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ABSTRACT(57)

An information management system includes a computer
and a database comprising a B-Tree data structure compris
ing a plurality of nodes associated with disk blocks and
handles stored in the nodes. At least one left-link handle,
hle!t' stored in each node points to a left sibling of that node.
A mechanism for performing a lookup operation with
respect to a key, k, traverses the B-Tree and refers to the
left-link handle, hie!" of a node to access a left sibling of the
node if the key k is less than or equal to a value kmin stored
in the node. Mechanisms are also provided for performing
insert and delete operations, and the lookup, insert, and
delete operations detect if the key range of an index node, A,
does not include the key k that the operation is trying to
locate, and follow a handle Ahle!t to the left sibling when
k~A.kmin·
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B-L1NK TREE DATA STRUCTURE
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304'
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FIGURE 38

LOOKUP PROCEDURE USING HANDLES TO LEFT SIBLINGS

procedure Lookup(hp : Handle, k : Key)
var h: Handle, A: Node;
P := Read(h p )

h := last handle in P
repeat

A:= read(h)

320 r ~~~~·~m::::~~-----1
~ .. right

I else if k <= A.k On then I
I ._ ml I
'- - - - - - - - _h...= A.~o1t - - - - -

else
choose i such that A.ki_l < k <= A.ki (let i = 0 if Num(A) = 0)
h :=A.h,

endif
until A is a leaf and A.km1n < k <= A.kmax
if k is contained in A then

return corresponding value
else

return null
endif

endproc

FIGURE 3E
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LOOKUP PROCEDURE USING VERSION NUMBERS TO HANDLES AND DISK
BLOCKS

procedure Lookup(h p : Handle, k : key)
var h: Handle, A: Node;

label start:
P := Read(h p)

h := last handle in P
330 repeat
~--A:-~~~---------------l

__~~~~~~~~~~~~~fu~~m~~~J
if k > A.kmax then

h '=A h• • right
else if k <= A.kmin then

goto start
else

choose i such that A.ki_1 < k <= A.ki (let i=O if Num(A)=O)
h :=A.hj

endif
until A is a leaf and A.kmin < k <= A.kmax
if k is contained in A then

return corresponding value
else

return null
endif

endproc

FIGURE 3F
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1202

MergeNodes(X, A. B. hx' hA, hB) entry point

1200

~
Noy.----- es -

1206 1210

A := (A.h1efl, Akmin, null, Aka, ... , Ahn• A ;= (A.hiefl , A.kmin , Aha, ... , Ahn•
B.ko' ... , B.hn, B.kmax ' B.hright) A.kmax ' B.ho.... , B.hn, B.kmax' B.hright)

~ 1208

B := (B.h teft, -inf, null, -inf, B.hleft)

-1
1212

X := (X.h left, X.kmin, X.ho, ... , X.kb_2• X.hb_1, X.kb , X.hb+1.. · ,X.hn, X.kmax' X.hright)

1 1214

r Write(A, hA) I

1 1216

I Unlock(hA) I
1 1218

I Write(X, hx) I

1 1220

r Unlock(hx) I
1 1222

I Write(B, hB) I
1 1224

I Unlock(hB) I

1 1226

I Dealloc(hB) I
1 FIGURE 12

1228

( return
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1302
MoveToLeft(X, A, B, hx' hA, hB) entry point

1304

m := 1/2 Num(B) - 1/2 Num(A)

1300

~

Yes - __

1308

No

1314

A := (A.h iett , A.km1n• null, A.ko, ... , A.hn• B.ko' ... ,
B.hm• B.km.1• A.hnght )

1310

B := (B.hiett• B.km.1• null. B.km..... B.hn, B.kmax '
B.hnghl )

A := (A.hiett' A.kmin' A.ho•... , A.hn•A.kmax•
B.ho' ... , B.hm.1 , B.km_1• A.h,i9hl)

1316

FIGURE 13
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1402.,-----------------------..,

1404

m := 1/2 NumA) + 1/2 Num(B)

Yes

1408

B := (B.h1eft• Akm_1 • null, A.km•.•.• A.hn• B.ko' ...•
B.hn, B.kmax• B.h"9ht)

1410

1400

~

1416

A := (Ah1eft• Akmi", A.ho..... A.h m• A.km_1• A.h"ght)

1430
return

FIGURE 14
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ALGORITHM FOR TREE TRAVERSALS
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FIELD OF THE INVENTION SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are schematic illustrations of exemplary
computing environments suitable for the present invention,
with FIG. 2 depicting an example of a B-Link-Tree data
structure stored in a persistent store such as (but not limited
to) a database.

FIG. 3Ais a simplified schematic illustration of a B-Link
Tree in accordance with the prior art.

FIG. 3B is a schematic illustration of a B-Link Tree in
accordance with one aspect of the present invention.

FIGS. 3C and 3D show examples of a Sagiv-style B-Link
Tree (see discussion below) in accordance with the prior art
and a B-Link Tree containing left links in accordance with
the present invention, respectively.

FIGS. 3E and 3F show examples of pseudocode for
lookup procedures employing links to left siblings and
version numbers, respectively.

65

An information management system in accordance with a
25 first aspect of the present invention includes a computer and

a database, wherein the database comprises one or more
B-Tree data structure(s) each comprising a plurality of nodes
associated with disk blocks (or more generally, "storage
blocks," in the event the invention is employed in connec-

30 tion with a storage medium other than disk) and handles
stored in the nodes (and optionally version numbers asso
ciated with each of the handles and nodes). At least one
left-link handle, hie!" stored in each node points to a left
sibling of that node. A mechanism for performing a lookup

35 operation with respect to a key, k, traverses the B-Tree and
refers to the left-link handle, hie!" of a node to access a left
sibling of the node if the key k is less than or equal to a value
kmin stored in the node. Mechanisms are also provided for
performing insert and delete operations, and the lookup,

40 insert, and delete operations detect if the key range of an
index node, A, does not-include the key k that the operation
is trying to locate, and follow a handle Ahle!t to the left
sibling when k~Akmin'

Note that a "node" may span multiple disk or storage
45 blocks, and that links and version numbers may be logically

associated with nodes as opposed to individual disk blocks.
These and other features of the present invention are

described below.

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of
information management systems (sometimes also called
information retrieval systems) that store, organize and
retrieve data, including but not limited to database manage
ment and file systems, and more particularly to novel data
structures and algorithms for use in such systems. The
invention is particularly suited for, but by no means limited
to, uses in connection with B-Tree data structures and
variants thereof, and SQL-type databases.

B-Trees are a core technology to relational and non
relational databases, as well as to file systems and other
systems in which a data structure including a set of linked
nodes is employed as a way to index and access large
amounts of data. A database management system is one
example of an information management/retrieval system of
the kind for which the present invention is suited. Never
theless, because the present invention is well suited for use
in connection with a database, although by no means limited
thereto, the background of the invention and the exemplary
embodiments will be discussed with reference to a database.

Concurrent B-Trees with minimal locking are instrumen-
tal for building distributed databases, where a single relation
may span multiple machines. Distributing relations over 50

multiple machines makes it possible to build scalable data
bases, where the size of the database can be increased simply
by adding more hardware.

The present invention is especially concerned with ways
to increase the efficiency of concurrent B-Tree algorithms. 55

As discussed in greater detail below, the subject matter
disclosed herein is directed to (a) maintaining extra data that
prevents B-Tree operations from getting "lost" in the tree,
which may happen in state-of-the-art algorithms due to
aggressive minimization of locking operations, and (b) 60

garbage-collecting deleted nodes without the need for any
extra synchronization (the state-of-the-art algorithm uses a
time-stamp-based approach to garbage collection, and
requires extra synchronization to keep track of the start
times of all outstanding B-Tree operations).

Further background information about B-Trees may be
found in the following documents:
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dependency or requirement relating to anyone or combina
tion of components illustrated in the exemplary operating
environment 100.

The invention is operational with numerous other general
5 purpose or special purpose computing system environments

or configurations. Examples of well known computing sys
tems, environments, and/or configurations that may be suit
able for use with the invention include, but are not limited
to, personal computers, server computers, hand-held or

10 laptop devices, multiprocessor systems, microprocessor
based systems, disk controllers, set top boxes, program
mable consumer electronics, network PCs, minicomputers,
mainframe computers, distributed computing environments
that include any of the above systems or devices, and the

15 like.
The invention may be described in the general context of

computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-

20 tures, etc. that perform particular tasks or implement par
ticular abstract data types. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network or other data

25 transmission medium. In a distributed computing environ
ment, program modules and other data may be located in
both local and remote computer storage media including
memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
30 menting the invention includes a general purpose computing

device in the form of a computer 110. Components of
computer 110 may include, but are not limited to, a pro
cessing unit 120, a system memory 130, and a system bus
121 that couples various system components including the

35 system memory to the processing unit 120. The system bus
121 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include

40 Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus (also known
as Mezzanine bus).

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail
able media that can be accessed by computer 110 and
includes both volatile and non-volatile media, removable
and non-removable media. By way of example, and not

50 limitation, computer readable media may comprise com
puter storage media and communication media. Computer
storage media includes both volatile and non-volatile,
removable and non-removable media implemented in any
method or technology for storage of information such as

55 computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,

60 magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information and which can be accessed by
computer 110. Communication media typically embodies
computer readable instructions, data structures, program

65 modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term "modulated data sig-

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

A. Exemplary Computing Environment

FIG. 1 illustrates an example of a suitable computing
system environment 100 in which the invention may be
implemented. The computing system environment 100 is
only one example of a suitable computing environment and
is not intended to suggest any limitation as to the scope of
use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any

FIG. 4 is a flowchart of a procedure, GetNextHandle,
which procedure takes an index node X and a key k and
returns (h, isLink), where h is a handle and isLink is a
boolean value indicating whether h is a link to a sibling of
X.

We will now describe presently preferred implementa
tions of the invention. First, in section A, we will describe
an exemplary computing environment with reference to
FIG. 1, primarily to show that the invention may be embod
ied in a wide variety of ways, e.g., in a data structure stored
on a computer readable medium and/or a software-based
process carried out on a general purpose computer. (It is well
known that a B-tree algorithm requires two fundamental 45

things: code and data structures that this code manipulates.
The code can be embodied in a variety of places including
in a process or in firmware. The data can be kept anywhere
(with different degrees of persistence, e.g., RAM, disk,
removable media, etc.). Following this description, we pro
vide, in section B, an overview of two main aspects of the
inventive data structures and methods disclosed herein.
These two main aspects include (1) versioned nodes to
facilitate deletion and compaction operations, and (2) left
links to facilitate tree traversal operations. Sections C
through F describe further details of exemplary ways in
which the present invention may be implemented. Finally,
section G provides a conclusion.

FIG. 5 is a flowchart of a procedure, InsertPair, which
takes an index node X, a key k, and a handle h and inserts
a key-handle pair into X.

FIG. 6 is a flowchart of a procedure, CreateTree, which
returns a prime node handle hp identifying a new tree.

FIG. 7 is a flowchart of a procedure, Lookup, which takes
a prime node handle hp and a key k and returns a data item
d or null.

FIG. 8 is a flowchart of a procedure, Delete, which takes
a prime node handle hp and a key k and deletes the key and
its associated data value from the tree identified by hp'

FIG. 9, made up of subparts 9A-9E, is a flowchart of a
procedure, Insert, which takes a prime node handle hp , a key
value k, and a data value d and inserts the key value and the
data value into the tree identified by hp"

FIG. 10 is a flowchart of a background procedure, Com
press, that takes a prime node handle hp and compresses the
tree identified by hp"

FIG. 11, made up of subparts 11A-11C, is a flowchart of
a procedure, CompressLevel, which compresses a level.

FIG. 12 is a flowchart of a procedure, MergeNodes, which
merges two nodes.

FIG. 13 is a flowchart of a procedure MoveToLeft that
moves parts of a node to its left sibling.

FIG. 14 is a flowchart of a procedure MoveToRight that
moves parts of a node to its right sibling.
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When used in a LAN networking environment, the com
puter 110 is connected to the LAN 171 through a network

20 interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be internal or external, may be connected to the system
bus 121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

B. Overview: Versioned Nodes and Left Links

The present invention generally improves on previous
methods for traversing concurrent B-Trees, and in particular
it improves on an algorithm by Yehoshua Sagiv (we refer to
this as the "Sagiv algorithm"). As discussed above, a B-Tree
is a data structure that maintains an association of "keys"
(such as employee numbers) to "values" (such as employee
records). B-Trees are typically stored on disk. B-Trees are at
the foundation of most information retrieval systems.

FIG. 2 depicts a typical information retrieval system 200.
As shown, such a system can include a server 202 and a
persistent store, such as a database, 204. In addition, the data
residing in the store 204 may be organized the form of a tree,
e.g., a B-Link-Tree 206. Such a data structure includes
nodes, N1, N2, N3 and so on, and, in the case of index nodes,
links from each node to at least one other node (data nodes
typically have only incoming links). The nodes may be sized
to correspond to a disk block, or may be bigger or smaller,
and may be formed as data nodes and index nodes (discussed
further below in connection with FIG. 3A). Further, there is
a root node (node N1 in FIG. 2) and children nodes, with
sibling nodes being those nodes that have a common parent
(e.g., nodes N2 and N3 are siblings). Index nodes may also
be linked to their right siblings, as shown.

Information retrieval systems typically support concur
rent access to and updating of the data maintained by them,
which means that there may be multiple concurrent lookup
and update operations on the underlying B-Tree. In order to
prevent these concurrent operations from corrupting the
B-Tree, some synchronization scheme is required. Typical
concurrent B-Tree algorithms synchronize concurrent
operations at the node-level of the tree; that is, an operation
that wants to modify a node of the tree has to acquire a lock

197 and printer 196, which may be connected through an
output peripheral interface 190.

The computer 110 may operate in a networked environ
ment using logical connections to one or more remote

5 computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described

10 above relative to the computer 110, although only a memory
storage device 181 has been illustrated in FIG. 1. The logical
connections depicted include a local area network (LAN)
171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are

15 commonplace in offices, enterprise-wide computer net
works, storage area networks (SANs), intranets and the
Internet.

nal" means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, commu
nication media includes wired media such as a wired net
work or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina
tions of any of the above should also be included within
the-scope of computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or non-volatile memory such as
ROM 131 and RAM 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer
information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 120. By way of example, and not
limitation, FIG. 1 illustrates operating system 134, applica
tion programs 135, other program modules 136, and pro
gram data 137.

The computer 110 may also include other removable/non
removable, volatile/non-volatile computer storage media.
By way of example only, FIG. 1 illustrates a hard disk drive
140 that reads from or writes to non-removable, non-volatile
magnetic media, a magnetic disk drive 151 that reads from 25

or writes to a removable, non-volatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to a
removable, non-volatile optical disk 156, such as a CD
ROM or other optical media. Other removable/non-remov
able, volatile/non-volatile computer storage media that can 30

be used in the exemplary operating environment include, but
are not limited to, magnetic tape cassettes, flash memory
cards, digital versatile disks, digital video tape, solid state
RAM, solid state ROM, and the like. The hard disk drive 141
is typically connected to the system bus 121 through a 35

non-removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable
memory interface, such as interface 150.

The drives and their associated computer storage media, 40

discussed above and illustrated in FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 is illustrated as storing oper
ating system 144, application programs 145, other program 45

modules 146, and program data 147. Note that these com
ponents can either be the same as or different from operating
system 134, application programs 135, other program mod
ules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and 50

program data 147 are given different numbers here to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 110
through input devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or 55

touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish (where the
dish is used to receive signals to be input to a computer),
scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input 60

interface 160 that is coupled to the system bus, but may be
connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
monitor 191 or other type of display device is also connected
to the system bus 121 via an interface, such as a video 65

interface 190. In addition to the monitor, computers may
also include other peripheral output devices such as speakers
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<kmin, ho, ka, hi' k" ... , hn _ i , kn _ i , hn, k max' h,igh'>

In the following, we refer to field x of node A as Ax.
Given an index node A, A.ho ... A.hn are handles to the n+1
children of A, and Ahright is a handle to its right sibling. Aki
(for O~i<n) is the largest key in the subtree rooted at handle
Ahi., and Aki_1 (or Akmin if i=O) is less than the smallest

40 key in the subtree rooted at handle A.hi . A.k.max is greater or
equal to the largest key in any subtree of A (and per
definition 00 if A does not have a right sibling), and Akmin
is equal to B'~ax, where B is the left sibling of A (or -00 if
Adoes not have a left sibling). Moreover, Akmin<Aka< ...

45 <Akn~A~ax' Finally, there is a limit on the size of n
(which indicates the number of keys and handles in an index
node). If n reaches a maximum value (say, 2t), then the index
node is said to be full. Likewise, if n falls below a certain
number (say, t), the node is said to be underfull.

Because of the constraints on the keys in an index node
and the keys in the subtrees rooted at that node, B-Link trees
are search trees, that is, trees where one can find a particular
key by descending into the tree. Intuitively, lookup(k) starts
at the root handle, reads in the corresponding node A, and

55 identifies a value i such that Aki_1 (or Akmin ifi=O)<k~Aki
(or A~ax if i=n). It then recursively proceeds along the
handle A.hi until it reaches a data node B, and returns B's
value if B's key is indeed k, or null otherwise.

The delete operation is similar to the lookup operation:
60 delete(k) descends into the tree until a data node D with key

k is discovered (if such a node exists). The operation then
marks D as deleted (D is not immediately deallocated,
because other ongoing operations may have a handle to D
but not yet have read D), and removes the handle to D from

65 D's parent node A This may cause A to become underfull.
The insert operations is more complicated: insert(k,v)

allocates a new data node D with handle h, writes the pair

FIG. 2, reference numeral 210, an allocator is a software
component that maintains nodes on disk and supports four
operations:

1) allocate(n), which reserves space on the disk for a node
with a maximum size of n bytes and returns a handle to
it;

2) deallocate(h), which relinquishes the space at the disk
location identified by the handle h;

3) read(h), which reads the node from the disk location
identified by the handle h and returns it; and

4) write(h, A), which writes the node A from main
memory to the disk location identified by handle h.

In the following discussion, we assume that the allocator
operations are atomic, that is, two concurrent operations on
the same handle do not interfere with each other.

Nodes in a B-Tree may contain handles referring to other
nodes. In most B-Tree variants, the handles connect the
nodes to form a tree (hence the name), a directed, connected,
and acyclic graph. In the following, we assume the reader to
be familiar with the definition of a tree and the terms subtree,
link, root, leaf, parent, child, and sibling. B-Link Trees differ
from proper trees in that in addition to the links from parents
to children, every node has a link to its directly adjacent right
sibling (if such a sibling exists). This can be seen in the
exemplary B-Link Tree 300 of FIG. 3A, where the "right
link" (link to right sibling) is represented by reference
numeral 302.

The B-Link Trees used by Sagiv are composed of two
different kinds of nodes: data nodes and index nodes,

30 reference numerals 304 and 306, respectively, of FIG. 3A A
data node is simply a key-value pair of the form <kid>. An
index node is of the form:

v;

on that node, in order to guarantee that it does not interfere
with another concurrent update (or other) operation on the
same node.

Lock acquisition is expensive in several respects: It can be
computationally expensive (in particular when the B-tree is 5

replicated across multiple computers, meaning that locks
have to be acquired from a remote lock server), and it limits
concurrency. It is therefore desirable to minimize the num
ber of lock acquisitions (without compromising the correct
ness of the algorithm). Much research has been devoted to 10

this topic (Paul Wang, An In-Depth Analysis of Concurrent
B-Tree Algorithms, cited above, contains a good survey of
work on this problem.) To our knowledge, the B-Tree
algorithm that performs best with respect to minimizing lock
acquisitions is the Sagiv algorithm (see Yehoshua Sagiv, 15

Concurrent Operations on B-Trees with Overtaking, cited
above).

The system described herein improves on Sagiv's algo
rithm in two respects: First, it avoids an inefficiency of
Sagiv's algorithm, namely that operations may get "lost" 20

while trying to locate a data record and have to be restarted;
second, it introduces a scheme for garbage-collecting
deleted nodes that does not require any additional lock
acquisitions, while Sagiv's technique requires additional
locking. The two optimizations are independent of each 25

other, that is, Sagiv's algorithm can be improved by adding
either one or both.

Before describing the invention, it is helpful to review
B-Trees in general and Sagiv's algorithm in particular.

C. B-Trees and the Sagiv Algorithm
A B-Tree is a data structure that maintains an association

of keys with values. A prerequisite is that there exists a total
ordering over the keys, i.e., that it is always possible to
decide whether one key is larger than the other. As indicated 35

in FIG. 2, reference number 208, B-Trees support three basic
operations:

1) insert(k, v), which associates the key k with the value

2) lookup(k), which returns the value v associated with
the key k; and

3) delete(k), which disassociates the key k from its
associated value.

B-Trees were first described by Bayer and McCreight (R.
Bayer and E. McCreight, Organization and Maintenance of
Large Ordered Indexes, cited above). There are many varia
tions of B-Trees, including B*-trees (see H. Wedekind, On
the selection of access paths in an information retrieval
system, cited above), B+-Trees (see D. Comer, The Ubiqui
tous B-Tree, ACM Computing Surveys, cited above), and 50

B-Link Trees (see P. L. Lehman and S. B. Yao, Efficient
Locking for Concurrent Operations on B-Trees, cited
above). Sagiv's algorithm uses B-Link Trees. The present
invention is applicable to all types of B-Trees and variations
thereof, and the term B-Tree as used herein in describing the
invention is intended to encompass all variants of the basic
B-Tree structure. Preferred embodiments of the invention
use a new form of B-Link Tree.

A B-Link Tree (and in fact any B-Tree) stores keys and
values as well as metadata in nodes. Nodes are kept on disk
or some other storage device (B-Trees make sense for any
slow and cheap storage device), and are read into main
memory on demand, and written back to disk if modified.
Nodes on disk are identified by handles. (For the purpose of
this discussion, it is sufficient to think of handles as the
addresses of contiguous ranges of storage blocks (e.g., disk
block addresses) plus optional metadata.) As indicated in
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10
lookup does not know the handle of A, the only way to
recover is to restart the lookup operation at the root of the
tree.

D. Maintaining Handles to Left Siblings
According to first aspect of the present invention, to avoid

restarts, we propose to modify the structure of index nodes
as follows:

where hle!t is the handle of the left sibling (if there is one, and
null otherwise), and all other fields are defined as in Sagiv's
algorithm. This data structure is depicted in FIG. 3B, where
reference 300' refers to the modified B-Link data structure
and reference numeral 310 refers specifically to the left link,
i.e., hie!,. As in Sagiv's algorithm, the lookup, insert, and
delete operations detect if the key range of an index node A
does not include the key k that the operation is trying to
locate. As in Sagiv's algorithm, the operation reacts to
k>Ak

mm
by following the handle Ahright to the right sibling.

However, while Sagiv's algorithm reacted to k~Ak",in by
restarting the operation at the root, our algorithm reacts by
following the handle Ahle!t to the left sibling. Following the
handle to the left sibling requires one extra read operation,
while restarting the operation at the root would require up to
(and typically close to) d read operations, where d is the
depth of the tree.

FIGS. 3C and 3D provide more detailed examples of a
Sagiv-style B-Link Tree in accordance with the prior art, and
a B-Link tree in accordance with the present invention,
respectively. These are intended to further illustrate the
left-link aspect of the present invention, and to distinguish it
from the prior art.

FIG. 3C depicts a Sagiv-style B-Link tree that contains
the mapping {(2, Miller), (5, Smith), (7, Jones), (10, Brown),
(12, Levin), (15, Dahl), (17, Lewis), (20, Yu)}. The numbers
are key values and the names are the associated data values.
P is the prime node of the tree; 11, ... , 17 are index nodes;
and D1, ... , D8 are data nodes. A prime node is a node
containing an array of handles, each handle pointing to the
leftmost index node of a level of the tree, with the first
handle in the prime node pointing to the leftmost leaf index
node, and the last one pointing to the root index node. 11 is
the root node of the tree (that is, the one index node that does
not have a parent). One gets to the root node by following
the last handle in the prime node (P[2] in this case). 11, 12,
13 are non-leaf index nodes (that is, index nodes that have
index-node children). This means that l1.ho is non-null, and

50 that IsLeaf(l1) (IsLeaf is discussed below-see section F) is
false (the same is true for 12, 13). 14, 15, 16, and 17 are leaf
index nodes, that is, index nodes that do not have index-node
children. This means that 14.ho is null, and that IsLeaf(I4) is
true (the same is true for 15, 16, and 17). In this tree, t=2; that
is, each index node can hold two keys in addition to kmin and
kmax' 11, 12, and 13 are not full (some fields are unused and
shaded out). Num(l1) (Num is discussed below-see section
F) is 1 (the same is true for 12, 13). 11, 12, and 13 can each
take one more key-handle pair. 14, 15, 16, and 17 are full, i.e.,
there are no unused fields. Num(14) is 2 (same for 15, 16, and
17).

FIG. 3D depicts a tree that contains left links hie!" as
shown. The tree contains the same mapping, {(2, Miller), (5,
Smith), (7, Jones), (10, Brown), (12, Levin), (15, Dahl), (17,
Lewis), (20, Yu)}, as the tree in FIG. 3C. As before, the
numbers are key values, the names are the associated data
values. P is the prime node of the tree, 11, ... , 17 are index

10

9
(k,v) to it, and then recursively descends into the tree the
same way as lookup does, until it finds the leaf index node
A (the index node whose children are data nodes) that should
receive h. If A is not full, insert(k,v) simply inserts hand k
at the appropriate places into A; otherwise, it allocates a new 5

index node A, moves half of A's key-handle pairs over to A,
inserts k and h into A or A, and finally adds the handle to A
and A's new k",ax to A's parent (this may in turn cause A's
parent to become overfull, causing the node splitting process
to move up the tree).

As mentioned above, the delete operation may cause
nodes to become underfull. To prevent too many nodes from
becoming underfull (which would cause the tree to become
deeper than it needs to be, which would increase the number
of disk accesses required by each operation), a compression 15

thread is run in the background. The thread repeatedly
traverses the tree, searching for underfull nodes. When it
locates an underfull node A, it either rebalances it with its
left or right sibling (which entails moving key-handle pairs
from the sibling to A, and adjusting a key in the parent node), 20

or it outright merges A with its left or right sibling (which
entails moving all of A's content to the sibling, marking A
as deleted, and removing A's handle and corresponding key
from A's parent, which in turn may cause the parent to
become underfull). 25

In Sagiv's algorithm, nodes that are marked as deleted are
deallocated only when it is certain that no operations have
handles to those nodes. This is achieved by adding a
timestamp to each deleted node, indicating the time it was 30

deleted, and maintaining a table that records the start time of
every lookup, insert, and delete operation in flight. The
system maintains a list of deleted nodes. The compression
thread periodically goes through the list, and deletes exactly
those nodes whose timestamp predates the start times of all 35

ongoing operations. The drawback of this scheme is that the
table of start times is accessed by many threads, which
means it has to be protected by a lock. Each operation
requires two lock acquisitions and releases (one for adding
a thread-start time pair to the table, and one for removing it). 40

The situation is further complicated by the fact that
concurrent lookup, insert, and delete operations may inter
fere with one another. This could be avoided by locking
every node visited during an operation, and unlocking it only
once the child or sibling referenced by any extracted handle 45

has been read (this is called "lock coupling" in the litera
ture). Sagiv's algorithm avoids such excessive locking by
using the optimistic assumption that operations usually
don't interfere, detecting the cases in which this assumption
was unwarranted, and recovering from the misstep.

To make things concrete, consider the case where the
operation lookup(k) decides to follow a handle h, but before
it can read the corresponding node A, another thread inserts
a key-handle pair into A, and in the process splits A into two
nodes,Aand A (the newly allocated right sibling ofA). After 55

reading A, the lookup operation can detect the fact that A
was split (because k>A.kmax), and can recover from this
situation by following the Ahright handle, leading it to A
(which indeed contains the appropriate range of keys).
However, this inexpensive recovery is not always possible. 60

Consider the case where the operation lookup(k) decides to
follow a handle h, but before it can read the corresponding
node A, the compression thread rebalances node A (which
happens to be underfull), moving some of A's content,
including the handle that lookup should follow, to A's left 65

sibling A. After reading A, the lookup operation can detect
that A has been rebalanced (because k~Akmin) but since
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is exemplary
(again adapted

-continued

else

else if k ~ Ak",'n then
h :~ Akjeft

else

choose i such that Ak'_l < k ~ Ak;(let i be 0
if Num(A) ~ 0)
h :~ Ah,

endif
until A is a leaf and Ak",'n < k ~ Ak",,,
if k is contained in A then

return corresponding value

return null
endif

endproc

E. Attach Version Numbers to Handles and Disk Blocks
We will now describe an inventive way to avoid main

taining a table of operation start times. In particular, in a
presently preferred implementation, we do this by attaching
version numbers to handles and nodes or the "unit of
allocation" returned by the allocator 210 (FIG. 2). As
mentioned above, when a node is deleted by the delete
operation or by the compression thread, it is possible that a

25 concurrent operation has a handle to it. Sagiv's algorithm
deals with this problem by attaching a timestamp noting the
time of deletion to every deleted node, and by recording the
start time of every operation. Deleted nodes are "garbage
collected" only when none of the ongoing operations have

30 been started before the 10 node was marked as deleted. This
solution requires the system to maintain a table mapping
threads to start times, which requires two
synchronizations---{)ne for adding a thread-start time pair to
the table and one for removing it-since the table is being

35 mutated by the client threads and accessed by the compres
sion thread.

According to a presently preferred implementation of our
invention, version numbers are attached to each handle and
to each node. Initially, each node has version number O. The

40 allocate operation (described above) returns a handle iden
tifying a node and embeds the node's version number into
the handle. The deallocate operation increments the node's
version number (in addition to making it available for
subsequent reallocation). The read operation returns a

45 node's version number in addition to the node. The caller of
the read operation (i.e., a lookup, insert, or delete operation)
checks if the version number returned by the read operation
matches the version number of the handle that was read. If
the version numbers do not match, the node has been deleted

50 and subsequently deallocated by a different thread. In this
case, the lookup, insert, or delete operation is restarted.

Using this version numbering scheme, it is possible to
deallocate nodes right when they are being marked as
deleted. As a further optimization, we can defer deallocating

55 deleted nodes for some fixed interval of time, which elimi
nates the needs for restarts for all but the most long-running
operations.

In an alternative embodiment of this aspect of the inven
tion, the read operation does not return the version number

60 of the disk block that was being read, but instead raises an
exception whenever the version number of the handle and
the version number of the disk block do not match. The
caller of the read operation (i.e., a lookup, insert, or delete
operation) catches the exception and restarts the lookup,

65 insert, or delete operation.
To further illustrate the idea, here

pseudocode of Sagiv's lookup operation

else

else

choose i such that Ak;_l < k ~ Ak, (let i be 0
if Num(A) ~ 0)
h :~ Ah,

endif
until A is a leaf and Ak",in < k ~ Ak",,,
if k is contained in A then

return corresponding value

procedure Lookup(hp : Handle, k : Key)
var h: Handle, A: Node;

label start:
p :~ Read(hp )

h :~ last item in P
repeat

A:~ read(h)
if k > Ak",,, then

h :~ Ah,'ght
else if k ~ Ak",in then

goto start

return null
endif

endproc

procedure Lookup(hp : Handle, k : Key)
var h: Handle, A: Node;
P :~ Read(hp )

h :~ last item in P
repeat

A:~ read(h)
if k > Ak",,, then

h :~ Ah,'ght

In contrast, here is exemplary pseudocode corresponding
to one implementation of a lookup routine in accordance
with the present invention. (Note that FIG. 7 depicts a
flowchart of another exemplary Lookup procedure.) As can
be seen, this routine follows the left-link instead of restarting
the operation. This pseudocode is reproduced in FIG. 3E
with a box 320 enclosing new lines of code designed to
utilize the left-link data. The new lines of code determine
whether the key value k is less than or equal to the value
stored in the k min field of node A, and if so it assigns the
left-link handle to the handle variable (i.e., h:=A.hzeft)'

nodes, Dl, ... , D8 are data nodes. 11 is the root node of the
tree (that is, the one index node that does not have a parent).
One gets to the root node by following the last handle in the
prime node (P[2] in this case). 11, 12, 13 are non-leaf index
nodes (that is, index nodes that have index-node children). 5

This means that l1.ho is non-null, and that IsLeaf(l1) is false
(same for 12, 13). 14, 15, 16, and 17 are leaf index nodes (that
is, index nodes that don't have index-node children). This
means that 14.ho is null, and that IsLeaf(I4) is true (same for
15, 16, and 17). In this tree, t=2 (that is, each index node can 10

hold two keys in addition to k min and kmaJ. 11, 12, and 13 are
not full (some fields are unused and shaded out). Num(l1) is
1 (same for 12, 13). 11, 12, and 13 can each take one more
key-handle pair. 14, 15, 6, and 17 are full (there are no unused 15

fields). Num(14) is 2 (same for 15, 16, and 17).

To further illustrate the idea, we have produced below
exemplary pseudocode of Sagiv' s lookup operation (adapted
from Yehoshua Sagiv, Concurrent Operations on B-Trees
with Overtaking, cited above), including the code for restart- 20

ing the lookup operation if the lookup goes astray (but
omitting the machinery for keeping track of operation start
times):
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has been removed.
Of course, the two improvements disclosed herein may be

combined to achieve the benefits of both of them. The
15 pseudocode of the insert and delete operations and the

compression thread is significantly more complicated but
nonetheless well within the capabilities of a person skilled in
the art. Moreover, the modifications needed to incorporate
our invention should be straightforward after reading this

20 specification.

F. Flowcharts of Exemplary Procedures
FIGS. 4-10 are flowcharts representing several proce

dures that may be employed in connection with a presently
preferred implementation of an algorithm in accordance

25 with the present invention. The following table summarizes
the data types, notation and functions (index node and
Allocator functions) referred to in these flowcharts.

13
from Yehoshua Sagiv, Concurrent Operations on B-Trees
with Overtaking), this time also including the machinery for
keeping track of operation start times. T is a global variable
referring to a table mapping thread identifiers to operation
start times:

procedure Lookup(hp : Handle, k : Key)
var h: Handle, A: Node;

label start:
P :~ Read(hp )

h :~ last handle in P
repeat

lock T
insert (ID of this thread, current time) into T
unlock T
A:~ read(h)
if k > Ak",,, then

h :~ Ah,'ght
else if k ~ Ak",in then

goto start
else

choose i such that Ak'_i < k ~ Ak;(let i be 0
if Num(A) ~ 0)
h :~ Ah,

endif
until A is a leaf and Ak",in < k ~ Ak",,,
lock T
remove (10 of this thread, corresponding time) from T
unlock T
if k is contained in A then

return corresponding value
else

5

10

14
Sagiv algorithm relating to the lock operation. In other
words, the following code has been eliminated:

lock T
insert (ID of this thread, current time) into T
unlock T

In addition, the code,
lock T
remove (ID of this thread, corresponding time) from T
unlock T

Dealloc (h)

Note that this pseudocode is also depicted in FIG. 3F,
where the box 330 indicates the new line of code ("if 65 Read (h)

version(A)>'version(h) then goto start"). Moreover, the new
pseudocode does not include the lines of code from the

return null
endif

endproc

In contrast, here is an example of pseudocode for a lookup
routine in accordance with the present invention, where this
routine avoids any operations on the table T (to emphasize
that our invention consists of two independent parts, this
version does not incorporate the use of left-links to avoid
restarts).

procedure Lookup(hp : Handle, k : Key)
var h: Handle, A: Node;

label start:
P :~ Read(hp )

h :~ last handle in P
repeat

A:~ read(h)
if version(A) " version(h) then goto start
if k > Ak",,, then

h :~ Ah,'ght
else if k ~ Ak",in then

goto start
else

choose i such that Ak'_i < k ~ Ak;(let i be 0
if Num(A) ~ 0)
h :~ Ah,

endif
until A is a leaf and Ak",in < k ~ Ak",,,
if k is contained in A then

return corresponding value
else

return null
endif

endproc

30
Primitive Types

k
d
ba

35 v
Composite Types

h ~ (v, ba)
o ~ (k, d)
X,A,B~

40 (hjeft, k",'n' ho' ko' hi' ki , ... ,
hu-i' ku-i' hn, k",,,, h,'ght)
P~ (ho'"'' hu)
Notation

h.v

45 X.hn

P [i]

50
Index Node Functions

Num(X)

55
IsLeaf (X)

IsDeleted (X)

60
Allocator Functions

Alloc (size)

a key value
a data value
a block address
a version number

a handle (may be null)
a data node
an index node

a prime node

refers to the version number
v of handle h
refers to the field hu (the
rightmost child handle) of
index node X
refers to handle hi of prime
node P (where ho refers to
the leftmost leaf-level index
node in the tree)

returns n where X is an index
node (hjeft, k",'n' ho' ko' hi' k i, ... ,
hu-i' ku-i' hn, k",,,,
h,'ght)
returns true if and only if
X.ho ~ null
returns true if and only if
X.k",'n ~ -inf
and X.k",,, ~ - inf

allocates a block of the given size,
and returns a handle to the block
deallocates the block referred to
by the handle h, and increments
the block's version number
reads the block referred to by
the handle h, and returns (v, N),
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referenced by the handle hx . At step 610 the procedure
defines the prime node P to contain the handle hx ' At step
612 the procedure again invokes the function Alloc(space
for P), in order to allocate a block sufficiently large to store

5 P, which returns a handle hp to the block. At step 614, the
procedure writes the node P to the block referenced by the
handle hp ' and at step 616 the procedure concludes by
returning the handle hp' In sum, this procedure returns a
prime node handle hp identifying a new tree.

FIG. 7 is a flowchart of a procedure entitled Lookup,
which takes a prime node handle hp and a key k and returns
a data item d or null. The Lookup procedure 700 begins at
the entry point Lookup(hp , k) (step 702). At step 704, the
procedure invokes the function Read(hp ) in order to read the

15 block referred to by the handle hp' The Read function returns
(v, P), the block's version number v and the prime node P
stored in the block. Next, at step 706, the handle h is defined
as the last handle in the prime node P, thereby referring to
the root node of the tree. At step 708, the procedure again

20 invokes the function Read( ) in order to read the block
referred to by handle h. This time, the function returns the
version number v and the index node X stored in the block
referenced by handle h. At step 710, the procedure deter
mines whether h.v (i.e., the version number of handle h) is

25 equal to v. If not, the procedure loops back as shown to step
704. If so, the procedure proceeds to step 712 where the
function GetNextHandle (described above in connection
with FIG. 4) is invoked. In this instance, the function
GetNextHandle(X, k) returns the handle h and boolean

30 isLink indicating whether the handle h is a link to a sibling
of node X. Next, at step 714, the procedure tests whether
handle h is null. If so, the procedure proceeds to step 716
where null is returned. If not, the procedure proceeds to step
718, where it determines whether both IsLeaf(X) and not

35 isLink are true. If they are not both true, the procedure loops
back to step 708 as shown. If, on the other hand, IsLeaf(X)
and not isLink are both true, the procedure proceeds to step
720 where the function Read(h) is invoked in order to read
the block referred to by handle h and thereby determine the

40 block's version number v and the data node D stored in the
block. Next, at step 722, the procedure determines whether
h.v (i.e., the version number of handle h) is equal to v. If not,
the procedure loops back to step 704 as shown, and if so,
proceeds to step 724. At step 724, the procedure determines

45 whether D.k is equal to k (i.e., whether the key of data node
D is equal to k). If not, the procedure proceeds to step 726
where it returns null, and if so, it proceeds to step 728 and
returns D.d, that is, the data portion of the data node D. Thus,
in sum, the Lookup procedure takes a prime node handle hp

50 and a key k and returns a data item d or null.
FIG. 8 is a flow chart of a procedure entitled Delete which

takes a prime node handle hp and a key k, and deletes the key
and its associated data value from the tree identified by the
handle hp' This procedure returns nothing. .

As shown, the Delete procedure 800 begms at the entry
point Delete(hp ' k) (step 802). Next, at step 804, the proce
dure invokes the function Read(hp ) in order to read the block
referred to by the handle hp' This function returns the block's
version number v and the prime node P stored in the block.

60 Next, at step 806 the handle h is defined as the last handle
in node P, thereby referring to the root node of the tree. At
step 808, the procedure again invokes the Read( ) function
in order to read the block referred to by handle h, returning
the block's version number and the index node X contained

65 therein. At step 810, the procedure tests whether h.v is equal
is equal to v, i.e., whether the version number of handle his
equal to the version number returned by the previous invo-

the block's version number v
and the node N stored in the block
writes the node N to the block
referenced by the handle h
locks the block referred to by
the handle h
unlocks the block referred to by the
handle h

-continued

Unlock (h)

Lock (h)

Write (N, h)

FIG. 4 is a flowchart of a procedure entitled Get
NextHandle. This procedure takes an index node X and a
key k and returns (h, isLink), where h is a handle referring
to a child or sibling of X that is closer in the tree to the data
node containing the key k and its associated data value, and
isLink is a boolean value indicating whether h is a link to a
sibling of X. As shown in FIG. 4, this procedure begins at
an entry point for GetNextHandle(X, k) 402. At step 404, the
procedure determines whether k is less than or equal to
X.kmino where X.kmin refers to the field ~in of index node X.
If so, the procedure returns (X.h le/ t , true), indicating that the
left sibling of X is closer to the desired data node. If not, the
procedure determines whether k is greater than X.kmax, and
if so, returns (X.hrigh" true), indicating that the right sibling
of X is closer to the desired data node (Step 410). If k is not
greater than X.kmax' as determined at step 408, the procedure
determines whether Num(X) is equal to 0 (step 412), and if
so, at step 414 returns (X.ho, false). Moving on to step 416,
the procedure determines whether X.kn _ 1 is less than k. If so,
the procedure at step 418 returns (X.hn false). If not, the
procedure moves on to step 420 and finds the smallest i such
that k is less than or equal to X.ki . Next, at step 422, the
procedure tests whether IsLeaf(X) is true. If so, it returns
(X.hi+ 1 , false) (Step 424), and if not, it returns (X.hi, false)
(Step 426). In sum the procedure of FIG. 4 returns a handle
and a boolean flag indicating whether the handle is a link to
a sibling of node X.

FIG. 5 is a flowchart of a procedure entitled InsertPair,
which takes an index node X, a key k, and a handle hand
inserts the key k and the handle h into X. This procedure
returns nothing.

As shown in FIG. 5, the procedure begins at the entry
point InsertPair(X, k, h) (Step 502). Next, at step 504, the
procedure determines whether Num(X) is equal to O. If so,
at step 506, the key k and handle h are inserted into the node
X as shown. If Num(X) is not equal to 0, at step 508 the
procedure determines whether X.ko is less than k; and if not,
proceeds to step 510 where the key k and handle hare
inserted into the node X as shown. On the other hand, if the
procedure determines that X.ko is less than k, it proceeds to
step 512 where it finds the largest i such that X.ki_ 1 is less
than k, and then at step 514 inserts the key k and handle h
into node X as shown. Finally, at step 516 the procedure
returns. In sum, the key k and handle h are inserted into the 55

node X at steps 506, 510, or 514, depending on whether
Num(X) is equal to 0, and whether X.ko is less than k.

FIG. 6 is a flowchart of a procedure entitled CreateTree.
This procedure receives no argument and returns a prime
node handle hp identifying a new tree. As shown, the
CreateTree procedure 600 begins at the entry point Create
Tree() (step 602). At step 604, the node X is defined as (null,
-inf, null, +inf, null). At step 606, the handle h, is defined as
Alloc(space for X) where the function Alloc( ) allocates a
block of a size given by the argument and returns a handle
to the block. Next, at step 608 the procedure invokes
Write(X, hx ), in order to write the node X to the block
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cation of ReadO. If not, the procedure loops back to step 804
as shown; and if so, it proceeds to step 812. At step 812 the
function GetNextHandle (discussed above in connection
with FIG. 4) is invoked with the arguments X, k. In this
manner, the procedure determines the handle h and the 5

boolean isLink indicating whether the handle h is a link to
a sibling of node X. Next, at step 814, the procedure tests
whether IsLeaf(X) and not isLink are both true; if not, the
procedure loops back to step 808, and if so, proceeds to step
816. At step 816, the procedure tests whether handle h is 10

null, and if so, proceeds to step 818 where it returns. If h is
not null, the procedure proceeds to step 820 where the
function Lock(h) is invoked in order to lock the block
referred to by the handle h. Next, at step 822 Read(h) reads
the block referred to by handle h, returning the block's 15

version number and the index node X contained therein. At
step 824 the procedure tests whether h.v is equal to v, and if
not, proceeds to step 826 where the block referred to by the
handle h is unlocked, after which the procedure loops back
to step 804 as shown. On the other hand, if h.v is equal to 20

v, the procedure proceeds to step 828 (see subpart 8B of FIG.
8), where the procedure determines whether key k is less
than or equal to X.kmin, i.e., whether the key k is found in
a data node attached to one of the left siblings of X. If so,
the procedure proceeds to steps 830 and 832, where the 25

block referred to by handle h is unlocked and then the handle
h is defined as the left sibling handle of node X. If key k is
not less than or equal to X.kmin, the procedure proceeds to
step 834 where it tests whether k is greater than X.kmax, and
if so, proceeds to steps 836 and 838, where it unlocks the 30

block referred to by handle h and defines h to be the right
sibling handle of node X. If at step 834 the procedure
determines that k is not greater than X.kmax' it proceeds to
step 840 where it tests whether Num(X) is equal to 0,
meaning that X (which is a leaf-level index node) has no 35

children, and that it therefore does not contain the key k. If
the answer to this test is yes, the procedure moves ahead to
step 856, and if it is no, it proceeds to step 842. At step 842,
the procedure determines whether X.kn _ 1 is less than k, i.e.,
whether the field kn _ 1 of node X is less than the key value 40

k. If it is, the procedure jumps ahead to step 856 as shown,
and if it is not, it proceeds to step 844, where it finds the
smallest i such that k is less than or equal to X.ki . Next, at
step 846, the procedure invokes Read(X.h i + 1), reading a
block containing a data node D and a version number v. 45

Next, at step 848 the procedure tests whether D.k is equal to
k. If it is not, the procedure jumps to step 856, and if so, it
proceeds to step 850 where it deallocates the block referred
to by the handle X.hi+ 1 , which increments the block version
number. Next, at step 852 the procedure removes the handles 50

identified by X.ki and X.h i+ 1 from node X. At step 854, the
Write( ) function is invoked to write the node X referenced
by handle h. Finally, at steps-856 and 858 the block referred
to by handle h is unlocked and the procedure returns. In sum,
the Delete procedure takes a prime node handle hp and a key 55

k and removes the key k and its associated data value from
the tree identified by hp"

FIG. 9 is a flowchart of a procedure entitled Insert, which
takes a prime node handle hp , a key value k, and a data value
d and inserts the key and the data value into the tree 60

identified by hp' The Insert function 900 begins at the entry
point identified by reference numeral 901, and is invoked by
the call Insert(hp , k, d), where hp is a prime node handle, k
is a key value, and d is a data value. At step 902, the Data
node D is defined by the key value k and data value d. At step 65

903, the Alloc function is invoked so as to allocate a block
large enough to contain D; and the handle identifying the

18
block is assigned to hD . Next, at step 904 the procedure
writes the node D to the block referenced by handle hD . At
step 905, L T is set to 0 and then at step 906 S is defined as
the new empty stack. (By way of providing further back
ground, we note that the levels of a tree are the sets of
siblings. In the terminology used in the instant application,
level 0 contains all leaf index nodes, level 1 contains their
parents, and so on; the highest level contains the root node.
The number of the highest level is one less than the number
of handles in a prime node (since we use zero-based index
ing). The "target level" variable L T identifies the level at
which the key-handle pair (k, hD ) shall be inserted into the
tree. Setting L T to 0 means that the pair shall be inserted into
a leaf index node. As the algorithm unfolds, L T may be
incremented, indicating that a (modified) key-handle pair
shall be inserted into an index node higher up in the tree
(potentially all the way up to the root.) At step 907, the Read(
) function is invoked to read the block referred to by handle
hp so as to identify the version number v and the prime node
P stored in the block. At step 908, the last handle in node P
(the root index node) is assigned to hx ' At step 909 LN is
defined to be the number of handles in node P, which is
identical to the number of index node levels in the tree. At
step 910, Le is defined as LN-l. Le (the "current level") is
the level the insert procedure is currently at. Since Insert
starts at the root (which is at level LN-l, as explained
above), Le is initialized to this value, and is decremented as
Insert descends into the tree. At step 912 Read(hJ is invoked
to return the version number v and the index node X referred
to by handle hx ' At step 913, the procedure tests whether hx'v
is equal to v, and at step 914 the procedure tests whether Le
is greater than LT' If the answer to both of the tests of steps
913 and 914 is yes, the procedure proceeds to step 915. If,
on the other hand, the answer to step 913 is no, the procedure
loops back to step 906 as shown. If the answer to the test of
step 914 is no, the procedure proceeds to step 920 (see
subpart 9B of FIG. 9).

At step 915, the procedure invokes the GetNextHandle
function with the arguments X and k, whereby the handle h'
and boolean isLink are returned. As discussed previously,
the boolean isLink indicates whether the handle h' is a link
to a sibling of node X. At step 916, the procedure tests
whether isLink is true, and if it is, branches ahead to step
919. If isLink is false, the procedure proceeds to step 917,
where it decrements Le . At step 918, the procedure pushes
the handle hx onto stack S. At step 919, the function assigns
the value of h' to hx '

Now referring to subpart 9B of FIG. 9, at step 920 the
procedure invokes the Lock( ) function in order to lock the
block referred to by the handle hx . At step 921 the procedure
invokes Read(hx), which reads the block identified by handle
hx and extracts an index node X and a version number v. At
step 922, the procedure tests whether hx'v is equal to v. If
not, it branches to step 906 (subpart 9A) as shown. If, on the
other hand, hx'v is equal to v, the procedure proceeds to step
923, where it tests whether the function IsLeaf(X) is true. If
not, the procedure branches to step 934 (subpart 9C of FIG.
9), and if so, it proceeds to step 925, where it tests whether
X.kn _ 1 is less than k. If the answer to the test of step 925 is
yes, the procedure branches to step 934, and if it is no, the
procedure proceeds to step 926. At step 926, the procedure
finds the smallest i such that k is less than X.ki . At step 927,
the procedure invokes Read(X.hi + 1), which reads the block
identified by handle X.h i+ 1 and extracts a data node D and a
version number v. At step 928, the procedure tests whether
D.k is equal to k; if it is, the procedure proceeds to step 929,
and otherwise it branches to step 934. At step 929, the
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Referring to subpart 9E of FIG. 9, at step 959 the
procedure determines whether handle hx is the last handle in
prime node P, meaning that the node identified by hx is the
root of the tree. If so, the procedure proceeds to steps 960

5 through 966 and if not, proceeds to steps 967 through 972.
At step 960 the procedure defines the index node Z as
shown. At step 961 the handle hz is defined with the function
Alloc(space for Z), in order to allocate a block large enough
to hold Z and return a handle to the block. In other words,

10 the handle hz is returned by the function Alloc(). At step 962
the function Write(Z, hz ) is invoked in order to write the
index node Z to the block referenced by the handle hz . At
step 963, the procedure appends hz to the end of prime node
P. At step 964, Write(P, hp ) is invoked to write the node P to

15 the block referenced by the handle hp" Next, at step 965 the
block referred to by the handle hx is unlocked and then at
step 966 the procedure returns.

If at step 959 the answer to the test whether hx is the last
handle in P is no, the procedure proceeds to step 967,

20 wherein the block referred to by the handle hx is unlocked.
Then, at step 968, the handle hD is set to hy . At step 969 the
key value k is set to x.~ax' At step 970, the procedure
determines whether the stack S is empty; if not, it proceeds
to step 971 wherein the handle hx is defined from the last

25 value on the stack S. On the other hand, if S is empty, the
procedure proceeds to step 973 where handle hx is defined
with P[LN ], and then at step 974 LN is defined as L~1.

Finally, at step 972 Lr is set to Lr +1, and then the procedure
loops back to step 920 (see subpart 9B of FIG. 9), as shown.

In sum, the Insert procedure of FIG. 9 (subparts 9A
through 9E), takes a prime node handle hp , a key value k,
and a data value d and inserts the key-data pair into the tree
identified by hp.

FIG. 10 is a flowchart of a procedure entitled Compress.
35 This procedure takes a prime node handle hp and compresses

the node; it does not return, as it is executed by a background
process. The Compress procedure 1000 begins at an entry
point 1002 with the call Compress(hp ). At step 1004, Read
(hp ) is invoked, and this function returns a version number

40 v and the prime node P referred to by the handle hp. At step
1006, the index i is set to 1. At step 1008, the procedure tests
whether the number of handles in node P is greater than i. If
the number of handles in P is greater than i, the procedure
proceeds to step 1010 to cause the function CompressLevel

45 with the argument P[i]. This function is described below in
connection with FIG. 11. Briefly, CompressLevel( ) is a
function that takes an index node handle hx and compressed
the index node referred to by that handle and all its right
siblings. In step 1012, the index i is set to i+1, and then the

50 procedure loops back to decision step 1008. At step 1008 if
it is determined that the number of handles in P is not greater
i, the procedure proceeds to step 1014, where the handle h
is set to the last handle in node P. Next, at step 1016, the
block referred to by the handle h is locked, and then at step

55 1018 Read(h) is invoked, and this function returns the
version number v and node X referred to by handle h. Next,
at step 1020, the procedure tests whether Num(X) is equal
to 0 and X.hright is equal to null and not IsLeaf(X) are all
true. If so, the procedure proceeds to step 1022 and invokes

60 Read(hp ), which returns the version number v and prime
node P. If the answer to the test at step 1020 is no, the
procedure jumps ahead to step 1032 and unlocks the block
referred to by handle h. After step 1022 is performed, the
procedure moves on to step 1024 and tests whether h is the

65 last handle in P (that is, if h refers to the root node of the
tree); if not, the procedure jumps ahead to step 1032, and if
so, proceeds to step 1026. At step 1026 the procedure

procedure defines node D to be a data node containing the
key value k and data value d. Next, at step 930 the function
Write (D, X.hi+ 1) is invoked in order to write the node D to
the block referenced by the handle hi+ 1 . Next, at step 931,
the function Dealloc(hD ) is invoked in order to deallocate
the block referred to by the handle hD and increment the
block's version number. At step 932, the block referred to by
the handle hx is unlocked, and then at step 933 the procedure
returns.

Referring now to subpart 9D of FIG. 9, if node X is full,
then X is split into two nodes X and Y. At step 946 the
procedure tests whether the function IsLeaf(X) is true. If it
is, the procedure proceeds to step 947, and if it is not, the
procedure proceeds to step 951. Steps 947, 948 and 949, on
the one hand, and steps 951, 952 and 953 on the other hand
are performed in order to define nodes Y and X, depending
on whether X is a leaf or not. Steps 947 and 951 are
performed in order to define the node Y, steps 948 and 952
are performed to allocate space for Y, and steps 949 and 953
are performed to define the node X. At step 950, the
procedure tests whether X.kmax is less than key value k. If
not, the procedure proceeds to step 954 where the function
InsertPair (discussed above in connection with FIG. 5) is
invoked with the arguments X, k and hD to insert k and hD

into X. In step 955, Write(Y,hy ) is invoked in order to write
the node Y. Similarly, at step 957 Write(X, hJ is invoked in
order to write the node X. If at step 950 it is determined that
X.kmax is less than k, the procedure proceeds to step 956
where the function InsertPair(Y, k, hD ) is invoked to insert
k and hD into Y, after which steps 955 and 957 are performed
as described above. At step 958, Read(hp ) is invoked and this
function returns the version number v and the prime node P
in the block referred to by the handle hp'

The procedure then proceeds to step 959 (see subpart 9E
of FIG. 9).

Referring now to subpart 9C of FIG. 9, at step 934 the
procedure tests whether k is greater than X.kmin and less than
or equal to X.kmax' If the answer to the test of step 934 is yes,
the procedure proceeds to step 941; if the answer is no, the
procedure proceeds to step 935. At step 935, the block
referred to by the handle hx is unlocked, and then at step 936
the GetNextHandle function is invoked with the arguments
X and k, which thereby returns the handle h' and the boolean
isLink. As discussed previously, this function returns the
handle h' and the boolean isLink indicating whether this
handle is a link to a sibling of node X. At step 937, the
procedure tests whether isLink is true; if so, it proceeds to
step 938 and if not, it branches to step 920 (see subpart 9B
of FIG. 9). At step 938, the handle hx is assigned the value
of h' and then at step 939 Read(hx) is invoked to determine
the version number v and node X referred to by the handle
hx . At step 940, the procedure tests whether hx.v is equal to
v; if so, it branches back to step 936 as shown, and if not,
it branches to step 906 (subpart 9A of FIG. 9).

As mentioned above, at step 934 the procedure tests 30

whether k is greater than X'~in and less than or equal to
X.kmax' If the answer to this test is yes, the procedure
proceeds to step 941 where it tests whether node X is full.
If X is full, the procedure proceeds to step 946 (subpart 9D
of FIG. 9), otherwise it proceeds to step 942. At step 942, the
procedure invokes InsertPair(X, k, hD ), in order to insert the
key k and handle hD in node X. At step 943, Write(X, hx ) is
invoked in order to write the node X to the block referenced
by the handle hx . At step 944, the block referred to by the
handle hx is unlocked, and then at step 945 the procedure
returns.
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removes the last handle from P, and at step 1028 writes the
node P referenced by the handle hp . Next, at step 1030, the
procedure deallocates the block referred to by handle h, and
then proceeds to step 1032, where it unlocks the block
referred to by handle h. Finally at step 1034, the procedure
pauses and then loops back to step 1004, as shown. In sum,
this procedure compresses the tree identified by handle hp .

The CompressLevel procedure 1100 begins at an entry
point 1101 with the call CompressLevel(hx )' At step 1102,
the variable a is set to 0 and at step 1103, the handle hA is
set to null. Next, at step 1104 the procedure tests whether the
handle hx is null, and if so, proceeds to step 1105 where the
procedure returns. If hx is not null, the procedure proceeds to
step 1106 and locks the block referred to by handle hx ' Next,
at step 1107, Read(hx ) is invoked to read index node X and
its version number v. At step 1108, the procedure tests
whether handle hA is null. If hA is null, the procedure
branches to block 115 (subpart lIB of FIG. 11), and if hA is
not null, the procedure proceeds to step 1109 where variable
a is set to -1. Next, at step 1110, index i is set to zero, and
then at step 1111 the procedure tests whether Num(X) is
greater than or equal to i, i.e., the procedure tests whether the
number n returned by the function Num(X) is greater than or
equal to index i. If it is not, the procedure branches to step
1115 (subpart lIB of FIG. 11), and if so, proceeds to step
1112. At step 1112; the procedure tests whether the handle to
the ith child of node X (i.e., X.h;) is equal to handle hA . If
it is not, the procedure proceeds to block 1114 and incre
ments index i and then proceeds back to step 1111. If X.hi is
equal to handle hA the procedure proceeds to step 1113
where variable a is set to the value of index i.

Referring now to subpart lIB of FIG. 11, at step 1115, the
procedure tests whether the handle hA is null or the variable
a is neither equal to -1 nor equal to Num(X). If the answer
to the test of step 1115 is no, the procedure proceeds to step
1116 through 1118 and then back to step 1104, as shown.
Steps 1116 through 1118 are performed to unlock the block
referred to by the handle hx , set hx to the field hright of index
node X, and then to set handle hA to null.

If the answer to the test of step 1115 is yes, the procedure
performs a series of steps beginning with step 1119, where
it tests whether handle hA is null. If hA is null, the procedure
at step 1120 sets variable a to O. If handle hA is not null, the
procedure at step 1122 increments a. Then, at step 1121
handle hA is set to X.ha . At step 1123, the block referred to
by handle hA is locked, and then at step 1124 the function
Read(hA ) is invoked, to read index node A and its associated
version number v. At step 1125, the handle hE is set to
A.hrighr Next, at step 1126 the procedure tests whether the
handle hE is null. If it is, steps 1131 through 1133 are
performed, i.e., the block referred to by handle hx is
unlocked, the block referred to by handle hA is unlocked, and
then the procedure returns. On the other hand, if handle hE
is not null, the procedure proceeds to step 1127, and locks
the block referred to by handle hE' Next, at step 1128,
Read(hE) is invoked to determine the version number v and
node B. At step 1129, B.hle!t is set to the value of handle hA .

Next, at step 1130, b is set to O.
The remaining steps of the CompressLevel procedure are

shown in subpart 11C of FIG. 11. Referring to this subpart,
at step 1134 the procedure tests whether X.hb is hE' If so, it
proceeds to step 1144; otherwise, it proceeds to step 1135. At
step 1135, variable b is incremented, and at step 1136 the
procedure tests whether Num(X) is greater than or equal to
b. If so, the procedure loops back step 1134 as shown. If not,
the procedure proceeds to step 1137 and unlocks the block
referred to by handle hx . Next, at step 1138, the procedure
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unlocks the block referred to by handle hA and at step 1139
unlocks the block referred to by handle hE' At step 1140 the
procedure tests whether B.kmax is less than x.~ax' If not, the
procedure performs step 1143, in which handle hx is set to

5 X.hrighr If B.kmax is less than X.kmax as determined at step
1140, the procedure proceeds to step 1141 and tests whether
Num(A) is less than t or Num(B) is less than 1. If either of
these is true, the procedure proceeds to step 1142 and sets
handle hA to null, and then branches back to step 1104

10 (subpart 11A of FIG. 11) as shown.
At step 1144, the procedure again tests whether Num(A)

is less than t or Num(B) is less than 1. If not, the procedure
proceeds to steps 1152 through 1154 as shown, and from
there to steps 1150 and 1151, after which the procedure

15 branches back to step 1104 (subpart lIB of FIG. 11). If the
answer to the test of step 1144 is yes, the procedure proceeds
to steps 1145, 1146, 1147, 1148, and 1149 as shown (these
steps should by now be self-explanatory and are obviously
not executed in order). After these steps are performed, the

20 procedure tests whether node B is deleted, and if so,
branches back to step 1104. If node B is not deleted, the
procedure sets at step 1151 hA to hE'

FIG. 12 is a flowchart of a procedure entitled MergeNo
des. This procedure, as its name implies, merges nodes; it

25 takes index nodes X, A, B, (where A is the left sibling of B
and X is their parent) and index node handles hx , hA , and hE
referring to these nodes, and merges the contents of A and B
into A, discarding B in the process. The MergeNodes
procedure 1200 begins at entry point 1202 and is invoked

30 with the call MergeNodes(X, A, B, hx ' hA , hE)' as shown. At
step 1204, the procedure tests whether IsLeaf(A) is true.
Recall that IsLeaf(X) is a function that returns true if, and
only if, X.ho is null. If IsLeaf(A) is true, the procedure
performs step 1206, and if it is false, the procedure performs

35 steps 1210. Steps 1206 and 1210 assign the values shown in
the corresponding blocks to node A Next, at step 1208 the
procedure performs the operation shown with respect to
node B. At step 1212, node X is defined as shown. Steps
1214 through 1228 are then performed to write nodes A, X,

40 and B, unlock handles hA , hx ' and hE' and to deallocate index
node B identified by handle hE' The procedure returns at step
1228.

FIG. 13 is a flowchart of a procedure entitled Move
ToLeft. This procedure is performed in order to move a node

45 to the left is performed in order to move part of the contents
of an index node to its left sibling. The MoveToLeft Pro
cedure 1300 begins at entry point 1302 with the call Move
ToLeft(X, A, B, hx , hA , hE)' At step 1304 the variable m is
defined as ihNum(B)_lhNum(A). Recall that the function

50 Num(X) returns n where X is an index node (hie!" ~im ho,
ko, hi, ki , ... , hn_i , kn_i , hm kmax, hright). Thus, Num(X)
returns the integer n, when n is the index of the last child
handle of the node X.

At step 1306, the procedure tests whether IsLeaf(A) is
55 true (i.e., whether Ahois null). If so, the procedure performs

steps 1308 and 1310 as shown; and if not, the procedure
performs steps 1314 and 1316. These steps assign the values
shown in the corresponding blocks to nodes A and B.

Steps 1312 through 1330 write out and unlock the index
60 nodes A, X and B, and then return.

FIG. 14 is a flowchart of a procedure entitled MoveT
oRight which takes index nodes X, A, B and index node
handles hx ' hA , hE' Steps 1402 through 1406 are directly
analogous to steps 1302 through 1306 discussed above,

65 except in 1404 the variable n is defined as ihNum(A)
+lhNum(B) instead of as ihNum(B)-lf2Num(A). The
remaining steps of procedure 1400 are similar to the corre-
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<hie!" k mim ha, ka, h" k" ... , hn_v kn_" hm k maxo
hright>

wherein hle!t is a handle of a left sibling and the remaining
data elements (kmino ho, ko, h1 , k1 , ... , hn_1 , kn_1 , hno

~ax' hright) are handles and keys according to a B-Link
Tree data structure.

8. A computer-implemented method, comprising main
taining a data structure comprising a plurality of nodes and
handles stored in said nodes, wherein at least one left-link
handle, hle!t' stored in each node points to a left sibling of
that node; wherein the method further comprises performing
a lookup operation with respect to a key, k, wherein the
lookup operation involves traversing the data structure and,
at a given node, referring to said left-link handle, hie!" of that

We claim:
1. An information management system, comprising:
a computer;
a database operatively connected to said computer,

wherein said database comprises a B-Tree data struc
ture comprising a plurality of nodes associated with
disk blocks and handles stored in said nodes, wherein
at least one left-link handle, hie!" stored in each node
points to a left sibling of that node; and

a mechanism for performing a lookup operation with
respect to a key, k, wherein, in traversing the B-Tree at
a given node, said lookup operation refers to said
left-link handle, hie!" of that node to access a left sibling
of the node if the key k is less than or equal to a value
K",in stored in the node.

2. An information management system as recited in claim
1, further comprising a mechanism for performing an insert
operation.

3. An information management system as recited in claim
2, wherein the insert operation detects if the key range of an
index node, A, does not include the key k that the operation
is trying to locate, and wherein said operation follows a
handle Ahle!t to the left sibling when k~Akmin'

4. An information management system as recited in claim
1, further comprising a mechanism for performing a delete
operation.

5. An information management system as recited in claim
4, wherein the delete operation detects if the key range of an
index node, A, does not include the key k that the operation
is trying to locate, and wherein said operation follows a
handle Ahle!t to the left sibling when k~Akmin'

6. An information management system as recited in claim
1, further comprising mechanisms for performing insert and
delete operations, wherein said lookup, insert and delete
operations detect if the key range of an index node, A, does
not include the key k that the operation is trying to locate,
and wherein said operations follow a handle Ahle!t to the left
sibling when k~Akmin'

7. An information management system as recited in claim
1, wherein the B-Tree data structure comprises at least one
index node having the following structure:

55

sized that a variety of computer platforms, including hand
held device operating systems and other application specific
operating systems are contemplated, especially as the num
ber of wireless networked devices continues to proliferate.

5 Still further, the present invention may be implemented in or
across a plurality of processing chips or devices, and storage
may similarly be effected across a plurality of devices.
Therefore, the present invention should not be limited to any
single embodiment, but rather should be construed in

10 breadth and scope in accordance with the appended claims.

sponding steps of procedure 1300 discussed above but are
modified in order to accomplish the move the right function.
These differences will be apparent to one of ordinary skill in
the art and will not be described here.

G. Conclusion
As mentioned above, while exemplary embodiments of

the present invention have been described in connection
with various computing devices and network architectures,
the underlying concepts may be applied to any computing
device or system in which it is desirable to traverse and/or
perform other functions in connection with a B-Link or other
data structure. Thus, the procedures and systems described
above may be applied to a variety of applications and
devices. While exemplary data structures, programming
languages, names and examples are chosen herein as rep- 15

resentative of various choices, these are not intended to be
limiting.

The various techniques described herein may be imple
mented in connection with hardware or software or, where
appropriate, with a combination of both. Thus, the methods 20

and apparatus of the present invention, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) embodied in tangible media, such as floppy
diskettes, CD-ROMs, hard drives, or any other machine
readable storage medium, wherein, when the program code 25

is loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing
the invention. In the case of program code execution on
programmable computers, the computing device will gen
erally include a processor, a storage medium readable by the 30

processor (including volatile and non-volatile memory and/
or storage elements), at least one input device, and at least
one output device. One or more programs that may utilize
the debugging interface aspects of the present invention,
e.g., through the use of a data processing API or the like, are 35

preferably implemented in a high level procedural or object
oriented programming language to communicate with a
computer system. However, the program(s) can be imple
mented in assembly or machine language, if desired. In any
case, the language may be a compiled or interpreted lan- 40

guage, and combined with hardware implementations.
The methods and apparatus of the present invention may

also be practiced via communications embodied in the form
of program code that is transmitted over some transmission
medium, such as over electrical wiring or cabling, through 45

fiber optics, or via any other form of transmission, wherein,
when the program code is received and loaded into and
executed by a machine, such as a gate array, a programmable
logic device (PLD), a client computer, or the like. When
implemented on a general-purpose processor, the program 50

code combines with the processor to provide a unique
apparatus that operates to invoke the functionality of the
present invention. Additionally, any storage techniques used
in connection with the present invention may invariably be
a combination of hardware and software.

While the present invention has been described in con
nection with the presently preferred embodiments, it is to be
understood that other similar embodiments may be used or
modifications and additions may be made to the described
embodiment for performing the same function of the present 60

invention without deviating therefrom. For example, one
skilled in the art will recognize that the present invention as
described in the present application may apply to any
computing device or environment, whether wired or wire
less, and may be applied to any number of such computing 65

devices connected via a communications network, and inter
acting across the network. Furthermore, it should be empha-
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node to access a left sibling of the node if the key k is less
than or equal to a value k",in stored in the node.

9. A method as recited in claim 8, further comprising
performing an insert operation.

10. A method as recited in claim 9, wherein the insert 5

operation detects if the key range of an index node, A, does
not include the key k that the operation is trying to locate,
and wherein said operation follows a handle AhZe!t to the left
sibling when k~Akmin'

1
10

1. A method as recited in claim 8, further comprising a
mechanism for performing a delete operation.

12. A method as recited in claim 11, wherein the delete
operation detects if the key range of an index node, A, does
not include the key k that the operation is trying to locate, 15

and wherein said operation follows a handle AhZe!t to the left
sibling when k~Akmin'

26
13. A method as recited in claim 12, further comprising

performing insert and delete operations, wherein said
lookup, insert and delete operations detect if the key range
of an index node, A, does not include the key k that the
operation is trying to locate, and wherein said operations
follow a handle AhZe!t to the left sibling when k~Akmin'

14. A method as recited in claim 8, wherein the data
structure comprises at least one index node having the
following structure:

<hie!" k mim ha, ka, h" k" ... , hn_v k n_,hm hm k maxo
hright>

wherein hZe!t is a handle of a left sibling and the remaining
data elements (kmin, ho' ka, hz, k1 , ... , hn_1 , k n_1 , k max'
hright) are handles and keys according to a B-Link Tree
data structure.

* * * * *


