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ADVERSARIAL BANDITS POLICY FOR
CRAWLING HIGHLY DYNAMIC CONTENT

CROSS REFERENCE TO RELATED
APPLICATION

This application is a 35 U.S.C. § 371 National Phase
Entry Application from PCT/US2020/025757, filed Mar. 30,
2020, designating the U.S., the disclosure of which is
incorporated herein by reference in its entirety.

TECHNICAL FIELD

This description relates to generating web recrawling
policies for highly dynamic content, such as webpages.

BACKGROUND

Web crawlers include internet bots configured to system-
atically browse the Internet. A web crawler begins with an
initial, or seed, list of URLs to visit. From there, the web
crawler identifies webpages to which each URL links and
stores the identified webpages in a repository. In order to
identify relevant webpages, a web crawler visits the
webpages. But some webpages change over time. To ensure
that content is fresh, e.g., accurately reflects changes, the
web crawler needs to recrawl, or revisit, a webpage peri-
odically.

SUMMARY

Implementations provide a refresh strategy that is config-
ured to deliver accurate information to a user while mini-
mizing use of computer resources. For example, web page
content, such as an offer page, presents a product to a user
at a price within the browser. The dynamic nature of
presenting offers on the Internet means that a repository of
data obtained from the offer pages may need to be updated
frequently. Such updates occur using a web crawler—more
specifically, a recrawl operation by the web crawler on a
repository of URLs. Each recrawl operation uses a certain
amount of network resources and accordingly a recrawl
strategy that works within a limited amount of network
resources is desired. While individual recrawl strategies
over a given number of offers have been used, the efficacy
of these strategies is not always optimal. In contrast, dis-
closed techniques use a combination of multiple recrawl
strategies to optimize factual freshness within network
resource constraints. Disclosed implementations determine
a policy for selecting a recrawl strategy at any given instant
in time using a K-armed adversarial bandit algorithm, where
each arm is a different recrawl strategy. The K-armed
adversarial bandit determines a distribution of importance
weights assigned to each recrawl strategy. Moreover, each
recrawl strategy corresponds to a respective recrawl rate,
which is determined from parameter values such as click
rate, impression rate, and change rate. Conventional recrawl
strategies assume particular, static values of these param-
eters, although such parameter values are not in reality
static. In contrast, disclosed implementations include a pro-
cess for estimating these parameter values using both history
data and metadata, alone and in combination, in a deep
learning algorithm. Using this K-armed adversarial bandits
process along with a deep learning parameter value estima-
tion, improved factual freshness results are attained with
minimal computing resources.
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In one general aspect, a method can include receiving,
from a repository, entity data representing a plurality of
entities, each of the plurality of entities having a respective
value of a quantity, the values of the quantities being
accurate at a previous time. The method can also include, for
each of the plurality of entities, generating a respective value
for each of a plurality of parameters at a current time, the
parameters including at least one of an access rate of that
entity from the repository and a likelihood of a change in the
value of the quantity of that entity. The method can further
include selecting a refresh strategy of a plurality of refresh
strategies for updating the value of the quantity of each of
the plurality of entities according to a refresh policy. The
method can further include generating a respective refresh
rate for each of the plurality of entities according to the
selected refresh strategy, the refresh rate for an entity of the
plurality of entities being based on the values of the plurality
of parameters at a sequence of times prior to the current
time. The method can further include performing a refresh
operation on the repository based on the respective refresh
rates for the plurality of entities, the refresh operation being
configured to obtain the value of the quantity of an entity at
the current time. The method can further include updating
the refresh policy based on a difference between the value of
the quantity at the previous time and the value of the
quantity at the current time of each of the plurality of
entities.

In another general aspect, a computer program product
comprises a nontransitory storage medium, the computer
program product including code that, when executed by
processing circuitry of a computing device, causes the
processing circuitry to perform a method. The method can
include receiving, from a repository, entity data representing
a plurality of entities, each of the plurality of entities having
a respective value of a quantity, the values of the quantities
being accurate at a previous time. The method can also
include, for each of the plurality of entities, generating a
respective value for each of a plurality of parameters at a
current time, the parameters including at least one of an
access rate of that entity from the repository and a likelihood
of a change in the value of the quantity of that entity. The
method can further include selecting a refresh strategy of a
plurality of refresh strategies for updating the value of the
quantity of each of the plurality of entities according to a
refresh policy. The method can further include generating a
respective refresh rate for each of the plurality of entities
according to the selected refresh strategy, the refresh rate for
an entity of the plurality of entities being based on the values
of the plurality of parameters at a sequence of times prior to
the current time. The method can further include performing
a refresh operation on the repository based on the respective
refresh rates for the plurality of entities, the refresh operation
being configured to obtain the value of the quantity of an
entity at the current time. The method can further include
updating the refresh policy based on a difference between
the value of the quantity at the previous time and the value
of the quantity at the current time of each of the plurality of
entities.

In another general aspect, an electronic apparatus config-
ured to generate a refresh policy comprises memory and
controlling circuitry coupled to the memory. The controlling
circuitry can be configured to receive, from a repository,
entity data representing a plurality of entities, each of the
plurality of entities having a respective value of a quantity,
the values of the quantities being accurate at a previous time.
The controlling circuitry can also be configured to, for each
of the plurality of entities, generate a respective value for
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each of a plurality of parameters at a current time, the
parameters including at least one of an access rate of that
entity from the repository and a likelihood of a change in the
value of the quantity of that entity. The controlling circuitry
can also be configured to select a refresh strategy of a
plurality of refresh strategies for updating the value of the
quantity of each of the plurality of entities according to a
refresh policy. The controlling circuitry can also be config-
ured to generate a respective refresh rate for each of the
plurality of entities according to the selected refresh strategy,
the refresh rate for an entity of the plurality of entities being
based on the values of the plurality of parameters at a
sequence of times prior to the current time. The controlling
circuitry can also be configured to perform a refresh opera-
tion on the repository based on the respective refresh rates
for the plurality of entities, the refresh operation being
configured to obtain the value of the quantity of an entity at
the current time. The controlling circuitry can also be
configured to update the refresh policy based on a difference
between the value of the quantity at the previous time and
the value of the quantity at the current time of each of the
plurality of entities.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
Other features will be apparent from the description and
drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are diagrams that illustrate an example
electronic environment in which improved techniques
described herein may be implemented.

FIG. 2 is a flow chart that illustrates an example method
of determining a web recrawl policy, according to disclosed
implementations.

FIG. 3 is a diagram of an example method of generation
of a web recrawl policy, according to disclosed implemen-
tations.

FIG. 4 is a diagram of an example dataset generation
process for daily predictions, in accordance with disclosed
implementations.

FIG. 5 illustrates an example of a computer device and a
mobile computer device that can be used to implement the
described techniques.

FIG. 6 illustrates an example of a distributed computer
device that can be used to implement the described tech-
niques.

DETAILED DESCRIPTION

Web crawlers provide content of webpages to a search
system, e.g., for indexing and retrieval. Because web crawl-
ers can use significant network resources, web crawlers
often employ one or more strategies to determine what
webpages to visit. Some example scheduling strategies
include breadth-first, backlink count, and PageRank com-
putations.

Because some webpages are dynamic and constantly
changing, some web crawlers perform recrawling of web-
sites to ensure that the content of those websites in the search
system is fresh. That is, content is fresh when the content of
a webpage delivered to a user’s web browser from the search
system is identical to the content of that webpage stored on
the server hosting the webpage. A conventional approach to
generating policies for recrawling websites includes
recrawling websites at a uniform rate, i.e., each page
recrawled with equal probability.
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A technical problem in generating policies for recrawling
websites is that the above-described conventional approach
performs poorly when the recrawling is performed for
highly dynamic content. A domain may have highly
dynamic content when the domain includes webpages that
change (e.g., are added/deleted) frequently and/or has
webpages where factual information on the page changes
frequently. Examples of such highly dynamic content
include commercial web content, news outlets, weather
forecasts, movie reviews, etc. Commercial domains may
include web content having quantity data, such as an offer to
a user to purchase a product at a price. Such content may
also be referred to as an offer page. But not all content of a
domain changes at the same rate. For example, in some
cases, the price of a first offer on a first webpage in the
domain varies rapidly over time, while the price of a second
offer on a second webpage in the domain varies slowly.
Moreover, the rate of change of the first webpage may not
be constant, e.g., with prices changing more rapidly close to
a holiday or some other event and less rapidly after the
holiday or event. The goal of a web crawler is to optimally
synchronize the factual content (e.g., quantity information
including price information) stored in the search system’s
repository with the content stored at the domain. The content
stored in the search system is referred to as stale if that
content does not match the content stored at the domain.

Refreshing dynamic factual content, such as offer pages,
at a uniform rate does not optimally use network resources.
To ensure content is fresh, the web crawler would crawl
frequently, but frequent crawl requests consume unneces-
sary network resources if the content has not changed and
can also overwhelm the domain. Crawling less often ensures
the domain is not overwhelmed and conserves network
resources but results in more stale content. Thus, recrawl
scheduling is often a balance between network resources
(frequency of crawling) and staleness. One conventional
recrawl scheduling strategy includes a page selection heu-
ristic which chooses webpages based on change rates.
Another conventional strategy, known as LambdaCrawl,
seeks optimal recrawl rates under resource constraints.

Some web crawlers focus on a single strategy. Such single
strategy crawlers, however, usually crawl one particular type
of webpage, and accordingly may fail to effectively crawl
other page types.

In accordance with the implementations described herein,
a technical solution to the above-described technical prob-
lem includes generating an adaptive multiple strategy
approach using a number of different recrawl strategies. In
some implementations, each strategy is an arm of a K-armed
adversarial bandit algorithm with reinforcement learning. In
some implementations, the multiple strategy approach may
use machine learning to estimate parameters such as a click
rate, impression rate, and likelihood of price change, i.e.,
change rate. These parameters are assumed to be known in
the conventional approaches. The problem with such con-
ventional approaches is that the knowledge of the change
rate beforehand, for example, is usually unavailable in
practice. To obtain such information, conventional methods
developed various estimation approaches. A simple one
involves estimating the change rate from the past history.
However, such an approach suffers from the cold start issue
and is subject to the feedback loop. These drawbacks
motivated other approaches to incorporate predictive fea-
tures that are universally available or relatively static, e.g.
page content, when predicting change rate. In contrast,
disclosed implementations may include estimating the
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change rate, click rate, and impression rate using not only
history data but also metadata, both separately and in
combination.

A technical advantage of disclosed implementations is
that such a multiple strategy approach achieves higher
freshness than any single strategy and is robust under tight
resource constraints (e.g., computer processing cycles, net-
work bandwidth, etc.). Also, the parameter estimation sub-
stantially affects the effectiveness of a recrawl strategy.
Accordingly, disclosed implementations use a predictive
model that takes both the past history and metadata infor-
mation into account. The disclosed predictive model
improves upon a history-based model. The K-armed adver-
sarial bandits approach, used by disclosed implementations,
combines multiple recrawl strategies under a unified policy
with provable freshness guarantees. Disclosed implementa-
tions outperform single strategies, including a resource-
optimized strategy such as LambdaCrawl] (which is contin-
gent on the constancy of content change rate), even when
such a resource-optimized strategy is not included as a
candidate strategy.

Generally, the above-described technical solution can be
configured to update a refresh policy, of which a recrawl
policy is a special case. Accordingly, the technical solution
is not limited to recrawling operations. Nevertheless, unless
explicitly stated, the implementations herein are directed to
updating recrawl policies.

FIGS. 1A and 1B are diagrams that illustrate an example
electronic environment 100 in which the above-described
technical solution may be implemented. The computer 120
is configured to generate and execute policies for recrawling
websites. Put another way, the computer 120 may be referred
to as a production crawler.

The computer 120 includes a network interface 122, one
or more processing units 124, and memory 126. The network
interface 122 includes, for example, Ethernet adaptors,
Token Ring adaptors, and the like, for converting electronic
and/or optical signals received from the network 150 to
electronic form for use by the computer 120. The set of
processing units 124 include one or more processing chips
and/or assemblies. The memory 126 includes both volatile
memory (e.g., RAM) and non-volatile memory, such as one
or more ROMs, disk drives, solid state drives, and the like.
The set of processing units 124 and the memory 126 together
form control circuitry, which is configured and arranged to
carry out various methods and functions as described herein.

In some implementations, one or more of the components
of the computer 120 can be, or can include processors (e.g.,
processing units 124) configured to process instructions
stored in the memory 126. Examples of such instructions as
depicted in FIG. 1 include an entity manager 130, a predic-
tion manager 140, a recrawl manager 150, and recrawl
policy manager 160. Further, as illustrated in FIG. 1A, the
memory 126 is configured to store various data, which is
described with respect to the respective managers that use
such data. Note that, in some implementations, an entity
page corresponds to an offer page that includes an offer to
sell a product.

FIG. 1B illustrates an example electronic environment
100 in which the improved techniques may be performed.
Electronic environment 100 includes a repository of crawl-
ing logs 102, a repository of entity page signals 104, an
Internet 106 (or, alternatively, the World Wide Web), a
repository of content 108, and the computer 120 of FIG. 1A.

The repository of crawling logs 102 is configured to store
crawl history data. The crawl history data is used, in some
implementations, by the prediction manager 140 and, more
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specifically, training managers 142 configured to train mod-
els, to estimate parameters for crawl rate computations.

The repository of entity page signals 104 is configured to
store metadata related to content included in the entity
pages. Example metadata stored in entity page signals 104
include brand identifier, merchant identifier, country code,
and the like. Further details about metadata are described
with regard to Table 3. In some implementations, the meta-
data is also used by the prediction manager 140 to train the
models used to estimate parameters for crawl rate compu-
tations.

The repository of content data 108 is configured to store
content extracted from the entity web pages as well as the
URLSs pointing to the entity web pages. The content data 108
can include factual data for an entity. Factual data can
include, for example, a price or availability of a product
offered for sale, or product ratings The factual data may also
be referred to as a quantity. It is understood that each
quantity (e.g., fact) has a value. Thus, for example, a price
is understood to have a value representing the price and
availability has a value representing the availability. Accord-
ingly, as used herein, quantity can refer to the label (e.g.,
price, availability) or the value for the label, as appropriate.
The freshness of the factual data is indicated by agreement
between the values of the quantities (e.g., prices of offers)
stored in the repository of content data 108 and the values of
the quantities found on the domain (not shown), e.g.,
obtained via the Internet 106. A value stored in the content
data 108 for an entity is considered fresh if it matches the
value of the same quantity for the entity on the domain.
Otherwise a value stored in the content data 108 for an entity
is stale.

Implementations are not limited to the exact configuration
illustrated in FIG. 1B. For example, any of crawling logs
102, entity page signals 104, and/or content data 108 may be
included as part of computer 120, e.g., stored in memory
126. As another example, any of crawling logs 102, entity
page signals 104, and/or content data 108 may be remote
from but accessible to computer 120. In some implementa-
tions, one or more of crawling logs 102, entity page signals
104, content data 108 and computer 120 may be part of a
distributed computing system.

Returning to FIG. 1A, the entity manager 130 is config-
ured to receive entity data 132 representing entities 132(1),
132(2), . . ., 132(N). In some implementations, the entity
manager 130 receives the entity data 132 over the network
interface 122, i.e., over a network (such as Internet 106)
from a remote computer (not pictured). In some implemen-
tations, the entity manager 130 receives the entity data 132
from local storage (e.g., a disk drive, flash drive, SSD, or the
like).

The entities (e.g., offers) 132(1), 132(2), . . ., 132(N)
represented by the entity data 132 are, in some implemen-
tations, each offers to purchase a product, for example. Such
offers may be found within a search tool in a browser, e.g.,
Google Shopping. Such entities may also be referred to as
product offers or just offers. Other examples of entities
include [event pages (e.g., a time or location of an event that
is subject to change) or user-generated reviews of an event.
Each of the entities 132(1), 132(2), . . ., 132(N) (e.g., entities
132(1)) includes respective quantity data 133(1) represent-
ing a quantity at a previous time. Each quantity at a previous
time (e.g., price) may need to be updated with the latest
information from the Internet 106 via URLs from the
content data 108. Entity data 132 also includes, for each
entity (e.g., entity 132(1)) values of parameters: click rate pu
represented by click rate data 134(1), impression rate v
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represented by impression rate data 135(1), and a likelihood
A of a price change, represented by quantity (e.g., price)
change likelihood data 136(1). Click rate p represents the
number of times a user selects the entity from a search result
per time interval. The impression rate v indicates the number
of times an entity is displayed in a search result per time
interval.

For ease in discussing FIG. 1A, the remaining discussion
of FIG. 1A will use an example where the entity data 132
represents offer data, i.e., an offer to sell a product, and the
quantity data represents a price of an offer. The entities
132(1), . . ., 132(N) are therefore referred to as offers and
the quantity data 133 as price data. However, implementa-
tions are not limited to offers and price data.

The prediction manager 140 is configured to generate
predictions of the values of the click rate, impression rate,
and change rate based on metadata 144 and history data 146.
Specifically, the price change prediction is modeled as a
classification task, for which a goal is to predict whether an
offer’s price will change in the next day. Similarly, for click
rate and impression rate prediction, a forecast includes
determining whether an offer will be clicked or impressed in
the next day. The prediction outputs will be directly used as
i, v and A when computing the crawling rate. In some
implementations, the prediction horizon is set at the daily
granularity since click and impression statistics are aggre-
gated on the daily basis. However, implementations can use
other prediction horizons, e.g., hourly, weekly, every-other-
day, etc.

The recrawl manager 150 is configured to perform a
recrawl operation to recrawl a repository of URLs for
webpages. The webpages may have quantity (e.g., pricing)
information for the offers 132(1), 132(2), . . ., 132(N). The
recraw] operation is performed by the recrawl manager 150
according to one of a plurality of recrawl strategies. Each
recall strategy is represented by recrawl strategy data 152.

The recrawl strategy data 152 includes data items that
define the plurality of recrawl strategies. For example, the
recraw] strategy data 152 can include recrawl strategy
identifier data 153, which represents identifiers correspond-
ing to each of the recrawl strategies. For example, recrawl
strategies considered herein include a uniform strategy, a
change-weighted strategy, a click-weighted strategy, an
impression-weighted strategy, and a resource-optimized
strategy. These strategies are not exhaustive and other
recrawling strategies may be used. The recrawl strategy data
152 can include recrawl constraint data 154. The recrawl
constraint data 154 represents a constraint on network
resources that limits the amount of recrawls per time step
that may be carried out. In some implementations, this
constraint may be expressed in terms of an aggregated
recrawl rate, i.e., a total number of recrawl events per time
step, across all recrawl strategies. The recrawl strategy data
152 can include recrawl rate data 155, which represents a
number of recrawl events performed per time step. The time
step is dependent on the crawler. In some examples the time
step may be an hour. In addition, the recrawl strategy data
152 may include updated quantity (e.g., price) data 156 for
each offer 132(1), . . ., 132(N) obtained as a result of a
recrawl according to a recrawl strategy.

The recrawl] policy manager 160 is configured to generate
a recrawl policy, represented by recrawl policy data 162. A
recrawl policy is a distribution of weights over the multiple
recraw] strategies, each weight indicating a level of impor-
tance of a strategy and, accordingly, how often that strategy
is used in recrawl operations. In some implementations, the
recraw] policy manager 160 generates recrawl policy data
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162 using reinforcement learning. Reinforcement learning is
a type of machine learning that determines actions to be
taken to maximize a reward. Implementations may use a
reward for a recrawl that results in an updated quantity for
an entity, e.g., a recrawl that extracts a change in price for
a product offered for sale. No reward may be given for a
recraw] that does not result in an updated quantity, e.g., a
recraw] that extracts the same quantity that is already stored
in the repository for the product.

The recrawl policy data 162 represents the recrawl policy
and may include policy weight data 163. The policy weight
data 163 ultimately includes a distribution of weights over
the recrawl strategies. Each recrawl strategy has its own
weight distribution in the policy weight data 163. A weight
for a strategy k may be denoted as w,. Each weight corre-
sponds to a likelihood that, at the next instant of time, a
particular recrawl strategy will be selected. Thus, the weight
may be distributed over a time series. The importance
weight of a strategy k at time step tin the time series may be
denoted as w,".

The recrawl policy data 162 may include policy probabil-
ity data 164. Policy probability data 164 is an intermediate
quantity used in a K-armed adversarial bandits algorithm
from which adjustments to the policy weight data are
derived at each time step. For example, the policy probabil-
ity data 164 includes an exploration probability and repre-
sents a probability that a recrawl strategy will be selected
according to the current weight and the exploration prob-
ability. The exploration probability itself indicates a likeli-
hood that the “arm” of the adversarial bandits, or recrawl
strategy chosen, is not chosen solely according to the
historical policy represented by the policy weight data 163,
but rather a uniformly-weighted policy. In other words, the
exploration probability prevents the system from selecting a
next recrawl strategy based solely on historical data, which
makes the system robust and avoids historical bias.

The recrawl policy data 162 may include reward data 165.
The reward data 165 is also an intermediate quantity used in
the K-armed adversarial bandits algorithm from which
adjustments to the policy weight data are derived at each
time step. The reward data 165 represents a reward for
selecting a particular arm, or recrawl strategy, over all offers
at an instant of time. The reward per offer, or per-offer utility,
indicates whether the reward strategy for that offer produced
an update for the price of that offer. Put another way, the
reward data 165 represents a reward for a recrawl that
identifies a change in the quantity.

The components (e.g., modules, processing units 124) of
the user device 120 can be configured to operate based on
one or more platforms (e.g., one or more similar or different
platforms) that can include one or more types of hardware,
software, firmware, operating systems, runtime libraries,
and/or so forth. In some implementations, the components of
the computer 120 can be configured to operate within a
cluster of devices (e.g., a server farm). In such an imple-
mentation, the functionality and processing of the compo-
nents of the computer 120 can be distributed to several
devices of the cluster of devices.

The components of the computer 120 can be, or can
include, any type of hardware and/or software configured to
generate and/or update a recrawl policy. In some implemen-
tations, one or more portions of the components shown in
the components of the computer 120 in FIG. 1 can be, or can
include, a hardware-based module (e.g., a digital signal
processor (DSP), a field programmable gate array (FPGA),
a memory), a firmware module, and/or a software-based
module (e.g., a module of computer code, a set of computer-
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readable instructions that can be executed by a computer).
For example, in some implementations, one or more por-
tions of the components of the computer 120 can be, or can
include, a software module configured for execution by at
least one processor (not shown). In some implementations,
the functionality of the components can be included in
different modules and/or different components than those
shown in FIG. 1, including combining functionality illus-
trated as two components into a single component.

Although not shown, in some implementations, the com-
ponents of the computer 120 (or portions thereof) can be
configured to operate within, for example, a data center (e.g.,
a cloud computing environment), a computer system, one or
more server/host devices, and/or so forth. In some imple-
mentations, the components of the computer 120 (or por-
tions thereof) can be configured to operate within a network.
Thus, the components of the computer 120 (or portions
thereof) can be configured to function within various types
of network environments that can include one or more
devices and/or one or more server devices. For example, the
network can be, or can include, a local area network (LAN),
a wide area network (WAN), and/or so forth. The network
can be, or can include, a wireless network and/or wireless
network implemented using, for example, gateway devices,
bridges, switches, and/or so forth. The network can include
one or more segments and/or can have portions based on
various protocols such as Internet Protocol (IP) and/or a
proprietary protocol. The network can include at least a
portion of the Internet.

In some implementations, one or more of the components
of the computer 120 can be, or can include, processors
configured to process instructions stored in a memory. For
example, an entity manager 130 (and/or a portion thereof),
a prediction manager 140 (and/or a portion thereof), a
recrawl manager 150 (and/or a portion thereof), and a
recraw] policy manager 160 (and/or a portion thereof) can be
a combination of a processor and a memory configured to
execute instructions related to a process to implement one or
more functions.

In some implementations, the memory 126 can be any
type of memory such as a random-access memory, a disk
drive memory, flash memory, and/or so forth. In some
implementations, the memory 126 can be implemented as
more than one memory component (e.g., more than one
RAM component or disk drive memory) associated with the
components of the computer 120. In some implementations,
the memory 126 can be a database memory. In some
implementations, the memory 126 can be, or can include, a
non-local memory. For example, the memory 126 can be, or
can include, a memory shared by multiple devices (not
shown). In some implementations, the memory 126 can be
associated with a server device (not shown) within a net-
work and configured to serve the components of the com-
puter 120. As illustrated in FIG. 1A, the memory 126 is
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configured to store various data, including entity data 132,
metadata 144, history data 146, recrawl strategy data 152,
and recraw] policy data 162.

It will be assumed herein that the entity data 132 repre-
sents offer data which represents an offer to sell a product.
Along these lines, the value of the quantity is a price of an
offer. The entities 132(1), . . ., 132(N) are assumed to be
offers.

Before delving into the details for generating a recrawl
policy, a formal description of the problem is presented.
Suppose there are a total number of n offers (0,, 0,,...,0,)
in the search environment, e.g., crawling logs 102. Each
offer o, (also referred to as an entity) is represented as a time
series, with the data point at time step t denoted by a vector
of three parameters (1, v/, A/). In this example, p,’ER*
represents the click rate, v,€R* represents the impression
rate and A€[0, 1] represents the probability of price change
(change in quantity). Because of the price change, the
crawler needs to periodically recrawl offers so that a local
repository (e.g., content data 108) can store the latest infor-
mation. A recraw] rate p,"€ER* is then defined to represent the
amount of recrawls made for offer o, at time step t.

Furthermore, the latest price of offer o, at time step t as is
denoted as r;, which might or might not be observed by a
recrawl strategy. In other words, r; represents the actual
price for the offer o, at time step t at the domain (source of
the offer). In the meantime, each recrawl strategy also
maintains a price 1’ in the content data 108 for serving end
users. At access time, users will see the right price only if r,”
matches 17, i.e. 1(r/=1f), where 1(*) is a binary indicator.
The price match is a function of two factors—the price
change history and the recrawl history.

Production crawlers, e.g., such as computer 120, also
need to deal with resource constraints. In this example, a
fixed crawling constraint of b offers is assumed at each time
step. A goal is to find recrawling rates P =(p,’, ps’, . .., P,))
that can maximize the overall utility given the resource
restrictions. Thus, if recrawling an offer updates the local
price (e.g., in content data 108) to the latest price in the
domain, a crawl is useful. Thus, for web crawling, freshness
is often adopted to represent the utility. Disclosed imple-
mentations may employ two freshness metrics to determine
utility:  click-weighted  freshness and  page-level
freshness. An offer is said to be fresh if its local price
|7 = matches its true price 1 I Hare, since each page corresponds
to one product offer, page-level freshness may be referred to
as the offer-level freshness. The click-weighted freshness
measures the percentage of clicks when users see the right
price, whereas the offer-level freshness examines, at a cer-
tain time step, the proportion of offers with price information
updated regardless of clicks.

Table 1 summarizes the notation used to represent the data
elements used in the disclosed environment.

TABLE 1

Notations used herein

A product offer i t
A total number of offers b

A time step or instant of time
Offer crawling constraint at
instant of time t

Click rate of o; at instant of
time t

Local price of o; at instant of
time t

Recrawl rate of o; at instant of
time t

Impression rate of o; at instant
of time t

True price of o; at instant of
time t

Change rate of o, at instant of
time t
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Notations used herein

X K The reward of applying a recrawl strategy k for o; at instant of time t
X The aggregated reward accumulated over all offers 0, i=1,2,...,n
A, The recrawling strategy (i.e., arm of the K-adversarial bandits) applied at

instant of time t

The recrawling task, e.g., of the recrawl manager 150, is
modeled as a K-armed adversarial bandits (KAB) problem,
where each recrawl strategy is treated as an arm. At each
time step, one arm is selected based on its historical perfor-
mance, entities (offers) to crawl using the selected arm are
determined, rewards are observed and the selected arm’s
performance is updated. By repeating this process, the arm
selection process can improve as time goes on.

Table 2 summarizes the recrawl strategies discussed
herein. It is understood that the recrawl] strategies listed here
or even the number of recrawl strategies are not required,
and other recrawl] strategies, or more or less than five recrawl
strategies listed are possible using the improved techniques.

TABLE 2
Recrawl Strategy Recrawl Rate p;
Uniform b-1/n
Change-weighted (A) b AYEAS
Click-weighted (p) b W
Impression-weighted (v) b viLV/
Resource-optimized (A) 2
Al HiA;
HAL 5, .
A ! 1-4;
;A=
1 -4} A}
b+Z;

1-4f

Recrawl strategies and their respective recrawl rates.
Note
that b = Z;p/".

FIG. 2 is a flow chart depicting an example method 200
of generating and using a recrawl policy for recrawling
websites, according to an implementation. The method 200
may be performed by software constructs described in
connection with FIG. 1, which reside in memory 126 of the
computer 120 and are run by the set of processing units 124.
Method 200 generates and uses a recrawl policy by estimat-
ing parameters for recrawl rates of various recrawl strate-
gies, and then employs a reinforcement learning via, e.g., a
K-armed adversarial bandits algorithm to derive a distribu-
tion of weights over the recrawl strategies that define the
recrawl policy.

At 202, the entity manager 130 receives, from a reposi-
tory, entity data 132 representing a plurality of entities (e.g.,
offer 132(1), . . ., 132(N)), each of the plurality of entities
having a respective value of a quantity (e.g., a price at which
to sell a product), the values of the quantity being accurate
at a previous time. For example, prices at the previous time
may have been obtained from the content repository 108
during a previous crawl.

At 204, the prediction manager 140, for each of the
plurality of entities, generates values of a plurality of param-
eters at a current time. The parameters include at least one
of a click rate, an impression rate, or a likelihood of a change
in the value of the quantity of that entity (e.g., price of that
offer). In conventional approaches, these parameter values
were taken from historical data. In contrast, disclosed imple-
mentations generate these parameter values using a neural
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network. The neural network is based on not only historical
data, but also metadata, e.g., stored in entity signal reposi-
tory 104. As discussed below with regard to FIG. 4, a model
based on metadata and history outperforms a model based
only on history or price change prediction

At 206, the recrawl manager 150 selects a recrawling
strategy of a plurality of recrawling strategies (represented
by recrawl strategy data 152). The selected recrawling
strategy is used to update the local repository, e.g., content
data 108 by recrawling the entity pages. As will be described
with regard to FIG. 3, the selection may be made in
accordance with a probability distribution over the plurality
of recrawl strategies.

At 208, the recrawl manager 150 generates a respective
recrawl rate (represented by recrawl rate data 155) for each
of the plurality of entities according to the selected recrawl
strategy. The recrawl rate for an entity of the plurality of
entities is based on the values of the plurality of parameters
(click rate, an impression rate, or a likelihood of a change)
at the sequence of times. For example, if the selected recrawl
strategy is a uniform recrawl strategy, the recrawl rate is
equal over all entities. As another example, if the selected
recrawl strategy is change weighted, the selected recrawl
rate is proportional to a change rate for an entity. In this case,
the change rate is determined through the prediction dis-
cussed with regard to FIG. 4. The recrawl rate for other
recrawl strategies may be similarly generated, as outlined in
Table 2.

At 210, the recraw] manager 150 schedules recrawl opera-
tions on the repository 108 based on the recrawl rate for each
of the plurality of entities. In other words, for the current
time step (e.g., an hour, a week, twice a day, etc.) the recrawl
manager 150 schedules a particular entity for recrawl p
times during the time step. Each recrawl of an offer obtains
the value of the quantity of each of the plurality of entities.
This updated value is as-of the current time.

At 212, the recrawl policy manager 160 updates the
recrawl policy (represented by recrawl policy data 162)
based on the recrawls. Each time an offer page is recrawled,
the recrawl policy manager 160 updates a time series of the
value of the quantity for that entity. This updated quantity
value becomes part of the history data that is used to predict
parameter values at a next crawl, e.g., as part of step 204.
Updating the recrawl policy also includes calculating a
reward. The reward is boosted by the click rate. In some
implementations, reward may be normalized to [0,1] and
may be expressed as

k‘Zrk‘ZZ“pl - 1(111 )

In addition, the updated quantity may be used to further train
the prediction model (e.g., a neural network) for computing
parameter values at later times.
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FIG. 3 is a diagram example method 300 of generation of
a web recrawl policy. In FIG. 3, the method starts with
choosing every arm having an equal chance of selection at
time step 1 (310(1)). A crawl strategy is selected and
recrawls scheduled according to the strategy. After recrawl-
ing, the system calculates the rewards (for each entity) and
updates the historical performance of the crawling strategy.
Over time, through aggregating rewards, certain recrawl
strategies gain more preference. In the example of FIG. 3,
the click-weighted strategy and resource-optimized strategy
are illustrated as getting progressively more preference as
time passes (see 310(1) at t=1, 310(2) at t=100, and 310(3)
at t=100). Note that implementations may use fewer recrawl
strategies than those illustrated in FIG. 3. Implementations
may also use more and/or different recrawl strategies.

Compared to adopting a single strategy, using adversarial
bandits is more advantageous in the following aspects: (1)
incorporating multiple strategies allows us to explore offers
from different angles, making it more robust to the errors
made by an individual strategy; (2) different from stochastic
bandit algorithms, adversarial bandits do not make station-
arity assumptions on reward distribution, which is a better
choice where the reward (click-weighted freshness) is
dynamic.

The adversarial bandits approach—more specifically, an
adjusted version of an EXP3 algorithm, may be formalized
as follows: assume that there are K candidate arms, and let
x.€[0, 1] indicate the reward one will receive by adopting
the k-th arm at time step t. The goal is to choose a sequence
of arms (A}, A,, ..., A, ...) sothat by applying those arms,
a regret (R) of not using the best arm at every time step is
minimized. Note that instead of sampling an arm per offer
per time step, only one arm is selected (e.g., step 206) at each
time step and is applied across all offers. This avoids a joint
optimization of resource constraints over multiple strategies
since the crawling rates for each time step have already
incorporated the resource constraint.

The regret R is given by the following expression:

R= (max (69)
kelK]

(2

The reward x;’ (or x,) is calculated by accumulating per
offer utility x, ,"—the payoff by applying the k-th arm for
offer o, at time step t (e.g., as part of steps 210 and 212).
Regret is defined as follows: if crawling an offer helps
updating the local price to the latest, such a crawl is
considered useful, and accordingly a positive reward is
assigned. The local price from time step (t—1) is used to
verify that it will not match the true price at time step t; if
these prices do match, there will be no utility gain for
crawling this offer. To align with the click-weighted fresh-
ness, the reward is boosted by the click rate. In fact, this
utility measures the increase of click-weighted freshness
between two time steps. The recrawling rate p;” is used to
denote whether the offer will be crawled because there will
be no utility gain if not crawling the offer. In addition, a
normalization term is included to rescale the reward to [0, 1].
The reward is updated as shown in Eq, (2):

1t +4) @

xk—Z W‘Zzul
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Minimizing regret R is equivalent to maximizing the
expected reward, the second term in Eq. (1), since the
accumulated reward for applying the best strategy at every
time step is a constant factor. Furthermore, based on the
definition in Eq. (2), the time aggregated reward actually
represents the click-weighted freshness, meaning that dis-
closed implementations using the adversarial bandits
approach are essentially optimizing the click-weighted
freshness.

Example implementation details are described in Algo-
rithm 1. Algorithm 1 is one example of an implementation
of method 200 of FIG. 2.

Algorithm 1 The K-armed adversarial bandits approach

Parameter: vy € [0, 1]
1: Vk, set w,0 = 1
2:fortimet=1,2,..., T do
3: ¥V k, set 1 !
H - +v=
,set g = ( 7) Y%

] 1W

4: Sample an arm A, ~ Q; (q,%, q5', . . .,
5: Set the reward x," =0
6: forofferi=1,2,..., n do
7: Compute o,’s crawling rate p,/ for arm A, according to Table 2
8: Schedule p;” crawls (from the crawling log repository 108) and
update local price 1
9: Update reward x4, += X, 4
10: end for

xi
11: Yk witl =w, exp[ll(k:A,)4]
K q;

12: end for

Algorithm 1 starts by initializing a uniform importance
weight w,°=1 for each arm (line 1). Here, k indicates the k-th
arm and O stands for the time step t=0. At each time step t,
a probability distribution Q, is computed with each element
q’ denoting the probability of choosing the k-th arm (line 3).
q, is determined by the importance weight w,” and the
exploration probability . Next, an arm A, is sampled from
Q, (line 4) and the corresponding offer crawling rate p,
according to Table 2 (line 7) is computed. Note that the
resource constraint b has a]ready been integrated into p;”.
While crawling, the reward x,’ is also aggregated for the
sampled arm (line 9). At last, wk‘ for the arm A, is calculated
based on the reward (line 11). This updates the crawl policy.
The method repeats for a next time step.

Algorithm 1 solves the exploitation-exploration trade-off
in reinforcement learning by introducing the exploration
probability v. Algorithm 1 samples arms proportionally to
their past performances at a probability of 1—y, and also
maintains a probability of ¥ to choose a random arm for
exploration. In some implementations, y=0.1.

In some implementations, the time step is assumed to be
two hours. The crawling rate of Table 2 is calculated using
a two-hour time step. In some implementations, the time
step is every other hour. When the crawling rate in Table 2
is computed for each bi-hourly time step, the crawling rate
should be multiplied by (12 hours/time unit).

Deploying the recrawl strategies used as arms in the
K-armed adversarial bandit (except the uniform crawl)
requires knowing the click rate, the impression rate, and the
change rate. Disclosed implementations use a predictive
modeling approach where both metadata and past history
information are employed in the model for better parameter
estimation accuracy.
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Specifically, implementations may initially train predic-
tion models based on existing crawl log data. In some
implementations, the price change prediction is modeled as
a classification task, for which a goal is to predict whether
an offer’s price will change in the next day or any time
horizon depending on the data granularity. Similarly, for
click and impression prediction, it is forecast whether an
offer will be clicked or impressed in the next day. The
prediction outputs are directly used as p, v and A when
computing the crawling rate. In some implementations, the
prediction horizon may be set at the daily granularity since
click and impression statistics are aggregated on the daily
basis.

Implementations may adopt two change history features,
including the monthly price change frequency and the most
recent change. A set of click and impression history features,
which are strong signals for predicting future clicks and
impressions, may also be included. All of these features and
their descriptions are provided in Table 3. The product
category information may come from a shopping taxonomy,
such as the Google Shopping product taxonomy. The change
frequencies, click and impression statistics may be treated as
numerically dense features, and the metadata information
may be modeled by sparse features and is embedded into a
low-dimensional space.

TABLE 3

History and metadata features that
may be used in a predictive model

History features for the predictive model

Change frequency (1 month)
Most recent change

Clicks (1 day)

Clicks (1 week)

Clicks (2 weeks)

Clicks (1 month)
Impressions (1 day)
Impressions (1 week)

Price change frequency in last month
Time since most recent change
Clicks yesterday
Clicks in the past week
Clicks in the past 2 weeks
Clicks in the past month
Impressions yesterday
Impressions in the past week
Impressions (2 weeks) Impressions in the past 2 weeks
Impressions (1 month) Impressions in the past month
Metadata features for the predictive model

Brand Unique ID for a brand

Condition Condition: new, used, or refurbished
Country Country code

Day of Week Day of week for prediction time
Language Offer page language

Merchant Unique ID for a merchant

Product Category Product category

For each prediction task, a model is trained with metadata
and history features combined. An example model, which
may be a feed-forward deep neural network (DNN) model,
is adopted with TensorFlow DNNClassifier, where three
hidden layers are set to 256, 128 and 64 hidden units in each
layer. ReLU (Rectified Linear Unit) is used as the activation
function for hidden units and the Adagrad algorithm to
optimize the cross-entropy loss is chosen. Other neural
network configurations may also be used. In some imple-
mentations, to deal with overfitting, both L1 and L2 regu-
larization may be adopted and both set to 0.001. Implemen-
tations may use multiple sets of hyper-parameters. Such
implementations have similar results.

An example crawl log may include millions of entities.
For example, an example crawl log (e.g., 102) may include
1.3 million indexed offers with hourly crawls scheduled for
these offers. Samples for training predictive models used by
disclosed implementations may come from two types: (a)
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random uniform samples from the entire corpus of offers;
and (b) click-weighted samples, to better represent popular
offers with clicks. In total, billions of offer page snapshots
may be crawled. For ease of discussion, an example time
period covered by the logs may be from 2018/08/01 to
2019/04/10.

FIG. 4 is a diagram of an example dataset generation
process 400 for daily predictions used in training predictive
models used in disclosed implementations. As shown in
FIG. 4, for each simulated prediction date d, the prediction
time t is defined as the beginning of d (12:00 am). Features
are then extracted from the crawling logs up to time t.
Hourly crawls after t provide a full observation for the future
price information, which helps generate a binary label
reflecting whether the price will change in the next day.
Similarly, the click and impression information on date d+1
are used to create a binary click/impression label denoting
whether the offer will be clicked/impressed in the next day.
By shifting the prediction date d and repeating the above
process, a set of training, testing and validation examples are
created.

The training, validation and testing datasets in this
example are created with data from different dates. Particu-
larly, in the example of FIG. 4, data from 2018/08/01 to
2018/12/31 is used for training, data from 2019/01/01 to
2019/01/09 is used for validation and the rest is used for
testing. In total, 0.6 million validation examples, 8 million
testing examples and 100 million training examples are
obtained. In the testing and validation data, the positive/
negative label ratios are 1:20 for price change, 1:75 for click
and 1:6 for impression, whereas for the training data, we
observe higher positive/negative ratios due to the involve-
ment of click-weighted samples. The ratios become 1:20 for
price change, 1:1 for click and 4:1 for impression. Note that
since the uniform samples are picked randomly from the
entire corpus, many are obsolete, removed or have no price
extracted. This causes the number of testing and validation
examples being lower than expected.

Implementations may be used with a predictive model
based on metadata only, a predictive model based on history
only, or a predictive model based on metadata and history.
Table 4 illustrates that a model based on metadata and
history is more accurate (as measured by Area Under
Receiver Operating Characteristic Curve where value of 0.5
means a random guess while 1.0 indicates a perfect predic-
tion).

TABLE 4
Testing AUCs (and standard deviations) for predictive models
Model
Metadata +
Task Metadata History History

Price change 0.860 (0.008) 0.833 (0.011) 0.882 (0.007)

Click 0.796 (0.021) 0.948 (0.006) 0.949 (0.006)
Impression 0.736 (0.008) 0.896 (0.003) 0.895 (0.003)
FIG. 5 illustrates an example of a generic computer device

600 and a generic mobile computer device 650, which may
be used with the techniques described here. Computer
device 600 is one example configuration of computer 120 of
FIG. 1 and FIG. 2.

As shown in FIG. 5, computing device 600 is intended to
represent various forms of digital computers, such as lap-
tops, desktops, workstations, personal digital assistants,
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servers, blade servers, mainframes, and other appropriate
computers. Computing device 650 is intended to represent
various forms of mobile devices, such as personal digital
assistants, cellular telephones, smart phones, and other simi-
lar computing devices. The components shown here, their
connections and relationships, and their functions, are meant
to be exemplary only, and are not meant to limit implemen-
tations of the inventions described and/or claimed in this
document.

Computing device 600 includes a processor 602, memory
604, a storage device 606, a high-speed interface 608
connecting to memory 604 and high-speed expansion ports
610, and a low speed interface 612 connecting to low speed
bus 614 and storage device 606. Each of the components
602, 604, 606, 608, 610, and 612, are interconnected using
various busses, and may be mounted on a common moth-
erboard or in other manners as appropriate. The processor
602 can process instructions for execution within the com-
puting device 600, including instructions stored in the
memory 604 or on the storage device 606 to display graphi-
cal information for a GUI on an external input/output device,
such as display 616 coupled to high speed interface 608. In
other implementations, multiple processors and/or multiple
buses may be used, as appropriate, along with multiple
memories and types of memory. Also, multiple computing
devices 600 may be connected, with each device providing
portions of the necessary operations (e.g., as a server bank,
a group of blade servers, or a multi-processor system).

The memory 604 stores information within the computing
device 600. In one implementation, the memory 604 is a
volatile memory unit or units. In another implementation,
the memory 604 is a non-volatile memory unit or units. The
memory 604 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

The storage device 606 is capable of providing mass
storage for the computing device 600. In one implementa-
tion, the storage device 606 may be or contain a computer-
readable medium, such as a floppy disk device, a hard disk
device, an optical disk device, or a tape device, a flash
memory or other similar solid state memory device, or an
array of devices, including devices in a storage area network
or other configurations. A computer program product can be
tangibly embodied in an information carrier. The computer
program product may also contain instructions that, when
executed, perform one or more methods, such as those
described above. The information carrier is a computer- or
machine-readable medium, such as the memory 604, the
storage device 606, or memory on processor 602.

The high speed controller 608 manages bandwidth-inten-
sive operations for the computing device 500, while the low
speed controller 612 manages lower bandwidth-intensive
operations. Such allocation of functions is exemplary only.
In one implementation, the high-speed controller 608 is
coupled to memory 604, display 616 (e.g., through a graph-
ics processor or accelerator), and to high-speed expansion
ports 610, which may accept various expansion cards (not
shown). In the implementation, low-speed controller 612 is
coupled to storage device 506 and low-speed expansion port
614. The low-speed expansion port, which may include
various communication ports (e.g., USB, Bluetooth, Ether-
net, wireless Ethernet) may be coupled to one or more
input/output devices, such as a keyboard, a pointing device,
a scanner, or a networking device such as a switch or router,
e.g., through a network adapter.

The computing device 600 may be implemented in a
number of different forms, as shown in the figure. For
example, it may be implemented as a standard server 620, or
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multiple times in a group of such servers. It may also be
implemented as part of a rack server system 624. In addition,
it may be implemented in a personal computer such as a
laptop computer 622. Alternatively, components from com-
puting device 600 may be combined with other components
in a mobile device (not shown), such as device 650. Each of
such devices may contain one or more of computing device
600, 650, and an entire system may be made up of multiple
computing devices 600, 650 communicating with each
other.

FIG. 6 shows an example of a generic computer device
700, which may be computer 120 of FIG. 1A or FIG. 1B,
which may be used with the techniques described here.
Computing device 700 is intended to represent various
example forms of large-scale data processing devices, such
as servers, blade servers, datacenters, mainframes, and other
large-scale computing devices. Computing device 700 may
be a distributed system having multiple processors, possibly
including network attached storage nodes, that are intercon-
nected by one or more communication networks. The com-
ponents shown here, their connections and relationships, and
their functions, are meant to be examples only, and are not
meant to limit implementations of the inventions described
and/or claimed in this document.

Distributed computing system 700 may include any num-
ber of computing devices 780. Computing devices 780 may
include a server or rack servers, mainframes, etc. commu-
nicating over a local or wide-area network, dedicated optical
links, modems, bridges, routers, switches, wired or wireless
networks, etc.

In some implementations, each computing device may
include multiple racks. For example, computing device 780a
includes multiple racks 7584-758n. Each rack may include
one or more processors, such as processors 752a4-752n and
762a-762n. The processors may include data processors,
network attached storage devices, and other computer con-
trolled devices. In some implementations, one processor
may operate as a master processor and control the schedul-
ing and data distribution tasks. Processors may be intercon-
nected through one or more rack switches 758, and one or
more racks may be connected through switch 778. Switch
778 may handle communications between multiple con-
nected computing devices 700.

Each rack may include memory, such as memory 754 and
memory 764, and storage, such as 756 and 766. Storage 756
and 766 may provide mass storage and may include volatile
or non-volatile storage, such as network-attached disks,
floppy disks, hard disks, optical disks, tapes, flash memory
or other similar solid state memory devices, or an array of
devices, including devices in a storage area network or other
configurations. Storage 756 or 766 may be shared between
multiple processors, multiple racks, or multiple computing
devices and may include a computer-readable medium stor-
ing instructions executable by one or more of the processors.
Memory 754 and 764 may include, e.g., volatile memory
unit or units, a non-volatile memory unit or units, and/or
other forms of computer-readable media, such as a magnetic
or optical disks, flash memory, cache, Random Access
Memory (RAM), Read Only Memory (ROM), and combi-
nations thereof. Memory, such as memory 754 may also be
shared between processors 752a-752n. Data structures, such
as an index, may be stored, for example, across storage 756
and memory 754. Computing device 700 may include other
components not shown, such as controllers, buses, input/
output devices, communications modules, etc.

An entire system may be made up of multiple computing
devices 700 communicating with each other. For example,



US 12,141,214 B2

19

device 780a may communicate with devices 7805, 780c¢, and
7804, and these may collectively be known as computer 120.
As another example, computer 120 of FIG. 1 may include
one or more computing devices 700. Some of the computing
devices may be located geographically close to each other,
and others may be located geographically distant. The layout
of system 700 is an example only and the system may take
on other layouts or configurations.

Various implementations of the systems and techniques
described here can be realized in digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple-
mentations can include implementation in one or more
computer programs that are executable and/or interpretable
on a programmable system including at least one program-
mable processor, which may be special or general purpose,
coupled to receive data and instructions from, and to trans-
mit data and instructions to, a storage system, at least one
input device, and at least one output device.

These computer programs (also known as programs,
software, software applications or code) include machine
instructions for a programmable processor and can be imple-
mented in a high-level procedural and/or object-oriented
programming language, and/or in assembly/machine lan-
guage. As used herein, the terms “machine-readable
medium” and “computer-readable medium” refer to any
computer program product, apparatus and/or device (e.g.,
magnetic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/
or data to a programmable processor, including a machine-
readable medium that receives machine instructions as a
machine-readable signal. The term “machine-readable sig-
nal” refers to any signal used to provide machine instruc-
tions and/or data to a programmable processor.

To provide for interaction with a user, the systems and
techniques described here can be implemented on a com-
puter having a display device (e.g., a CRT (cathode ray tube)
or LCD (liquid crystal display) monitor) for displaying
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computer. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback (e.g., visual feedback, auditory feedback, or tactile
feedback); and input from the user can be received in any
form, including acoustic, speech, or tactile input.

The systems and techniques described here can be imple-
mented in a computing system that includes a back end
component (e.g., as a data server), or that includes a middle-
ware component (e.g., an application server), or that
includes a front end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination
of such back end, middleware, or front end components. The
components of the system can be interconnected by any
form or medium of digital data communication (e.g., a
communication network). Examples of communication net-
works include a local area network (“LAN™), a wide area
network (“WAN”), and the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.
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A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the specification.

It will also be understood that when an element is referred
to as being on, connected to, electrically connected to,
coupled to, or electrically coupled to another element, it may
be directly on, connected or coupled to the other element, or
one or more intervening elements may be present. In con-
trast, when an element is referred to as being directly on,
directly connected to or directly coupled to another element,
there are no intervening elements present. Although the
terms directly on, directly connected to, or directly coupled
to may not be used throughout the detailed description,
elements that are shown as being directly on, directly
connected or directly coupled can be referred to as such. The
claims of the application may be amended to recite exem-
plary relationships described in the specification or shown in
the figures.

While certain features of the described implementations
have been illustrated as described herein, many modifica-
tions, substitutions, changes and equivalents will now occur
to those skilled in the art. It is, therefore, to be understood
that the appended claims are intended to cover all such
modifications and changes as fall within the scope of the
implementations. It should be understood that they have
been presented by way of example only, not limitation, and
various changes in form and details may be made. Any
portion of the apparatus and/or methods described herein
may be combined in any combination, except mutually
exclusive combinations. The implementations described
herein can include various combinations and/or sub-combi-
nations of the functions, components and/or features of the
different implementations described.

In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

What is claimed is:

1. A method, comprising:

receiving, from a repository, a plurality of entities, each of
the plurality of entities having a respective value of a
quantity that is accurate at a previous time step;

for each of the plurality of entities, generating associated
values of a plurality of parameters at a current time
step, the plurality of parameters including at least one
of an access rate of that entity from the repository or a
likelihood of a change in the respective value of the
quantity of that entity;

selecting a refresh strategy of a plurality of refresh strat-
egies for updating the respective values of the quantity
for the plurality of entities according to a refresh policy,
the refresh policy including a weight distribution rep-
resenting a respective likelihood that each of the plu-
rality of refresh strategies is selected, the plurality of
refresh strategies including at least two of a uniform
strategy, a change-weighted strategy, an access-
weighted strategy, or a resource-optimized strategy;

generating a respective refresh rate for each of the plu-
rality of entities according to the selected refresh strat-
egy, the respective refresh rate for each entity of the
plurality of entities being based on the associated
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values of the plurality of parameters at a sequence of
times comprising the previous time step and the current
time step;

performing a refresh operation on the repository based on

the respective refresh rates for the plurality of entities,
the refresh operation being configured to obtain the
respective values of the quantity at the current time
step; and

updating the refresh policy based on a difference between

the respective value of the quantity at the previous time
step and the respective value of the quantity at the
current time step of each of the plurality of entities.

2. The method as in claim 1, wherein selecting the refresh
strategy of the plurality of refresh strategies includes:

generating a probability distribution for the refresh strat-

egy over the plurality of refresh strategies, the prob-
ability distribution including a respective probability
corresponding to each of the plurality of refresh strat-
egies; and

performing a random sample of the plurality of refresh

strategies according to the probability distribution to
produce the selected refresh strategy.

3. The method as in claim 2, wherein generating the
probability distribution includes:

performing an average of a weight of the weight distri-

bution and a reciprocal of a number of refresh strategies
of the plurality of refresh strategies, the weight corre-
sponding to the refresh strategy.

4. The method as in claim 1, wherein generating the
respective refresh rate for each of the plurality of entities
according to the selected refresh strategy includes:

for a parameter of the plurality of parameters, generating

a respective neural network model corresponding to the
parameter; and

generating the respective refresh rate for each of the

plurality of entities using the respective neural network
model corresponding to the parameter.

5. The method as in claim 4, wherein the parameter of the
plurality of parameters is the likelihood of a change in the
respective value of the quantity of an entity of the plurality
of entities, and

wherein generating the respective neural network model

corresponding to the parameter includes:

training a model based on a set of history features, the
set of history features including at least one of a
quantity change frequency in a previous time period
and a length of time since most recent change.

6. The method as in claim 4, wherein the parameter of the
plurality of parameters is the access rate for an entity of the
plurality of entities, and

wherein generating the respective neural network model

corresponding to the parameter includes:

training a model based on a set of history features, the
set of history features including at least one of a
number of accesses over a previous time period and
a number of accesses over the previous time period.

7. The method as in claim 4, wherein generating the
respective neural network model corresponding to the
parameter includes:

training a model based on metadata, the metadata includ-

ing at least one of a day of a week for a prediction time,
and a characteristic of each of the plurality of entities.

8. The method as in claim 4, wherein:

the repository includes a plurality of offer web pages;

each of the plurality of entities includes an offer web page

of the plurality of offer web pages, the offer web page
featuring a product offer;
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the refresh operation for an entity includes recrawling that

web page from a merchant web site;

the plurality of parameters for an entity of the plurality of

entities include an impression rate of an offer web page
and a click rate of the offer web page;

each of the plurality of entities including a brand identifier

of that offer web page, a merchant identifier of that offer
web page, and a country identifier of that offer web
page, and

wherein generating the respective neural network model

corresponding to the parameter includes:

training a model based on metadata, the metadata
including at least one of the brand identifier, the
country identifier, a day of a week for a prediction
time, and the merchant identifier.

9. The method as in claim 1, wherein the weight distri-
bution includes a distribution of weights, each of the distri-
bution of weights corresponding to a respective refresh
strategy of the plurality of refresh strategies.

10. The method as in claim 9, wherein updating the
refresh policy includes:

updating a weight of the distribution of weights at the

previous time step to produce the weight at the current
time step.

11. A computer program product comprising a nontran-
sitory storage medium, the computer program product
including code that, when executed by processing circuitry
of a user device configured to perform a method of gener-
ating a refresh policy, the method comprising:

receiving, from a repository, a plurality of entities, each of

the plurality of entities having a respective value of a
quantity that is accurate at a previous time step;
for each of the plurality of entities, generating associated
values of a plurality of parameters at a current time
step, the plurality of parameters including at least one
of an access rate of that entity from the repository or a
likelihood of a change in the respective value of the
quantity of that entity;
selecting a refresh strategy of a plurality of refresh strat-
egies for updating the respective values of the quantity
for the plurality of entities according to a refresh policy,
the refresh policy including a weight distribution rep-
resenting a respective likelihood that each of the plu-
rality of refresh strategies is selected, the plurality of
refresh strategies including at least two of a uniform
strategy, a change-weighted strategy, an access-
weighted strategy, and a resource-optimized strategy;

generating a respective refresh rate for each of the plu-
rality of entities according to the selected refresh strat-
egy, the respective refresh rate for an entity of the
plurality of entities being based on the associated
values of the plurality of parameters at a sequence of
times comprising the previous time step and the current
time step;

performing a refresh operation on the repository based on

the respective refresh rates for the plurality of entities,
the refresh operation being configured to obtain the
respective value of the quantity at the current time step;
and

updating the refresh policy based on a difference between

the respective value of the quantity at the previous time
step and the respective value of the quantity at the
current time step of each of the plurality of entities.

12. The computer program product as in claim 11,
wherein each of the plurality of refresh strategies is repre-
sented as an arm of a K-armed adversarial bandits algorithm.
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13. The computer program product as in claim 11,
wherein a sum of the respective refresh rates for the plurality
of entities is normalized based on an entity refresh budget
constraint.

14. The computer program product as in claim 11,
wherein updating the refresh policy includes:

generating, for each of the plurality of entities, a per-entity

utility, the per-entity utility including a product of (i)
the access rate for that entity, (ii) the respective refresh
rate for that entity, and (iii) a binary function that takes
a value of one when the value of the quantity of the
entity at the previous time step obtained using a refresh
strategy of the plurality of refresh strategies is not equal
to the value of the quantity of the entity at the current
time step, and a value of zero when the value of the
quantity of the entity at the previous time step obtained
using a refresh strategy of the plurality of refresh
strategies is equal to the value of the quantity of the
entity at the current time step.

15. The computer program product as in claim 14,
wherein updating the refresh policy further includes:

adding the per-entity utility for each of the plurality of

entities to a reward parameter at the current time step,
the reward parameter indicating a relative usefulness of
the refresh strategy at the current time step.

16. An electronic apparatus configured to generate a
refresh policy, the electronic apparatus comprising:

memory; and

controlling circuitry coupled to the memory, the control-

ling circuitry being configured to:

receive, from a repository, a plurality of entities, each of

the plurality of entities having a respective value of a
quantity that is accurate at a previous time step;

for each of the plurality of entities, generate associated

values of a plurality of parameters at a current time
step, the plurality of parameters including at least one
of an access rate of that entity from the repository or a
likelihood of a change in the respective value of the
quantity of that entity;

select a refresh strategy of a plurality of refresh strategies

for updating the respective values of the quantity for
the plurality of entities according to a refresh policy, the
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refresh policy including a weight distribution repre-
senting a respective likelihood that each of the plurality
of refresh strategies is selected, the plurality of refresh
strategies including at least two of a uniform strategy,

5 a change-weighted strategy, an access-weighted strat-
egy, and a resource-optimized strategy;

generate a respective refresh rate for each of the plurality
of entities according to the selected refresh strategy, the
respective refresh rate for each entity of the plurality of
entities being based on the associated values of the
plurality of parameters at a sequence of times compris-
ing the previous time step and the current time step;

perform a refresh operation on the repository based on the
respective refresh rates for the plurality of entities, the
refresh operation being configured to obtain the respec-
tive value of the quantity at the current time step; and

update the refresh policy based on a difference between
the respective value of the quantity at the previous time
step and the respective value of the quantity at the
current time step of each of the plurality of entities.
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17. The electronic apparatus as in claim 16, wherein the
controlling circuitry configured to select the refresh strategy

25 of the plurality of refresh strategies is further configured to:
generate a probability distribution for the refresh strategy

over the plurality of refresh strategies, the probability
distribution including a respective probability corre-
sponding to each of the plurality of refresh strategies;

30 and

perform a random sample of the plurality of refresh
strategies according to the probability distribution to
produce the selected refresh strategy.

18. The electronic apparatus as in claim 17, wherein the
controlling circuitry configured to generate the probability
distribution is further configured to:
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perform an average of a weight of the weight distribution
and a reciprocal of a number of refresh strategies of the
plurality of refresh strategies, the weight corresponding
to the refresh strategy.

* * * * *



