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ABSTRACT
Learning to Rank, a central problem in information retrieval, is a
class of machine learning algorithms that formulate ranking as an
optimization task. The objective is to learn a function that produces
an ordering of a set of documents in such a way that the utility of
the entire ordered list is maximized. Learning-to-rank methods do
so by learning a function that computes a score for each document
in the set. A ranked list is then compiled by sorting documents
according to their scores. While such a deterministic mapping of
scores to permutations makes sense during inference where sta-
bility of ranked lists is required, we argue that its greedy nature
during training leads to less robust models. This is particularly
problematic when the loss function under optimization—in agree-
ment with ranking metrics—largely penalizes incorrect rankings
and does not take into account the distribution of raw scores. In
this work, we present a stochastic framework where, instead of a
deterministic derivation of permutations from raw scores, permu-
tations are sampled from a distribution defined by raw scores. Our
proposed sampling method is differentiable and works well with
gradient descent optimizers. We analytically study our proposed
method and demonstrate when and why it leads to model robust-
ness. We also show empirically, through experiments on publicly
available learning-to-rank datasets, that the application of our pro-
posed method to a class of ranking loss functions leads to significant
model quality improvements.
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1 INTRODUCTION
At the heart of many Information Retrieval tasks lies a ranking
problem where items in a set must be ordered so as to maximize a
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utility. In ad hoc document retrieval, for example, given a user query,
the task is to retrieve and present a list of documents in decreasing
order of relevance. Approaching ranking problems using supervised
machine learning is what is known as Learning to Rank.

Learning-to-rank methods construct a parameterized function
from sets of objects into permutations. An object may be a query-
document pair represented by a feature vector and permutations are
ordered documents. The space of all permutations, however, grows
factorially in the size of the input set, thereby making the stated
learning task intractable. Instead, learning-to-rank is reformulated
as learning a scoring function that computes a relevance score for
every document. By sorting documents in decreasing order, one
may deterministically derive a ranked list.

Sorting is a deterministic way to construct a permutation from
scores. Such a mapping makes sense during inference where the
stability of ranked lists is often required. We argue, however, that
this behavior may not in fact be desired during training.

Our intuition is that the greedy nature of a deterministic mapping
makes for a model that is less robust to noise. This is particularly the
case when the behavior of the loss function mimics that of ranking
metrics. This includes a class of ranking losses that compute a
penalty only for incorrectly ordered documents and, crucially, do
not factor the distribution of raw scores into the total cost.

To elaborate, consider a query and two documents, one more
relevant than the other, for which scores computed by a model are
within a small neighborhood but that yield the correct ordering
under a sort operation. Because of the correct ordering of the pair,
it is possible that the model receives no penalty during training and
as such has no incentive to push the scores of the two documents
further apart. However, with the scores being close, it is possible
that a minor change to the query or one of the documents could
reverse the ordering and produce an incorrect ranked list, thereby
reducing the robustness of the learned model. The behavior that
is intuitively desired, on the other hand, is to not only encourage
correct ordering of documents but also widen the margin between
relevance classes.

The research question we consider in this work is then whether
a randomized mapping of scores to permutations improves model
robustness. In a stochastic setting, rather than sorting documents
by scores to construct a permutation, permutations are sampled
from a distribution defined by raw scores. By sampling from this
distribution, the model from our example above is more likely
to encounter a permutation in which the order of documents is
reversed and, as a result, incur a non-zero penalty.

In this work, we examine the hypothesis above. We introduce a
differentiable sampling strategy that can be integratedwith gradient
descent optimizers. We then present an analytical study of classes
of loss functions and explain when and why our proposed method
leads to model robustness. We also evaluate our proposed method

https://doi.org/10.1145/3336191.3371844
https://doi.org/10.1145/3336191.3371844


on publicly available datasets. Experimental results confirm our
intuition from above and agree with our analytical findings.

Our contributions can be summarized as follows:
• We present a stochastic treatment of the mapping from scores
produced by a learning-to-rank function to permutations, which
can be applied to arbitrary ranking loss functions;
• We analyze the proposed method and show when and why one
may expect quality improvements; and,
• We demonstrate empirically that the produced models converge
faster and exhibit greater generalization in some cases.
The remainder of this paper is organized as follows: Section 2

provides an overview of the literature. We review learning-to-rank
in Section 3 and give a detailed description of our proposed method
in Section 4. In Section 5, we study existing loss functions within
our framework. Sections 6 and 7 present our evaluation setup and
results. Finally, we conclude the paper in Section 8.

2 BACKGROUND AND RELATEDWORK
Learning-to-rank algorithms generally address the ranking prob-
lem using a score-and-sort approach [4, 5, 7, 20, 21, 25, 40]. The
goal is to learn a scoring function to compute relevance scores
which, in turn, induce a ranking. In its most general form, the do-
main of learning-to-rank functions is a set rather than a single
item. However, virtually all learning-to-rank methods with a few
exceptions [1, 10, 33] simplify the problem further by learning a
univariate function that produces a relevance score for a document
independently of other documents in the input set.

It is true then that learning-to-rank can be formulated as classifi-
cation or regression—in fact, many early learning-to-rank methods
such as RankSVM [20] or RankNet [4] take a very similar approach.
These algorithms reduce the ranking problem to one of correctly
predicting relevance scores by optimizing a “pointwise” loss [13]
or correctly classifying ordered pairs of documents by optimiz-
ing a “pairwise” loss [4, 5, 20]. These simplified reformulations of
learning-to-rank are, however, misaligned with the ranking utilities.

Ranking utilities such as Normalized Discounted Cumulative
Gain [19] or Expected Reciprocal Rank [9] work with permutations
(i.e., ranked lists) which are discrete structures. As a result, ranking
utilities, as a function of a set of input documents, are flat almost
everywhere and discontinuous at some finite set of points.

The non-smoothness of ranking utilities pose a challenge that
the learning-to-rank community has sought to study. The literature
offers a range of methods from direct optimization of metrics using
coordinate ascent over parameters of linear models [29], to optimiz-
ing an exponential upper-bound of ranking metrics using boosted
weak learners [41], to optimizing a differentiable surrogate loss
function [7, 32, 36, 38, 40]. Other methods, such as LambdaRank [6]
and its gradient boosted regression tree-based [12] variant Lamb-
daMART [39], assume the existence of an unknown loss function
whose gradients are however designed based on some heuristic.
The list of so-called “listwise” algorithms goes on but the individual
methods fall into one of the above categories.

Despite these differences, existing listwise learning-to-rank al-
gorithms agree on one element: scores computed by the learned
scoring function are deterministically mapped to a ranked list by
way of a sort operation. One exception is SoftRank [36]. Taylor

et al. consider a score to be the mean of a Gaussian distribution.
With scores being smooth in this way, they go on to estimate po-
sition distributions and ultimately define a smoothed version of
ranking metrics. We note that while our work bears some super-
ficial resemblance with SoftRank, our approach is fundamentally
different: SoftRank considers each score to itself be a Gaussian
distribution—an arbitrary choice—whereas in this work, we take a
set of scores to define a distribution from which a permutation may
be sampled. Furthermore, our method is efficient while in SoftRank,
estimating position distributions given score distributions requires
an inefficient construction.

Another work that uses additive noise is YetiRank [16]. In partic-
ular, YetiRank perturbs relevance scores by a noise sampled from
the Logistic distribution, and uses the perturbed scores to weight
document pairs. YetiRank is different from our work in the follow-
ing ways: (a) while the authors demonstrated that additive noise
results in an improved model, the use of Logistic distribution was
not justified, whereas in this work we mathematically motivate
the use of the Gumbel distribution; and (b) YetiRank uses noise to
identify and re-weight document pairs, whereas our methodology
could be used to sample from the space of permutations, thereby
presenting a more general, ranking-appropriate framework.

Finally, another related work is the LambdaLoss framework [38].
Wang et al. propose a probabilistic framework to model ranking
loss functions and show that existing ranking losses are instances of
LambdaLoss. One term in LambdaLoss captures the probability of a
permutation given a set of scores,p(π | f (x)). In their work, however,
Wang et al. use a degenerate distribution where this probability is 1
for a permutation (deterministically) obtained by sorting scores in
decreasing order. Our proposed stochastic framework allows one
to construct a non-degenerate distribution over permutations, from
which a permutation may be sampled directly and efficiently.

3 PROBLEM FORMULATION
In this section, we formalize the problem and introduce our notation.
Let (x ,y) ∈ Xn × Rn+ be a training example where x is a vector of
n objects xi , 1 ≤ i ≤ n, y is a vector of n nonnegative relevance
labels yi , 1 ≤ i ≤ n, and X is the space of all objects. To simplify
discussion, we refer to xi as a “document” and x ∈ Xn as a list of n
documents, but note that xi could itself be a d-dimensional vector
representing a query-document pair. For every document xi ∈ x ,
we have a corresponding relevance label yi ∈ y. As such, (x ,y)
represents a single query withn documents and their corresponding
relevance labels. Finally, let Ψ be a set of training examples.

As noted in earlier sections, the goal is to find a scoring function
f : Xn → Rn that minimizes the empirical loss:

L(f ) =
1
|Ψ|

∑
(x ,y)∈Ψ

ℓ(y, f (x)), (1)

where ℓ(·), a local loss, is assumed to be differentiable in this work.
Most learning-to-rank algorithms simplify the task by learning a

univariate function u : X → R that computes a score for each doc-
ument independently of others: f (x)|i = u(xi ), 1 ≤ i ≤ n, where
f (·)|i denotes the ith dimension of f (·). Without loss of general-
ity, we assume the scores f (x) are the logarithmic transformation
of a strictly positive measure. Formally, f (x)|i = log(αi ), where



αi ∈ R+. We note that the function f is often parameterized and
written as f (·;Θ) where Θ is the set of parameters. For a list of Θ
typical in learning-to-rank methods we refer the reader to Section 2.

Turning to the loss function ℓ, we have from Section 2 that
listwise functions (ℓ : Rn+×Rn → R) are more aligned with ranking
objectives. For this reason, we focus on listwise losses in this study.

Some listwise loss functions such as ListNet [7] first project
labels y and scores f (x) onto the probability simplex ∆n−1 to form
distributions Py and Pf , respectively. The probability mass placed
on each xi indicates the likelihood of xi appearing at position 1
of the final ranked list. They then compute the distance between
the two distributions. In effect, this class of loss functions is a
composition of Py , Pf : Rn → ∆n−1 and ℓ̂ : ∆n−1 × ∆n−1 → R.

Another class of losses derived from the approximation frame-
work of Qin et al. [32] or SoftRank [36] are more aligned with
ranking metrics. These loss functions form permutations from
scores and subsequently compute a smooth approximation to a
ranking metric. In effect, these functions can be decomposed to
πf : Rn → Πn , where Πn is the space of all permutations of size n,
and a function ℓ̂ : Rn+ × Πn → R.

Finally, we place losses such as LambdaMART’s [6, 39] into a
third class. These losses have one factor that acts on permutations
(e.g., the change in ranking metric resulting from swapping two
documents in the ranked list) and another factor that acts on raw
scores (e.g., a sigmoid term).

One typical construction of πf (·) that is commonly used by the
last two classes of loss functions during training is the sort operation
or a smooth approximation to it. Such a derivation of permutations
from scores is a deterministic process: Given f (x) ∈ Rn , πf (·)
always produces the same permutation. While this is an often
desired behavior during inference, in this paper, we are interested
in studying a stochastic construction of πf (·) during training.

4 PROPOSED METHODOLOGY
The core idea is to let scores f (x) define a distribution over the
space of permutations and subsequently sample permutations from
said distribution. More formally, let us denote such a distribu-
tion by Pα with parameter α = (α1,α2, . . . ,αn ) where, as before,
f (x)|i = log(αi ) for all i . Let us assume that sampling from Pα can
be reparameterized [27] as sampling from an independent source
of noise Q and passing that noise through a smooth deterministic
function д̂α—we will show how this can be achieved in the next
section. Given this sampling process, we propose to optimize the
expected empirical loss:

L(f ) =
1
|Ψ|

∑
Ψ

E
πf ∼Pα

[ℓ̂(y,πf )] =
1
|Ψ|

∑
Ψ

E
Z∼Q
[ℓ̂(y, д̂α (Z ))], (2)

where ℓ̂ : Rn+ × Πn → R is smooth. Because д̂α is smooth, Equa-
tion (2) can be optimized using gradient descent, and because we
are sampling from an independent noise distribution, Q, the ex-
pectation may be approximated using Monte Carlo [34]. Note that,
without reparameterizing the sampling process, the gradient of the
expectation with respect to parameters of the distribution cannot be
estimated using Monte Carelo. In the next section, we will present
our proposed method to draw samples from Pα without necessarily
constructing the distribution.

4.1 Sampling Permutations
In this section, we consider the task of drawing a single permuta-
tion given n documents and their scores. A permutation may be
constructed following the Plackett-Luce model. Conceptually, the
process works as follows: Scores are projected onto the probability
simplex and a single document is sampled from the resulting dis-
tribution. The sampled document is subsequently removed from
the set and placed at position 1 of the permutation. The process
restarts to fill the next position until the set of documents is empty.

More formally, given a set of documents and their scores f (x)|i =
log(αi ), 1 ≤ i ≤ n, define the following probability distribution:

Pf (xi ) ≜
e

1
β f (x ) |i∑n

j=1 e
1
β f (x ) |j

, 1 ≤ i ≤ n, (3)

which is a temperature-controlled Softmax transformation where
β > 0. Given the above distribution, draw a sample xπ1 and place it
at the first position. Continue this sampling without replacement to
fill subsequent positions until no document is left in the set. Note
that, in each round, the distribution in Equation (3) may change.

Drawing a sample xπk can be achieved using the Gumbel-Max
method [26–28], a known technique that meets our reparameter-
izability requirement above. Let us illustrate this by drawing the
first sample, xπ1 ; extending this to xπk for k > 1 is trivial. To
do that, we draw n noise samples (one per document in the set)
independently from Gumbel(µ = 0, β) (i.e., source of noise Q in
Equation (2)), denoted byGi for all 1 ≤ i ≤ n. We then produce xπ1
where π1 = argmax

1≤i≤n
log(αi ) +Gi (i.e., д̂α of Equation (2)). It can be

shown that the probability of sampling xi in the first round is equal
to Equation (3).

Drawing a sample Gi from the Gumbel distribution can itself
be done very efficiently by further reparameterization: Sample
Ui ∼ Uniform(0, 1) and setGi = −β log(− logUi ). It is easy to show
that Gi is Gumbel(µ = 0, β) distributed; to see why, note that
−β log(− log(·)) is the Gumbel quantile function.

Unfortunately, the sampling procedure above is not differentiable
as the random variable being sampled (i.e., a document) is discrete
or, equivalently, because д̂α = argmax is non-differentiable. In the
next section, we address this non-differentiability.

4.2 Stochastic Scores
To address the non-differentiability of sampling from discrete dis-
tributions, Maddison et al. recently proposed the Concrete distri-
bution [27]. The Concrete distribution is a continuous relaxation
of the discrete space. That is, instead of strictly sampling from the
vertices of the probability simplex (where samples are discrete),
Maddison et al. propose to relax the discrete space into the inte-
rior of the simplex (i.e., if ŷ is a sample from Concrete(α ) then
ŷ ∈ ∆n−1). This is illustrated in Figure 1 for two example α vectors.

Sampling from Concrete(α ) needs only a minor adjustment
to the Gumbel-Max method: Instead of argmax, a temperature-
controlled Softmax operator is used. As a result, the ith coordinate
of ŷ has the following form:

ŷi =
e logαi+Gi∑n
j=1 e

logα j+G j
. (4)



α1 = 1.5 α2 = 5

α3 = 2

(a) α = (1.5, 5, 2)
α1 = 5 α2 = 5

α3 = 2

(b) α = (5, 5, 2)

Figure 1: Visualization of Concrete(α ) with β = 1. Brighter
points indicate more likely samples. A point in the interior
of the simplex defines a probability distribution over the
three documents.

The Softmax above can optionally be controlled by a temperature
such that, in the limit, it converges to the Gumbel-Max sampling
method [27].

Sampling from the Concrete distribution is actually a more natu-
ral choice for constructing a permutation. Instead of an iterative
sampling without replacement as laid out in Section 4.1, a single
sample from the Concrete distribution suffices to derive an ordering.
In effect, the continuous random variable ŷ ∼ Concrete(α ) can be
understood as encoding the likelihood of each xi ∈ x appearing at
position 1 of the permutation.

Given the properties of the Concrete distribution, we arrive at
our proposed permutation sampling strategy: We first sample ŷ
from the Concrete distribution parameterized by raw scores α
where ŷi ’s are “stochastic scores” for elements of x . We then sort
elements of x by these scores to obtain a permutation.

What is interesting is that one may simply view ŷ as stochastic
scores sampled from a distribution defined by raw scores f (x). The
advantage to this interpretation is that we can simply pass ŷ to any
arbitrary listwise loss function ℓ : Rn+ × Rn → R in lieu of f (x)
without constructing permutations. This is the approach we take in
the remainder of this paper. Algorithm 1 summarizes our proposed
method by showing how stochastic scores are sampled given raw
scores. Note that, we apply a logarithmic transformation to ŷi ’s for
consistency (to operate in log-scale) and to simplify analysis.

5 ANALYSIS OF LOSS FUNCTIONS IN THE
STOCHASTIC FRAMEWORK

In Section 4, we left open the choice of the local loss function
ℓ but only required that it be differentiable. In this section, we
consider three classes of listwise loss functions: cross entropy
from ListNet [7], approximate ranking metrics [32], and Lamb-
daMART [6, 39]. The cross entropy loss acts on the space of scores
and does in fact incur a penalty for scores that are (incorrectly)
too close to each other; our intuition is then that cross entropy is
unlikely to benefit from our proposed method. We choose the ap-
proximate metric loss because it is less concerned with raw scores
and instead operates on the space of permutations. As such it is
an appropriate loss to help verify our hypothesis from Section 1.
Finally, we select LambdaMART because its loss is a hybrid of
score-based and permutation-based functions.

Throughout this section we set the Gumbel shape β to 1 to
simplify notation, but the same analysis can be extended to arbitrary
values of β > 0.

Algorithm 1: Stochastic scores for learning-to-rank
Input: Training batch BΨ; current parameters Θ; number of
samples to draw, N ; Gumbel shape β
Result: Sampled batch B̂Ψ of stochastic scores
1: B̂Ψ ← ∅
2: for (x ,y) ∈ BΨ do
3: αi ← ef (x ;Θ) |i , 1 ≤ i ≤ n
4: for 1 to N do
5: Ui ∼ Uniform(0, 1), Gi = −β log(− logUi ), ∀1 ≤ i ≤ n

6: ŷi =
e log(αi )+Gi∑n
j=1 e

log(α j )+G j
, 1 ≤ i ≤ n

7: ŷ ← (log ŷ1, log ŷ2, . . . , log ŷn )
8: append(B̂Ψ , (ŷ,y))
9: end for
10: end for

5.1 Cross Entropy
Cross entropy is at the heart of several learning-to-rank algo-
rithms [7, 40] and was shown [2] to indirectly optimize NDCG
in a binary relevance regime. The loss provides a notion of distance
between two probability distributions:

ℓ(y, f (x)) = H (Py , Pf ) ≜ −
n∑
i=1

Py (xi ) log Pf (xi ), (5)

where Py and Pf are probability distributions over x derived from
labels and scores respectively, n = |x |. There are many recipes
for constructing Py and Pf . In this work, we choose a general
construction. In particular, in the deterministic case, we have that:

Py (xi ) =
yi∑n
j=1 yj

, Pf (xi ) =
ef (x ) |i∑n
j=1 e

f (x ) |j
=

αi∑n
j=1 α j

. (6)

Using the above, we can expand Equation (5) as follows:

H (Py , Pf ) = −
n∑
i=1

Py (xi ) log Pf (xi ) = −
n∑
i=1

yi∑
yj

log
αi∑
α j

(7)

= −

n∑
i=1

yi∑
yj

logαi + log
n∑
j=1

α j . (8)

Let us now consider this loss in the context of Algorithm 1.While
Py need not change, we let Pf be the sample ŷ ∼ Concrete(α ):

Pf (xi ) =
e logαi+Gi∑n
j=1 e

logα j+G j
, (9)

where Gk ∼ Gumbel(µ = 0, β = 1)∀1 ≤ k ≤ n. Plugging this into
Equation (5) and taking the expectation leads to the following:

E
Gk∼Gumbel ∀k

[H (Py , Pf )] = −E[
n∑
i=1

Py (xi ) log Pf (xi )] (10)

= −E[
n∑
i=1

yi∑
yj
(logαi +Gi − log

n∑
j=1

α je
G j )] (11)

= −

n∑
i=1

yi∑
yj

logαi − γ + E[log
n∑
j=1

α je
G j ] (12)



≤ −

n∑
i=1

yi∑
yj

logαi + logE[
n∑
j=1

α je
G j ] (13)

= −

n∑
i=1

yi∑
yj

logαi + log
n∑
j=1

α j︸                                 ︷︷                                 ︸
H (Py,Pf )

+ logE[eG ], (14)

where (11) holds by definition, (12) is derived by linearity of ex-
pectation and the fact that EG∼Gumbel(µ=0,β=1)(G) = γ (the Euler-
Mascheroni constant), (13) is true by Jensen’s inequality and con-
cavity of log(·), and (14) rearranges the expression.

In theory, the expectation in the last term of Equation (14) does
not exist. In practice, however, we draw a Gumbel sample by draw-
ing a noise not from Uniform(0, 1) but from Uniform(ϵ, 1−ϵ). With
that change, the expectation in Equation (14) is a constant.

The analysis above shows that the performance of the cross
entropy loss is invariant under the stochastic procedure of Algo-
rithm 1: Equation (14) upper-bounds the optimization problem in
Algorithm 1. We therefore do not expect a performance gain using
the cross entropy loss function. This finding certainly agrees with
our intuition. The cross entropy loss, being a function that operates
on raw scores and not permutations induced by raw scores, already
penalizes a model for producing scores that are incorrectly too
close.

5.2 Approximate Ranking Metric
We now turn to a second class of loss functions that are much
closer to ranking metrics: approximate ranking metrics by Qin et
al. [32]. In [32], the authors provide a general framework where,
given a ranking metric, one can derive a smooth approximation.
More recently, Bruch et al. [3] showed that using neural networks
to optimize this approximate surrogates results in models that are
comparable with the state-of-the-art methods.

To understand this family of loss functions better, we take
NDCG [19] as an example metric and show how we may derive
an approximate NDCG, dubbed ApproxNDCG. Subsequently, we
examine the effect of Algorithm 1 on this framework.

5.2.1 Overview of ApproxNDCG. We first begin by a definition
of NDCG:

NDCG(y,πf ) =
DCG(πf ,y)
DCG(πy ,y)

, (15)

where πf is a ranked list induced by f on x , πy is the ideal ranked
list (where x is sorted by y), and DCG is defined as follows:

DCG(y,π ) =
n∑
i=1

2yi − 1
log2(1 + π [i])

, (16)

where π [i] is the rank of xi .
As shown in Equations (15) and (16), all that is needed to compute

DCG is πf , which may be calculated as follows:

πf [i] ≜ 1 +
∑
j,i
If (x ) |i<f (x ) |j , (17)

where Is<t is an indicator which is 1 if s < t and 0 otherwise.

The main idea in [32] is to construct a smooth variant of DCG by
approximating the indicator function I using a sigmoid function:

Is<t = It−s>0 ≈ σ (t − s) ≜
1

1 + e−η(t−s)
, (18)

where η > 0 controls how tightly the sigmoid fits the indicator
function. A small η leads to a curve loosely related to the indicator
function, and a large η leads to gradients vanishing not far from
the origin, making them uninteresting.

The approximation in Equation (18) is smooth and plugging it
into Equations (17) and (16) yields ApproxNDCG. Because NDCG
is a utility, we define the loss ℓ to be negative ApproxNDCG.

Since we choose to parameterize our function f with neural
networks when optimizing this loss in later sections, it will help
to paint a mental picture of what this approximation does. Con-
ceptually, one can replicate the model n times (one per every input
xi ∈ x) to obtain n output nodes. These output nodes together
represent f (x). What Equation (18) does is that it adds a sigmoid
activation layer over pairs of output nodes where the input to the
sigmoid is f (x)|i − f (x)|j . DCG can then be thought of as a loss over
the output of these sigmoid units. This is illustrated in Figure 2a.

5.2.2 Effect of Algorithm 1. Let us now consider the effect of Al-
gorithm 1 on ApproxNDCG. In that setting, instead of f (x) the loss
is computed using a log-transformed sample ŷ from Concrete(α ):

log ŷk ≜ log
e logαk+Gk∑n
j=1 e

logα j+G j
, (19)

where Gk ∼ Gumbel(µ = 0, β = 1)∀1 ≤ k ≤ n, and log(αk ) =
f (x)|k as before. The sigmoid approximation of the indicator func-
tion in Equation (18) then becomes: Ilog ŷj<log ŷi ≈ σ (log ŷi−log ŷj ).
We have that:

log ŷi − log ŷj = log
e logαi+Gi∑
e logαk+Gk

− log
e logα j+G j∑
e logαk+Gk

(20)

= (logαi − logα j ) + (Gi −G j ). (21)

In other words, the difference of logs of stochastic scores (log ŷi ’s)
is equal to the difference of raw scores (logαi ’s) plus the difference
of two independently-drawn Gumbel samples. The sigmoid can
thus be rewritten as follows:

σ (log ŷi − log ŷj ) = σ ((f (x)|i − f (x)|j ) + Zi j ), (22)

where Zi j = Gi − G j . Moreover, it can be shown that Zi j is a
zero-mean Logistic noise: Zi j ∼ Logistic(µ = 0, s = β).

This finding is encouraging. We have just shown that comput-
ing ApproxNDCG (or more generally, any loss derived using the
approximation framework of [32]) using stochastic scores is equiv-
alent to using raw scores to compute the loss but where a Logis-
tic noise is injected to the input of the conceptual sigmoid layer
placed over pairs of output nodes. This is illustrated in Figure 2b.
Deep learning research suggests that such a combination of non-
linearities and stochastic perturbations can improve generalization.
Dropout [14, 17, 24], masking noise in denoising auto-encoders [37],
semantic hashing [35], and noisy activation functions [15] are a
few such examples.
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Figure 2: Construction of the rank approximation function π̂f for a list with 3 documents. In (a), sk = f (x)|k in the deterministic
case and in the stochastic framework sk = ŷk where ŷ = (ŷ1, ŷ2, ŷ3) ∼ Concrete(ef (x ) |1 , ef (x ) |2 , ef (x ) |3 ). (b) illustrates an alternative
view of the stochastic setting which is equivalent to deriving rank approximations from raw scores f (x) but where Zi j ∼
Logistic(µ = 0), ∀i , j are injected to the sigmoid activation functions.

5.3 LambdaMART
We also consider LambdaMART [39] in this framework. The objec-
tive optimized by LambdaMART is a function of two factors: One
measures the absolute change in NDCG by swapping documents i
and j in a ranked list denoted by |∆NDCGi j |, and another capturing
the probability of one document appearing higher than the other
in the ranked list given their raw scores. Formally, the objective is
a sum over the following pairwise terms [4]:

ℓi j = |∆NDCGi j | log
(
1 + e−σ (logαi−logα j )

)
, (23)

where σ is a hyperparameter and f (x)|i = logαi . Instead of work-
ing with this loss function, LambdaMART directly models its gradi-
ents with respect to raw scores, λi = ∂ℓ

∂f (x ) |i
.

In the context of Algorithm 1, raw scores are substituted with
stochastic scores ŷ as in Equation (19). Furthermore, by sorting
documents by stochastic scores, we may derive a permutation from
which ∆NDCGi j can be calculated. The updated utility will be a
sum of the following pairwise terms:

ℓi j = E
Gk∼Gumbel

[|∆NDCGi j | log
(
1 + e−σ (log ŷi−log ŷj )

)
]. (24)

Note that, because stochastic scores ŷ are differentiable with
respect to raw scores f (x), we can update λi ’s (using the chain rule)
and use the same gradient boosting algorithm as LambdaMART.

We leave a detailed analysis of LambdaMART under our stochas-
tic regime to future work, but we believe there are two factors that
need a closer examination. First, we believe stochastic scores allow
the model to explore the gradient space by taking into consideration
likely permutations from which ∆NDCGi j ’s may be computed. This
is in contrast to raw scores which expose the model only to a greedy
estimate of the gradient. Second, because the gradients of Equa-
tion (24) (i.e., λi ’s) comprise of a sigmoid term as in Equation (22),
we expect to observe a similar effect to Section 5.2.

6 EXPERIMENTAL SETUP
The theoretical properties demonstrated in earlier sections are en-
couraging but whether they translate into empirical gains remains
to be tested. In the remainder of this paper we set out to do just that.

We start by a description of our experimental setup, including de-
tails of model hyperparameters. To invite the research community
to reproduce our experiments and to encourage further research in
this direction, we open source our code.

6.1 Datasets
We conduct our experiments on two publicly available datasets:
MSLR Web30K [31] (Fold 1) and Yahoo! Learning to Rank Chal-
lenge [8] (Set 1). Both datasets contain roughly 30,000 queries.
Web30K (Yahoo!) has on average 120 (24) documents per query,
where query-document pairs are represented by 136 (519) numeric
features. Documents are labeled with graded relevance from 0 to 4
with larger labels indicating a higher relevance.

Both datasets contain a training, a validation, and a test set. We
conduct hyperparameter tuning strictly on the validation set. Final
model evaluation is performed on the held-out test set. In all of
our experiments throughout this paper, we run 10 trials of each
experiment and report mean metrics and 95% confidence intervals.

Finally, we discard queries with no relevant documents during
evaluation. There are 189 (248) such queries out of 6,306 (6,983)
queries in the Web30K (Yahoo!) test set. The reason for ignoring
these queries is that ranking metrics can be arbitrarily 0 or 1 for
such queries. That arbitrary choice makes a comparison between
different implementations unfair. The astute reader will notice that,
because of this clean-up, the measurements reported in this work
may be lower than what is reported in the literature.

6.2 Models
We conduct experiments using three baseline models and compare
their performance in the context of Algorithm 1. These include:
LambdaMART [39], ApproxNDCG [32], and ListNet [7] henceforth
denoted by CrossEntropy. We note that we also compared the above
with other existing methods such as ListMLE [40] and RankNet [5]
but found these to be relatively weak and, as such, exclude them
from this report. For brevity, we use the name of a loss function to
refer to a model that optimizes that loss.

We train LambdaMART models (denoted by λMART) using
LightGBM [22]. The hyperparameters are guided by previous work
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Figure 3: NDCG@5 on Web30K during training of a model optimizing a baseline loss ℓ and another (same hyperparameters)
optimizing our proposed expected loss E[ℓ] where ℓ is CrossEntropy in (a), ApproxNDCG in (b), and λMART in (c).

(e.g., [22, 38]) and are further fine-tuned on the validation set. For
Web30K (Yahoo!): learning rate is 0.05 (0.05), num_leaves is 400
(400), min_data_in_leaf is 50 (100), and min_sum_hessian_in_leaf is
set to 200 (10), σ of Equation (23) is 2, and lambdamart_norm is set
to false. We use NDCG@5 to select the best models on validation
sets by fixing early stopping round to 200 up to 1000 trees.

We use Tensorflow Ranking [30] (v0.1.3 with Tensorflow v1.14.0-
rc1) to train models with ApproxNDCG and CrossEntropy. The
model configurations for these two are similar with only the loss
functions being different. The model itself is a fully-connected feed-
forward network with ReLU activation (ReLU(t) = max(t , 0)). The
network has 7 hidden layers with 1024, 512, 256, 128, 64, 32, and
16 nodes each. Batch Normalization [18] (with momentum set to
0.99 for Yahoo! and 0.8 for Web30K) is applied between consecutive
layers, including over the input layer. Similar to λMARTmodels, the
hyperparameters are selected based on NDCG@5 on the validation
set; training batch size is set to 128; and learning rate to 0.005. Lastly,
we use AdaGrad [11] to optimize the objective. We found empiri-
cally that setting the loss of the mini-batch to be the sum (rather
than mean) of sample losses speeds up AdaGrad’s convergence in
this setup—this amounts to adjusting the effective learning rate. For
ApproxNDCG, we set the hyperparameter η to 10 in Equation (18).

Finally, we apply Algorithm 1 to the losses above and denote
them with E[CrossEntropy], E[ApproxNDCG], and E[λMART]. To
that end, we implemented Algorithm 1 in Tensorflow Ranking and
LightGBM. We set the number of samples to 8 and Gumbel shape
β to 1 and 0.25 for the neural networks and decision tree-based
models, based on a grid search on validation sets.

In a first set of experiments, we use the same baseline hyperpa-
rameters to train E[·] models so as to strictly measure the impact
of substituting deterministic ordering with stochastic scores.

In a second set of experiments, we further fine-tune E[·] hyper-
parameters on validation sets. This leads to a few adjustments as
follows: The refined E[CrossEntropy] and E[ApproxNDCG] mod-
els consist of 3 hidden layers, each with 1024, 512, and 256 nodes
respectively. We set Batch Normalization’s momentum to 0.4 and
add dropout [17] between layers with a keep rate of 0.5. We use
Adam [23] to minimize the losses, where the loss of a mini-batch
is the mean of the sample losses. The hyperparameters for the
fine-tuned E[λMART] model do not change.

7 EXPERIMENTAL RESULTS
In this section, we present our experiments and discuss the results.
In particular, we compare the convergence of the baseline models
with our proposed method during training and draw insights from
the observed behavior. We then examine the generalizability of the
proposed method by evaluating a tuned model on held-out test data
and comparing the results with similarly tuned baseline models.
Through both sets of experiments, we also demonstrate that the
intuition and analysis in Section 5 hold empirically.

7.1 Convergence
We have hypothesized that the stochastic nature of our proposed
method leads to a more robust model when applied to an appropri-
ate loss function such as ApproxNDCG. We have also speculated
that the same strategy does not lead to any significant change when
the loss function under consideration is cross entropy-like. In a first
set of experiments, we examine those claims empirically.

We train our baseline models where one optimizes the cross
entropy loss, another ApproxNDCG, and a third λMART. We then
fix all hyperparameters but substitute the loss with the expectation
of each loss using Algorithm 1 and train new models. In this way,
we study the effect of our method in isolation.

Figure 3a plots the performance of CrossEntropy and the pro-
posed E[CrossEntropy] models as measured by NDCG@5 on the
Web30K training and validation sets as training progresses. Fig-
ures 3b and 3c illustrate a similar setup for ApproxNDCG and
λMART and their E[·] variants. In all plots, the horizontal axis rep-
resents the training iteration (steps for neural networks and trees
for λMART). Each curve represents a single trial but that regardless
of which trial we choose to plot, the comparison between the mod-
els holds. We further note that we observe a similar trend on the
Yahoo! dataset which we have omitted due to space constraints.

As shown in Figure 3a, it is clear that CrossEntropy does not
benefit from Algorithm 1. This observation validates our intuitive
understanding of when Algorithm 1 may prove unhelpful: If the
loss function already encourages a wide margin between scores,
the application of our proposed method will have no effect. This
observation also confirms the analysis in Section 5.1.

Figure 3b paints a different picture. The performance gap be-
tween ApproxNDCG and E[ApproxNDCG] is significant and grows
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Figure 4: NDCG@5 on Web30K validation during training.
Each model is configured with its own fine-tuned hyperpa-
rameters, a different setting from Figure 3 where hyperpa-
rameters were fixed across baseline and E[·]models.

wider as training progresses. The E[ApproxNDCG] model, how-
ever, shows signs of overfitting earlier because it is trained with the
baseline model’s hyperparameters; further fine-tuning, as discussed
below, addresses the early overfitting problem. We also observe that
the application of Algorithm 1 to ApproxNDCG results in a faster
convergence to a better optimum—as we will show shortly, training
the ApproxNDCG model for more steps does not yield an NDCG
better than the largest NDCG achieved by E[ApproxNDCG].

Training λMART with stochastic scores leads to a higher con-
vergence rate as depicted in Figure 3c. This comes at no cost to
effectiveness: E[λMART] consistently outperforms λMART during
training. We believe this outcome is due to exposing the model to a
larger number of permutations. This is similar to the effect of other
noisy methods applied to λMART, such as bagging, but we leave a
detailed analysis of this topic to future work.

We have just established that our proposed method when applied
to ApproxNDCG and λMART and in isolation of other factors leads
to a higher convergence rate without sacrificing effectiveness. In the
next set of experiments, we train new E[·] models with fine-tuned
hyperparameters. Figure 4 illustrates NDCG@5 on the Web30K
validation set as training progresses. We observe that in addition
to an increased convergence rate, the gap between ApproxNDCG
and E[ApproxNDCG] widens substantially. Note that because the
E[λMART] hyperparameters did not change after fine-tuning (see
Section 6), the curves in this figure are the same as Figure 3c but
we illustrate them again to allow comparison with other models.

7.2 Generalization
We now turn to a second set of experiments where we compare the
various models under consideration on held-out test sets. We report
the results of our experiments on both the Web30K and Yahoo!
datasets in Table 1.

A comparison of the ApproxNDCG model with
E[ApproxNDCG] again confirms the analysis from earlier
sections. The latter consistently improves upon the former
significantly on both datasets and by a wide margin on Web30K.

We did not find the results from CrossEntropy insightful as
it performs poorly overall. However, as expected, a comparison

Table 1: Evaluation on test sets in mean NDCG (95% confi-
dence intervals). Bold-faced entries are best column-wise.

Web30K
Model NDCG@1 NDCG@5 NDCG@10
CrossEntropy 42.66 (±0.36) 43.06 (±0.16) 45.44 (±0.16)
E[CrossEntropy] 42.98 (±0.75) 43.28 (±0.65) 45.63 (±0.62)
ApproxNDCG 46.64 (±0.22) 45.38 (±0.11) 47.31 (±0.10)
E[ApproxNDCG] 48.81 (±0.25) 47.48 (±0.10) 49.33 (±0.10)
λMART 50.06 (±0.27) 49.39 (±0.08) 51.26 (±0.04)
E[λMART] 50.22 (±0.18) 49.44 (±0.06) 51.40 (±0.04)

Yahoo!
ApproxNDCG 69.63 (±0.17) 72.32 (±0.10) 76.77 (±0.06)
E[ApproxNDCG] 70.10 (±0.12) 72.69 (±0.13) 77.11 (±0.09)
λMART] 72.47 (±0.15) 74.97 (±0.09) 79.16 (±0.06)
E[λMART] 72.58 (±0.09) 75.16 (±0.04) 79.34 (±0.05)

between CrossEntropy and E[CrossEntropy] shows no statistically
significant performance difference. We have excluded those from
the Yahoo! result set.

Finally, a comparison between the λMART models is in align-
ment with Section 7.1. On both datasets, E[λMART] performs better
than λMART across rank cutoffs. This difference becomes more
pronounced if one must use fewer number of trees.

8 CONCLUDING REMARKS
In this work, we examined how learning-to-rank loss functions uti-
lize the scores produced by a scoring function during training. We
askedwhether a deterministic mapping from scores to permutations
could prove suboptimal for losses derived from ranking metrics. As
an alternative, we introduced a stochastic framework where a list
of scores defines a distribution over permutations and from which
permutations may be sampled. We then found through analysis
and experiments on benchmark datasets that our framework im-
proves model convergence and generalization when applied to an
appropriate class of ranking losses.

Given our initial findings, we believe there are a number of
promising extensions to this work. One direct application of our
proposed method is in connection with the LambdaLoss frame-
work [38], as noted in Section 2.

We also observed a connection between our proposed method
and regularization as discussed in Section 5.2. More generally, our
approach can be understood as perturbing scores by Gumbel noise.
This finding is exciting and we are therefore interested in studying
other distributions—sampling from the Concrete distribution as
done in this work is simply one way to do so—that result in a
different and more appropriate noise distribution. Particularly, we
are interested in an examination of stochastic learning-to-rank
functions in an efficiency-effectiveness trade-off framework.
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