
Adversarial Bandits Policy for Crawling Commercial Web
Content

Shuguang Han1, Michael Bendersky1, Przemek Gajda2, Sergey Novikov2, Marc Najork1, Bernhard
Brodowsky2 and Alexandrin Popescul3∗

1. Google Research, 1600 Amphitheatre Parkway, Mountain View, CA, USA
2. Google Zurich, Brandschenkestrasse 110, 8002 Zurich, Switzerland

3. Pinterest, 651 Brannan St, San Francisco, CA, USA
hanshuguang,bemike,pgajda,sergeyn,najork,bernhardb@google.com,apopescul@pinterest.com

ABSTRACT
The rapid growth of commercial web content has driven the de-
velopment of shopping search services to help users find product
offers. Due to the dynamic nature of commercial content, an effec-
tive recrawl policy is a key component in a shopping search service;
it ensures that users have access to the up-to-date product details.
Most of the existing strategies either relied on simple heuristics,
or overlooked the resource budgets. To address this, Azar et al. [5]
recently proposed an optimization strategy LambdaCrawl aiming
to maximize content freshness within a given resource budget. In
this paper, we demonstrate that the effectiveness of LambdaCrawl
is governed in large part by how well future content change rate
can be estimated. By adopting the state-of-the-art deep learning
models for change rate prediction, we obtain a substantial increase
of content freshness over the common LambdaCrawl implementa-
tion with change rate estimated from the past history. Moreover, we
demonstrate that while LambdaCrawl is a significant advancement
upon existing recrawl strategies, it can be further improved upon
by a unified multi-strategy recrawl policy. To this end, we adopt the
𝐾-armed adversarial bandits algorithm that can provably optimize
the overall freshness by combining multiple strategies. Empirical
results over a large-scale production dataset confirm its superiority
to LambdaCrawl, especially under tight resource budgets.

CCS CONCEPTS
• Information systems → Web crawling; E-commerce infras-
tructure; Search engine architectures and scalability.

KEYWORDS
Predictive Crawling, CommercialWeb Crawling, Adversarial Bandit
ACM Reference Format:
Shuguang Han, Michael Bendersky, Przemek Gajda, Sergey Novikov, Marc
Najork, Bernhard Brodowsky and Alexandrin Popescul. 2020. Adversarial
Bandits Policy for Crawling Commercial Web Content. In Proceedings of The
Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380125

∗Work done when Alexandrin Popescul was at Google.

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380125

1 INTRODUCTION
Over recent years, there has been a substantial growth of commer-
cial web content such as product listings, business websites and
online shopping platforms. To better access such information, many
search engines including Google and Bing have developed shopping
search services for commerce-related query intents [3, 48]. Provid-
ing up-to-date information in product search results is a challenging
task, in large part due to the dynamic nature of the web content in
general [2, 9, 12], and commercial content in particular [26].

In this paper, we specifically focus on commercial web pages that
sell products, and refer to such pages as the offer pages. Since price
correctness is one of the most important concerns for shopping
search engines [26], our goal is to optimally synchronize the price
information stored in our local database with the true price.1

Simple synchronization strategies such as using the merchant-
provided feed are insufficient, since most merchants do not have the
capacity to provide low-latency feeds and sufficiently monitor their
quality [26]. Thus, a periodic crawling of offer pages remains a vital
component for production-grade commercial content search en-
gines. Scheduling frequent recrawls for all pages is impractical due
to the massive amount of commercial offers. Therefore, production
systems often need to select a subset of offers for crawling.

Cho and Garcia-Molina [16] examined a simple page selection
heuristic which chose web pages based on their change rates. Sur-
prisingly, this strategy even under-performed the uniform heuris-
tic that recrawled every page at an equal probability. This was
mainly because such a proportional strategy overspent resources
on frequently-changed pages, for which, no matter how often they
were recrawled, the content might change at the next time period.
As a result, the best strategy should penalize such web pages.

A recent study by Azar et al. [5] went beyond the above sim-
ple heuristics, and proposed a constrained optimization algorithm
named LambdaCrawl (to be consistent with the nomenclature used
by Kolobov et al. [29]) to seek for the optimal recrawl rates under
resource constraints. The resulting best strategy aligned with our
expectation on suppressing crawls for highly-dynamic pages.

Despite the recent advancements, there remain several limita-
tions of existing studies. First of all, previous work mainly concen-
trated on recrawling generic web content, whereas little is known
about the recrawling for commercial web pages. As shown by Han
et al. [26], there are several major differences (e.g., the content
change dynamics) between these two types of web pages. Thus,
the first thing we examine in this paper – using production service
1While we focus on price correctness optimization, we believe that the proposed
approach also generalizes to other attributes like product availability.

1

https://doi.org/10.1145/3366423.3380125
https://doi.org/10.1145/3366423.3380125

WWW ’20, April 20–24, 2020, Taipei, Taiwan Han, Bendersky, Gajda, et al.

crawling data – is the adaptability of existing recrawl strategies to
the domain of commercial web content crawling.

In addition, most existing recrawl strategies assumed the knowl-
edge of change rate beforehand, which is usually unavailable in
practice. To obtain such information, prior studies have developed
various estimation approaches [24, 36, 38]. The simplest one is to
estimate it from the past history [17, 21, 25, 39]. However, this ap-
proach suffers from the cold start issue and is subject to the feedback
loop, which motivated follow-up studies [26, 40, 44] to incorporate
predictive features that are universally available or relatively static,
e.g. page content, when predicting change rate. In this paper, we
follow such an approach and further experiment the utility of em-
ploying deep learning models for change rate prediction.

Another limitation of existing studies is that they all focused on
developing a single strategy, and assumed that by applying such a
strategy, one can achieve the optimal freshness. We argue (based
on empirical observation) that such a goal is hard to achieve in
reality. A single strategy often focuses on crawling one page type,
either because of the nature of the strategy or due to the inherent
parameter estimation bias; therefore, it may fail to effectively crawl
other page types. Besides, in view of the dynamic change patterns
for commercial content [26], it is possible that a strategy performs
the best at one time, while it is sub-optimal at another time.

To address the above limitation, we examine the applicability of
developing a unified, multi-strategy approach with reinforcement
learning, in which we adopt the 𝐾-armed adversarial bandits algo-
rithm [4] and treat each of the existing strategies as an arm. It starts
with a random selection from multiple (potentially sub-optimal)
strategies and gradually learn the best combination of strategies
(i.e. policy) over time. The reward mechanism in bandit algorithms
can guide the optimization towards the maximal content freshness,
even if this goal is not present in each underlying strategy.

To summarize, the main contributions of our work are as follows:

– We are the first to provide an extensive survey and analysis
of existing recrawl strategies for commercial web content.
In particular, we conduct an evaluation of LambdaCrawl [5],
and empirically demonstrate its superiority over the heuristic-
based strategies for crawling commercial web content.

– We demonstrate that parameter estimation substantially af-
fects the effectiveness of a recrawl strategy. Our proposed
predictive model that takes both the past history and the
metadata information into account improves upon the history-
based models by a very large margin.

– We propose a 𝐾-armed adversarial bandits approach that
combines multiple recrawl strategies under a unified policy
with provable freshness guarantees. Our experiments show
that this approach achieves a higher freshness than any
single strategy, and is robust even under very tight resource
budgets. In particular, such an approach outperforms the
state-of-the-art LambdaCrawl strategy, even if LambdaCrawl
is not included as a candidate strategy.

– Finally, we examine the contributions of individual strategies
to the adversarial bandits approach, and discover the impor-
tance of exploration to achieve the optimal freshness. We
empirically show that when the uniform random sampling
is included, adversarial bandits learn an overall better policy.

2 RELATEDWORK
Developing an appropriate content recrawling strategy is a long-
standing research problem for web crawlers. A large body of work
has been done since the 1990s in the context of maximizing fresh-
ness for crawling systems [13, 18, 36]. The core of this problem lies
in the fact that web content changes dynamically [2, 9, 12, 14, 24].
Accordingly, many of the previous studies have been devoted to
estimating the content change frequency [15, 17, 19, 45].

There are in general two types of estimation approaches: history-
based approach and model-based approach. The former estimates
content change based on the past change history [14, 23, 32]. Cho
and Garcia-Molina [17] discovered that this can be inaccurate par-
ticularly when the change history is partially observable. Thus, they
proposed a few improved estimators for better approximating the
change rate. Recently, studies have began to treat this estimation
task as an online learning problem, and leveraged the reinforce-
ment learning algorithms. Kolobov et al. [28] proposed a Lamb-
daLearnAndCrawl approach to jointly estimate content change rate
and optimize content freshness. Upadhyay et al. [46] applied the
Explore-Then-Commit algorithm that iteratively estimated change
rate and applied it for freshness-driven crawling. Despite the recent
advancements, change rate prediction remains a challenging task
especially when web pages have limited history information.

The model-based approach assumes regularities behind content
change so that the change rate can be estimated using predictive
models. Indeed, through analyzing page updates for news web-
sites, Calzarossa and Tessera [11, 12] discovered that the content
change can be characterized by well-defined temporal patterns.
Han et al. [26] also identified several temporal and content patterns
for commercial content changes. This motivated researchers to in-
corporate temporal and content features when building machine
learning models for change estimation. Radinsky and Bennett [40]
hypothesized that web pages with similar content share similar
change patterns, and therefore built a predictive model combining
both the historical changes and the page content. Tan and Mitra
[44] clustered web pages into groups based on content similarity,
and then focused on crawling those groups with high change rates.
Han et al. [26] tackled a similar problem for commercial content
crawling. They found that metadata information such as product
brand and merchant information are important indicators of con-
tent change. Therefore, those features are adopted for predicting
content changes. Comparing to the history-based approach, these
models relieve the cold start issue since page content and metadata
are often easily accessible and are relatively static.

However, just having an accurate estimation for content change
is insufficient. Another key component is establishing the update
policy – the ways to apply the estimated change rate for production
crawlers. Cho and Garcia-Molina [16] discovered that the strategy
of crawling web pages proportionally to their change rate even un-
derperformed the uniform random strategy. Later studies confirmed
this finding, and found that the optimal strategy should penalize
highly dynamic pages [17, 20]. Designing an optimal strategy for a
production crawler is more sophisticated, largely due to the need
for incorporating practical constraints such as resource limit and
politeness restriction (to avoid overloading the same web host) [6].
Azar et al. [5] proposed a constraint optimization framework named

2

Adversarial Bandits Policy for Crawling Commercial Web Content WWW ’20, April 20–24, 2020, Taipei, Taiwan

LambdaCrawl, which sought to find optimal crawling rates under
resource limits. Kolobov et al. [29] extended this framework by
incorporating the politeness constraint. One issue with these two
studies is that the parameters (change rate and click rate) were
assumed to be known beforehand, which is unrealistic in practice.
As a result, Kolobov et al. [28] and Upadhyay et al. [46] further
explored the reinforcement learning approaches to jointly learn
parameters and optimize scheduling process.

A few other studies have also considered controlling crawl costs
and incorporating constraints, but were solved in different ways.
Eckstein et al. [22] injected the politeness constraint at server-side
when scheduling recrawls. Olston and Pandey [39] distinguished
web pages by content longevity, and only focused on crawling the
persistent content, which led to fresher content with lower cost.
Lefortier et al. [30], on the other hand, studied the crawling of
ephemeral content. By adopting the resource allocation theory [27],
Wolf et al. [47] proposed a two-stage content refresh policy, with
the first stage determining the best crawling frequencies, and the
second stage creating achievable crawling schedules.

Overall, existing studies did conduct extensive research on both
content change prediction and crawler scheduling optimization.
However, there remain several missing pieces. First, none of them
carried out a thorough analysis of existing recrawl strategies, partic-
ularly for the recently proposed ones such as LambdaCrawl [5] and
in the domain of commercial web content crawling. Second, it is
unknown how parameter estimation would affect the effectiveness
of different strategies. In this paper, we try to fill these gaps.

Moreover, one may notice that reinforcement learning algo-
rithms have been adopted to develop better recrawl strategies [28,
46]. However, their major goals remain to be the development of
one single strategy. We thus propose a 𝐾-armed adversarial bandit
policy, aiming to integrate multiple strategies into a unified policy.
In contrast to prior studies, this approach allows exploration, alle-
viates the systemic errors made by each individual strategy, and
makes use of predictive models for content change rate.

It is worth noting that reinforcement learning has also been
applied to focused crawlers [33, 41]. A focused crawler collects web
pages regarding one topic through properlymanaging the hyperlink
exploration process. Here, reinforcement learning was applied to
model the rewarding of on-topic crawling for hyperlink exploration.
However, our task has no hyperlink exploration aspect; it aims to
optimally recrawl known pages, thus focusing on modeling clicks
and updates, and combining them within a single framework.

3 METHODOLOGY
Before delving into the details for each recrawl strategy, we first
provide a formal description of the problem. Suppose that we have
a total number of 𝑛 offers (𝑜1, 𝑜2, ..., 𝑜𝑛) in our production system.
We can represent each offer 𝑜𝑖 as a time series, with the data point
at time step 𝑡 denoted by a vector of three attributes (𝜇𝑡

𝑖
, 𝜈𝑡
𝑖
,Δ𝑡
𝑖
).

2 Here, 𝜇𝑡
𝑖
∈ R+ represents the click rate, 𝜈𝑡

𝑖
∈ R+ refers to the

impression rate and Δ𝑡
𝑖
∈ [0, 1] indicates the probability of price

change. Because of the price change, we need to periodically recrawl

2Note that we apply the notation 𝑡 both to the time step itself (a time point) and the
time interval (𝑡 − 1, 𝑡]. Therefore, some notations may refer to the time interval, while
other refers to the time point. The exact definitions should be clear from the context.

offers so that our local database can store the latest information.
We then define a recrawl rate 𝜌𝑡

𝑖
∈ R+ to represent the amount of

recrawls we make for offer 𝑜𝑖 at time step 𝑡 .
Furthermore, we denote offer 𝑜𝑖 ’s latest price at time step 𝑡 as

𝑟𝑡
𝑖
, which might or might not be observed by a recrawl strategy.

In the meantime, each strategy also maintains a price 𝑙𝑡
𝑖
in local

database for serving end users. At access time, users will see the
right price only if 𝑟𝑡

𝑖
matches 𝑙𝑡

𝑖
, i.e. 1(𝑟𝑡

𝑖
= 𝑙𝑡

𝑖
), where 1(·) is a

binary indicator. The price match is a function of two factors – the
price change history and the recrawl history.

Production crawlers also need to deal with resource constraints.
Here, we assume a fixed crawling budget of𝑏 offers at each time step.
Our goal is to find recrawling rates P𝑡 = (𝜌𝑡1, 𝜌

𝑡
2, ..., 𝜌

𝑡
𝑛) that can

maximize the overall utility given the resource restrictions. For web
crawling, freshness is often adopted to represent the utility. In this
paper, we employ two widely-used freshness metrics [5, 16]: click-
weighted freshness and page-level freshness. An offer is said to be
fresh if its local price 𝑙𝑡

𝑖
matches its true price 𝑟𝑡

𝑖
. Here, since each

page corresponds to one product offer, we refer to the page-level
freshness as the offer-level freshness. The click-weighted freshness
measures the percentage of clicks when users see the right price,
whereas the offer-level freshness examines the proportion of offers
with price information updated regardless of clicks.

For convenience, we summarize the notation in Table 1. We will
provide a more detailed explanation, in the following sections, for
the symbols that have not been introduced yet.

Table 1: A list of notations we used in this paper.

𝑜𝑖 a product offer 𝑖 𝑡 a time step

𝑛 total number of offers 𝑏 offer crawling budget at 𝑡

𝜇𝑡
𝑖

click rate of 𝑜𝑖 at 𝑡 𝜈𝑡
𝑖

impression rate of 𝑜𝑖 at 𝑡

𝑙𝑡
𝑖

local price of 𝑜𝑖 at 𝑡 𝑟𝑡
𝑖

true price of 𝑜𝑖 at 𝑡

𝜌𝑡
𝑖

recrawl rate of 𝑜𝑖 at 𝑡 Δ𝑡
𝑖

change rate of 𝑜𝑖 at 𝑡

𝑥𝑡
𝑖,𝑘

the reward of applying a recrawl strategy 𝑘 for offer 𝑖 at 𝑡

𝑥𝑡
𝑘

the accumulated reward by aggregating 𝑥𝑡
𝑖,𝑘

for all offers

𝐴𝑡 the recrawling strategy we applied at 𝑡

3.1 Existing Recrawl Strategies
Cho and Garcia-Molina [15] summarized two recrawl heuristics: the
uniform strategy and the proportional strategy. In terms of crawling
product offers, the uniform strategy crawls every offer at an equal
rate, whereas the proportional strategy crawls offers relatively to a
certain attribute. [15] only studied one proportional strategy based
on the estimated change rate. In this paper, we extend it to other
attributes including the estimated click rate and impression rate,
both could help improve the click-weighted freshness.

Specifically, we study the following three proportional strategies:
the change-weighted strategy, the click-weighted strategy and the
impression-weighted strategy, whose recrawling rates are provided
in Table 2. The underlying assumption for the change-weighted
strategy is that if all of the offers with price changes have been
crawled, there will be no stale content. The click-weighted strategy

3

WWW ’20, April 20–24, 2020, Taipei, Taiwan Han, Bendersky, Gajda, et al.

assumes that if all of the clicked offers have been crawled before the
click, the click-weighted freshness will be optimal. The impression-
weighted strategy shares a very similar presumption.

Table 2: Existing recrawl strategies and their crawling rates.
Here,

∑
𝜌𝑡
𝑖
= 𝑏 with 𝑏 denoting the per time step budget.

Recrawl strategy Recrawl rate 𝜌 ti

Uniform 𝑏 · 1/𝑛

Change weighted (Δ) 𝑏 · Δ𝑖/
∑
Δ𝑖

Click weighted (𝜇) 𝑏 · 𝜇𝑖/
∑
𝜇𝑖

Impression weighted (𝜈) 𝑏 · 𝜈𝑖/
∑
𝜈𝑖

LambdaCrawl (𝜆)

√
𝜇𝑖Δ𝑖
𝜆

−Δ𝑖
1−Δ𝑖 , 𝜆 =

(∑ √
𝜇𝑖Δ𝑖
1−Δ𝑖

𝑏+∑ Δ𝑖
1−Δ𝑖

)2
Azar et al. [5] went beyond the heuristic strategies, and proposed

a theoretically optimal recrawl strategy named LambdaCrawlwhich
solved the recrawl task as a constrained optimization problem [7].
The core of this problem was to represent the price match function
1(𝑙𝑖𝑡 = 𝑟𝑡𝑖). With independence and consistency assumptions for 𝜇𝑖 ,
Δ𝑖 and 𝜌𝑖 , the authors derived an analytical form for this function.
By applying the Lagrange multipliers, they obtained a closed-form
solution for the optimal recrawling rates, as shown in Table 2.
LambdaCrawl favors the offers with greater click and change rates,
but also penalizes the ones with too frequent changes.

The theoretical optimality for LambdaCrawl is contingent on the
constancy of content change rate, which does not hold empirically.
Prices are known to change more frequently during holiday and
promotional seasons. Even excluding the seasonality fluctuation,
prices also exhibit weekly and hourly patterns [26]. Besides, the
optimal recrawling rate in LambdaCrawl is parameterized by 𝜇𝑖
and Δ𝑖 , both are unknown beforehand and will contain prediction
errors during estimation. This motivates us to seek an alternative
approach that is less sensitive to the constancy assumption, and
can potentially relieve the parameter estimation errors.

3.2 K-armed Adversarial Bandits Crawl Policy
3.2.1 Overview. In this section, we model the recrawling task as a
𝐾-armed adversarial bandits (KAB) problem [4], where each strat-
egy from Table 2 is treated as an arm. At each time step, we pick
one arm based on its historical performance, determine offers to
crawl using the picked arm3, observe rewards and update the arm’s
performance. By repeating this process, we are able to improve the
arm selection process as time goes on. This can be illustrated by
Figure 1, in which we start with choosing every arm equally at time
step 1, and through aggregating rewards, the click-weighted strat-
egy and LambdaCrawl are getting progressively more preference as
time passes. Since Arm and Reward are the two important concepts
in this paper, we list their definitions below.
3At each time step, we loop through all of the offers, compute the recrawling rate
based on Table 2, and finally, select a subset of them for crawling.

– Arm: any recrawl strategy listed in Table 2
– Reward: the increase of click-weighted freshness (§3.2.2)

Figure 1: An illustration of the adversarial bandits crawl pol-
icy with five arms: uniform, 𝜇, 𝜈 , Δ and 𝜆, as shown in Table 2.
The blue bars denote the actual arm selection probabilities
(at step 1, 100, 1000) from our later experiments.

Compared to adopting a single strategy, using adversarial bandits
is more advantageous in the following aspects: (1) incorporating
multiple strategies allows us to explore offers from different angles,
making it more robust to the errors made by an individual strategy;
(2) different from stochastic bandit algorithms, adversarial ban-
dits do not make stationarity assumptions on reward distribution
[10], which is a better choice because the reward we employed –
click-weighted freshness – is dynamic. An alternative to adversarial
bandits is to assign a fixed amount of resources for each strategy
and then run all of them simultaneously. This is suboptimal since
different strategies often have overlaps. For example, offers selected
by the impression-weighted strategy are significantly overlapped
with the click-weighted strategy. As shown in Figure 1, with a
high selection probability for the click-weighted strategy, our ap-
proach suppresses the choice of impression-weighted strategy, even
though they can achieve similar performance if being applied in-
dividually (see Table 5). Besides, the optimal resource assignment
might change over time because of the seasonality and temporal
dynamics for clicks and price changes [26].

3.2.2 Formalization. We formalize the adversarial bandits approach
as follows: assume that we have 𝐾 candidate arms, and let 𝑥𝑡

𝑘
∈

[0, 1] indicate the reward one will receive by adopting the 𝑘-th
arm at time step 𝑡 . The goal is to choose a sequence of arms
(𝐴1, 𝐴2, .., 𝐴𝑡 , ...) so that by applying those arms, the regret (𝑅)
of not using the best arm at every time step is minimized, as shown
in Formula (1). Note that instead of sampling an arm per offer per
time step, we only select one arm at each time step and apply it
across all offers. This avoids a joint optimization of resource budget
over multiple strategies since the crawling rates for each time step
have already incorporated the resource constraint.

𝑅 =

(
max
𝑘∈[𝐾]

∑
𝑡

𝑥𝑡
𝑘

)
− E

[∑
𝑡

𝑥𝑡𝐴𝑡

]
(1)

The reward 𝑥𝑡
𝑘
(or 𝑥𝑡

𝐴𝑡
) is calculated by accumulating per offer

utility 𝑥𝑡
𝑖,𝑘

– the payoff by applying the 𝑘-th arm for offer 𝑜𝑖 at time
4

Adversarial Bandits Policy for Crawling Commercial Web Content WWW ’20, April 20–24, 2020, Taipei, Taiwan

step 𝑡 . It is defined in the following way: if crawling an offer helps
update the local price to the latest, we believe such a crawl is useful,
and thus assign a positive reward. As shown in Formula (2), we
use the local price from time step (𝑡 − 1) to verify that it will not
match the true price at time step 𝑡 ; if these prices do match, there
will be no utility gain for crawling this offer. To align with the click-
weighted freshness, we boost the reward by click rate. In fact, this
utility measures the increase of click-weighted freshness between
two time steps. The recrawling rate 𝜌𝑡

𝑖
is used to denote whether

the offer will be crawled because there will be no utility gain if not
crawling the offer. In addition, we include a normalization term to
rescale the reward to [0, 1].

𝑥𝑡
𝑘
=

∑
𝑖

𝑥𝑡
𝑖,𝑘

=
∑
𝑖

(
1∑

𝑖 𝜇
𝑡
𝑖
𝜌𝑡
𝑖

· 𝜇𝑡𝑖 · 𝜌
𝑡
𝑖 · 1(𝑙

𝑡−1
𝑖 ≠ 𝑟𝑡𝑖)

)
(2)

Minimizing regret 𝑅 is equivalent to maximizing the expected
reward, the second term in Formula (1), since the accumulated re-
ward for applying the best strategy at every time step is a constant
factor. Furthermore, based on the definition in Formula (2), the time
aggregated reward actually represents the click-weighted fresh-
ness, meaning that our proposed adversarial bandits approach is
essentially optimizing the click-weighted freshness.

3.2.3 Implementation. We adopt the standard EXP3 algorithm for
implementing the KAB policy as it provides a nearly optimal regret
bound [4].4 Algorithm 1 provides the implementation details.

This algorithm starts by initializing a uniform importance weight
𝑤0
𝑘
=1 for each arm (line 1). Here, 𝑘 indicates the 𝑘-th arm and 0

stands for the time step 𝑡=0. At each time step 𝑡 , we compute
a probability distribution Q𝑡 with each element 𝑞𝑡

𝑘
denoting the

probability of choosing the 𝑘-th arm (line 3). 𝑞𝑡
𝑘
is determined

by the importance weight 𝑤𝑡
𝑘
and the exploration probability 𝛾 .

Next, we sample an arm 𝐴𝑡 from Q𝑡 (line 4), and compute the
corresponding offer crawling rate 𝜌𝑡

𝑖
based on Table 2 (line 7). Note

that the resource budget 𝑏 has already been integrated into 𝜌𝑡
𝑖
.

While crawling, we also aggregate the reward 𝑥𝑡
𝐴𝑡

for the sampled
arm (line 9). At last, we update 𝑤𝑡

𝑘
for the arm 𝐴𝑡 based on the

reward (line 11), and then repeat.
This algorithm solves the exploitation-exploration trade-off in

reinforcement learning by introducing the exploration probability
𝛾 . It samples arms proportionally to their past performances at
a probability of 1 − 𝛾 , and also maintains a probability of 𝛾 to
choose a random arm for exploration. When reporting the model
performance, we set 𝛾 = 0.1 as it produces the best performance.

When applying Algorithm 1, we denote each time step as two
hours. This significantly reduces the computation overhead as we
only need to loop through all offers 12 times per day, making it
a more practical solution. Moreover, it provides sufficient time
for the algorithm to accumulate meaningful reward and historical
performance statistics. As for implementation, we scale the per time
step crawling rate to bi-hourly rate. More specifically, the crawling
rate in Table 2 is computed for each time step, we need to multiply
it by (12 hours / time unit) for the bi-hourly rate.

4We also experimented with several recent adversarial bandits algorithms such as
EXP3-IX [37] and EXP3++ [43], but they produced similar results to EXP3, which we
thus adopt in the remainder of the paper due to its conceptual simplicity.

Algorithm 1 The 𝐾-armed adversarial bandits approach

Parameter: 𝛾 ∈ [0, 1]

1: ∀𝑘 , set𝑤0
𝑘
= 1

2: for time 𝑡 = 1, 2, ...,𝑇 do

3: ∀𝑘 , set 𝑞𝑡
𝑘
= (1 − 𝛾) 𝑤𝑡

𝑘∑𝐾
𝑗=1 𝑤

𝑡
𝑗

+ 𝛾

𝐾

4: Sample an arm 𝐴𝑡 ∼ Q𝑡 : (𝑞𝑡1 ...𝑞
𝑡
𝐾
)

5: Set the reward 𝑥𝑡
𝐴𝑡

= 0
6: for offer 𝑖 = 1, 2, ..., 𝑛 do

7: Compute 𝑜𝑖 ’s crawling rate 𝜌𝑡𝑖 for arm 𝐴𝑡 (Table 2)
8: Schedule 𝜌𝑡

𝑖
crawls* and update local price 𝑙𝑡

𝑖

9: Update reward 𝑥𝐴𝑡 += 𝑥𝑡𝑖,𝐴𝑡
10: end for

11: ∀𝑘 𝑤𝑡+1
𝑘

= 𝑤𝑡
𝑘
· 𝑒𝑥𝑝

(𝛾
𝐾
· 1(𝑘 = 𝐴𝑡) ·

𝑥𝑡
𝐴𝑡

𝑞𝑡
𝑖

)
12: end for

*: During simulation, this means to select from the crawling log.

3.3 Parameter Estimation
Deploying the above recrawl strategies (except the uniform crawl)
requires knowing the click rate, the impression rate and the change
rate. The simplest way is to estimate them from past history [17].
Due to the cold start and feedback loop issues, researchers have
exploited predictive models utilizing page content and metadata
information for parameter estimation [26, 40]. We follow the pre-
dictive modeling approach, and employ both metadata and past
history information for better parameter estimation accuracy.

Specifically, we model the price change prediction as a classifica-
tion task, for which we want to predict whether an offer’s price will
change in the next day. Similarly, for click and impression predic-
tion, we forecast whether an offer will be clicked or impressed in
the next day. The prediction outputs will be directly used as 𝜇, 𝜈 and
Δ when computing the crawling rate. Here, we set our prediction
horizon at the daily granularity since click and impression statistics
are aggregated on the daily basis.

We adopt two change history features, including the monthly
price change frequency and the most recent change, because of
their best performance in [26]. We also include a set of click and
impression history features, which are strong signals for predicting
future clicks and impressions. All of the features and their descrip-
tions are provided in Table 3. The product category information
comes from Google Shopping product taxonomy5. The change fre-
quencies, click and impression statistics are treated as numerical
dense features, and the metadata information is modeled by sparse
features and is embedded into a low-dimensional space [35].

For each prediction task, we train three models – one using
the metadata features, one using the history features and a third
withmetadata + history features. For each model, we adopt the
feed-forward deep neural network (DNN) model with TensorFlow
DNNClassifier [1], where we set three hidden layers to 256, 128 and
64 hidden units in each layer. We use ReLU (Rectified Linear Unit)

5See here: https://www.google.com/basepages/producttype/taxonomy.en-US.txt

5

WWW ’20, April 20–24, 2020, Taipei, Taiwan Han, Bendersky, Gajda, et al.

Table 3: History and metadata features used in our models.

History features for the predictive model
Change frequency (1 month) Price change frequency in last month
Most recent change Time since the most recent change
Clicks (1 day) Clicks at yesterday
Clicks (1 week) Daily clicks in the past week
Clicks (2 weeks) Daily clicks in the past 2 weeks
Clicks (1 month) Daily clicks in the past month
Impressions (1 day) Impressions at yesterday
Impressions (1 week) Daily impressions in the past week
Impressions (2 weeks) Daily impressions in the past 2 weeks
Impressions (1 month) Daily impressions in the past month
Metadata features for the predictive model
Brand Unique ID for a brand
Condition Condition: new, used or refurbished
Country Country code
Day of Week Day of week for the prediction time
Language Offer page language
Merchant Unique ID for a merchant
Product category Product category

as the activation function for hidden units, and choose the Adagrad
algorithm to optimize the cross-entropy loss. To deal with over-
fitting, we adopt both L1 and L2 regularization and set both to 0.001.
Note that we also experimented multiple sets of hyper-parameters,
the evaluation results remain to be similar.

4 DATA AND EVALUATION
In this paper, we sampled 1.3 million offers indexed by Google
Shopping search engine and scheduled hourly crawls for these
offers. This helped us acquire a full observation of price history.
The samples came from two types: (a) random uniform samples
from the entire corpus of offers; and (b) click weighted samples, to
better represent popular offers with clicks. In total, we crawled
billions of offer page snapshots from 2018/08/01 to 2019/04/10. Note
that not all of the page snapshots can be successfully downloaded
because the crawling requests might be rejected.

Besides the hourly crawls, we also have access to the click and
impression information. Such information is used for building pre-
dictive models, defining evaluation metrics and examining the per-
formance of recrawl strategies. Since clicks and impressions are
aggregated on a daily basis, our predictive models and recrawl
strategies are also tested at the granularity of a day.

4.1 Evaluating Predictive Models
4.1.1 Dataset. To build a predictivemodel, we need a set of training
examples, validation examples and testing examples. The valida-
tion and testing examples are extracted from the uniform samples
to simulate the production needs. The training examples are de-
rived from both the uniform samples and click-weighted samples
to reduce the imbalance of click and impression labels.

As shown in Figure 2, each example is created in the following
way. For each simulated prediction date 𝑑 , we define the prediction
time 𝑡 as the beginning of 𝑑 (12:00 am). Features are then extracted

from the crawling logs up to time 𝑡 . Hourly crawls after 𝑡 provide a
full observation for the future price information, which helps us
generate a binary label reflecting whether the price will change in
the next day. Similarly, the click and impression information on 𝑑+1
are used to create a binary click/impression label denoting whether
the offer will be clicked/impressed in the next day. By shifting the
prediction date 𝑑 and repeating the above process, we create a set
of training, testing and validation examples.

Figure 2: Dataset generation process for the prediction dates
𝑑 and 𝑑 + 1. A vertical line denotes a hourly crawl.

The training, validation and testing datasets are created with
data from different dates. Particularly, data from 2018/08/01 to
2018/12/31 is used for training, data from 2019/01/01 to 2019/01/09
is used for validation and the rest is used for testing. In total, we
obtain 0.6 million validation examples, 8 million testing examples
and 100 million training examples. In the testing and validation
data, the positive/negative label ratios are 1:20 for price change, 1:75
for click and 1:6 for impression, whereas for the training data, we
observe higher positive/negative ratios due to the involvement of
click-weighted samples. The ratios become 1:20 for price change, 1:1
for click and 4:1 for impression. Note that since the uniform samples
are picked randomly from the entire corpus, many are obsolete,
removed or have no price extracted. This causes the number of
testing and validation examples being lower than expected.

4.1.2 Evaluation Metric. To evaluate our predictive models, we
adopt the AUC metric (Area Under Receiver Operating Character-
istic Curve). A value of 0.5 means a random guess while 1.0 indicates
a perfect prediction. The evaluation is conducted on the testing
dataset while the validation dataset is used for model selection.

4.2 Evaluating Recrawl Strategies
The ultimate goal of building the predictive models is to provide
better parameters (i.e., 𝜇, 𝜈 and Δ) for different recrawl strategies.
To further understand the effectiveness of each strategy, we follow
the below evaluation process.

4.2.1 Evaluation Process. We design the evaluation process by
simulating our production system. Specifically, when examining
a recrawl strategy 𝑘 , we maintain a local price 𝑙𝑡

𝑖
(𝑘) for each offer

𝑜𝑖 . This price will be updated if 𝑜𝑖 is crawled by the strategy 𝑘 .
Meanwhile, the hourly crawls from our dataset provide a full ob-
servation for the price history which can then be used to infer the
ground-truth price 𝑟𝑡

𝑖
. By comparing 𝑙𝑡

𝑖
(𝑘) and 𝑟𝑡

𝑖
, we can compute

the freshness of 𝑜𝑖 at any simulated prediction time.
This process can be illustrated by Figure 3. To avoid reusing

the training data, we exclude the crawling data before 2019/01/10
6

Adversarial Bandits Policy for Crawling Commercial Web Content WWW ’20, April 20–24, 2020, Taipei, Taiwan

at the evaluation time. In addition, we set up a warm-up stage
from 2019/01/10 to 2019/03/10. During this time, we only apply
a recrawl strategy but do not report its performance. This allows
sufficient time for the adversarial bandits policy to accumulate
historical performances for each candidate arm. Finally, we report
the freshness at the evaluation stage from 2019/03/11 to 2019/04/10.

Figure 3: The evaluation process for a recrawl strategy.

4.2.2 Evaluation Metric. As mentioned in Section 3, when evaluat-
ing a recrawl strategy, we adopt both click-weighted freshness and
offer-level freshness, and compute them at the daily granularity.
Specifically, on a particular date 𝑑 , the offer-level freshness 𝑜 𝑓 𝑘

𝑑
for a strategy 𝑘 is defined as the percentage of offers that have
price information updated at midnight (𝑡𝑚=12:00am), as shown in
Formula (3). The click-weighted freshness 𝑐 𝑓 𝑘

𝑑
is measured by the

proportion of clicks for which the users see the right price, which
is computed by Formula (4). 𝜇𝑡

𝑖
denotes the click rate at time step 𝑡 .

𝑜 𝑓 𝑑
𝑘
=

1
𝑛

∑
𝑖

1(𝑙𝑡𝑚
𝑖

(𝑘) = 𝑟𝑡𝑚
𝑖

) (3)

𝑐 𝑓 𝑑
𝑘
=

1∑
𝑡 ∈𝑑

∑
𝑖 𝜇
𝑡
𝑖

∑
𝑡 ∈𝑑

∑
𝑖

𝜇𝑡𝑖 · 1(𝑙
𝑡
𝑖 (𝑘) = 𝑟

𝑡
𝑖) (4)

5 EXPERIMENTS
This section starts with evaluating the predictive models for param-
eter estimation. With the best performed models, we then report
how well the predicted parameters can help promote different re-
crawl strategies. At last, we conduct an extensive assessment for
our proposed K-armed adversarial bandits recrawling policy.

5.1 Predictive Modeling Performance
For each prediction task (price change prediction, click prediction
and impression prediction), we compare three predictive models:
one only using the metadata features, one only using the history
features and the third using both features. Table 4 provides the
testing AUCs for the three models. Those values are obtained in
the following way — at first, we select the best model based on the
validation dataset; then, we split our testing data into 20 subsets and
apply the models on each subset; finally, we compute the average
and standard deviation of AUCs over the 20 subsets.

Overall, the predictive models with only the metadata features
achieved AUCs above 0.73, indicating the value of such features in
all three prediction tasks. Particularly, for the price change predic-
tion, it significantly outperforms the history features, and is only 2%
shy of the best model. As for the click and impression predictions,
using history features outperforms the metadata features, and a
combination of both does not provide too much added value.

Click/impression prediction is an important research topic which
has been the central task for many online services [34]. Given that
the main focus of our paper is to build a better recrawl strategy,
further prediction performance improvements are out of scope of
this work. Instead, we simply apply the model with both metadata
and history features due to its best performance across all tasks, as
well as its ability of dealing with the cold-start issue.

Table 4: Testing AUCs (and standard deviation) for predic-
tive models. Numbers in bold (italic) denote that the results
are significant comparing to the history (metadata) features.

Task \ Model Metadata History Metadata + History

Price change 0.860 (0.008) 0.833 (0.011) 0.882 (0.007)

Click 0.796 (0.021) 0.948 (0.006) 0.949 (0.006)

Impression 0.736 (0.008) 0.896 (0.003) 0.895 (0.003)

5.2 Heuristic Recrawl Strategies
This section examines four heuristic recrawl strategies from Table
2, including the uniform strategy, the change-weighted strategy,
the click-weighted strategy and the impression-weighted strategy.
To measure the performance of each strategy, we adopt both click-
weighted freshness and offer-level freshness. As mentioned in Sec-
tion 4.2.2, our goal is to maximize the click-weighted freshness,
and potentially improve the offer-level freshness, if possible.

5.2.1 Experiment Setup. Following Figure 3, when evaluating a
recrawl strategy, we apply it on both warm-up stage (01/10 to 03/10)
and evaluation stage (03/11 to 04/10), but only report results in the
second stage. Specifically, for each day in the evaluation stage, we
compute one freshness value, which results in 31 values for 31
days. Meanwhile, since the crawl decisions are made stochastically,
we repeat the whole evaluation process 100 times to reduce the
randomness. In total, we obtain 3,100 values (100 runs × 31 days).
Hereafter, we report the median of those values since they are not
normally distributed. For the same reason, we adopt the Wilcoxon
signed-rank test to examine statistical significance.

As shown in Table 2, the recrawl rate for each strategy contains
several parameters: resource budget 𝑏 and click/impression/change
rate 𝜇𝑖 /𝜈𝑖 /Δ𝑖 . During evaluation, we vary the relative percentage of
resource budget 𝑏/𝑛 from 10% to 90%, with 10% as the step width.
The rest of parameters, including 𝜇𝑖 , 𝜈𝑖 and Δ𝑖 , are estimated either
from the past history or using the predictive models. The following
sections provide a more detailed evaluation for different recrawl
strategies under the two parameter estimation methods.

5.2.2 Parameter Estimation from Historical Frequency. We firstly
evaluate the four heuristic strategies with model parameters esti-
mated from the historical frequencies (except the uniform policy).
Such an estimation was applied and proven to be effective in many
prior studies [17, 26, 40]. We denote them as uniform, 𝜇h, 𝜈h and
Δh. Here, model parameters in 𝜇h, 𝜈h and Δh are estimated using
the average daily price changes, clicks and impressions in the past
30 days. We choose 30 days because of its good performance and
less sparsity than only using data from one day or one week.

7

WWW ’20, April 20–24, 2020, Taipei, Taiwan Han, Bendersky, Gajda, et al.

Table 5: Click-weighted freshness (median) for different recrawl strategies, and across various resource budgets. Numbers
in bold denote the best strategy in each group; numbers with * indicate the overall best strategy. † means KAB5 performs
significantly better (p-value < 0.05) than 𝜆ml, and the corresponding numbers are the median of increase percentages.

Group Policy \ Budget 10% 20% 30% 40% 50% 60% 70% 80% 90%

Uniform Uniform 0.7460 0.8162 0.8512 0.8720 0.8840 0.8928 0.9029 0.9105 0.9165

History

Δh 0.1951 0.2508 0.2817 0.3007 0.3171 0.3294 0.3412 0.3507 0.3549
𝜇h 0.8840 0.8933 0.8978 0.9006 0.9030 0.9051 0.9068 0.9083 0.9097
𝜈h 0.9013 0.9153 0.9224 0.9266 0.9295 0.9314 0.9328 0.9341 0.9351

𝜆h = 𝜆𝜇h,Δh 0.8843 0.9079 0.9184 0.9244 0.9291 0.9322 0.9350 0.9371 0.9385

Predictive Models

Δml 0.4067 0.5177 0.5857 0.6339 0.6664 0.6935 0.7159 0.7344 0.7483
𝜇ml 0.8976 0.9098 0.9199 0.9251 0.9357 0.9380 0.9437 0.9463 0.9494
𝜈ml 0.8835 0.9054 0.9222 0.9301 0.9320 0.9362 0.9409 0.9435 0.9461

𝜆ml = 𝜆𝜇ml,Δml 0.8983 0.9152 0.9284 0.9384 0.9424 0.9456 0.9486 0.9505 0.9518

Adversarial Bandit
KAB5 0.9027* 0.9238* 0.9373* 0.9425* 0.9478* 0.9497* 0.9517* 0.9533* 0.9543*

+% ↑ (vs. 𝜆ml) +0.93%† +0.71%† +0.44%† +0.35%† +0.33%† +0.28%† +0.23%† +0.22%† +0.15%†

Table 6: Offer-level freshness (median) (median) for different recrawl strategies, and across various resource budgets. Numbers
in bold denote the best strategy in each group; numbers with * indicate the overall best strategy. † means KAB5 performs
significantly better (p-value < 0.05) than 𝜆ml, and the corresponding numbers are the median of increase percentages.

Group Policy \ Budget 10% 20% 30% 40% 50% 60% 70% 80% 90%

Uniform Uniform 0.7426* 0.8135* 0.8454* 0.8637* 0.8758* 0.8849* 0.8917* 0.8971* 0.9015*

History

Δh 0.1589 0.2031 0.2268 0.2423 0.2539 0.2632 0.2713 0.2782 0.2846
𝜇h 0.0724 0.1008 0.1269 0.1513 0.1746 0.1966 0.2175 0.2375 0.2565
𝜈h 0.1239 0.1582 0.1792 0.1946 0.2063 0.2157 0.2237 0.2304 0.2363

𝜆h = 𝜆𝜇h,Δh 0.3424 0.4884 0.5722 0.6247 0.6630 0.6921 0.7130 0.7291 0.7427

Predictive Models

Δml 0.4611 0.5779 0.6404 0.6812 0.7106 0.7333 0.7513 0.7662 0.7786
𝜇ml 0.4447 0.5894 0.6608 0.7033 0.7314 0.7528 0.7693 0.7830 0.7943
𝜈ml 0.6033 0.7095 0.7584 0.7875 0.8082 0.8233 0.8351 0.8446 0.8523

𝜆ml = 𝜆𝜇ml,Δml 0.6550 0.7561 0.8023 0.8289 0.8463 0.8588 0.8684 0.8759 0.8818

Adversarial Bandit
KAB5 0.6604 0.7635 0.8064 0.8319 0.8495 0.8612 0.8709 0.8782 0.8845

+% ↑ (vs. 𝜆ml) +1.07%† +1.09%† +0.72%† +0.49%† +0.44%† +0.36%† +0.38%† +0.34%† +0.35%†

Table 5 presents the evaluation results for the click-weighted
freshness. Same as Cho and Garcia-Molina [15], we find that crawl-
ing offers proportionally to their change rates (Δh) performs the
worst. The main reason is that Δh spends too much resource on the
highly dynamic content which might change again at the time users
access them. We also see that 𝜇h and 𝜈h outperform the uniform
strategy. This is because the click-weighted freshness weighs more
on the clicked offers. In addition, we observe that 𝜈h performs better
than 𝜇h. One potential reason is that the impression information is
less sparse than the click information, making it a better estimator
for future clicks. Indeed, the percentage of positive impression label
(with at least one impression in the next day) is around 15% whereas
the percentage is only 1.5% for click.

Table 6 reports the offer-level freshness. Despite being the sec-
ondary metric, we still want to maintain it at a certain level. Here,

the uniform strategy outperforms all others, which is due to the
following reasons. First, most of the above strategies are designed
to optimize the click-weighted freshness rather than the offer-level
freshness. Second, daily statistics from the past 30 days are rel-
atively static. Using such statistics may end up choosing similar
offers, while the non-selected offers will never be updated. This
remains true if the parameters are estimated from predictive mod-
els since the metadata features are also relatively static. On the
contrary, the uniform strategy brings diverse offers each time. Be-
sides, we see that 𝜇h and 𝜈h perform less well than Δh. This is
expected because 𝜇h and 𝜈h only predict future clicks, whereas
such information is not considered in the offer-level freshness.

5.2.3 Parameter Estimation from Predictive Models. Here, we eval-
uate the same four heuristic strategies except the parameters are
estimated from the predictive models. We thus rename them as 𝜇ml,

8

Adversarial Bandits Policy for Crawling Commercial Web Content WWW ’20, April 20–24, 2020, Taipei, Taiwan

𝜈ml and Δml. The results are provided in Table 5 and Table 6. Overall,
comparing to the history-based parameter estimation, the predic-
tive models bring substantial lifts for both freshness metrics. For the
click-weighted freshness, Δml doubles the performance of Δh. For
the offer-level freshness, Δml, 𝜇ml and 𝜈ml are improved as much as
four to five times. One reason is that the predictive models smooth
the crawling rate so that the highly changed/clicked offers will not
have dramatic differences with the rarely changed/clicked offers.
Besides, the predictive models also provide meaningful predictions
for those offers with limited or no past histories.

5.3 LambdaCrawl
Different from the heuristic strategies, LambdaCrawl determines its
recrawling rate by combining both click rate and change rate. Again,
we consider two LambdaCrawl strategies based on the parameter
estimation approaches — 𝜆h that combines 𝜇h and Δh, and 𝜆ml that
integrates 𝜇ml and Δml. In terms of the implementation, we directly
apply Algorithm 1 from Azar et al. [5], where we set the goal as to
optimize the click-weighted freshness. The evaluation results are
also presented in Table 5 and Table 6.

According to Table 5, we find that 𝜆h does effectively integrate
𝜇h and Δh, producing a better click-weighted freshness than the
strategies that apply them separately. With more accurate parame-
ters from the predictive models, 𝜆ml brings a further improvement
for the click-weighted freshness. In addition, despite we have set
the goal to optimize the click-weighted freshness, LambdaCrawl
also achieves surprisingly high offer-level freshness (see Table 6).
This might be due to that there are too few clicks (less than 1.5%)
in the evaluation dataset; therefore, optimizing the click-weighted
freshness also optimizes the offer-level freshness implicitly.

In addition, observing that the impression-weighted strategy
also performs very well on the click-weighted freshness, we further
experimented with replacing the click rate with impression rate in
LambdaCrawl. Specifically, we tested two new strategies 𝜆𝜈h,Δh and
𝜆𝜈ml,Δml . However, both of them performed less well than 𝜆𝜇ml,Δml ;
thus, we did not report the results in this paper.

5.4 K-armed Adversarial Bandits Policy
5.4.1 Overall Performance. We firstly examine a KAB policy with
the following strategies: {uniform, Δml, 𝜇ml, 𝜈ml, 𝜆ml}. We name it as
KAB5 since it contains five candidate strategies. Our expectation is
that through combining different strategies, it can achieve a better
performance than using each of them separately. Evaluation results
for this policy are also provided in Table 5 and Table 6, which clearly
show the effectiveness of KAB5 on boosting both the click-weighted
freshness and offer-level freshness over the baselines. Besides, the
performance improvement is consistent across the nine resource
budgets, indicating the robustness of the KAB approach.

5.4.2 Varying Resource Budgets. The above experiments only con-
sider resource budgets from 10% to 90%. For production systems
that crawl millions of offers, they often deal with a much tighter
crawling budget. To understand the robustness of KAB5 over differ-
ent resource budgets, we run a set of additional experiments with
tighter resources ranging from 1% to 9% (1% as the step size) and
0.1% to 0.9% (0.1% as the step size). Then, we compute and plot the

freshness increases over 𝜆ml in Figure 4. Since the data is not nor-
mally distributed, we plot the medians, and the confidence intervals
are computed for medians [8]. Here, we use 𝜆ml for benchmark as
it is the best baseline for the click-weighted freshness.

The freshness change curves are above zero across all resource
budgets, meaning that KAB5 consistently outperforms 𝜆ml on both
click-weighted and offer-level freshness metrics. The improvements
are especially pronounced for very tight (< 1%) budgets. All of the
improvements are significant at p-value < 0.05 level.

Figure 4: Freshness change (median, 95% CI) over 𝜆ml for
KAB5 across different resource budgets. The horizontal axis
denotes budgets (log scale) and the vertical axis indicates
freshness increase/decrease (positive/negative value).

5.4.3 Arm Selection. Since 𝜆ml is one of the arms in KAB5, it is
possible that 𝜆ml will always be selected given its superior per-
formance. To better understand how KAB5 chooses arms, we plot
the arm selection probability (line 3 in Algorithm 1) at each time
step in Figure 5. Here, we only plot the probabilities up to the time
step 1,000 as we only have three months of data for evaluation (see
Figure 3), and the probabilities are updated every two hours.

According to Figure 5, both 𝜆ml and 𝜇ml receive probabilities
higher than 0.2, the initialized uniform probability, indicating the
utility of the two strategies. However, 𝜇ml is shown to be more
preferable than 𝜆ml, which differs from Table 5 — in case of being
applied individually, 𝜆ml is better. One potential reason is that offers
selected by 𝜇ml are less diverse so that certain offers might never be
selected if we apply such a strategy exclusively, whereas, in KAB5,
those offers can be handled by other strategies. Besides, although
there are several strategies receiving low selection probabilities,
they also provide significant merits, particularly the uniform strat-
egy. We will discuss this in more detail in the next section. Also,
with more resources available, the arm selection probabilities be-
come less imbalanced as there is more overlap across strategies.

5.4.4 KAB without LambdaCrawl. Considering the extra compu-
tation cost for LambdaCrawl, this section examines the possibility
of excluding 𝜆ml from KAB. Specifically, we evaluate the following
KAB policies. Here, we use KABX to denote a policy with X arms.

- KAB2 with candidates { 𝜇ml, Δml }
- KAB36 with candidates { 𝜇ml, Δml, Uniform }
- KAB4 with candidates { 𝜇ml, Δml, 𝜈ml, Uniform }

Figure 6 plots the freshness increase over 𝜆ml for the above three
KAB policies and KAB5. As shown in Figure 6, the gap between

6We also tried a KAB3 with { 𝜇ml , Δml , 𝜈ml }, which performed similarly to KAB2.

9

WWW ’20, April 20–24, 2020, Taipei, Taiwan Han, Bendersky, Gajda, et al.

Figure 5: Arm selection probability forKAB5 under resource
budgets 1% and 10%. The horizontal axis denotes time step.

each KAB policy and 𝜆ml closes gradually (to zero) with the increase
of resource budgets. This is expected because with more and more
resources, the offers chosen (to be crawled) by different policies
will have more overlaps. In the case of 100% resources, all offers
are selected, making no differences among policies.

Figure 6: Freshness change (median, 95%CI) over 𝜆ml for four
KAB policies and across multiple resource budgets. The hor-
izontal axis denotes budgets and the vertical axis indicates
freshness increase/decrease (positive/negative value).

Same as the 𝜆ml, KAB2 adopts both click rate and change rate.
Although it falls behind 𝜆ml on the offer-level freshness, KAB2
achieves a comparable performance as 𝜆ml on the click-weighted
freshness, particularly when the crawling budget exceeds 30%.
On the one hand, the relatively good performances (both click-
weighted and offer-level freshness) of 𝜆ml demonstrate its effective-
ness on combining the click rate and the change rate, which cannot
be easily achieved by other means. On the other hand, the on-par
click-weighted freshness performance motivates us to further im-
prove the KAB2 policy, especially for the offer-level freshness.

To boost the offer-level freshness, we include the uniform strat-
egy as a new arm for the KAB policy because of its best offer-level
freshness performance (Table 6). The new policy, named KAB3,
does work well as expected. It significantly improves the offer-level
freshness over KAB2, though it is still slightly lower than 𝜆ml. More
importantly, KAB3 substantially lifts the click-weighted freshness,
which outperforms 𝜆ml by a very large margin. This is due to the
fact that the uniform strategy enables exploration by crawling hard-
to-predict offers. Besides, a further integration of the 𝜈ml strategy as
in KAB4 provides an additional boost for the offer-level freshness,
but the click-weighted freshness remains the same.

Finally, we integrate 𝜆ml in the KAB policy, thereby creating a
KAB5 policy with five strategies. According to Figure 6, it not only
produces a good click-weighted freshness but also further promotes

the offer-level freshness. KAB5 outperforms the 𝜆ml strategy on
both freshness metrics. This is the best KAB policy we have and its
results have been reported in Table 5 and Table 6.

To summarize, through an extensive experimentation of different
KAB policies, we discover several advantages of the KAB approach.
First, KAB can achieve reasonably good freshness even without
𝜆ml, suggesting that it is a legitimate alternative to LambdaCrawl.
Moreover, the performance can be improved after including the
LambdaCrawl. Second, adding the uniform strategy is critical for
the KAB policy, which not only boosts the offer-level freshness but
also promotes the click-weighted freshness. Third, the KAB policy
provides a generic framework for integrating different recrawl
strategies. Any strategy can be included or removed easily.

6 CONCLUSIONS AND FUTUREWORK
6.1 Conclusions
This paper studied the content recrawling problem in the context
of building an effective production crawler for commercial content.
In particular, we aimed to design a recrawl policy that not only
maximizes content freshness but also considers resource limits.

We started by examining a number of existing recrawl strategies
and discovered that the recently-proposed LambdaCrawl outper-
formed all other strategies, but its performance was dependent on
an accurate estimation of future click rates and change rates. To this
end, we proposed state-of-art deep neural models for parameter es-
timation (§3.3). These models not only produced the best prediction
accuracy, but also resulted in a significant improvement of content
freshness over the common LambdaCrawl implementation with
parameters estimated from the past history.

To further improve upon the existing best practices, we proposed
a 𝐾-armed adversarial bandits approach in §3.2, which treated each
of the existing strategies as an arm and iteratively selected arms
based on their historical performances. Empirical results from §5.4
demonstrated the superiority of this approach over LambdaCrawl,
and its robustness across different resource budgets. Furthermore,
the proposed approach also provided an effective framework for
combining multiple recrawl strategies, which achieved a compara-
ble performance as the best baseline model (LambdaCrawl) even
without including it as a candidate strategy.

6.2 Future Work
The results in this paper suggest several future research directions.
First, despite the fact that our experiments with two other recent
bandit approaches, EXP3++ [43] and EXP3-IX [37], did not show
much improvement beyond the standard EXP3, other bandit-based
approaches may still be helpful. For example, instead of firstly
selecting a recrawl strategy and then selecting offers to crawl, we
can build a contextual bandit [31] to directly predict crawling rates
based on the offer context.

Second, although we focus on commercial content crawling, we
believe that our proposed approach can easily generalize to other
crawling scenarios such as crawling news content and event infor-
mation. In addition, adversarial bandits can be helpful in monitoring
applications beyond crawling. E.g., with an increasing trend of pub-
lishing wireless sensor outputs on the Web, this can be an effective
mechanism to update the latest sensor information for IoT [42].

10

Adversarial Bandits Policy for Crawling Commercial Web Content WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: a system for large-scale machine learning.. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation.
265–283.

[2] Eytan Adar, Jaime Teevan, Susan T Dumais, and Jonathan L Elsas. 2009. The web
changes everything: understanding the dynamics of web content. In Proceedings
of the 2nd ACM International Conference onWeb Search and Data Mining. 282–291.

[3] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. 2017.
Learning a hierarchical embedding model for personalized product search. In
Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 645–654.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM J. Comput. 32, 1 (2002), 48–77.

[5] Yossi Azar, Eric Horvitz, Eyal Lubetzky, Yuval Peres, and Dafna Shahaf. 2018.
Tractable near-optimal policies for crawling. Proceedings of the National Academy
of Sciences 115, 32 (2018), 8099–8103.

[6] Ricardo Baeza-Yates and Carlos Castillo. 2002. Balancing volume, quality and
freshness in web crawling. In Proceedings of the 2nd International Conference on
Hybrid Intelligent Systems. 565–572.

[7] Dimitri P Bertsekas. 2014. Constrained optimization and Lagrange multiplier
methods. Academic Press.

[8] Martin Bland. 2015. An introduction to medical statistics. Oxford University Press
(UK).

[9] Brian E Brewington and George Cybenko. 2000. How dynamic is the web?
Computer Networks 33, 1-6 (2000), 257–276.

[10] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. 2012. Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. Foundations and Trends® in
Machine Learning 5, 1 (2012), 1–122.

[11] Maria Carla Calzarossa and Daniele Tessera. 2008. Characterization of the evolu-
tion of a newsWeb site. Journal of Systems and Software 81, 12 (2008), 2336–2344.

[12] Maria Carla Calzarossa and Daniele Tessera. 2015. Modeling and predicting
temporal patterns of web content changes. Journal of Network and Computer
Applications 56 (2015), 115–123.

[13] Carlos Castillo. 2005. Effective Web Crawling. SIGIR Forum 39, 1 (June 2005),
55–56.

[14] Junghoo Cho and Hector Garcia-Molina. 2000. The Evolution of the Web and
Implications for an Incremental Crawler. In Proceedings of the 26th International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 200–209.

[15] Junghoo Cho and Hector Garcia-Molina. 2000. Synchronizing a database to im-
prove freshness. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data. 117–128.

[16] Junghoo Cho and Hector Garcia-Molina. 2003. Effective page refresh policies for
web crawlers. ACM Transactions on Database Systems 28, 4 (2003), 390–426.

[17] Junghoo Cho and Hector Garcia-Molina. 2003. Estimating frequency of change.
ACM Transactions on Internet Technology (TOIT) 3, 3 (2003), 256–290.

[18] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. 1998. Efficient crawling
through URL ordering. Computer Networks and ISDN Systems 30, 1-7 (1998), 161–
172.

[19] Junghoo Cho and Alexandros Ntoulas. 2002. Effective change detection using
sampling. In Proceedings of the 28th International Conference on Very Large Data
Bases. 514–525.

[20] Edward G Coffman Jr, Zhen Liu, and Richard R Weber. 1998. Optimal robot
scheduling for web search engines. Journal of scheduling 1, 1 (1998), 15–29.

[21] Edith Cohen and Haim Kaplan. 2001. Refreshment policies for web content
caches. In IEEE INFOCOM 2001 - The Conference on Computer Communications
- Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies, Vol. 3. 1398–1406.

[22] Jonathan Eckstein, Avigdor Gal, and Sarit Reiner. 2008. Monitoring an information
source under a politeness constraint. INFORMS Journal on Computing 20, 1 (2008),
3–20.

[23] Jenny Edwards, Kevin McCurley, and John Tomlin. 2001. An adaptive model for
optimizing performance of an incremental web crawler. In Proceedings of the 10th
International World Wide Web Conference. 106–113.

[24] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. 2003. A large-
scale study of the evolution of web pages. In Proceedings of the 12th International
World Wide Web Conference. 669–678.

[25] Carrie Grimes, Daniel Ford, and Eric Tassone. 2008. Keeping a Search Engine
Index Fresh: Risk and optimality in estimating refresh rates for web pages. Pro-
ceedings of the 40th Symposium on the Interface: Computing Science and Statistics,
1–14.

[26] Shuguang Han, Bernhard Brodowsky, Przemek Gajda, Sergey Novikov, Mike
Bendersky, Marc Najork, Robin Dua, and Alexandrin Popescul. 2019. Predictive
Crawling for Commercial Web Content. In The World Wide Web Conference.
627–637.

[27] Toshihide Ibaraki and Naoki Katoh. 1988. Resource allocation problems: algorithmic
approaches. MIT press.

[28] Andrey Kolobov, Yuval Peres, Cheng Lu, and Eric Horvitz. 2019. Staying up to
Date with Online Content Changes Using Reinforcement Learning for Schedul-
ing. In Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 36th
International Conference on Machine Learning.

[29] Andrey Kolobov, Yuval Peres, Eyal Lubetzky, and Eric Horvitz. 2019. Optimal
Freshness Crawl Under Politeness Constraints. In Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 495–504.

[30] Damien Lefortier, Liudmila Ostroumova, Egor Samosvat, and Pavel Serdyukov.
2013. Timely crawling of high-quality ephemeral new content. In Proceedings of
the 22nd ACM International Conference on Information & Knowledge Management.
745–750.

[31] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. 661–670.

[32] Xiaoyong Li, Daren BH Cline, and Dmitri Loguinov. 2017. Temporal update
dynamics under blind sampling. IEEE/ACM Transactions on Networking (TON)
25, 1 (2017), 363–376.

[33] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. 1999.
A machine learning approach to building domain-specific search engines. In
International Joint Conferences on Artificial Intelligence, Vol. 99. Citeseer, 662–
667.

[34] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.
2013. Ad click prediction: a view from the trenches. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1222–1230.

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[36] Marc Najork and Allan Heydon. 2002. High-performance web crawling. In
Handbook of Massive Data Sets. Springer, 25–45.

[37] Gergely Neu. 2015. Explore no more: Improved high-probability regret bounds
for non-stochastic bandits. In Advances in Neural Information Processing Systems.
3168–3176.

[38] Christopher Olston and Marc Najork. 2010. Web crawling. Foundations and
Trends® in Information Retrieval 4, 3 (2010), 175–246.

[39] Christopher Olston and Sandeep Pandey. 2008. Recrawl scheduling based on
information longevity. In Proceedings of the 17th International Conference onWorld
Wide Web. 437–446.

[40] Kira Radinsky and Paul N Bennett. 2013. Predicting content change on the web.
In Proceedings of the Sixth ACM International Conference on Web Search and Data
Mining. 415–424.

[41] Jason Rennie, Andrew McCallum, et al. 1999. Using reinforcement learning
to spider the web efficiently. In International Conference on Machine Learning,
Vol. 99. 335–343.

[42] Kay Romer, Benedikt Ostermaier, Friedemann Mattern, Michael Fahrmair, and
Wolfgang Kellerer. 2010. Real-time search for real-world entities: A survey. Proc.
IEEE 98, 11 (2010), 1887–1902.

[43] Yevgeny Seldin and Gábor Lugosi. 2017. An improved parametrization and
analysis of the EXP3++ algorithm for stochastic and adversarial bandits. In The
30th Annual Conference on Learning Theory. Proceedings of Machine Learning
Research, 1743–1759.

[44] Qingzhao Tan and Prasenjit Mitra. 2010. Clustering-based incremental web
crawling. ACM Transactions on Information Systems (TOIS) 28, 4 (2010), 17.

[45] Qingzhao Tan, Ziming Zhuang, Prasenjit Mitra, and C Lee Giles. 2007. Efficiently
detecting webpage updates using samples. In International Conference on Web
Engineering. 285–300.

[46] Utkarsh Upadhyay, Robert Busa-Fekete, Wojciech Kotlowski, David Pal, and
Balazs Szorenyi. 2019. Learning to Crawl. arXiv preprint arXiv:1905.12781 (2019).

[47] Joel L Wolf, Mark S Squillante, PS Yu, Jay Sethuraman, and Leyla Ozsen. 2002.
Optimal crawling strategies for web search engines. In Proceedings of the 11th
International Conference on World Wide Web. 136–147.

[48] Chao-YuanWu, Amr Ahmed, Gowtham Ramani Kumar, and Ritendra Datta. 2017.
Predicting Latent Structured Intents from Shopping Queries. In Proceedings of
the 26th International Conference on World Wide Web. 1133–1141.

11

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Existing Recrawl Strategies
	3.2 K-armed Adversarial Bandits Crawl Policy
	3.3 Parameter Estimation

	4 Data and Evaluation
	4.1 Evaluating Predictive Models
	4.2 Evaluating Recrawl Strategies

	5 Experiments
	5.1 Predictive Modeling Performance
	5.2 Heuristic Recrawl Strategies
	5.3 LambdaCrawl
	5.4 K-armed Adversarial Bandits Policy

	6 Conclusions And Future Work
	6.1 Conclusions
	6.2 Future Work

	References

