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Receive a respective input sequence from a tuple
202

;

Process the respective input sequence to generate an
encoded representation of the respective input sequence
204

\ J

Process each of some or all of the tokens in the sequence
of token to generate a lower-dimensional representation of
the token
206

:

Receive lower-dimensional representations of a respective
proper subset of the sequence of tokens
208

.

Process the lower-dimensional representations {o generate
a network output
210

FIG. 2
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PROCESSING LARGE-SCALE TEXTUAL
INPUTS USING NEURAL NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of the filing date of
U.S. Application No. 63/032,996, filed on Jun. 1, 2020. The
disclosure of the prior application is considered part of and
is incorporated by reference in the disclosure of this appli-
cation.

BACKGROUND

This specification relates to performing a machine learn-
ing task on a tuple of input sequences using neural networks.

Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks include
one or more hidden layers in addition to an output layer. The
output of each hidden layer is used as input to the next layer
in the network, i.e., the next hidden layer or the output layer.
Each layer of the network generates an output from a
received input in accordance with current values of a respec-
tive set of parameters.

SUMMARY

This specification describes a system implemented as
computer programs on one or more computers in one or
more locations that implements and trains a neural network
to perform a machine learning task on a received tuple of
input sequences. Each input sequence in turn has a respec-
tive network input at each of a plurality of input positions in
an input order. Different input sequences can have different
numbers of network inputs. Depending on the specifics of
different machine learning tasks, the neural network can be
configured to generate any kind of score, classification, or
regression output based on the input.

For example, the neural network can be configured to
perform a text processing task, e.g., to receive an input that
includes multiple text sequences that are from one or more
text documents and to process the input to generate an output
for the text processing task. For example, the text processing
task can be a semantic text matching task, a machine reading
comprehension task, a question answering task, a passage
ranking task, or a key phrase extraction task.

For example, each input to the neural network can be a
tuple of two input sequences, where a first input sequence
specifies Internet resources (e.g., web pages), documents, or
portions of documents and a second input sequence specifies
a set of one or more words or phrases (e.g., key words, key
terms, or concepts), and the output generated by the neural
network for a given input tuple may be a score for the set of
the one or more words or phrases, with the score represent-
ing an estimated relevance of the set of word or phrase with
respect to the Internet resource, document, or document
portion.

As another example, each input to the neural network can
be a tuple of two input sequences, where a first input
sequence specifies a question (e.g., a question query issued
to a search engine) and a second input sequence specifies a
set of one or more text segments (e.g., Internet resources
(e.g., web pages), documents, or portions of documents),
and the output generated by the neural network for a given
input may be a score for the set of the one or more text
segments, with the score representing an estimated likeli-
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hood that the set of one or more text segments includes
content that provides an answer to the question.

According to an aspect, there is provided a computer-
implemented method comprising receiving, at each of a
plurality of encoder neural networks, a respective input
sequence from a tuple of respective input sequences; pro-
cessing, using one or more encoder network layers of each
of the plurality of encoder neural networks, the respective
input sequence to generate an encoded representation of the
respective input sequence, the encoded representation com-
prising a sequence of tokens; processing, using a projection
layer of each of the plurality of encoder neural networks,
each of some or all of the tokens in the sequence of tokens
to generate a lower-dimensional representation of the token;
receiving, at a head neural network and from each of the
plurality of encoder neural networks, lower-dimensional
representations of a respective proper subset of the sequence
of tokens generated by the encoder neural network; and
processing, using the head neural network, the lower-dimen-
sional representations to generate an output.

The head neural network may be further configured to
access the lower-dimensional representations of the respec-
tive proper subsets of the sequences of tokens generated by
the encoder neural networks from a memory.

The lower-dimensional representations of the tokens gen-
erated by different projection layers may have different
dimensions from each other.

Each input sequence may have a respective network input
at each of a plurality of input positions in an input order.

The sequence of tokens generated by the encoder neural
network may comprise a corresponding token for each
network input in the input sequence.

The method may further comprise, for each sequence of
tokens generated by the one or more encoder network layers
of the encoder neural network from the input sequence:
determining the respective proper subset of the sequence of
tokens based on respective positions of the tokens in the
sequence and on a length of the input sequence.

The respective proper subset of the sequence of tokens
may comprise first N tokens in the sequence of tokens, and
wherein N is a predetermined positive integer.

The one or more encoder network layers may comprise an
attention layer that is configured to: receive an input
sequence for the layer comprising a respective layer input at
each of one or more positions; and generate an attended
input sequence at least in part by applying an attention
mechanism to the input sequence for the layer, the attended
input sequence comprising a respective attended layer input
at each of the one or more positions.

The machine learning task may be a semantic text match-
ing task.

The method may further comprise training the plurality of
encoder neural networks and the head neural network
including initializing parameter values of the one or more
encoder network layers of each encoder neural network with
a predetermined set of parameter values.

The training may further comprise: receiving a training
tuple; processing the training tuple using a trained neural
network to generate a teacher network output; and training
the neural network using the teacher network output gener-
ated by the trained neural network, wherein the training
comprises adjusting only parameter values of the projection
layers of the encoder neural networks and parameter values
of the head neural network.

The training may further comprise: receiving another
training tuple; processing the training tuple using the trained
neural network to generate another teacher network output;
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and training the neural network using the other teacher
network output generated by the trained neural network,
including adjusting parameter values of the one or more
encoder network layers of the encoder neural networks.

According to another aspect, there is provided a system
comprising one or more computers and one or more storage
devices storing instructions that are operable, when executed
by the one or more computers, to cause the one or more
computers to perform the operations of the above method
aspect.

According to a further aspect, there is provided a com-
puter storage medium encoded with instructions that, when
executed by one or more computers, cause the one or more
computers to perform the operations of the method aspect.

It will be appreciated that features described in the context
of one aspect may be combined with features described in
the context of another aspect.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages.

The described techniques allow for a system to implement
a neural network with a flexible and adaptive architecture
that is scalable for processing long-range input sequences. In
particular, by implementing different numbers of encoder
neural networks that are each configured to process a
respective input sequence in parallel with each other, the
system can use the neural network to process an arbitrary
number of input sequences each of an arbitrary length and
thereby endow the neural network with the capability of
effectively performing any of a variety of appropriate
machine learning tasks that involve operating on large-scale
textual inputs, data derived from large-scale textual inputs,
or both.

The described techniques also allow for the system to
process the inputs in a data efficient, and, therefore, com-
puting resource eflicient manner. Specifically, by identifying
proper subsets of respective sequences of output tokens
generated by the encoder neural networks and by making
use of encoder-specific projection layers, the system can
generate compact representations of the inputs to provide to
a head neural network for generating high-quality network
outputs with minimum loss of representational capacity of
the information contained within the original inputs.

The details of one or more embodiments of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example neural network system.

FIG. 2 is a flow diagram of an example process for
processing a tuple of input sequences to generate an output.

FIG. 3 is an illustration of selecting tokens from encoded
representations of input sequences.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

This specification describes a system implemented as
computer programs on one or more computers in one or
more locations that implements and trains a neural network
to perform a machine learning task on a tuple of input
sequences. Each input sequence in turn has a respective
network input at each of a plurality of input positions in an
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input order. Different input sequences can have different
numbers of network inputs. Depending on the specifics of
different machine learning tasks, the neural network can be
configured to generate any kind of score, classification, or
regression output based on the tuple of input sequences.

For example, the neural network can be configured to
perform a text processing task, e.g., to receive an input that
includes multiple text sequences that are from one or more
text documents and to process the input to generate an output
for the text processing task. For example, the text processing
task can be a semantic text matching task, a machine reading
comprehension task, a question answering task, a passage
ranking task, or a key phrase extraction task.

For example, each input to the neural network can be a
tuple of two input sequences, where a first input sequence
specifies Internet resources (e.g., web pages), documents, or
portions of documents and a second input sequence specifies
a set of one or more words or phrases (e.g., key words, key
terms, or concepts), and the output generated by the neural
network for a given input tuple may be a score for the set of
the one or more words or phrases, with the score represent-
ing an estimated relevance of the set of word or phrase with
respect to the Internet resource, document, or document
portion.

As another example, each input to the neural network be
a tuple of two input sequences, where a first input sequence
specifies a question (e.g., a question query issued to a search
engine) and a second input sequence specifies a set of one or
more text segments (e.g., Internet resources (e.g., web
pages), documents, or portions of documents), and the
output generated by the neural network for a given input
may be a score for the set of the one or more text segments,
with the score representing an estimated likelihood that the
set of one or more text segments includes content that
provides an answer to the question.

FIG. 1 shows an example neural network system 100. The
neural network system 100 is an example of a system
implemented as computer programs on one or more com-
puters in one or more locations, in which the systems,
components, and techniques described below can be imple-
mented.

The neural network system 100 can receive a tuple of
input sequences 102 and perform a machine learning task on
the tuple of input sequences 102 to generate an output 152
for the machine learning task.

As used herein, a tuple refers to a data structure having an
ordered set of two or more data elements, e.g., two or more
input sequences. An n-tuple refers to a tuple having n
ordered elements. For example, a 3-tuple would include 3
elements (e.g., input sequence A, input sequence B, input
sequence C) in an order<input sequence A, input sequence
B, input sequence C>that is different than a 3-tuple consist-
ing of <input sequence C, input sequence A, input sequence
B>

The neural network system 100 includes a plurality of
encoder neural networks 120A-N that are each configured to
process an input sequence from the tuple 102, e.g., input
sequence A 104A, to generate a lower-dimensional repre-
sentation, e.g., lower-dimensional representation 122A, of
the input sequence and a head neural network 130 that is
configured to generate the output 152 from the lower-
dimensional representations 122A-N.

As used herein, a lower-dimensional representation can
be an encoded representation of an input sequence, i.e., in
the form of an ordered collection of data values such as
numerical values, that has a lower dimensionality than that
of the data structure used to represent the input sequence.
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For example, the lower-dimensional representation can be a
vector or a matrix of fixed size.

To generate the lower-dimensional representation of the
input sequence, each encoder neural network 120A-N can
include multiple encoder layers followed by a projection
layer. For example, the encoder neural network A 120A can
include a stack of multiple encoder layers 110A arranged in
a predetermined order, followed by a projection layer 114A
arranged atop the stack of the multiple encoder layers 110A.

Example configurations of the encoder layers will be
described in more detail below, but typically, each of some
or all of the encoder layers included in the encoder neural
network can operate on a respective input sequence that
includes a respective network input (e.g., in the form of a
vector) at each of one or more positions in an input order.

At a high level, at each encoder neural network, e.g.,
encoder neural network A 120A, the neural network system
100 uses the encoder layers included in the encoder neural
network, e.g., encoder layers 110A, to process an input
sequence, e.g., input sequence A 104A, data derived from
the input sequence, or both to generate an encoded repre-
sentation of the input sequence. The encoded representation
has a sequence of multiple tokens, e.g., tokens 112A. For
example, the neural network system 100 can use the encoder
network layers 110A to generate a corresponding token for
each network input in the input sequence 104A. Typically,
the encoded representation is the output of the last encoder
layer prior to the projection layer or a combination of the
outputs of multiple encoder layers.

As used herein, a token refers to a portion of the encoded
representation which, as described above, can be in the form
of an ordered collection of numerical values. For example,
each token can include one or more numerical values. Each
token can be of substantially similar length to one another.

The neural network system 100 then uses the projection
layer, e.g., projection layer 114A, to project the sequence of
tokens into a lower-dimensional space, i.e., to generate the
lower-dimensional representation, e.g., lower-dimensional
representation 122A, of the sequence of tokens, e.g., tokens
112A, e.g., by applying a predetermined linear transforma-
tion.

In some implementations, the neural network system 100
uses a truncation technique to generate the lower-dimen-
sional representations. That is, instead of projecting the
entire sequences of tokens into the lower-dimensional space,
the system 100 first determines a selected portion of each
encoded representation generated by corresponding stacks
of encoder layers 110A-N, and then provides only the
selected tokens from the encoded representations to the
projection layers 114A-N. Correspondingly, the neural net-
work system 100 projects, i.e., by using the projection layers
114A-N, the selected smaller subsets of tokens into the
lower-dimensional space. This can decrease runtime latency
of the neural network system 100 for performing the given
machine learning task, because the amount of information
(i.e., in terms of input sequence length) to be consumed and
processed by the head neural network 130 is reduced and
thus the time complexity of the head neural network 130 is
reduced.

When represented in the form of a data structure of fixed
size, e.g., a vector, the selected portion of each encoded
representation can include the N first (or last) tokens of the
sequence of tokens generated by the encoder layers, where
N is a configurable parameter of the neural network system
100. N can be a positive integer the exact value of which
may vary between different encoder neural networks 120A-
N. For example, the parameter can be a tunable parameter
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that can be specified, e.g., from a user of the system, e.g.,
using an application programming interface (API) made
available by the system 100. As another example, the
parameter can be a dynamic parameter the value of which is
determined by the system from the lengths of the input
sequences while performing the given machine learning
task.

In some implementations, each encoder neural network
120A-N includes one or more attention layers. That is, the
multiple encoder network layers, e.g., encoder layers 110A,
include at least one attention layer that is configured to
receive an input sequence for the layer comprising a respec-
tive layer input at each of one or more positions, and
thereafter generate an attended input sequence at least in part
by applying an attention mechanism to the input sequence
for the layer. The attended input sequence includes a respec-
tive attended layer input at each of the one or more positions.

In some such implementations, each encoder neural net-
work 120A-N also includes other layers, e.g., fully-con-
nected layers, embedding layers, and activation layers,
either in place of or in addition to the attention layers.

In some such implementations, the encoder network lay-
ers are the layers of a self-attention neural network.
Examples of configurations of self-attention neural networks
and the specifics of the other components of self-attention
neural networks, e.g., embedding layers that embed inputs to
the encoder and the decoder, the feed-forward layers within
the layers of the attention network, and the output layers of
the attention neural network that generate the network
outputs, are described in more detail in Vaswani, et al,
Attention Is All You Need, arXiv:1706.03762, Raffel, et al,
and Devlin et al, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, arXiv:
1810.04805, the entire contents of which are hereby incor-
porated by reference herein in their entirety.

In the example of FIG. 1, the neural network system 100
includes a plurality of encoder neural networks, e.g.,
encoder neural networks 120A-N, each configured to pro-
cess a respective input sequence, e.g., input sequence 104 A-
N. However, the encoder neural networks need not have a
one-to-one correspondence with the input sequences and
there may be a different number of encoder neural networks.
For example, the system 100 may use the same encoder
neural network to process different input sequences from the
same received tuple 102 to generate different lower-dimen-
sional representations, and thus there may be a smaller
number of encoder neural networks than that of input
sequences included in the tuple. In addition, each encoder
neural network may have a different network architecture
than one another. For example, the encoder neural networks
may include different numbers of encoder layers, encoder
layers with different configurations, or both.

By generating lower-dimensional representations 122A-N
as described above, the neural network system 100 allows
the head neural network 130 to generate the output 152 for
the given machine learning task by processing a much more
compact (and therefore, more data-efficient) representation
of the tuple of input sequences 102 with minimum loss of
representational capacity of the information contained
within the original tuple 102. The neural network system
100 can thus operate in a scalable manner to determine an
output 152 from a tuple 102 of a substantially large number
of input sequences 104A-N. For example, the tuple can
include multiple input sequences representing billions and,
possibly, trillions of documents, web pages, or other struc-
tured text content, and the output can be an answer string to
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a user-specified question that is determined by the system
from the context of the documents or web pages.

The neural network system 100 then uses the head neural
network 130 to generate the output 152 from the lower-
dimensional representations 122A-N generated by the
encoder neural networks 120A-N. For example, the head
neural network 130 can be configured to receive as input a
combination, e.g., a vector concatenation, of the lower-
dimensional representations 122A-N and to process the
combined input using the head neural network 130 to
generate the output 152.

As similarly described above, the head neural network
130 can include any of a variety of types of neural network
layers that are suitable for the given machine learning task,
including, for example, one or more fully-connected layers,
one or more attention layers, and/or one or more embedding
layers. In the case of multiple layers, they may be stacked,
so as to pass data successively between them in a certain
layer order. The head neural network 130 also includes an
output layer that is configured to receive the data generated
by one or more preceding layers and to generate the output
152, e.g., by applying a transformation to the received data
to generate a regression or classification output that includes
a respective score for each of some or all of the input
sequences in the tuple, e.g., with each score for an input
sequence representing a relevance measure or a likelihood of
being relevant with respect to another input sequence in the
tuple.

FIG. 2 is a flow diagram of an example process 200 for
processing a tuple of input sequences to generate an output.
For convenience, the process 200 will be described as being
performed by a system of one or more computers located in
one or more locations. For example, a neural network
system, e.g., neural network system 100 of FIG. 1, appro-
priately programmed in accordance with this specification,
can perform the process 200.

The system receives, at each of a plurality of encoder
neural networks, a respective input sequence from a tuple of
respective input sequences (202). Each input sequence
includes a respective network input at each of multiple
positions in an input order. The lengths, i.e., numbers of
network inputs, of different input sequences within a same
tuple may vary from one another.

The system processes, using one or more encoder layers
of each of the plurality of encoder neural networks, the
respective input sequence to generate an encoded represen-
tation of the respective input sequence (204). Generally, the
encoded representation can be a sequence of the multiple
tokens that is represented, for example, as a vector or other
ordered collection of multiple numeric values, where each
token can include one or more numerical values.

In the case of the encoder neural network including
multiple encoder layers, they may be stacked, so as to
perform successive operations on the respective input
sequence to generate the encoded representation, i.e., in
accordance with the configurations and associated parameter
values of the encoder layers.

In some implementations, the plurality of encoder neural
networks can have the same architecture. That is, the con-
figurations of and connections between the encoder layers
within each encoder neural network are the same across all
encoder neural networks. In other implementations, different
encoder neural networks can have encoder layers that are of
different configurations, different connections, or both. In
addition, different encoder neural networks can have differ-
ent numbers of encoder layers. In either implementation, the
values of the parameters associated with the encoder layers,
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which may be learned by the system during training, are
typically different across different encoder neural networks.

In some implementations, the encoder layers of encoder
neural networks include at least one attention layer and,
optionally, one feed-forward layer. The attention layer is
configured to receive an input sequence for the layer com-
prising a respective layer input at each of one or more
positions, and thereafter generate an attended input sequence
at least in part by applying an attention mechanism, e.g., a
self-attention mechanism, e.g., a multi-head self-attention
mechanism, to the input sequence for the layer. The attended
input sequence includes a respective attended layer input at
each of the one or more positions. The feed-forward layer,
when included, then operates on the attended input sequence
to generate an output sequence for the layer, from which the
encoded representation may be determined or otherwise
derived.

The system processes, using a projection layer of each of
the plurality of encoder neural networks, each of some or all
of the tokens in the sequence of tokens to generate a
lower-dimensional representation of the token (206). For
example, the projection layer can apply a predetermined
linear transformation to a token in order to project the token
into a lower-dimensional space.

In some implementations, the system can generate the
lower-dimensional representations of the input sequences by
using the projection layer of each encoder neural network to
project all of the tokens included in the encoded represen-
tations of the input sequences into the lower-dimensional
space.

In other implementations, especially those that involve
operating on long-length input sequences, the system can
instead select a proper subset of tokens included in each
encoded representation and thereafter use the projection
layers to project the selected proper subsets of the tokens to
generate the lower-dimensional representations of the input
sequences. In other words, the system makes a respective
determination of which proper subset to select for each of
the tokens in the encoded representation and sometimes
selects proper subsets of the tokens that are of different sizes
from different encoded representations. Correspondingly,
the lower-dimensional representations of the subset of
tokens generated by different projection layers across dif-
ferent encoder neural networks can have different dimen-
sions from one another.

In these implementations, the proper subsets of tokens
may be selected in any of a variety of ways.

FIG. 3 is an illustration of selecting tokens from encoded
representations of input sequences. In the example of FIG.
3, for each sequence of tokens generated by the one or more
encoder network layers of the encoder neural network from
the input sequence, the system can determine a respective
proper subset of the sequence of tokens based on respective
positions of the tokens in the sequence, for example select-
ing the first few tokens or the last few tokens from a
sequence of tokens. The system can also determine a respec-
tive proper subset of the sequence of tokens based on a
length of the input sequence, for example selecting more
tokens from encoded representations generated from longer
input sequences. As a particular example, the system can
select the first N or last N tokens, where N is a fixed fraction
of the total number of tokens in the sequence.

As depicted in FIG. 3, for encoder neural network A, the
system selects N=2 leftmost tokens in the sequence of
tokens generated by the encoder neural network A from
processing input sequence A. For encoder neural network B,
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the system selects M=3 leftmost tokens in the sequence of
tokens generated by the encoder neural network B from
processing input sequence B.

The system receives, at a head neural network and from
each of the plurality of encoder neural networks, lower-
dimensional representations of a respective proper subset of
the sequence of tokens generated by the encoder neural
network (208).

In some implementations, the encoder neural networks
and the head neural network share access to the same
memory or a data storage that is accessible to the system. In
these implementations, the system can store the lower-
dimensional representations of the respective proper subsets
of the sequences of tokens generated by the encoder neural
networks in memory or data storage accessible to the head
neural network, e.g., in addition to or instead of directly
providing these representations to the head neural network,
e.g., through a wired or wireless network. The system can
then retrieve these representations whenever an output needs
to be generated by using the head neural network based on
processing some or all of these stored, i.e., pre-computed,
representations.

In various cases, this can allow for the system to perform
a given machine learning task with reduced inference time.
In addition, this can be further advantageous in cases where
there are more possible combinations than the number of
distinct input sequences, because a lower-dimensional rep-
resentation for the same input sequence need not be regen-
erated as the system processes different tuples of input
sequences. As a concrete example, the given task is to
predict the relevance between a query and a document. The
system can generate and store, e.g., prior to receiving a user
input to begin performing the task, respective lower-dimen-
sional representations for all available input sequences to the
system which may include millions of queries and millions
of documents and, when at inference time, use the light-
weight head neural network to efficiently process different
pairs of pre-stored lower-dimensional representations to
generate as output a relevance score for each different
query-document pair.

The system processes, using the head neural network, the
lower-dimensional representations to generate an output
(210). Specifically, the system can generate a combined,
e.g., concatenated, input for the head neural network from
the lower-dimensional representations of the respective
small proper subsets of tokens that have been generated as
a result of processing the input sequences using the encoder
neural networks. The system then uses the head neural
network to process the combined input to generate the
network output. Depending on the specifics of the given
machine learning task, the output can be any kind of score,
classification, or regression output based on the tuple of
input sequences.

In general, the process 200 can be performed as part of
predicting an output for a tuple of multiple input sequences
for which the desired output, i.e., the output that should be
generated by the system for the tuple of multiple input
sequences, is not known.

The process 200 can also be performed as part of pro-
cessing tuples of input sequences derived from a set of
training data, i.e., tuples of input sequences derived from a
set of inputs for which the output that should be generated
by the system is known, in order to train the encoder neural
networks and the head neural network to determine trained
values for the parameters of the neural networks, so that the
system can summarize the information of the entire input
sequence to selected tokens of the encoded representations
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of the input sequence and generate accurate output scores.
Specifically, the system can do this by optimizing an objec-
tive function that is specific to the given machine learning
task. The exact forms of the objective function may vary
across different tasks, but typically, the objective function
measures a difference between the predicted output and the
known, desired output or another target output that is
derived from the known, desired output. A cross-entropy
loss function, e.g., in the case of classification tasks, and a
mean squared error (MSE) loss function, e.g., in the case of
regression tasks, are examples of suitable objective func-
tions that can be used by the system during the training.

The system can repeatedly perform the process 200 on
inputs selected from a set of training data as part of a
conventional machine learning training technique to train
the initial neural network layers, e.g., a gradient descent with
backpropagation training technique that uses a conventional
optimizer, e.g., stochastic gradient descent, RMSprop, or
Adam optimizer, including Adam with weight decay (“Ad-
amW?”) optimizer. During training, the system can incorpo-
rate any number of techniques to improve the speed, the
effectiveness, or both of the training process. For example,
the system can use dropout, label smoothing, or both to
reduce overfitting. As another example, the system can
perform the training using a distributed architecture that
trains multiple instances of the encoder neural networks in
parallel.

In some implementations, prior to the commencement of
the training, the system can initialize a portion of the
parameters of the encoder neural networks in accordance
with a predetermined set of parameter values, rather than
randomly initialized values. This can improve the overall
training effectiveness in terms of required computational
resources. For example, the system can initialize parameter
values of the one or more encoder network layers of each
encoder neural network with trained values of parameters of
another, pre-trained neural network. For example, the other
neural network can be a self-attention neural network that
has already been trained to attain at least a threshold level of
performance (e.g., accuracy) on a relevant machine learning
task, e.g., a natural language processing or understanding
task that involves operating on textual data, information
derived from textual data, or both.

That is, the system can obtain an instance of the neural
network by first instantiating the encoder neural networks
according to the architecture and trained parameter values of
(a portion of) the other self-attention neural network, and
then attaching the projection layers and the head neural
network to the encoder network layers included in the
encoder neural networks that have been instantiated in this
way. The system can then proceed to train the obtained
neural network on the given machine learning task as
described above.

In some implementations, the system makes use of a
teacher neural network during the training. For example, the
teacher neural network can be a specialist neural network
with a cumbersome architecture (e.g., with more layers,
more parameters, or both) that has already been trained to
attain at least a threshold level of performance on the same
given machine learning task as the system is configured to
perform. Specifically, for each training input (i.e., a training
tuple of input sequences), the system first processes the
training input using a trained neural network to generate a
teacher network output, and then trains the encoder and head
neural networks using the teacher network output generated
by the teacher neural network, i.e., trains the head neural
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network to generate a training output for the training input
that match the teacher network output.

For example, the system can do this by optimizing a
cross-entropy loss function:

—Z (vilogpi + (1 - yplog(l — pi)),

i

where y, is the training output generated by the neural
network and p, may be computed by applying a sigmoid
function on the teacher network output which is in the
form of logits.

This can further improve the effectiveness of training by
allowing for the system to make use of unlabeled training
data, which is typically much more readily available in large
amounts, compared with labeled (e.g., human-annotated)
training data. In addition, once trained using the cumber-
some teacher neural network, the neural networks can gen-
erate outputs that are not significantly less accurate than
outputs generated by the cumbersome neural network
despite being easier to deploy or using fewer computational
resources than the cumbersome neural network. In some
implementations, the system trains the neural networks
using a two-stage process. During the first (“pre-training’)
stage, the system adjusts only parameter values of the
projection layers of the encoder neural networks and param-
eter values of the head neural network, while keeping the
parameter values of the one or more encoder network layers
fixed to their values that have been randomly initialized or
otherwise predetermined. After the pre-training, that is,
during the second (“fine-tuning”) stage, the system adjusts
values of all of the network parameters, including parameter
values of the one or more encoder network layers of the
encoder neural networks.

This specification uses the term “configured” in connec-
tion with systems and computer program components. For a
system of one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that in operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

Embodiments of the subject matter and the functional
operations described in this specification can be imple-
mented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
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signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus.

The term “data processing apparatus” refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
further include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program, which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code, can be
written in any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages; and it can be deployed in any form,
including as a stand alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of
a file that holds other programs or data, e.g., one or more
scripts stored in a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

In this specification, the term “database” is used broadly
to refer to any collection of data: the data does not need to
be structured in any particular way, or structured at all, and
it can be stored on storage devices in one or more locations.
Thus, for example, the index database can include multiple
collections of data, each of which may be organized and
accessed differently.

Similarly, in this specification the term “engine” is used
broadly to refer to a software-based system, subsystem, or
process that is programmed to perform one or more specific
functions. Generally, an engine will be implemented as one
or more software modules or components, installed on one
or more computers in one or more locations. In some cases,
one or more computers will be dedicated to a particular
engine; in other cases, multiple engines can be installed and
running on the same computer or computers.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA or an ASIC,
or by a combination of special purpose logic circuitry and
one or more programmed computers.

Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive
instructions and data from a read only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing instructions and one or more memory devices for storing
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instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

Computer readable media suitable for storing computer
program instructions and data include all forms of non
volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user’s device in response to
requests received from the web browser. Also, a computer
can interact with a user by sending text messages or other
forms of message to a personal device, e.g., a smartphone
that is running a messaging application, and receiving
responsive messages from the user in return.

Data processing apparatus for implementing machine
learning models can also include, for example, special-
purpose hardware accelerator units for processing common
and compute-intensive parts of machine learning training or
production, i.e., inference, workloads.

Machine learning models can be implemented and
deployed using a machine learning framework, e.g., a Ten-
sorFlow framework, a Microsoft Cognitive Toolkit frame-
work, an Apache Singa framework, or an Apache MXNet
framework.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an imple-
mentation of the subject matter described in this specifica-
tion, or any combination of one or more such back end,
middleware, or front end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.
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The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data, e.g., an HTML page, to a user
device, e.g., for purposes of displaying data to and receiving
user input from a user interacting with the device, which acts
as a client. Data generated at the user device, e.g., a result
of the user interaction, can be received at the server from the
device.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any invention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described in this speci-
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even initially be claimed
as such, one or more features from a claimed combination
can in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings
and recited in the claims in a particular order, this should not
be understood as requiring that such operations be per-
formed in the particular order shown or in sequential order,
or that all illustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and
parallel processing may be advantageous. Moreover, the
separation of various system modules and components in the
embodiments described above should not be understood as
requiring such separation in all embodiments, and it should
be understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous.

What is claimed is:

1. A system for performing a machine learning task on a
tuple of a plurality of input sequences to generate an output,
the system comprising one or more computers and one or
more storage devices storing instructions that, when
executed by the one or more computers, cause the one or
more computers to perform one or more operations to
implement:

a neural network configured to perform the machine
learning task, the neural network comprising (i) a
plurality of encoder neural networks that comprise a
different encoder neural network corresponding to each
different input sequence included in the tuple and (ii) a
head neural network, wherein each encoder neural
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network comprises one or more encoder network layers

and a projection layer, wherein each encoder neural

network is configured to:

receive an input sequence that corresponds to the
encoder neural network from the tuple, wherein the
input sequence has a respective network input at
each of a plurality of input positions in an input
order;

process the input sequence using the one or more
encoder network layers to generate an encoded rep-
resentation of the respective input sequence, the
encoded representation comprising a sequence of
tokens;

determine a respective proper subset of the sequence of
tokens in the encoded representation based on
respective positions of the tokens in the sequence
and a length of the input sequence that corresponds
to the encoder neural network; and

process each token in the respective proper subset using
the projection layer to generate a lower-dimensional
representation of the token, and wherein the head
neural network is configured to:

receive, from each of the plurality of encoder neural
networks, the lower-dimensional representation of
each token in the respective proper subset that is
generated by the encoder neural network; and

process the lower-dimensional representations to gen-
erate the output.

2. The system of claim 1, wherein the head neural network
is further configured to access the lower-dimensional rep-
resentations of the respective proper subsets of the
sequences of tokens generated by the encoder neural net-
works from a memory.

3. The system of claim 1, wherein the lower-dimensional
representations of the tokens generated by different projec-
tion layers have different dimensions from each other.

4. The system of claim 1, wherein the sequence of tokens
generated by the encoder neural network comprises a cor-
responding token for each network input in the input
sequence.

5. The system of claim 1, wherein the respective proper
subset of the sequence of tokens comprises first N tokens in
the sequence of tokens, and wherein N is a predetermined
positive integer.

6. The system of claim 1, wherein the machine learning
task is a semantic text matching task.

7. The system of claim 1, wherein the one or more encoder
network layers comprise an attention layer that is configured
to:

receive an input sequence for the layer comprising a

respective layer input at each of one or more positions;
and

generate an attended input sequence at least in part by

applying an attention mechanism to the input sequence
for the layer, the attended input sequence comprising a
respective attended layer input at each of the one or
more positions.

8. The system of claim 1, wherein the respective proper
subsets of the sequences of tokens for different input
sequences included in the tuple have different numbers of
tokens than each other.

9. A computer-implemented method comprising:

receiving, by a neural network, a tuple of a plurality of

input sequences, wherein the neural network comprises
(1) a plurality of encoder neural networks that comprise
a different encoder neural network corresponding to
each different input sequence included in the tuple and
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(ii) a head neural network, wherein each encoder neural
network comprises one or more encoder network layers
and a projection layer;

receiving, at each encoder neural network, an input

sequence that corresponds to the encoder neural net-
work from the tuple, wherein the input sequence has a
respective network input at each of a plurality of input
positions in an input order;

processing, using the one or more encoder network layers

of each encoder neural network, the input sequence to
generate an encoded representation of the input
sequence, the encoded representation comprising a
sequence of tokens;

determining a respective proper subset of the sequence of

tokens in the encoded representation based on respec-
tive positions of the tokens in the sequence and a length
of the input sequence that corresponds to the encoder
neural network;

processing, using the projection layer of each encoder

neural network, each token in the respective proper
subset to generate a lower-dimensional representation
of the token;

receiving, at the head neural network and from each of the

plurality of encoder neural networks, the lower-dimen-
sional representation of each token in the respective
proper subset that is generated by the encoder neural
network; and

processing, using the head neural network, the lower-

dimensional representations to generate an output.

10. The computer-implemented method of claim 9,
wherein the head neural network is further configured to
access the lower-dimensional representations of the respec-
tive proper subsets of the sequences of tokens generated by
the encoder neural networks from a memory.

11. The computer-implemented method of claim 9,
wherein the lower-dimensional representations of the tokens
generated by different projection layers have different
dimensions from each other.

12. The computer-implemented method of claim 9,
wherein the sequence of tokens generated by the encoder
neural network comprises a corresponding token for each
network input in the input sequence.

13. The computer-implemented method of claim 9,
wherein the respective proper subset of the sequence of
tokens comprises first N tokens in the sequence of tokens,
and wherein N is a predetermined positive integer.

14. The computer-implemented method of claim 9,
wherein the one or more encoder network layers comprise
an attention layer that is configured to:

receive an input sequence for the layer comprising a

respective layer input at each of one or more positions;
and

generate an attended input sequence at least in part by

applying an attention mechanism to the input sequence
for the layer, the attended input sequence comprising a
respective attended layer input at each of the one or
more positions.

15. The computer-implemented method of claim 9, fur-
ther comprising training the plurality of encoder neural
networks and the head neural network including initializing
parameter values of the one or more encoder network layers
of each encoder neural network with a predetermined set of
parameter values.

16. The computer-implemented method of claim 15,
wherein the training further comprises:

receiving a training tuple;
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processing the training tuple using a trained neural net-
work to generate a teacher network output; and

training the neural network using the teacher network
output generated by the trained neural network,
wherein the training comprises adjusting only param-
eter values of the projection layers of the encoder
neural networks and parameter values of the head
neural network.

17. The computer-implemented method of claim 16,
wherein the training further comprises:

receiving another training tuple;

processing the training tuple using the trained neural

network to generate another teacher network output;
and

training the neural network using the other teacher net-

work output generated by the trained neural network,
including adjusting parameter values of the one or more
encoder network layers of the encoder neural networks.

18. The computer-implemented method of claim 9,
wherein the respective proper subsets of the sequences of
tokens for different input sequences included in the tuple
have different numbers of tokens than each other.

19. One or more non-transitory computer storage media
storing instructions that when executed by one or more
computers cause the one or more computers to implement:

a neural network configured to perform a machine learn-

ing task on a tuple of a plurality of input sequences to

generate a network output, the neural network com-
prising (i) a plurality of encoder neural networks that
comprise a different encoder neural network corre-
sponding to each different input sequence included in
the tuple and (ii) a head neural network, wherein each
encoder neural network comprises one or more encoder
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network layers and a projection layer, wherein each

encoder neural network is configured to:

receive an input sequence that corresponds to the
encoder neural network from the tuple, wherein the
input sequence has a respective network input at
each of a plurality of input positions in an input
order;

process the input sequence using the one or more
encoder network layers to generate an encoded rep-
resentation of the respective input sequence, the
encoded representation comprising a sequence of
tokens;

determine a respective proper subset of the sequence of
tokens in the encoded representation based on
respective positions of the tokens in the sequence
and a length of the input sequence that corresponds
to the encoder neural network; and

process each token in the respective proper subset using
the projection layer to generate a lower-dimensional
representation of the token, and wherein the head
neural network is configured to:

receive, from each of the plurality of encoder neural
networks, the lower-dimensional representation of
each token in the respective proper subset that is
generated by the encoder neural network; and

process the lower-dimensional representations to gen-
erate the output.

20. The one or more non-transitory computer storage

media of claim 19, wherein the respective proper subsets of
the sequences of tokens for different input sequences
included in the tuple have different numbers of tokens than
each other.



