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ABSTRACT

Web crawlers spend significant resources to maintain freshness
of their crawled data. This paper describes the optimization of
resources to ensure that product prices shown in ads in a con-
text of a shopping sponsored search service are synchronized with
current merchant prices. We are able to use the predictability of
price changes to build a machine learned system leading to con-
siderable resource savings for both the merchants and the crawler.
We describe our solution to technical challenges due to partial ob-
servability of price history, feedback loops arising from applying
machine learned models, and offers in cold start state. Empirical
evaluation over large-scale product crawl data demonstrates the
effectiveness of our model and confirms its robustness towards
unseen data. We argue that our approach can be applicable in more
general data pull settings.
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1 INTRODUCTION

An important characteristic of web content is the constancy of its
change. While the dynamics of change are well understood in the
context of generic web pages [2, 4, 5], commercial content (e.g.,
product listings, e-commerce sites, etc.) dynamics are relatively
less explored. We see two major differences between the generic
web content and commercial content. First, commercial content
tends to have different change dynamics as it is closely related to
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Figure 1: Overall architecture for our product search service.

marketing and economic factors such as supply and demand. Sec-
ond, commercial content contains richer domain-specific metadata,
e.g., merchant and brand, which provides us with more facets to
understand its change dynamics. Besides, since there are billions of
products advertised and sold online, often from small independent
merchants, tracking and predicting of commercial content change
at scale is an important but hard research challenge. Thus, in this
paper, we focus on the change dynamics for commercial content.

In particular, we study commercial content change in the context
of building an effective product search service. Figure 1 illustrates
a high level architecture for such service. Product search results
are based on the product offers that are listed on merchants’ web-
sites. These merchants are distributed and independent, and their
websites cannot be searched in real-time due to latency constraint.
Thus, a local database is used to store local copies of offer attributes.
This paper studies the dynamics of price changes since price is
one of the most important attributes of online products. The local
database is then used by the search interface when users access
offer details. The crawler plays a crucial role in our search service,
as it attempts to keep the local database fresh. The ultimate goal
for the crawler is to ensure that the prices seen by users (from the
local database) match the prices shown on merchants’ websites.

To achieve this goal, we need to update the local database im-
mediately after an offer changes its price. One potential way is
encouraging merchants to push price change information through
merchant feeds. Our production system indeed receives such in-
formation. This mechanism alone, however, in our experience is
insufficient to maintain maximum product offer freshness. Typi-
cally, merchant feeds are pushed according to specific schedules,
but offers may change attributes regardless of the feed upload sched-
ule. Creating a quality feed and delivering it continuously carries
a substantial cost for merchants. Therefore, significant efforts are
still required to build an efficient offer crawler.

An alternative solution is to repeatedly crawl merchants’ web-
sites for updates. Production crawlers often need to handle billions
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of offers, and scheduling frequent re-crawls for all them is imprac-
tical. To deal with that, our production crawler selects a subset of
offers based on certain heuristics, and then crawls them periodically
using a Batch Scheduler. Meanwhile, to compensate for important
offers that might not be selected, we include an InstaCrawl compo-
nent to crawl offers immediately after user clicks. Although this
brings reasonable database freshness, offer selection heuristics in
the Batch Scheduler are hard to build, and we overspend substantial
resources on InstaCrawl because most offers do not change prices.

Previous development of generic web crawlers encounters a sim-
ilar issue; researchers and practitioners try to solve it by predicting
content change and schedule crawls accordingly [19, 24]. Most of
existing studies developed their models based on web pages’ past
change frequencies [12, 13, 16, 20, 25]. There are two issues with
this approach. First, it cannot handle the web pages with no or little
crawl history, i.e., cold start. Second, it cannot deal with feedback
loops — adjustments to the crawl strategy can distort the distribu-
tion of change frequency features so that the trained model may
not work anymore. Later studies discovered that the content of a
web page can help alleviate the cold start problem since similar
pages share similar change patterns [28, 30].

Inspired by prior work, in this paper, we apply the predictive
crawling approach to the domain of crawling commercial content.
Informed by the latest advances in deep learning, we propose a state-
of-the-art neural network based method to predict price change
at scale. Our method combines both change dynamics as well as
content and metadata information based features in a unified frame-
work which enables us to effectively handle cold start and feedback
loops of change frequency features.

We further develop new crawling strategies based on the pre-
dictive models and examine their effectiveness in the production
environment. In this paper, we focus on optimizing InstaCrawl be-
cause the corresponding offers are more likely to be accessed by
users. Particularly, we use the predictive model to reduce crawls for
offers that are unlikely to change prices. Our experiments show that
the new crawling strategies succeed in saving significant amount
of resources. Since we use metadata and content features which are
relatively static and independent from crawl history, our methods
save resources even in the cold-start scenarios, for offers with little
or no prior change history. In this paper, we intend to keep our
models generalizable to other crawling components. For example,
our price change model can also be applied to the Batch Scheduler
for selecting more appropriate offers for periodical re-crawls.

To summarize, the main contributions of our work are as follows:

e To motivate our predictive models, we provide a compre-
hensive, global-scale study of factors that affect online price
change - the first such published study to the best of our
knowledge (Section 3).

o We develop a state-of-the-art and scalable price change pre-
diction model that combines both price change frequency
and metadata features (Section 4), and further demonstrate
both its effectiveness and robustness in a cold-start setting
(Section 5).

e We utilize the price change prediction model for making
crawl decisions, and demonstrate that it can save a significant
amount of crawl resources in production setting (Section 6).
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2 RELATED WORK

A large body of work addressing freshness in pull systems has been
done in the context of web crawlers (e.g. [6, 12, 23]). The topic
started attracting significant interest in industry and research in
the 1990s together with the rise of web search engines. Crawler
optimization to address significant resource demands became an
active area of research too.

A number of studies, for example [11, 13, 31], focused on change
detection and estimation of frequency of change with sampling
based policies. Cho and Garcia-Molina [8, 9] analyzed web content
change patterns and proposed several design choices for incremen-
tal crawlers. Among them, the authors discovered that web pages
changed with different frequency, and the overall freshness of a
crawled corpus can be improved by 10%-23% through adjusting
download frequency for different pages. Brewington and Cybenko
[4] presented statistical analysis of web page modifications, in-
troduced a freshness metric and estimated the download rate to
maintain a desired level of freshness. The works [19] and [2] ana-
lyzed degree to which change correlates with other page properties,
described finer-grained change statistics within different regions
in the page, across various types of web pages and user visitation
patterns. Tan and Mitra [30] used unsupervised learning to focus
crawling within groups of pages that share similar change patterns.

Also, in the context of web page crawling, Radinsky and Bennett
[28] extended the prediction model by combining change frequency
features with the content of pages and their similarity to other pages.
However, the use of change frequency features brings several im-
portant issues. Such features are calculated from download history
and are sensitive to changes in crawl frequency. Changes to the
crawling strategy will significantly affect the distribution of crawl
history features, whereas the goal for change prediction is to apply
such a model to reduce unnecessary crawling. Radinsky and Ben-
nett’s model can potentially avoid such issues since it also considers
the content of web pages. However, the authors did not examine the
performance after excluding the change frequency features. Also,
they assume a full observation of crawl history when computing
the change frequency which are unavailable most of the time.

Having a reliable prediction of when a web page will change is
not enough for building an effective crawler. A key component in
addition to estimating change probability is establishing an update
policy. Optimality and scalability of such policies for various metrics
under different assumptions is a subject of a number of studies. A
recent work [3] presented a tractable near-optimal randomized
strategy that can be computed in near-linear time. Eckstein et al.
[18] studied the monitoring of web page changes under politeness
constraint. Cho and Garcia-Molina [10] introduced freshness and
age metrics and proposed several crawler policies assuming that
change frequency follows a Poisson distribution. Also under the
Poisson assumption, Coffman et al. [15] studied crawler optimality
and proved an optimal formula for page refresh frequency, and
Grimes et al. [20] studied optimality of a combined cost model for
staleness and crawl resources when estimating refresh rates. We
show, in this paper, that prices are not equally likely to change
across different times of day and days of the week, thus deviating
from the Poisson model. Aligned with our findings, Calzarossa and
Tesser [5] analyzed temporal change patterns for news websites
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and showed that the changes are time dependent with significant
hourly and daily fluctuations.

The work from Olston and Pandey [25] addressed crawler opti-
mality which focused on persistent content and attempted avoiding
ephemeral content likely to be obsolete by the time it reaches the
index. Lefortier et al. [21], on the other hand, studied situations
when engines do want to present fresh results even over ephemeral
content. Wolf et al. [32] studied crawling strategies prioritized to
refresh content that is more likely to surface as a result of a user
query. Pandey et al. [27] presented a probabilistic change behaviour
model, resource allocation and scheduling mechanism to answer
continuous queries over dynamic web content and describe its more
subtle differences compared to general web crawling.

A related area of research studies policies for refreshing web
content caches. For example, Cohen and Kaplan [16] proposed
policies for proactive validation of cache content using historic
access patterns such as frequency and recency of access.

Overall, existing studies did conduct extensive research on both
crawler optimization and content change prediction. However, they
mainly focused on the crawling of generic web pages, and, to the
best of our knowledge, very few of them studied the crawling for
commercial content. Our work is the first to provide a large-scale
analysis of the dynamics of commercial web content change, and
develop scalable and effective content change prediction models.

3 ANALYZING PRICE CHANGE AT SCALE

Before diving into the details of building machine learning models
for predictive crawling, we first provide a large-scale analysis of
price change patterns for online offers. In particular, we focus on
temporal, geographical and content patterns.

3.1 The Salticus Dataset

In order to conduct an unbiased analysis that avoids feedback loops
[29], we sampled one million online offers and scheduled hourly
crawls for all of them. The sample is a stratified mix of two sample
types: (a) random uniform from the entire corpus of offers; (b) click
weighted, to better represent popular offers that receive clicks. We
download hourly snapshots of these offer pages from May 1st 2018
to the middle of September 2018, and use this crawl data for the
following analysis, as well as for our predictive machine learning
models. We refer to these snapshots as the Salticus' dataset in the
remainder of this paper.

3.2 Temporal Patterns

We analyze two types of temporal patterns. First, we examine
whether there are certain preferred time periods (e.g., weekday
or weekend, morning or evening) for merchants to change prices.
Second, we analyze how long it takes for an offer to change its price.
Other temporal patterns such as changes over different days of the
month and months of the year can also be interesting. However,
since we only have data for a few months, such analysis might not
be representative statistically.

Figure 2 illustrates the price change probability over the different
days of the week and hours of the day (in merchant local time).

!Named after a spider genus, popularly known as “zebra spider”.
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We find that merchants are more likely to change prices at mid-
night. The peak of midnight change is probably due to automated
updates. For days of the week, changes are more likely to happen
on weekdays than on weekends. The non-uniform temporal pat-
terns suggest that time is a useful factor to determine price change.
Therefore, both day of the week and hour of the day are applied in
our machine learning models. It is worth noting that our data spans
from May to September which does not overlap with major holiday
seasons. We expect different temporal patterns during holidays.
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Figure 2: Probability of price change for different days of the
week and hours of the day (local time). For each horizontal
axis unit (e.g., Mon.), its probability equals to the number
of downloaded offer pages with price change (on Mon.) over
the total number of downloaded offer pages (on Mon.).
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Figure 3: Distribution of time intervals between two price
changes (log-log plot). The probability for a given time inter-
val measures how many of the price changes in the Salticus
dataset happened in the given interval.

Figure 3 plots the distribution of time intervals between price
changes. The horizontal axis denotes the time interval (in hours) for
an offer to change its price; the vertical axis denotes the percentage
of price changes — the amount of price changes within a given time
interval over the total number of price changes in our dataset. As
an example, suppose our dataset consists of two offers, A and B.
Offer A changes its price at tp + 1h and changes again at ty + 3h.
Offer B changes its price at to + 1h. Therefore, the total number
of price changes is three, with two coming from A and one from
B. The probability of change for 1A time interval is 2/3, and the
probability of change for 2k interval is 1/3. Note that for an offer,
the first observation of its price does not count as a change since
we do not know its prior price.
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Figure 3 conveys several messages. We find that among all price
changes, a considerable amount of them happen within a short time.
This might come from the products whose prices depend on external
factors such as price fluctuations of financial instruments. One
illustrative example is gold coin prices, which change dynamically
together with the gold spot price. Second, we see multiple local
peaks at 24 hours, 48 hours, etc. This may be due to the automatic
price updates, which was also discussed in Figure 2.

3.3 Geographical Patterns

The Salticus dataset contains online product offers from across
the world. This enables us to explore price change patterns for
different countries. Figure 4 provides the change probability over
20 countries. Each country is represented by its ISO code.? The
probability is computed in the same manner as described in Section
3.2. We find that different countries exhibit varying change patterns.
Among the 20 countries we considered, India (IN), Mexico (MX)
and Brazil (BR) are the countries with the highest price change rate
whereas the United States (US), Japan (JP) and Indonesia (ID) are the
lowest. This might be related to economic factors such as inflation
rates in a particular country. We find a 0.4629 Pearson correlation
between countries’ price change rates and their inflation rates (as
of October 2018). The variation of price changes across countries
motivates including country as a feature in our machine learning
model.
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Figure 4: Price change probability in different countries.
Probability is computed similarly to Figure 2.

3.4 Content Patterns

This section further explores the price change patterns for different
types of products. In our repository, each offer is associated with a
product category.® A product category such as Apparel & Accessories
> Clothing defines the product area and the subcategory of an
offer. With such information, we then analyze the price change
probability in each top-level category of the taxonomy. Again, the
probability is computed similarly to Section 3.2.

Figure 5 presents the price change probabilities for different tax-
onomy categories. Software has the highest change rate, as it is
affected by a highly dynamic Virtual Currency subcategory. Elec-
tronics (e.g., phones, tablets) and Media (e.g., books, music) are more
dynamic than others. Offers in Business & Industrial and Religious
& Ceremonial categories have the lowest change rates. Again, the

21SO codes are defined at https://en.wikipedia.org/wiki/ISO_3166-1
3We adopt the public Google Shopping Product Taxonomy for our online offers. A full
schema is at: http://www.google.com/basepages/producttype/taxonomy.en-US.txt.
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non-uniform price change rate across the different categories im-
plies that offer metadata can provide meaningful information when
building machine learning models, which we take into account
when designing our model as described in the next section.
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Figure 5: Price change probability over product categories.
Probability is computed similarly to Figure 2.

4 METHODOLOGY

We model the price change prediction as a classification problem,
for which we want to predict, for any individual offer, whether its
price will change in the next K hours. Here, we do not consider
the degree of change since our ultimate goal is to build an effective
crawler that re-crawls an offer’s page as long as there is a change.
Therefore, we do not model it as a regression problem.

To build such a model, a set of training examples is required.
Each example contains a list of features and a corresponding label.
A positive label means that the offer’s price changes within the next
K hours; otherwise, a negative label is assigned. If a price x changes
to y and then changes back to x, we still count it as a positive label
because there are indeed price changes (twice) within the K hours.
The Salticus dataset described in Section 3.1 is used for deriving
our training, validation and testing examples.

4.1 Training/Testing Data

4.1.1 Generating Training Examples. The Salticus dataset contains
two types of crawl events — the hourly scheduled crawls described
in Section 3.1, and the regular crawls from the production system.
Each crawl event is associated with a timestamp ¢, which allows
us to split our data by time and simulate the moment we need to
make a <crawl, not crawl> decision in the production system.

Specifically, for each simulated prediction time t, the future crawls
after ¢ provide full observability (on an hourly basis) of the price
information in the next K hours. We use the offer information up to ¢
to generate features, and the next K hours to generate ground-truth
binary labels reflecting the price change (or lack thereof), thereby
creating a single training example. By shifting ¢ and repeating this
process, we create a set of training examples.

In this paper, the prediction time t comes from both hourly crawls
and production crawls. Using hourly crawls in addition to produc-
tion crawls provides multiple benefits. First, it helps to generate
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enough training examples for rarely crawled offers in the produc-
tion crawler. Second, it guarantees that we have an unbiased train-
ing data, with prediction times uniformly spread out over all 24
hours a day, and 7 days a week.

Finally, we observe non-uniform distributions for crawling time
— crawls for popular offers are aggregated densely around the same
time. To avoid generating too many similar examples, we restrict
different ¢s to be at least 15 minutes away from each other.

The entire training generation process is illustrated in Figure
6. Instead of choosing the immediate follow-up crawl event as the
next ¢, we skip two regular crawls and one hourly crawl since they
are crawled less than 15 minutes from the last prediction time.
Prediction time t

Features t Label t (neit K hours)

A
-—
=

1
L 1 | 1 | | >
R D
Regular crawl Hourly crawl
< H
- 5 Y
Featurest+1 Prediction time t + 1 Labelt+1

Figure 6: Training data generation process for timestamps ¢
and ¢ + 1. A vertical line denotes a Salticus hourly crawl; a
circle represents a production crawl.

4.1.2  Seen and Unseen Offers. The one million Salticus offers used
for model development only make up a small fraction of active of-
fers. To understand whether our trained models can be generalized
to offers that were never seen from the training data, we divide
the Salticus dataset into seen and unseen offers. This is achieved
by holding out 25% (i.e., 250K) of the one million offers (denoted
unseen offers) and the remaining 750K offers are used as seen offers.
Combining with the time-based split of training and testing data,
the evaluation setup is illustrated in Figure 7. Our predictive models
are only trained with the 750K offers.

Here, we use the unseen offers to simulate the production setting
where our models do not observe any historical information for
most of the offers. Therefore, we expect better model performances
for the seen offers comparing to the unseen offers.

o Eval
750K Training ————> Seen Offers

250K b

v

Eval :
~> Unseen Offers Time

Figure 7: Overview of the training/evaluation setup.

4.1.3  Training/testing Setup. Our training/validation/testing datasets
are split based on time. Particularly, crawling events from May 2018
to July 2018 are used for training, data from August 1 to August
5 is used for validation, and data from the rest of August is for
testing. In total, we extract around 1.3 billion training examples, 84
million validation examples and 620 million testing examples. As
expected, most of them did not contain price changes (i.e., negative
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price change label). In this paper, we set K = 6 hours, for which
we observe around 1 : 48 positive/negative ratio for all training,
validation and testing datasets. The validation dataset is used for
model selection, and the reported results are based on the chosen
model’s performance on the testing data.

4.2 Features

We consider two types of features in this paper. First, we employ the
historical change frequency features that are commonly adopted in
previous studies [9, 28]. Second, we propose using metadata and
other offer-related information that may be predictive of a price
change even for offers with limited or no prior history.

4.2.1 Offer Change Frequency. We first extract a set of price change
frequency features pertaining to each individual offer. We define
the change frequency as the number of price changes per hour. De-
pending on the amount of crawling history being used, we extract
the following three types of change frequency features — change
frequency within the most recent day, week and month. We extract
the time since the last price change and use it as a feature, as well.

4.2.2  Product Category Change Frequency. Data sparsity is a criti-
cal issue for offer-level change frequency. For new offers and rarely-
crawled offers, the change frequency is either unavailable or un-
reliable. Radinsky and Bennett [28], in the context of web search,
proposed to learn from similar web pages when encountering the
sparsity issue. Similarly, in the context of commercial content, two
offers may share similar change patterns if they come from the
same product category. As a result, we further compute the change
frequencies at the product category level and use them as features.

4.2.3 Metadata Features. The change frequency features are highly
dependent on crawl history. This introduces issues when the history
information is unavailable or is subject to change. To abate these
issues, we introduce a number of history-independent features in
our model. As shown in Section 3, offers from different product
categories and different countries tend to exhibit different change
patterns. This motivates us to extract the metadata information of
an offer and use it as a source of features. Besides the product cate-
gory and country, we include brand, condition, language, merchant
and web page title of the offer. Details of the metadata features are
presented in Table 1. Our previous analysis in Figure 2 illustrates
diverse price change patterns for different days of a week and hours
of a day. Thus, the current day and current hour (of the prediction
time) are also included as predictive features.

Compared to the offer and product change frequency features,
metadata-based features have several benefits. First, they alleviate
the cold-start issue since metadata is readily available for both
existing and brand-new offers and product categories. Second, they
are robust with respect to unexpected changes in the crawl history.
Third, as we show next, metadata-based features can be combined
with change frequency features for further model improvement.

4.2.4  Full Observability VS. Partial Observability. As mentioned,
the change frequency features are highly sensitive to the amount
of available crawl history. In the best case, if we can afford constant
(e.g., hourly as in our dataset) crawls, the estimates for change
frequency features will be more accurate. However, production
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Table 1: Features used in baselines and the proposed models.

Price change frequency for offer O

Frequency (1 day)
Frequency (1 week)
Frequency (1 month)

Most recent change

Change frequency within last day
Change frequency within last week
Change frequency within last month

Time since the most recent change

Price change frequency for offers in same product category C

Frequency (1 day)
Frequency (1 week)
Frequency (1 month)

Most recent change

Change frequency within last day
Change frequency within last week
Change frequency within last month

Avg. time since the most recent change

Metadata and related information for offer O

Brand

Condition
Country

Day of Week
Hour of Day
Language
Merchant

Offer title
Product category

Brand id

Condition: new, used or refurbished
Country code

Day of week for the prediction time
Hour of day for the prediction time
Offer page language

Merchant id

Offer page title

Product category

crawlers usually cannot achieve the full observability, both due to
the crawling costs as well as the politeness constraints [23].

In this paper, we experiment with two types of observability
— full observability where we assume the observation of hourly
crawls, and partial observability in which we only observe crawls
from the existing crawling strategy. The former tells us the upper
bound, whereas the latter can help us to estimate the predictive
power for the change frequency features under existing crawling
strategy. It is worth noting that the partial observability is sensitive
to the change of crawling strategy, and adjustments to the strategy
will further affect the observability, while the full observability
scenario is not practical at the scale of the entire corpus.

4.3 Models

4.3.1 Baselines. In this paper, we adopt a set of baselines purely
based on the change frequency features, in which we assume that
the probability an offer changes its price in the next K hours equals
to the historic price change frequency. Depending on the level of
granularity, we include two baselines: an offer-level price change
baseline and a product category level price change baseline. The
former predicts an offer’s price change based on its own history,
whereas the latter employs the change history of its product cate-
gory. Moreover, we include a third baseline combining both offer-
level and category-level features in a linear model. These simple
but effective baselines were commonly adopted in previous studies
[8, 9, 28, 30].

4.3.2  Proposed Models. As discussed, we model the prediction task
as a binary classification problem to classify whether an offer’s price
will change in the next K hours. To incorporate both numerical
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change frequency features and metadata information in one unified
framework, in this paper, we adopt a feed-forward deep neural
network (DNN) model.

The change frequency features, if included, are treated as nu-
merical dense features. Metadata information is modeled by sparse
features, which are embedded into a low-dimensional space [22].
Here, an embedding is a condensed vector (low-dimensional vec-
tor) representation of metadata information. Semantically, similar
metadata would have similar embeddings located closely in the
vector space. The combination of dense frequency features and em-
bedded metadata features in a single neural network architecture
enables both memorization and generalization, a desired property
for a predictive machine learning model [7].

O or1

Brand Merchant

Embedding of Metadata Change Freguencies

Figure 8: An illustration of our model architecture.

We use the TensorFlow DNNClassifier for model implementation
[1], where we set three hidden layers with 256, 128 and 64 hidden
units in each layer. We adopt ReLU (Rectified Linear Unit) as the
activation function for hidden units, and choose the Adagrad algo-
rithm to optimize the cross-entropy loss. To deal with over-fitting,
we adopt both L1 and L2 regularization and set both to 0.001.

To summarize, this paper includes the following baselines (the
first three) and proposes two models for predicting price changes.

— Frequency (offer): offer-level change frequency

- Frequency (category): category-level change frequency

- Frequency (combined): combines offer-level and category-
level change frequencies in a linear model

— DNN (metadata): DNN using only metadata information

— DNN (metadata + frequency): DNN using both metadata and
offer + product category change frequencies.

5 PREDICTING PRICE CHANGE

This section reports the comparison results between the proposed
models and baselines. Our evaluation adopts the AUC metric (Area
Under Receiver Operating Characteristic Curve) to measure the
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performance of different models and baselines. A value of 0.5 means
a random guess whereas 1.0 corresponds to a perfect prediction.

5.1 Evaluation on Seen Offers

Table 2 reports the testing AUCs for different predictive models
on seen offers (see Section 4.1.2 for its definition). Here, we try to
assess model quality on predicting the future for the offers being
seen from the training set. The AUC values are obtained in the
following way — firstly, we evenly split our testing data into 20
subsets; then, we evaluate on each subset; finally, we compute the
averages and standard deviations over the 20 subsets. In Table 2,
the top nine rows refer to baselines and the last two correspond to
the proposed models. Overall, all of these models achieved AUCs
above 0.5, meaning that both change frequency and offer metadata
information have a predictive power. They can also be combined
to further boost the prediction performance.

Table 2: Testing AUC (standard deviation) for different pre-
diction models on seen offers.

Model \ Observability Partial Full
Frequency (category, 1 day) 0.560 (0.003) | 0.573 (0.004)
Frequency (category, 1 week) 0.577 (0.004) | 0.584 (0.004)
Frequency (category, 1 month) | 0.570 (0.003) | 0.583 (0.003)
Most recent (category) 0.569 (0.004) | 0.582 (0.003)
Frequency (offer, 1 day) 0.642 (0.002) 0.721 (0.003)
Frequency (offer, 1 week) 0.769 (0.003) | 0.815 (0.003)
Frequency (offer, 1 month) 0.791 (0.003) | 0.832(0.003)
Most recent (offer) 0.789 (0.003) | 0.827 (0.003)
Frequency (combined) 0.791 (0.004) | 0.847 (0.003)
DNN (metadata) 0.842 (0.005)

DNN (metadata + frequency) 0.875 (0.002) | 0.883 (0.003)

5.1.1  Full Observability VS. Partial Observability. Table 2 shows
that the change frequency features computed from fully-observable
crawl history outperform the ones derived from partially-observable
history (details about observability are in Section 4.2.4). In terms of
the baseline Frequency (offer, 1 day), having fully observable history
boosts AUC by as much as 12.3%. This implies the importance of col-
lecting more crawling history. However, such an implication goes
against our ultimate goal — building predictive models to lower
crawling frequency. We can resonably expect that after reducing
crawls from production crawlers, the performance of the partial
observability baselines will decrease.

Compared to the baselines, our proposed models have the fol-
lowing advantages. First, the DNN (metadata) model does not use
any price change feature and thus is not subject to the change of
crawl history observability. Second, for the DNN (metadata + fre-
quency) model, its performance difference under full and partial
observability is small compared to the difference in the baselines.
Both of them demonstrate the robustness of our proposed models.
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5.1.2  Baselines VS. Proposed Models. As for baselines, we observe
that offer-level price change features significantly outperform the
category-level features. This is expected since the product category
only provides a high-level abstraction for an offer whereas specific
characteristics for each offer are missing. However, category fea-
tures would be helpful when offer-level features are absent, e.g., for
new offers without history. In this experiment, we only see a mar-
ginal improvement when combining offer and category features.
This is because there are no new offers in the seen offers.

Comparing to the baselines, our DNN (metadata) model signifi-
cantly outperforms the best baseline using the partial observability
history, and works equivalently well as the best baseline using the
full observability history. Since DNN (metadata) does not use any
change frequency feature, it is robust towards new offers. More-
over, once the change frequency features are available, they can be
simply incorporated in the DNN (metadata + frequency) model to
yield even better performance.

5.2 Generalizability to Unseen Offers

To understand whether our models can be generalized to other
offers, this section replicates the evaluation in Section 5.1 but as-
sesses over 250K unseen offers (see its definition in Section 4.1.2).
This section examines how our proposed models would generalize
to the production system, which often handles billions of offers.
Note that an unseen offer is different from a brand-new offer. The
former refers to an offer that was not observed in the training data,
whereas the latter denotes an offer without crawl history. For the
unseen offers in this paper, we can still compute their offer-level
and category-level price change frequency features.

Table 3 reports the AUCs of different predictive models for un-
seen offers. The baselines are roughly the same as Table 2, whereas
the proposed models drop slightly. This aligns with our expectation
since some metadata information from the unseen offers might
never be observed from the training data. Surprisingly, even with
partially observable history, the proposed models still outperform
all baselines and maintain the AUCs above 0.80. With fully observ-
able history, although the pure metadata feature does not achieve
the AUC as the best baseline, it can be combined with the price
change features and eventually produces the best performance.

It is worth noting that although we do not specifically examine
our model performances over the brand-new offers, we still expect
that we can achieve reasonable performances using DNN (metatda)
since this model does not use any crawl history information. In
this case, offer level baselines would fail and the DNN (metadata +
frequency) model will be downgraded to DNN (metadata).

5.3 Summary

Overall, the evaluation results from the above two sections clearly
demonstrate the effectiveness of our proposed models, which not
only work well on the seen offers but also show generalizability to
unseen offers. Besides, we discover that metadata information is
an important predictive feature. Such a feature is relatively static
and easily accessible across different types of offers, effective in the
cold start setting, and is not subject to the change of crawl history
availability. Our proposed DNN approach provides an effective
way to utilize the metadata information, and further enables the
incorporation of additional features.



WWW ’19, May 13-17, 2019, San Francisco, CA, USA

Table 3: Testing AUC (standard deviation) for different pre-
diction models on unseen offers.

Model \ Observability Partial Full
Frequency (category, 1 day) 0.554 (0.002) | 0.567 (0.002)
Frequency (category, 1 week) 0.572 (0.002) | 0.579 (0.002)
Frequency (category, 1 month) | 0.565 (0.002) | 0.579 (0.002)
Most recent (category) 0.564 (0.002) | 0.578 (0.002)
Frequency (offer, 1 day) 0.642 (0.002) | 0.720 (0.003)
Frequency (offer, 1 week) 0.766 (0.003) | 0.817 (0.003)
Frequency (offer, 1 month) 0.788 (0.003) | 0.833 (0.003)
Most recent (offer) 0.787 (0.003) 0.828 (0.003)
Frequency (combined) 0.797 (0.003) | 0.849 (0.003)
DNN (metadata) 0.803 (0.003)

DNN (metadata + frequency) 0.854 (0.003) | 0.862 (0.003)

6 PREDICTIVE RESOURCE ALLOCATION

Experiments in Section 5 demonstrate the feasibility of building
machine learning models to predict price change. However, it re-
mains unclear how such models can be integrated with production
crawlers. This section attempts to answer the question.

As mentioned in the Introduction, there are two important com-
ponents in our production crawler — the Batch Scheduler that down-
loads offer pages periodically, regardless of whether or not the offers
are accessed by users, and the InstaCrawl that follows past user
clicks and downloads offer pages based on their click frequencies.
The design of InstaCrawl relies on the observation that the past
click is a good predictor of the future click [14]. Indeed, in our
production crawler, 95% of user-clicked offers were also accessed
in the past week. Besides, the InstaCrawl is also in line with pre-
vious studies which account for user experience when developing
user-centric crawling quality metrics [26, 32].

In this paper, we focus on the optimization for InstaCrawl be-
cause the corresponding offers are more likely to be accessed by
users. However, we believe that our model can also be applied to
the Batch Scheduler, which is one of our future work directions.
To be specific, our predictive models will be used for reducing un-
necessary InstaCrawl crawls that do not yield new updates to the
price information. This is achieved in the following way. For each
crawl request, we skip it if our model predicts that the price will
not change; otherwise, we send the request for crawling. Since our
current production crawler harvests all requests and the proposed
models only target to crawl a subset of them, we can use existing
production logs for simulation.

It is worth noting that there is a trade-off between spending re-
source and improving the price information freshness. If there are
unlimited resources (for both crawlers and merchant servers), one
can always reach the optimal freshness. When crawling resources
are limited, more stale prices will be shown. However, some ap-
proaches will be able to make better trade-offs than others. In this
section, we compare the trade-offs of our proposed model with the
commonly-adopted baselines in the literature.
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6.1 Experimental Setup

6.1.1 Overview. As discussed, with production crawler logs, we
can simulate different strategies to utilize the predictive models.
To understand the effectiveness of each strategy, we need a test
collection that contains all of the regular production crawls for
simulation, as well as the true prices for evaluation. The Salticus
dataset (see Section 3.1) is such a repository.

The simulation process is illustrated in Figure 9. Each circle de-
notes an InstaCrawl request c; from our production crawler, and
each vertical line corresponds to a Salticus hourly crawl s;.. When
developing a predictive crawling strategy, we apply the decision (to
crawl or not) based on a machine learning prediction for each ¢;. If
the decision is to crawl, the price (pricejyc41) Will be updated; other-
wise, it stays unchanged. The hourly crawl s; is used to compute
the ground-truth price (pricetrye).

Salticus hOUF|Y request Sl e s s s s » Price true
----------------- Instacrawl request ¢; s PrICE local
v v
1 1 1 >
Crawl
Model {
Not Crawl

Figure 9: An illustration of applying machine learning pre-
dictions in a production crawler.

6.1.2  Crawl Decisions. Converting a model prediction to a crawl
decision is a critical component in Figure 9. The simplest way is
to define a threshold. A request with prediction score above the
threshold will be crawled; otherwise, it will be skipped. However,
a hard decision may result in some offers never being crawled.
Therefore, we adopt a probabilistic decision strategy — the crawl
decision is made stochastically and proportionally to the prediction
score. In this way, offers with low prediction scores but high click
rate still have a chance to be crawled.

The skewedness of prediction scores makes it difficult to directly
use the original scores. As a result, we rank scores and map them
into n quantiles (with the first quantile mapping to the lowest
score). For the i-th quantile, we use the probability in Equation 1
for making the stochastic decision. This is a simple heuristic that
makes the probability linearly proportional to its quantile — a larger
quantile will result in a higher probability. We do believe that there
are more principled ways to determine the probability; however,
we only seek for the simplest way for the proof of concept in this
paper. Here, y is a resource factor, which can be tuned to achieve
different resource saving percentages.

pi = min(l.O,% ~y), y=0 (1)

6.1.3 Compared Models. We compare the following crawling strate-
gies. First, we include a baseline that makes uniform-probability
(pu) decisions for all InstaCrawl requests. Different p,, can yield
different resource consumption rates. For example, setting p,, = 0.8
will crawl any request with the probability of 0.8, and thus can save
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20% of resources. The uniform baseline provides us with a basic
understanding of the task difficulty.

Based on the evaluation results from Section 5, we further include
the following three models: the best baseline Frequency (combined),
the best model DNN (metadata + frequency) and DNN (metadata).
DNN (metadata) does not use crawl history and thus can handle
cold-start and the change of crawl history observability. The change
frequency features are sensitive to crawl history observability, dif-
ferent observability levels will yield different feature values (see
Section 5.1.1). In this section, we use partially observable history,
i.e., downloaded pages from InstaCrawl, but not the hourly Salticus
crawls. Note that when a new crawling strategy is applied, observ-
ability will change further since earlier no-crawl decisions will
affect the availability of crawl history. Despite that, DNN (metadata
+ frequency) still gives us the upper bound performance.

6.1.4  Evaluation Metrics. Our project operates on the trade-off
between resource and performance. When crawling resources are
reduced within the same strategy, the performance will always
drop. However, some models might be able to make better trade-
offs than others. Therefore, comparing the trade-offs among differ-
ent strategies is the primary focus for evaluation. Of course, with
saved resources, one can schedule more crawls for unpopular pages,
which may further improve the overall performance. However, we
mainly focus on evaluating resource savings in this paper, and leave
the resource re-allocation evaluation for future work.

In our evaluation, resource usage (denoted by R) within a time
period [#s, te] is defined to be proportional to the number of crawl-
ing requests that are eventually sent for page download at this
time period. To be specific, suppose that we have N InstaCrawl
requests and C (C < N) of them are finally sent for crawling. R will
be proportional to C. Since N is a constant during our evaluation
of different crawling strategies, we use it for normalization, i.e.,
R = C/N. Note that reducing crawls will not only reduce the load
of our production crawler but also significantly reduce the load for
the merchant servers. Too many requests at the same time might
even cause our production crawlers to be blocked.

For performance, we adopt the commonly-used freshness metric
(denoted by F) [9, 28]. A page is considered to be fresh if its latest
local copy of crawl result aligns with its real-world content. Since
the InstaCrawl requests are correlated with the number of user
clicks, we can treat each c; in Figure 9 as a user click. Then, we
compute the freshness for each click c¢; before we actually crawl
it. This way, we actually examine whether a user will see the right
content after click. As shown in Equation 3, the overall freshness F
is computed by aggregating the freshness of all clicks in [ts, te].

L ifpri R
f(ci) _ { 1 prlcel.ocal PriCetrue (2)
0, otherwise
1
Fltsste) = 55 D0 oy ) 3)

6.2 Resource Savings

In this section, we first describe a resource-freshness trade-off for
the uniform baseline, aiming to provide a basic understanding of the
problem space. Then, we show how the trade-off can be improved
using different machine learning based crawling strategies.
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Figure 10: The change of freshness over time for a set of uni-
form crawling strategies. Each line denotes a p,, which cor-
responds to 0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5, 0.7, 0.9 and
1.0, respectively (bottom to top).

6.2.1 Freshness-Resource Trade-offs. Unlike the evaluation in Sec-
tion 5, this section attempts to assess the accumulated effects of
a number of machine learning decisions over time. However, first
we will forego machine learning, and try to better understand the
trade-off between freshness and resource utilization in our applica-
tion. On one side of the spectrum, will the freshness be 100% if we
harvest every regular crawl request in Figure 9? On the other side
of the spectrum, what level of freshness can be maintained if we
always decide not to crawl. Between these extremes, we can control
the freshness-resource trade-off based on the uniform probability
pu (i-e., the uniform baseline in Section 6.1.3).

Accordingly, we continuously compute the freshness for different
uniform crawling strategies every six hours (i.e., t, - t; = 6h) starting
from August 1st, and plot them in Figure 10. Here, our experiments
assume everything is synchronized at the beginning, so each line
starts from freshness 1.0. In Figure 10, p,, = 0.0 (the bottom line)
denotes that we never crawl, and thus the resource consumption is
0%. py = 1.0 (the topmost line) means that we crawl at every click
c; and the resource consumption is 100%.

We observe that the first 10% of resource (p,, from 0.0 to 0.1) im-
proves freshness significantly by 0.381, whereas a further resource
investment only provides a marginal increase — an additional 90%
of resources (p, from 0.1 to 1.0) only lifts the freshness by 0.029.
This clearly shows that uniform crawling heavily overspends re-
sources, particularly after p, > 0.1. To reach the same level of
crawl quality, other strategies might require much less resource.
Therefore, the major focus of the following section is to explore the
ways of optimizing resource utilization using our proposed models.

6.2.2 Resource Saving at Different Freshness Levels. To align with
Section 5, we also evaluate on both seen and unseen offers. For
each offer type, we compare resource utilization at fixed freshness
levels for different crawling strategies. Instead of reporting values
from one specific time period, we aggregate and report evaluation
metrics over ten time periods five days each, i.e., August 5 to Au-
gust 9, August 10 to August 14, and so on. Here, we start from
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Figure 11: Resource savings (with 95% confidence interval)
for different crawl strategies at target freshness levels. The
horizontal axis denotes % of resources saved compared to the
uniform strategy; the vertical axis denotes freshness. Fresh-
ness levels (Fypiform, x%) are selected to cover 20%, 40%, 60%
and 80% resource for the uniform strategy.

August 5 because the impact from initialization fades away (we
assume a freshness of 1.0 in the beginning of our simulation) and
the performance becomes more stable.

In our evaluation, the freshness levels are chosen based on the
uniform strategy, where we cover the freshness corresponding
to the resource usage of 20%, 40%, 60% and 80% for the uniform
strategy. We name them as 1:uniform, 20%> 1:uniform, 40%> 1:uniform, 60%
and Fypiform, 80%- For each predictive crawling strategy, the amount
of resources needed for a freshness level is obtained through tuning
y in Equation 1. Then, for the given crawling strategy, we measure
its resource saving using the relative percentage of resources that
can be saved compared to the uniform strategy.

Figure 11 plots the resource savings for each crawling strategy.
Here, 0% means that a crawling strategy utilizes the same resource
as the uniform strategy. Compared to the uniform baseline, all
other models show the ability of spending less resources while
maintaining the same freshness. In particular, DNN (metadata +
frequency) achieves the best performance, which saves as much as
27% resources for seen offers and 17% for unseen offers. DNN (meta-
data) also outperforms the Frequency (combined) baseline on seen
offers and performs equivalently on unseen offers. This aligns with
our findings in Section 5.2, demonstrating the effectiveness of our
proposed machine learning models. Note that there remains a big
discrepancy between the seen and unseen offers for our proposed
models. This is consistent with our findings in Section 5.2 and is
due to the mismatch of metadata in these two different types of
offers. In the future, we will explore more effective ways to bridge
this gap between seen and unseen offers.

Again, as discussed in Section 5.2, since DNN (metadata) does
not use any crawl history information, we expect that the resource
saving performance for the unseen offers can be generalized to
cold-start offers with no or very little history information. Overall,
in this case, DNN (metadata) model can still save around 5% of
resources whereas all frequency baselines will fail.
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7 CONCLUSIONS AND FUTURE WORK
7.1 Conclusions

In this paper, we study predictive resource allocation in the con-
text of building a production crawler for commercial content. In
particular, we focus on the problem of price change prediction for
commercial offers. We start our study in Section 3 via a detailed
analysis of price changes on a global scale. To the best of our knowl-
edge, this is the first such publicly available analysis. In addition, the
predictability of price change dynamics that we discover, motivates
the further development of predictive price change models.

In Section 4, we propose a deep neural network based approach
for predicting future price changes. The model goes beyond the
change frequency features commonly used in prior work, by incor-
porating metadata information of online offers. There are multiple
contributions of this approach. First, to the best of our knowledge,
this is the first published attempt to build predictive crawlers in the
context of commercial web content and price change prediction.
Second, we update the existing predictive models [28, 30] with a
state-of-the-art machine learning approach, which incorporates
both numerical frequency features and content-based sparse fea-
tures within a unified framework. Experimental results in Section 5
demonstrate the effectiveness of our approach. Moreover, the incor-
poration of metadata enables our model to deal with the cold-start
problem and avoid feedback loops.

Beyond simply predicting price changes, we further study models
integration with a production crawler in Section 6. Evaluation with
production crawl logs demonstrate that our models can make bet-
ter resource-freshness trade-off decisions than the frequency-only
baselines both for seen and unseen offers. Furthermore, through
the use of metadata information, our models can save resources
even for offers with no prior price change history.

7.2 Future work

Despite the promising results we obtained, our study still has several
limitations, which will be the focus of our future work.

First, we observe that models built with solely metadata informa-
tion perform less well on unseen offers. This can be partially solved
by increasing the size of the full-observability Salticus dataset. How-
ever, for truly new offers, an exploration of more advanced ap-
proaches for a better modeling of metadata information will be
required. Besides, we see evidence that more frequent model re-
training increases the wins and plan to adopt it in the future.

Second, our use of machine learning scores for predictive re-
source allocation may be sub-optimal. Our experiment adopts a
simple quantile-based conversion from prediction score to sampling
probability (see Equation 1). This can be improved by adopting a
more direct optimization approach. In addition, we may also ex-
plore ways to productively re-allocate the crawl resources saved
by our methods in future work.

Finally, in this paper, we made the simplifying assumption that
price changes (and crawls) can be modeled independently, and do
not utilize any sequence information. This allows for simpler model
deployment, and, as demonstrated in Sections 5 and 6, already
outperfoms the existing baselines. Thus, an interesting direction
for future work is applying sequence based deep learning models
(e.g., RNN, LSTM [17]), to further improve the model performance.
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