG. 8 is a diagram of a database processor comprising an
integer map, in accordance with an exemplary embodiment
of the present invention;

FIG. 9 is a diagram of a database processor wherein each
database table maps to a fixed size checksum in accordance
with an exemplary embodiment of the present invention;

FIG. 10 is a diagram of a database processor comprising
database tables separated into remote and local links, in
accordance with an exemplary embodiment of the present
invention;

FIG. 11 is a high level flow diagram of a process for
maintaining a plurality of hyperlinks distributed over a

60 plurality of database processors in accordance with an
exemplary embodiment of the present invention;

FIG. 12 is a flow diagram of a process for forming and
storing UIDs in accordance with an exemplary embodiment
of the present invention;

FIG. 13 is an illustration of nodes of a web graph and
associated web servers, in accordance with an exemplary
embodiment of the present invention;

the capability to create locations identifiers which utilize less
memory than the location addresses. Distributing the loca­
tion identifiers over a plurality of database processors rather
than storing all locations identifiers on a single database
processor reduces the processing and storage requirements
for each database processor. Thus, the database processors
may be realized by relatively easily obtainable and afford­
able commercial processors. A distributed database for
implementing the method includes a plurality of database

10 processors. Each database processor includes a uniform
resource locator (URL) receiving portion, a URL identifier
(DID) generator, a data storage portion, and a data providing
portion. The URL receiving portion receives URLs. The
UID generator generates UIDs indicative of at least one of

15 the source and destination locations. The data storage por­
tion stores the UIDs. The data providing portion provides
data to the plurality of database processors.

FIELD OF THE INVENTION

SUMMARY OF THE INVENTION

BACKGROUND OF THE INVENTION

1
SYSTEM AND METHOD FOR MAINTAINING

A DISTRIBUTED DATABASE OF
HYPERLINKS

A method for maintaining a database of hyperlinks,
wherein each hyperlink has a respective source location and
destination location includes forming respective location
identifiers indicative of at least one of the source and
destination locations and distributing the location identifiers 65

over a plurality of database processors. Storing location
identifiers instead of the actual location addresses provides

The present invention relates to hyperlink maintenance
and more specifically relates to maintaining large numbers
of hyperlinks via a distributed database.

Web search services allow users to submit queries, and in
response return a set of links to web pages that satisfY the
query. Because a query may potentially produce a large
number of results, results are typically displayed in a ranked
order. There are many ways to rank-order the links resulting
from a query, including content-based ranking, usage based
ranking, and link-based ranking. Content-based ranking
techniques determine how relevant the content of a docu- 20

ment is to a particular query. Usage-based ranking tech­
niques monitor which result links users actually follow, and
boost the ranks of these result links for subsequent queries.
Link-based ranking techniques examine how many other
web pages link to a particular web page, and assign higher 25

ranks to pages with many incoming links.
One problem associated with these techniques is scalabil­

ity. For example, a well known search engine has been
observed to contain approximately three (3) billion web
pages over which it can search. Also observed from analyz- 30

ing one (1) billion web pages is that each web page had an
average of 42 distinct outgoing links. Thus, a web graph
modeling significant portions of the web will have billions
of nodes and on the order of 100 billion edges.

Previous attempts to address this problem include fitting 35

fairly large web graphs into the main memory ofa very-large
memory processor by compressing nodes and edges, and
storing the web graph on disk. However, these attempts have
their own limitations. For example, fitting a graph repre­
senting one (1) billion web pages and 40 billion links 40

between them may require a machine with approximately 50
GB of main memory. This amount of memory exceeds the
capacity of cost-efficient commodity PCs, which typically
have up to 4 GB per machine. Furthermore, this technique
does not scale to arbitrarily large web graphs, since there is 45

a dearth of very-large-memory computers. Storing a large
web graph on a disk increases access time. It has also been
observed that computing the ranks of 180 million web pages
can take approximately 25 minutes, and it is estimated that
computing the rank for 10 times that many pages would take 50

more than 10 times longer (worse than linear behavior). This
technique scales poorly as the web graphs increase in size.
It is also impracticable to conduct link-based ranking at
query time due to the long access times.

A technique for maintaining a large number of links, 55

which overcomes the above described time and scalability
problems is desired.

3
US 7,340,467 B2

4
FIG. 14 is an illustration of database processors having

link tables in accordance with an exemplary embodiment of
the present invention;

FIG. 15 is an illustration of database processors having
link tables in accordance with another exemplary embodi­
ment of the present invention;

FIG. 16 is an illustration of database processors having
link tables in accordance with yet another exemplary
embodiment of the present invention; and

FIG. 17 is an illustration of backlink tables in accordance
with an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

A system and method for maintaining a database of
hyperlinks resulting from a web crawl, for example, in
accordance with the present invention distributes identifiers
of the hyperlinks over a plurality of database processors. In
this embodiment, the crawl results are in the fonn of links
(hyperlinks) to locations, such as URLs (unifonn resource
locators), and the identifiers are in the form of URL iden­
tifiers (VIDs). The URLs are mapped to form UIDs that are
smaller (utilize less memory), and therefore more easily
maintained in a database, than the actual URLs. Using UIDs
to represent links allows a large database ofhyperlinks to be
maintained over a relatively small number of database
processors. In an exemplary embodiment, the database pro­
cessors comprise commodity processors, each having a
relatively small amount of memory (e.g., 4 GB) and the
database processors are inter-coupled via a high speed
network. This provides efficient means for storing a graph
induced by pages of the World Wide Web and the hyperlinks
there between. This system and method are particularly
applicable to processes requiring a large number of hyper­
links to be maintained, such as link-based ranking algo­
rithms (e.g., PAGERANK, HITS, or SALSA, as well as
services such as the "who links to this page" service offered
by GOOGLE and ALTAVISTA).

Web-graphs, such as shown in FIG. 1, are used herein to
illustrate and describe embodiments of the present inven­
tion. A web-graph comprises nodes, such as nodes 12, 14,
16, and 18, connected by links, such as 20, 22, 24, 26, 28,
30, and 32. Various embodiments of the present invention
are described in detail below. In one embodiment, nodes of
a web graph are distributed over a cluster of computers
(database processors) that are interconnected via a high­
speed commodity network. The location of all destination
nodes of links having a common source node are stored on
the same database processor that stores the location of the
common source node. For example, the destination locations
of all links with source location "X" are stored on the same
database processor that stores the source location "X" itself.
This provides the ability to traverse links forward. In another
embodiment, the locations of all source nodes of links
having a common destination node are stored on the data­
base processor that stores the location of the common
destination node. For example, the source locations of all
links with destination location "Y" are stored on the same
database processor that stores the destination location "Y"
itself. This provides the ability to traverse links backwards.
URLs identifYing web pages are hashed to fixed-sized
checksums, reducing the storage required for each node,
while providing a probabilistic way to map a URL to a node.
In yet another embodiment, hash functions are chosen in
such a way that information about the host component of the
URL is preserved. The set of nodes are then partitioned

across the database processors in the cluster such that nodes
corresponding to URLs on the same web server are assigned
to the same database processor in the cluster. It is anticipated
that, due to the prevalence of relative links (links to nodes
on the same processor) on the web, this will result in many
of the edges in the graph being between nodes on the same
database processor in the cluster.

Referring now to FIG. 1, there is shown an illustration of
the nodes and links of a web-graph distributed into clusters

10 in accordance with an embodiment of the present invention.
Web graph 100 comprises nodes 12, 14, 16, and 18. The web
graph 100 also comprises links 20, 22, 24, 26, 28, and 30.
Each node is connected to another node via a link. For
example, nodes 12 and 14 are connected by links 20 and 22.

15 Each node represents a location on a network, such as a URL
on the Internet. Furthermore, each node may be associated
with a web server. A web server is denoted by the boxed P
shown within each node. As depicted in graph 100, node 12
is associated with web server 40, node 14 is associated with

20 web server 42, node 18 is associated with web server 40, and
node 16 is associated with web server 44. A web server is a
processor on which a node is implemented that serves the
web page associated with the URL. For example, node 12
may represent a web page have a specific URL, http://

25 www.widget.com/products.html. and that specific web page
may be hosted on the web server 40, such as a server
maintained by the owner of the widget.com web site. It is to
be understood that is it not required that each node be
associated with a unique web server. Several nodes may be

30 associated with a common web server. For example, nodes
12 and 18 may be associated with the same web server 40
(e.g., the widget server referenced above). Each link has a
source node indicative of a source location (e.g., the web
page containing the link) and a destination node indicative

35 of a destination location (e.g., the web page the link refers
to). For example, nodes 12 and 14 are connected by links 20
and 22. Link 20 has a source node 12 and a destination node
14. Link 22 has a source node 14 and a destination node 12.

The web graph 100 is distributed over clusters 34, 36, and
40 38. Each cluster represents a single (or group of) database

processor(s) for maintaining hyperlinks. The cluster group­
ing depicted in FIG. 1 is exemplary, and it is to be under­
stood that various other cluster groupings are appropriate. A
cluster represents a database processor or group of database

45 processors over which a database of hyperlinks is distrib­
uted. A database processor may be any appropriate means
for maintaining a database of hyperlinks, for example a
general purpose processor, a dedicated processor, hardware
components, software components, or a combination

50 thereof. Nodes are assigned to clusters in accordance with
various attributes. For example, the destination locations of
nodes associated with hyperlinks having a common source
location may be grouped into a cluster, the common source
node may also be grouped into the cluster, nodes associated

55 with hyperlinks having a common web server, may be
grouped into a cluster (e.g., nodes corresponding to URLs on
same web server are assigned to the same cluster), or a
combination thereof.

FIG. 2 is a web-graph 200 depicting destination nodes
60 linked to a common source node stored in the same database

processor, in accordance with an embodiment of the present
invention. In FIG. 2, hyperlinks 51, 53, and 55, have a
common source node 50 and the nodes to which those links
point (nodes 52, 54, and 56), are formed into a cluster 58. To

65 facilitate efficient maintenance of the database ofhyperlinks
over a plurality of database processors, the locations of
nodes 52, 54, and 56 are stored on a common database

US 7,340,467 B2
5 6

mation into UIDs having values of fixed size. The compres­
sor 76 may utilize any appropriate function to compress the
URL information, such as a hashing function, a numeric
value mapping function (e.g., assigning/mapping each URL
to a numeric value), or a combination thereof, for example.
The parser 74 parses the URL information received by the
URL receiving portion 77, the UIDs, or a combination
thereof, into categories. The categories include local links
(links to nodes on the same database processor), remote
links (links to nodes on other than the same database
processor), "link to" nodes (nodes that a link points to), "link
from" nodes (nodes from which a link points), or a combi­
nation thereof. The data storage portion 78 stores the UIDs.
In one embodiment, the data storage portion 78 is formed to

15 store UIDs in separate tables corresponding to parsed cat­
egories. The data providing portion 75 provides data to other
database processor in the distributed database.

FIG. 5 is a diagram illustrating hashed URLs stored in a
table ofa database processor, in accordance with an embodi­
ment of the present invention. To facilitate maintaining a
database of hyperlinks over a plurality of database proces-
sors, locations, e.g., URLs 80, are hashed by hasher 82 and
the resulting URL identifiers (VIDs) 86 are stored in table(s)
84 within the database. The URLs 80 are indicative of the
hyperlink structure discovered during a web crawl. For
example, as shown in FIG. 5, the urlA is linked to at least
urll and url2; urlB is linked to at least url7 and url8; and urIC
is linked to at least url14 and url21. The hyperlink structure
can be in various forms. Examples of which include, a
stream of URL pairs comprising source location and desti­
nation, each indicating one hyperlink, or pairs comprising
source location and a list of destination locations indicating
the complete list ofhyperlinks contained in a web page. The
hasher 82 hashes the URLs 80, and provides the resulting
UIDs 86 to the database table 84. Thus, the table 84 maps
UIDs to a list of UIDs. Each UID is a hashed value of its
corresponding URL. For example, as depicted in FIG. 5, the
table 84 contains a UID indicative of the hashed value of
URLA (indicated by H(urlA) mapped to the UIDs H(urll)
and H(urI2); H(urlB) mapped to H(url7) and H(url8); and
H(urlC) mapped to H(urIl4) and H(url21). A hash function
is a function that transforms a variable-size input into a fixed
size string. Typically, hash functions are one way, meaning
that it is impracticable or impossible to determine the input
value from the output (transformed) value. The hasher 82
hashes URLs 80, providing fixed length UIDs 86. Each UID
86 is indicative ofa respective URL (or portion thereof, such
as the home address or path addresses) 80. The hasher 82
may utilize any appropriate hash function, such as the well
known MD2, MD5 and SHAI hash functions, for example.
Hashing the URLs 80 provides fixed length UIDs 86 to
represent the variable length URLs 80. On average, each
UID 86 is smaller in size than the corresponding URL 80,
thus allowing the database of UIDs 86 to be maintained
utilizing less memory than would be required to maintain a
database of URLs.

UIDs may be assigned to database tables in various ways.
In one embodiment, as depicted in FIG. 6, each database
table is indicative of different aspects of a URL. Database
tables 102 and 104 are maintained by the database. The
database table 102 has stored therein hashed URLs, in the
form ofUIDs, which are indicative ofURLs that each URL
in the list ofURLs 90 links to. For example, referring to the
web-graph 200 of FIG. 2, if one of the URLs in the list of
URLs 90 corresponds to node 50, the database table 102
would contain UIDs indicative of nodes 52, 54, and 56. The
other database table 104 has stored therein hashed URLs in

processor represented by cluster 58. Processes for determin­
ing which hyperlinks leave a given web page are known in
the art. As described in more detail below, respective iden­
tifiers (referred to as URL identifiers or UIDs) which iden­
tify the locations (e.g., URLs) of each node 52, 54, and 56
are stored in a database distributed over the cluster 58 of
database processors. In another embodiment of the present
invention, the source node 50 is also stored in the same
database processor. As previously described, cluster 58 may
represent a single database processor or a plurality of 10

database processors. However, for the sake of clarity, and in
accordance with an embodiment of the present invention,
the cluster 58 is described as a single database processor
(machine), and the phrases "cluster 58" and "database
processor 58" are used interchangeably.

As nodes are added to, or removed from, a cluster, the
cluster is informed of the addition/deletion. In one embodi­
ment of the present invention, each UID contains a prede­
termined number of bits dedicated for node identification.
For example, each UID may comprise 2 bits identifYing the 20

cluster (database processor) to which the corresponding
node is assigned.

In another embodiment of the present invention, as
depicted in FIG. 3, nodes having a common web server are
maintained by a database processor. FIG. 3 shows nodes 60, 25

64, 66, 70, having common web server PI formed into the
database processor 68. Nodes 62 and 72 are hosted on web
server P2, and are not grouped into the database processor
68. Thus, UIDs for nodes 60, 64, 66, 70, are maintained by
a database implemented on database processor 68 and stored 30

in tables residing therein. It is to be understood that various
embodiments of the present invention include combinations
of the above described embodiments. For example, destina­
tion nodes linked to a common node, and nodes having a
common web server are stored in the same database pro- 35

cessor.
FIG. 4 is a functional block diagram of a database

processor 73 in accordance with the present invention. An
embodiment of the distributed database in accordance with
the present invention comprises a plurality of databases 73. 40

Each database processor 73 comprises a URL receiving
portion 77, a URL identifier (VID) generator 79, a data
providing portion 75, and a data storage portion 78. The
URL receiving portion 77 receives location information
corresponding to sources and/or destinations (e.g., nodes) of 45

links. The data providing portion 75 provides data to other
database processors 73 in the distributed database. This
information/data may be received/provided via any appro­
priated means, such as a network interface, wirelessly,
optically, or a combination thereof, for example. In one 50

embodiment, information pertains to URLs. The URL infor­
mation received by receiving portion 77 is available to the
other portions of the database processor 73. Optionally, the
database processor 73 performs functions in addition to
database maintenance, such as ranking web pages. Thus, the 55

database processor 73 could perform database functions,
rank web pages corresponding to the received URLs, and
provide the ranking results via the data providing portion 75.

The UID generator 79 is described in more detail below.
Generally, however, the UID generator 79 generates location 60

identifiers indicative of the URL information received by the
URL receiving portion 77. The UID generator 79 generates
UIDs having a fixed size (e.g., number of bits), such as an
integer and/or floating point value. The fixed size UTDs are
smaller (utilize less memory) than the URLs. The UID 65

generator 79 comprises an optional parser 74 and a com­
pressor 76. The compressor 76 compresses the URL infor-

US 7,340,467 B2
7

the fonn of UIDs, which are indicative of URLs that point
to each URL in the list of URLs 90. For example, if the
direction of links 51, 53, and 55 is reversed, and one of the
URLs in the list of URLs 90 corresponds to node 50, the
database table 104 would contain UIDs indicative of nodes 5

52,54, and 56. The URL list 90 is indicative of the nodes of
a database processor (e.g., the nodes associated with a
database processor, the sub-graph assigned to a database
processor). Thus the database table 102 maps each URL 90
to URLs that each URL 90 links to, and database table 104 10

maps each URL 90 to URLs that link to each URL 90.
As shown in FIG. 6, the list of URLs 90 is hashed by

hasher 100. The hasher 100 may comprise a single hash
function or several hash functions. For example, URLs from
the list ofURLs 90 to be provided to the database table 102 15

may be hashed by a first hashing function, and URLs from
the list ofURLs 90 to be provided to the database table 104
may be hashed by a second hashing function. It is well
known however, that connecting hash functions in series
tends to increase the probabilities of collisions (e.g., dupli- 20

cate hash values).
In another embodiment, as depicted in FIG. 7, a single

database table 103 is maintained. The database table 103
contains UIDs indicative of both URLs which the URLs of
URL list 90 link to and the URLs that link to each URL in 25

the URL list 90. The list ofURLs 90 is parsed into two lists
106 and 110 of URLs. The URL list 106 is indicative of
URLs that are linked to each URL in the URL list 90. The
URL list 110 is indicative of the URLs to which each URL
in URL list 90 links. The arrows shown in list 106 and list 30

108 depict the fact that list 106 contains forward links and
list 110 contains reverse links. This parsing may be accom­
plished by the database processor, or the URL lists 106 and
110 may be provided to the database processor.

FIG. 8 is a block diagram of a database processor com- 35

prising an integer map 113. In yet other embodiments of the
present invention, the database tables map URLs, or URL
checksums, to a list of integer values. The integers functions
as indices pointing to arrays (tables). For example, as shown
in FIG. 8, database tables 115 and 117 contain UIDs in the 40

form of integer values, which are indicative of characteris­
tics of the URLs in the list 111. The URLs of the list 111 are
mapped to a unique integer value by the integer map 113.
The integer values are provided to the database tables 115
and 117, such that the database table 115 has stored therein 45

UIDs in the form of integer values, which are indicative of
URLs that each URL in the list ofURLs 111 links to, and the
database table 117 has stored therein UIDs in the fonn of
integer values, which are indicative of URLs that point to
each URL in the list of URLs 111. The number of integers 50

to which the integer map 113 will map URLs depends upon
the number of URLs maintained by the database processor.
For example, it the database processor is responsible for
maintaining N URLs, the integers may range from I to N. As
should be readily evident, any of the above described 55

embodiments utilizing hash functions, may alternately, or in
combination, utilize integer mapping functions. Although
the URLs are described as being mapped to integer values,
the mapping is not limited thereto. The URLs may be
mapped to floating point values. Furthennore, integer map- 60

ping, floating point mapping, and hashing may be utilized in
any appropriate combination.

In another embodiment, as shown in FIG. 9, each database
table 116, 118, maps a fixed size checksum (contents of each
respective table 116, 118) of each URL to a list of URL 65

checksums, which are indicative ofthe list ofURLs 112. The
URLs in the list ofURLs 112 are hashed by hasher 120, and

8
the resultant fixed size checksums are provided to the integer
map 114. The resultant hashed and integer mapped UIDs are
provided to database tables 116 and 118. The database table
116 has stored therein hashed URLs, in the fonn of UIDs,
which are indicative of the URLs that each URL in the list
of URLs 112 links to. The database table 118 has stored
therein hashed URLs in the form of UIDs, which are
indicative of URLs that point to each URL in the list of
URLs 112. Hashing and mapping the URLs from the list of
URLs 112 by the hasher 120 and the integer map 114,
respectively, provides means for reducing the size of the
checksums (UIDs), which are stored in the database table
116.

FIG. 10 is a block diagram of a database processor
comprising database tables separated into remote and local
links. A local link is a link that points to, of from, a location
on the same database processor, and a remote link is a link
that points to, or from, a location on another database
processor. The URLs of list 160 are mapped into (assigned)
integer values by integer map 150. Note that the URLs
alternatively or in addition may be hashed. Respective
integer values are provided to remote database tables 152
and 154 and local database tables 156 and 158. The local
database table 156 has stored therein UIDs in the fonn of
integer values, which are indicative of local URLs that each
URL in the list ofURLs 160 links to, and the local database
table 158 has stored therein UIDs in the form of integer
values, which are indicative oflocal URLs that point to each
URL in the list ofURLs 160. The remote database table 152
has stored therein UIDs in the fonn of integer values, which
are indicative of remote URLs that each URL in the list of
URLs 160 links to, and the remote database table 158 has
stored therein UIDs in the fonn of integer values, which are
indicative of remote URLs that point to each URL in the list
of URLs 160. In one embodiment, the highest-order bits
(e.g., 2 highest-order bits) ofa UID are utilized to encode the
database processor maintaining the UID. This mitigates the
need to maintain separate tables for local and remote links.

It is to be understood that various combinations of the
herein described embodiments are envisioned. It is also
envisioned that compression techniques, such as well known
delta encoding and/or Huffman encoding, for example, may
be applied to the links to further facilitate maintaining a
plurality ofhyperlinks on a plurality of database processors.
Utilizing compression techniques can result in UIDs as
small as I byte in size. For a description of Huffman
encoding, see "Introduction to Algorithms", Thomas H.
Connen, Charles E. Leiserson, and Ronald L. Rivest, MIT
Press/McGraw-Hill, 1990, pages 337-44, which is hereby
incorporated by reference in its entirety as if presented
herein. Furthermore, a database processor is not limited to
perfonning only database functions. For example, a database
processor may also perfonn ranking computations (e.g.,
page ranking).

FIG. 11 is a high level flow diagram of a process for
maintaining a plurality of hyperlinks distributed over a
plurality of database processors in accordance with an
exemplary embodiment of the present invention. The UIDs
are fonned at step 164 and the UIDs are distributed over a
plurality of database processors at step 166. As described
above, the UIDs may be distributed in accordance with any
combination of several options. One option includes, for all
hyperlinks having a common source location and respective
destination locations, the UID for the common source loca­
tion and the UIDs for the respective destination locations are
stored in a common database processor. Another option
includes, for all hyperlinks having a common destination

US 7,340,467 B2
9 10

60

45

50

D2->D1
D3->D1
E1->C1,E2
E2->
Also as shown in FIG. 13, the web pages AI, A2, and A3,

are hosted by web server Acorn; B1, B2, and B3 are hosted
by the web server B.com; C1 and C2 are hosted by the web
server C.com; D1, D2, and D3 are hosted by the web server
D.com; and E1 and E2 are hosted by the web server Kcom.

For sake of this example, the link database is distributed
over two database processors, DBP1 and DBP2, as depicted
in FIG. 14. Let H (the "host map") be a function that maps
web server names to database processors. In various
embodiments, the function H may be implemented in vari­
ous fonns, such as by a hash function or by an explicit table,
for example. In this example, assume: H(A.com)=I,
H(Acom)=I, H(B.com)=I, H(C.com)=I, H(D.com)=2, and
H(E.com)=2. Again, for sake of this example assume a web
crawler performing a breadth-first search and starting to
crawl at Al downloads the pages in the following order: Al
containing links to A2, A3, B1, A2 containing no links, A3
containing links to AI, A2, B1 containing links to B2, B3,
C1, B2 containing a link to B3, B3 containing a link to B1,
C1 containing links to AI, C2, D1, C2 containing a link to
C1, D1 containing links to D2, D3, E1, D2 containing a link
to D1, D3 containing a link to D1, E1 containing links to C1,
E2, and E2 containing no links.

A link distributor component (not shown) takes the URL
(e.g., AI) of a web page and its outgoing links (e.g., A2, A3,
B1), and sends them to one of the database processors,
depending on H. In our example, A1->A2, A3, B1 is sent to
the database processor, DBP1, since the web server com­
ponent of Al is Acorn, and H(Acom) is I. In the one
embodiment, as shown in FIG. 14, each database processor
simply maintains a link table (Ll for DBP1 and L2 for
DBP2) from URLs to URL lists. In our example, the table
on database processor DBP1 is: A1->A2, A3, B1;A2->;A3­
>A1, A2;B1->B2, B3, C1;B2->B3 B3->B1; C1, >A1, A2,
D1; and C2->Cl. The table on database processor DBP2 is:

40 D1->D2, D3, E1; D2->D1; D3->D1; E1->C1, E2; andE2->.
Assuming that an average HTML page contains about 40
links (excluding duplicates), and an average URL is 60
bytes, the embodiment of this example requires an average
of 2400 bytes per node in the web graph.

In another embodiment, a hash function is used to reduce
the size of the tables. Let U be a hash function that maps
URLs to fixed length numeric values between 0 and (2k

__ I),
where k is the number of bits used to represent each value.
For purposes of this example, assume:

U(A1)=2e80186778c9a72b; U(A2)=ble84b994eI842de;
U(A3)=252895fSa813cdI6;

U(B1)=ff780bI76bfSl b16; U(B2)=60l058e95d29fee3;
U(B3)=f4d08688bb22712b;

U(C1)=5Ic8eaf36eac5c66; U(C2)=ceaOb90d587db993;
U(Dl)=7ea515616cl ;

U(D2)=elc94f556787f334; U(D3)=75099134818c7cfc;
U(E1)=dOllfd4f54025Ibl; and

U(E2)=4f79aebI62d3b444 (Values represented in hexa­
decimal).

As shown in FIG. 15, using this hash function, and storing
a pair or values consisting of the ID of the database
processor responsible for the link (e.g. database processor
DBP1 is responsible for URL Al because H(Acom)=I), and
the hash value of the URL. The table Ll on the database

65 processor DBP1 contains the following.
U(A1)->(1, U(A2)),(1, U(A3)),(1,U(B1))
U(A2)->

location and respective source locations, storing the UID of
the connnon destination location and the respective source
locations in a connnon database processor. A third option
includes storing UIDs for all locations having a connnon
web server in a connnon database processor. Also, the 5

hyperlinks may be distributed in any combination of the
above options.

FIG. 12 is a flow diagram of a process for fonning and
storing UIDs in accordance with an exemplary embodiment
of the present invention. At step 168, the URLs from which 10

UIDs are to be formed and stored are received. The URLs
are compressed at step 170. Again, options are available.
The URLs may be compressed by any of several know
hyperlink compression techniques, by hashing the URLs
into fixed size checksums, by mapping the URLs to corre- 15

sponding numeric values (e.g., integer or floating point), of
a combination thereof. At step 172, additional compression
function may optionally be performed. For example, mul­
tiple hashing functions, or combinations of hashing and
integer mapping may be perfonned. At step 174, the URLs, 20

the UIDs, or a combination thereof are parsed. Several
options are available for parsed categories. The URLslUIDs
may be parsed into Linked To and Linked From categories,
as described above, the URLslUIDs may be parsed into
Local and Remote categories, as also described above, or a 25

combination thereof. The parsed data is stored in database
tables at step 178. The database tables may be in the fonn of
a single database table, a database table for each parsed
category, or a combination thereof. At step 180, a processor
identifier is created and embedded in each UID. This step is 30

optional. In one embodiment ofthe present invention, a 2-bit
value is embedded in each UID to identify the database
processor on which that UID is stored.

An example of various embodiments of a distributed
database for maintaining hyperlinks is provided below. 35

Referring now to FIG. 13, there is shown an exemplary
web-graph comprising web pages A1,A2,A3,B1,B2,B3,C1,
C2,D1,D2,D3,E1,and E2. FIG. 13 illustrates a web-graph
containing web pages having the following URLs.

http://Acom/l.html(abbreviated as AI)
http://Acom/2 .html (abbreviated as A2)
http://Acom/3 .html (abbreviated as A3)
http://B.com/l.html(abbreviated as B1)
http://B.com/2.html(abbreviated as B2)
http://B.com/3 .html (abbreviated as B3)
http://C.com/l.html(abbreviated as C1)
http://C.com/2 .html (abbreviated as C2)
http://D.com/l.html(abbreviated as D1)
http://D.com/2 .html (abbreviated as D2)
http://D.com/3 .html (abbreviated as D3)
http://E.com/l.html(abbreviated as E1)
http://E.com/2.html(abbreviated as E2)
The web pages are interlinked as indicated by the arrows

shown in FIG. 13, and as described below. In this descrip­
tion, a web page with an arrow (-» to another web page 55

indicates the link. For example, the designation w->x, y, z
indicates that the web page w contains links to the pages x,
y, and z. Thus, as shown in FIG. 13:

A1->A2,A3,B1
A2->
A3->A1,A2
B1->B2,B3,Cl
B2->B3
B3->B1
C1->A1,C2,Dl
C2->C1
Dl->D2,D3,E1

US 7,340,467 B2
12

T(AI)->(1,T(A2)),(1,T(A3)),(1,T(Bl))
T(A2)->
T(A3)->(1,T(Al)),(1,T(A2))
T(BI)->(1,T(B2)),(1,T(B3)),(1,T(Cl))
T(B2)->(1,T(B3))
T(B3)->(1,T(Bl))
T(CI)->(1,T(Al)),(1,T(C2)),(2,T(Dl))
T(C2)->(1,T(Cl));

and the part of T maintained by the database processor
DBP2 could contain:

T(Dl)=16
T(DZ)=17
T(D3)=18
T(El)=19
T(E2)=20
The part ofL maintained by the database processor DBPI

would then contain:
0->1,2,3
1->
2->0,1

25

and the link table, L2, on database processor DBP2 contains:
10 T(Dl)->(2,T(DZ)),(2,T(D3)),(2,T(El))

T(DZ)->(2,T(Dl))
T(D3)->(2,T(Dl))
T(EI)->(1,T(Cl)),(2,T(E2))
T(E2)->
Replacing T(x) by its numeric value, the link table LIon

database processor DBPI contains:
0->(1,1),(1 ,2),(1 ,3)
1->
2->(1,0),(1,1)
3->(1,4),(1,5),(1,6)
4->(1,5)
5->(1,3)
6->(1,0),(1,7),(2,8)
7->(1,6);

and link table, L2, on database processor DBP2 contains:
8->(2,9),(2,10),(2,11)
9->(2,8)
10->(2,8)
11->(1,6),(2,12)
12->
Assume now that T is implemented as a table mapping

64-bit (8-byte) URL hash values to 32-bit (4-byte) URL
identifiers. In a straightforward implementation of such a

35 table, each entry in T consumes 12 bytes. However, a
slightly more sophisticated implementation can reduce the
storage requirement to approximately 9 bytes. Furthermore,
assuming I-byte database processor identifiers and 40 links
per page, each entry in the table utilizes 200 bytes. As an

40 optimization, each database processor can be assigned a
designated range of integers, allowing the omission of the
database processor ID from the entries in the table. For
example, database processor DBPI may be assigned the
range 0 to 15, and database processor DBP2 may be

45 assigned the range 16 to 31. Thus, the part of T maintained
by the database processor DBPI could contain:

T(Al)=O
T(A2)=1
T(A3)=2
T(Bl)=3
T(B2)=4
T(B3)=5
T(Cl)=6
T(C2)=7

20

30

11
U(A3)->(1,U(Al)),(1,U(A2))
U(BI)->(1,U(B2)),(1,U(B3)),(1,U(Cl))
U(B2)->(1,U(B3))
U(B3)->(1,U(Bl))
U(Cl)->(I,U(Al)),(I,U(C2)),(2,U(Dl))
U(C2)->(1,U(Cl))

and, also as shown in FIG. 15, the table L2 on database
processor DBP2 contains the following:

U(Dl)->(2,U(DZ)),(2,U(D3)),(2,U(El))
U(DZ)->(2,U(Dl))
U(D3)->(2,U(Dl))
U(El)->(1,U(Cl)),(2,U(E2))
U(E2)->
Replacing U(x) by its numeric value, the link table, Ll, on 15

database processor DBPI contains:
2e80186778c9a72b->(1,b1e84b994e1842de),(1,

252895f8a813cdI6),(1 ,ff780bI76bf81b16)
ble84b994eI842de->
252895f8a813cdI6->(1 ,2e80186778c9a72b),(1,

ble84b994e1842de)
ff780bI76bf81 bI6->(1 ,601058e95d29fee3),(1,

f4d08688bb22712b), (1,51c8eaf36eac5c66)
601 058e95d29fee3->(1 ,f4d08688bb22712b)
f4d08688bb22712b->(1 ,ff780bI76bf81 b16)
51 c8eaf36eac5c66->(1 ,2e80186778c9a72b),(1,

ceaOb90d587db993),(2,7eallcab515616c1)
ceaOb90d587db993->(1 ,51 c8eaf36eac5c66)

and the table, L2, on database processor DBP2 becomes:
7eallcab515616c1->(2,elc94f556787f334),(2,

75099134818c7cfc),(2,d01lfd4f540251bl)
el c94f556787f334->(2,7eall cab515616c1)
75099134818c7cfc->(2,7eall cab515616c1)
dOllfd4f540251 bl->(1 ,51c8eaf36eac5c66),(2,

4f79aebI62d3b444)
4f79aebI62d3b444->
Note that the hash function is non-invertible, that is, it

maps URLs to hash values, but does not map hash values
back to URLs (this would require, for example, maintaining
an explicit table from hash values to URLs).

Since there are potentially infinitely many URLs, but
there are only a finite number of values in the range from 0
to (2k _l) (i.e., 21, there is a possibility that two URLs hash
to the same value (the URLs are said to "collide"). In order
to keep the probability of collisions reasonably low, in one
embodiment, the range of the numeric values is chosen to be
at least the square of the number ofURLs in the graph. For
example, a web graph having fewer than 232 (about 4 billion)
URLs, is represented by using a hash function that produces
64-bit numeric values. Thus, assuming 64-bit (8-byte) hash 50

values, I-byte database processor identifiers, and 40 links
per page, this embodiment uses 360 bytes per node in the
web graph.

In another embodiment, a table T is maintained that maps
URLs (or URL hash values) to integer values drawn from a 55

densely packed space. This mapping is non-probabilistic,
that is, two different URLs (or URL hash values) always
map to two different URL identifiers. Assuming that the
URL identifiers are given out in the order that URLs are
discovered by the crawler, this example results in the fol- 60

lowing: T(Al)=O; T(A2)=I; T(A3)=2; T(Bl)=3; T(B2)=4;
T(B3)=5; T(Cl)=6; T(C2)=7; T(Dl)=8; T(DZ)=9; T(D3)
=10; T(El)=l1; and T(E2)=12. Note that T can be distrib­
uted over the different database processors, wherein each
database processor maintains only those entries for which it 65

is responsible. In this embodiment, as shown in FIG. 16, the
link table, Ll, on database processor DBPI contains:

US 7,340,467 B2
13 14

and the link table on database processor DBP2 would 45

contain:

10

40

which, after computing the differences, is the same as:
0->1,1,1
1->
2->-2,1
3->1,1,1
4->1
5->-2
6->-6,7,9
7->-1
16->1,1,1
17->-1
18->-2
19->-13,14
20->
Because of the prevalence of relative URLs, the URL

identifiers corresponding to the links in a page tend to be
numerically close together, so the numeric difference
between one link on a page and the next tends to be small.
This can be exploited by encoding these small numbers
using a variable-length encoding scheme, such as a Huffman
encoding for example. Empirically speaking, this allows one
to encode each link using about 1 byte of data. So, assuming
40 links per page, this embodiment utilizes 40 bytes per
node in the web graph (plus about 9 bytes per unique URL
in T).

Continuing with this example, some applications require
the ability to traverse hyperlinks backwards. If the distrib­
uted database is to support such applications, it will also
contain a distributed "backlink table" BL. Referring to FIG.
17, the backlink table on database processor DBP1 is:

A1->A3,Cl
A2->A1,A3
A3->A1
B1->A1,B3
B2->B1
B3->B1,B2
C1->B1,C2,E1
C2->C1
The backlink table on database processor DBP2 is:
Dl->C1,D2,D3
D2->D1
D3->D1
E1->D1
E2->E1
A method for maintaining a database of hyperlinks as

described herein may be embodied in the form of computer­
implemented processes and system for practicing those
processes. A method for maintaining a database of hyper­
links as described herein may also be embodied in the form

50 ofcomputer program code embodied in tangible media, such
as floppy diskettes, read only memories (ROMs), CD­
ROMs, hard drives, high density disk, or any other com­
puter-readable storage medium, wherein, when the computer
program code is loaded into and executed by a computer, the

55 computer becomes a system for practicing the invention.
The method for maintaining a database of hyperlinks as
described herein may also be embodied in the form of
computer program code, for example, whether stored in a
storage medium, loaded into and/or executed by a computer,

60 or transmitted over some transmission medium, such as over
the electrical wiring or cabling, through fiber optics, or via
electromagnetic radiation, wherein, when the computer pro­
gram code is loaded into and executed by a computer, the
computer becomes a system for practicing the invention.

65 When implemented on a general-purpose processor, the
computer program code segments configure the processor to
create specific logic circuits.

3->4,5,6
4->5
5->3
6->0,7,16
7->6

0->(1-0),(2-1),(3-2)
1->
2->(0-2),(1-0)
3->(4-3),(5-4),(6-5)
4->(5-4)
5->(3-5)
6->(0-6),(7-0),(16-7)
7->(6-7)
16->(17-16),(18-17),(19-18)
17->(16-17)
18->(16-18)
19->(6-19),(20-6)
20->;

and the part of L maintained by the database processor
DBP2 would contain:

16->17,18,19
17->16
18->16
19->6,20
20->
Using this technique (again assuming 32-bit URL iden­

tifiers and 40 links per page), each entry in L consumes 160 15

bytes. Better link compression can be achieved by exploiting
a structural property of a web graph, namely, the prevalence
of relative links. A relative link is a link from a web page to
another web page on the same web server. Typically, about
80% of all links on a web page are relative. This property of
a web page can be exploited by assigning numerically close 20

URL identifiers to URLs that are on the same host web
server. One way to do so is to take the list of all known
URLs, to sort them lexicographically, and then to assign
URL identifiers based on the sorted order of the URLs. As
it turns out, giving out URL identifiers according to the 25

sequence in which new URLs are discovered by a breadth­
first search crawler (as described above) has a very similar
effect, and it does not require a priori knowledge of the set
of all URLs (or the step of sorting the URLs). 30

In another embodiment, it is assumed that the URL
identifiers were assigned in such a fashion. In this embodi­
ment, a link is not stored as a URL identifier, but rather as
the difference between the URL identifiers of this link and
the previous link. More specifically, the link table on data- 35

base processor DBPl:
T(A1)->(T(A2)-T(A1)),(T(A3)-T(A2)),(T(B1)-T(A3))
T(A2)->
T(A3)->(T(A1)-T(A3)),(T(A2)-T(A1))
T(B1)->(T(B2)-T(B1)),(T(B3)-T(B2)),(T(C1)-T(B3))
T(B2)->(T(B3)-T(B2))
T(B3)->(T(B1)-T(B3))
T(C1)->(T(A1)-T(C1)),(T(C2)-T(A1)),(T(Dl)-T(C2))
T(C2)->(T(C1)-T(C2));

T(Dl)->(T(DZ)-T(Dl)),(T(D3)-T(DZ)),(T(E1)-T(D3))
T(DZ)->(T(Dl)-T(DZ))
T(D3)->(T(Dl)-T(D3))
T(E1)->(T(C1)-T(E1)),(T(E2)-T(C1))
T(E2)->.
Substituting the T(x) by their numeric values, is the same

as:

US 7,340,467 B2
15 16

40

20

30

3. A method in accordance with claim 1, further compris­
ing the step of: compressing each location for providing a
fixed size respective location identifier.

4. A method in accordance with claim 3, wherein each
location is a Uniform Resource Locator (URL).

5. A distributed database for maintaining a plurality of
hyperlinks, each hyperlink having a respective source loca­
tion and a respective destination location, said distributed
database comprising:

a plurality of database processors, each database proces­
sor comprising:
a data providing portion for providing data to said

plurality of database processors;
a uniform resource locator (URL) receiving portion for

receiving URLs;
a URL identifier (UID) generator for generating UIDs

indicative of at least a portion of said source and
destination locations, wherein said UID generator
generates database processor identifiers indicative of
a database processor on which a corresponding UID
is stored and embeds said database processor iden-
tifier within each UID

a data storage portion for:
storing said UIDs; and
maintaining said UIDs so as to provide an indication

of a respective hyperlink structure associated with
each UID by maintaining at least one table in the
database for mapping a source location to a
respective destination location for each hyperlink
of the database of hyperlinks; and

a compressor for compressing said URLs via at least
one of hashing each URL and assigning a numeric
value to each URL, wherein, at least one of:
for all hyperlinks having a common source location,

UIDs indicative of said common source location
are maintained in one of said plurality of database
processors and UIDs indicative of all destination
locations of said hyperlinks having a common
source location are maintained in said one of said
plurality of database processors; and

for all hyperlinks having a common destination
location, UIDs indicative of said common desti­
nation location are maintained in one of said
plurality of database processors and UIDs indica­
tive of all source locations of said hyperlinks
having a common destination location are main-
tained in said one of said plurality of database
processors.

6. A distributed database in accordance with claim 5, each
UID generator further comprising a parser for parsing at
least one of said URLs.

7. A distributed database in accordance with claim 5,
wherein: UIDs for URLs having a common web server are

55 maintained in one of said plurality of database processors.
8. A distributed database in accordance with claim 5,

wherein: said UID generator generates fixed size UIDs.
9. A computer readable medium having stored thereon

computer-executable instructions for maintaining a database
of hyperlinks by performing the steps of:

forming respective location identifiers indicative of at
least one of said source and destination locations,
wherein a location identifier comprises a value indica­
tive of at least one of:
a respective location compressed via a hash function;

and
a numeric value assigned to a respective location;

A system and method for maintaining a plurality of
hyperlink via a distributed database in accordance with the
present invention provides an efficient way to store a web­
graph induced by the pages of the World Wide Web and the
hyperlinks between them. Also provided is a very fast means
to determine which hyperlinks point to or leave a specific
web page. This functionality is particularly advantageous to
processes that perform a computation over all or part of the
web graph, such as link-based ranking algorithms and ser­
vices such as the "who links to this page" service offered by 10

GOOGLE and ALTAVISTA.
Although illustrated and described herein with reference

to certain specific embodiments, the system and method for
maintaining a plurality ofhyperlinks via a distributed data­
base as described herein are nevertheless not intended to be 15

limited to the details shown. Rather, various modifications
may be made in the details within the scope and range of
equivalents of the claims and without departing from the
spirit of the invention.

What is claimed is:
1. A method for maintaining a database of hyperlinks,

each hyperlink having a respective source location and a
respective destination location; said method comprising:

forming respective location identifiers indicative of at
least one of said source and destination locations, 25

wherein a location identifier comprises a value indica­
tive of at least one of:
a respective location compressed via a hash function;

and
a numeric value assigned to a respective location;

distributing and storing said location identifiers over a
plurality of database processors of a distributed data­
base;

maintaining said location identifiers so as to provide an
indication ofa respective hyperlink structure associated 35

with each location identifier by maintaining at least one
table in the database for mapping a source location to
a respective destination location for each hyperlink of
the database of hyperlinks;

performing at least one of:
for all hyperlinks having a common source location,

maintaining a location identifier indicative of said
common source location in one of said plurality of
database processors; and maintaining location iden­
tifiers indicative of all destination locations of said 45

hyperlinks having a common source location in said
one of said plurality of database processors; and

for all hyperlinks having a common destination loca­
tion, maintaining a location identifier indicative of
said common destination location in one of said 50

plurality of database processors; and maintaining
location identifiers indicative of all source locations
of said hyperlinks having a common destination
location in said one of said plurality of database
processors;

generating database processor identifiers indicative of a
database processor on which a corresponding location
identifier is stored;

embedding said database processor identifier within each
location identifier; and ranking web pages correspond- 60

ing to said locations.
2. A method in accordance with claim 1, wherein each

location is associated with a respective web server, said
method further comprising:

maintaining location identifiers for all locations having a 65

common web server in one of said plurality of database
processors.

17
US 7,340,467 B2

18
distributing said location identifiers over a plurality of

database processors of a distributed database;
maintaining said location identifiers so as to provide an

indication ofa respective hyperlink structure associated
with each location identifier by maintaining at least one
table in the database for mapping a source location to
a respective destination location for each hyperlink of
the database of hyperlinks; and

at least one of:
for all hyperlinks having a common source location, 10

maintaining a location identifier indicative of said
common source location in one of said plurality of
database processors and maintain location identifiers
indicative of all destination locations of said hyper­
links having a common source location in said one of 15

said plurality of database processors; and
for all hyperlinks having a common destination loca­

tion, maintaining a location identifier indicative of
said common destination location in one of said
plurality of database processors and maintain loca- 20

tion identifiers indicative of all source locations of
said hyperlinks having a common destination loca­
tion in said one of said plurality of database proces­
sors;

generating database processor identifiers indicative of a
database processor on which a corresponding location
identifier is stored;

embedding said database processor identifier within each
location identifier; and

ranking web pages corresponding to said locations.

10. A computer readable medium in accordance with
claim 9, wherein each location is associated with a respec­
tive web server, said computer-executable instructions fur­
ther for:

maintaining location identifiers for all locations having a
common web server in one of said plurality of database
processors.

11. A computer readable medium in accordance with
claim 9, said computer-executable instruction further for:

compressing each location for providing a fixed size
respective location identifier.

12. A computer readable medium in accordance with
claim 11, wherein each location is a Uniform Resource
Locator (URL).

* * * * *

