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ABSTRACT
Long Short-Term Memory (LSTM) is one of the most powerful
sequence models for user browsing history [17, 22] or natural lan-
guage text [19]. Despite the strong performance, it has not gained
popularity for user-facing applications, mainly owing to a large
number of parameters and lack of interpretability. Recently Za-
heer et al. [25] introduced latent LSTM Allocation (LLA) to address
these problems by incorporating topic models with LSTM, where
the topic model maps observed words in each sequence to topics
that evolve using an LSTM model. In our experiments, we found
the resulting model, although powerful and interpretable, to show
shortcomings when applied to sequence data that exhibit multi-
modes of behaviors with abrupt dynamic changes. To address this
problem we introduce thLLA: a threading LLA model. thLLA has
the ability to break each sequence into a set of segments and then
model the dynamic in each segment using an LSTM mixture. In
that way, thLLA can model abrupt changes in sequence dynam-
ics and provides a better fit for sequence data while still being
interpretable and requiring fewer parameters. In addition, thLLA
uncovers hidden themes in the data via its dynamic mixture com-
ponents. However, such generalization and interpretability come at
a cost of complex dependence structure, for which inference would
be extremely non-trivial. To remedy this, we present an efficient
sampler based on particle MCMC method for inference that can
draw from the joint posterior directly. Experimental results confirm
the superiority of thLLA and the stability of the new inference
algorithm on a variety of domains.
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1 INTRODUCTION
Modeling sequential data with discrete observations is an impor-
tant problem in machine learning with applications ranging from
biology [10] to text [19] to user behavior [16]. For instance, in case
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of natural language text, the aim commonly is to predict the next
word given the context. Likewise, in case of user activity modeling
the aim would be to predict the next action of the user given the
history in an interpretable fashion so as to serve and target relevant
and useful contents to users. It has been found that a good sequen-
tial data model should be accurate, sparse, and interpretable [25].
Unfortunately, few models that satisfy these requirements exist.

Recurrent neural networks (RNN) [18], such as LSTMs (Long-
Short Term Memory) [13] have become the state-of-the-art in mod-
eling sequential data.While effective and expressive, [15] they result
in a generally uninterpretable and inaccessible representation to
humans [21]. Moreover, the number of parameters of the model is
proportional to the size of observation space which further dimin-
ishes accessibility to humans. For use-cases where interpretability
is of utmost importance, latent variable models such as LDA [5]
have been deployed with good commercial success [14]. Although
such topic models are not a sequence model, they are powerful
tools for uncovering latent structure [1].

Recently, [25] proposed Latent LSTM Allocation (LLA) that
bridges the gap between LSTM and LDA. In LLA words are grouped
into topics using LDA-like technique, then the dynamic evolution
of topics in the sequence is captured using an LSTM-like technique.
The model is fit jointly by alternating a sampling step to fit the topic
and an optimization step to update the parameters of the LSTM.
The resulting model enjoys the strengths of both LDA and LSTM:
it is sparse, interpretable and requires fewer parameters that scales
with the number of topics rather than size of observation space.

Notwithstanding these developments, LLA, while expressive and
interpretable, can still capture spurious dynamics in sequential data
with mixed themes. In Fig. 1 we visualize the learned transition
graph over topics as extracted from LLA when fitted over a user
search history dataset. As evident, while the model captured use-
ful transitions between camping gear and hiking topics, it also
captured a couple of spurious transitions between ice-cream and
painting topics. This can be attributed to mixed nature of user data,
for instance, the user might search for hiking, home remodeling,
and baking desserts with abrupt transitions between these totally
different themes. While LSTM has the expressive power to capture
long-range dependency structures, the introduction of latent vari-
ables (topics) exacerbate the complexity of the surface of objective
function and precludes the optimization algorithm from linking
each item in the sequence to the most relevant item in the the same
theme from the user history. In addition LLA can not break the
transition graph into themes such as camping and baking deserts
that would give another layer of structure and interpretability.
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Figure 1: Transition graph from LLA illustrating its short-
coming. The LLA model is fit over user search history data,
where each topic is a distribution of search queries and each
edge denotes a temporal transition.As evident, LLA captures
both useful and spurious dynamics.

To address these shortcomings of LLA, we introduce thLLA,
threading LLA as a more faithful model for sequential data with
mixed themes and abrupt transitions between the themes. thLLA
generates a sequence from a mixture of LLA models, topics are
shared among all LLA models in the mixture, however, each LLA
model in the mixture has its own LSTM component that captures
dynamic evolution over a subset of the topics in the shared space.
The input data is endowed with a switch variable for each item
that selects a given mixture to generate this item. In that regard
each item in the sequence is generated NOT conditioned on all
the previous items as in LLA but rather conditioned on items that
are associated with the same mixture in the history. In that re-
gard our model can be seen as a threading or segmentation model
that breaks the user sequence into coherent themes and models
dynamic evolution within each theme separately. thLLA still enjoys
all nice properties of LLA, namely, interpret-ability and small model
size while being more accurate. Unfortunately, this comes with an
added complex dependency structure for which inference would
be extremely non-trivial. To remedy this, we present an efficient
sampler based on particle MCMC method for inference that can
draw from the joint posterior over both segments and topic assign-
ments. We show quantitatively as well as qualitatively the efficacy
and interpretability of thLLA over several datasets.

2 BACKGROUND
The proposed thLLA model and its inference builds on the concepts
of recurrent neural networks, LLA and sequential Monte Carlo. In
this section, we provide a brief review of these building blocks.

RNNs is a powerful tool for modeling sequential data due to their
strong performance and ease of deployment. Technically, a RNN is
a automaton described by the triplet (Σ, S,δ ):
• Σ ⊆ RD is the input alphabet
• S ⊆ RH is the set of states
• δ : S × Σ→ S is the state transition function made up of a
neural network.

Given a sequence x1,x2, ...,xT ∈ Σ∗, a run of the RNN consists
of reading the input xt at a time step and updating its state st by
applying the transition function δ on the previous state st−1 and
the input, i.e. st = δ (st−1,xt ). Owing to the flexibility transition

function because of neural networks, RNNs can express the complex
dynamics present in sequence data.

In case of discrete sequence modeling, the input and output is
not in a format usable by RNN. The discrete input symbol is handled
the by mapping to vector in Σ by using a lookup table E. This can
be costly when size of input symbols, i.e. |Σ| is large. The desired
output, which is the probability of xt+1, e.g. next user action, is
produced by transforming the state st :

p(xt+1 |x1:t ) = д(st ), (1)

where д is an appropriate differentiable function. Like any other
neural neural network, RNNs can be trained using back propa-
gation.Although RNN can, in principle, model long-range depen-
dencies it can suffer from the problem of exploding or vanishing
gradient. To mitigate this to some degree, LSTMs [13] were intro-
duced as a special case of RNN.

In practice, LSTMs were shown to be effective at capturing long
and short patterns in data [15], however, it does not produce inter-
pretable models and it requires a large number of parameters that
scales with the size of the input vocabulary. To remedy this prob-
lem, [25] introduced LLA: Latent LSTM allocation, that combines
ideas from both LSTM and topic models such as LDA. In LLA, each
input sequence is mapped to a sequence of topics using an LDA-like
model and an LSTM model learns the dynamic evolution over the
topic space (rather than the input vocabulary space). This results
in an interpretable model due to the use of LDA topics that group
the input alphabet into sparse topics. Furthermore, LLA requires
fewer parameters that scales with the number of topics not the size
of the input alphabet.

Finally, we need a tool to sample from complex posteriors which
would arise unavoidably in models having combination of LSTMs
and Bayesian components. Sequential Monte Carlo (SMC) [9] is an
algorithm that samples from a series of potentially unnormalized
densities ν1(z1), . . . ,νT (z1:T ). At each step t , SMC approximates
the target density νt with P weighted particles using importance
distribution f (zt |z1:t−1):

νt (z1:t ) ≈ ν̂t (z1:t ) =
∑
p

α
p
t δzp1:t

(z1:t ), (2)

where αpt is the importance weight of the p-th particle and δx is
the Dirac point mass at x . Repeating this approximation for every
t leads to the SMC method, outlined in [3, 9].

3 MODEL
In this section, we provide a detailed description of the proposed
thLLA model. thLLA inherits the good properties from LLA of
sparsity and interpretability allowing human analysis of the com-
ponents but adds the ability to accurately track events especially in
the presence of multiple modes of behavior.

3.1 Generative process
In thLLA, we employ a mixture of different LSTM components
to model different segments of the dynamics in each sequence.
Switching between the mixture components is modeled in the topic
space like LLA and we use a multinomial-Dirichlet distribution to
model emissions p(xt |zt ) similar to LDA, where xt is the observed
sequence and zt is the latent topic index.
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(a) Example of thLLA: Can easily switch context
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(b) Corresponding LLA struggles during abrupt switch

Figure 2: Illustration of generative process of thLLA vs LLA. In this example, thLLA breaks the sequence into two segments:
one about blue topics (camping) and one about red topics (food and desert). It models each segment with separate LSTM that
can capture clean, intricate dynamics over these subset of topics, whereas LLA struggles in practice. Note that, in LLA, topic
at time t is linked to that at time t − 1 but in thLLA, each time step is linked to the most recent time step in its theme (not
necessarily the most recent one in time).

Suppose we have K topics andM mixtures in the dynamics. For
each of the M mixtures, we have different LSTMs, denote them
by LSTM1, ..., LSTMM . All the LSTMs share a common embedding
look-up table E. Assume that We have a dataset of user activity
histories D where each user history u ∈ D is composed of Nu
actions. With these notations in place, the complete generative
process can be described as follows:

(1) for k = 1 to K :
(a) Draw topic distribution ϕk ∼ Dir(β)

(2) for each user u in dataset D :
(a) Initialize all LSTMs with sm = 0 and set zprevm = 0 for

0 ≤ m ≤ M

(b) Draw user πu ∼ Dir(α)
(c) for each action index t = 1 to Nu :

(i) Select behavior mode at time t as
yt ∼ Categorical(πu )

(ii) Update corresponding dynamics
syt = LSTMyt

(
E
[
z
prev
yt

]
, syt

)
(iii) Get topic proportions at time t from the active

LSTM state, θ = softmaxK (Wpsyt + bp )
(iv) Choose a topic zu,t ∼ Categorical(θ )
(v) Save zprevyt = zu,t
(vi) Choose user action xu,t ∼ Categorical(ϕzu,t )

For a single user history sequenceu, the abovementioned genera-
tive process specifies the followingmarginal probability distribution
of observing the sequence:

p(xu |ω,ϕ,πu ) =
∑
yu ,zu

p(xu ,yu , zu |ω,ϕu ,πu )

=
∑
yu ,zu

∏
t
p(zu,t |zu,0:t−1,yu,1:t ,ω)p(yu,t |πu )p(xu,t |ϕzu,t )

(3)

Here ω is the union of parameters of all LSTM1, ..., LSTMM , the
embedding matrix E, the projection matrixWp and bias bp . The
structure of the generative process/probability function and im-
portance of the switch variable yt is better illustrated in Figure 2
through an example. Here each element of the observed sequence
xt is associated with a topic zt and a switch variable yt where yt
links (xt , zt ) to the elements in the history with the same mode of
behavior (theme). For instance in Figure 2, we have two themes
in this sequence, one is given by topics with yellow shades (e.g

camping) and the other is defined by topics with blue shades (e.g
baking deserts). The dynamic evolution of each theme is modeled
using a different LSTM mixture. In that regard, the switch variable
introduces large jumps in the sequence to connect relevant items so
that data point (xt , zt ) is generated conditioned only on elements
from the same theme in the history (x1,t−1, z1,t−1), whereas LLA
generates this element conditioned on all elements in the history.
While in theory LSTM should be able to figure out these jumps,
due to the diminishing gradient problem, and the fact that these
jumps can occur weeks apart, the optimization algorithm in practice
misses them as depicted in Figure 2 via the missing yellow topic in
the second-to-last position.

Note that LLA [25] is a special case of thLLA when the number
of mixtures M = 1. thLLA still enjoys all good properties of LLA,
namely sparsity, fewer parameters, and interpretability. In addition,
the introduction of different dynamic mixtures adds another layer
of interpretablility by breaking the data into a set of themes.

3.2 Parameter estimation
Exact inference for thLLA is intractable due to complex depen-
dences structure. As a result we resort to an approximate technique
like mean field variation inference [24] or stochastic EM [26]. We
begin by writing down, the variational lower bound to the marginal
data likelihood is given by∑

u
logp(xu |ω,ϕ,πu )

≥
∑
u
Eq

[
log

p(zu |yu ,ω)p(yu |πu )p(xu |zu ,ϕ)
q(yu ,zu )

]
,

(4)

where q is the variational distribution. Following the (stochastic)
EM approach, iteratively maximizing the lower bound w.r.t. q and
the model parameters (ω,π ,ϕ) leads to the following updates:
• E-step: The optimal variational distribution for each user u is
given by the posterior:

q⋆(yu ,zu ) ∝ p(zu |yu ,ω)
∏
t
p(yu,t |πu )p(xt |ϕzu,t ). (5)

Unlike Markov models for which efficient smoothing algorithms
such as the forward-backward algorithm are available for com-
puting the posterior expectations of sufficient statistics, in case
of thLLA, although the forward messages can still be computed,



Figure 3: Overview of the Stochastic EM inference algorithm.
Details are given in the Appendix.

the backward recursion can no longer evaluated or efficiently
approximated.
• S-step: As taking expectations is difficult, we take an alternative
approach to collect posterior samples for every user u instead:

(y⋆u ,z⋆u ) ∼ q⋆(yu ,zu ), (6)

given only the filtering equations and SMC. We discuss the pos-
terior sampling algorithm in detail in the appendix.
• M-step: Given the posterior samples (y⋆u , z⋆u ) for all users u,
which can be seen as Monte Carlo estimate of the expectations,
the subproblem for ω, π , and ϕ are

ω⋆ = argmax
ω

∑
u

logp(z⋆u |y⋆u ,ω),

π⋆
u = argmax

πu

∑
t

logp(yu,t |πu ) ∀u

ϕ⋆ = argmax
ϕ

∑
u

∑
t

logp(xu,t |ϕz⋆u,t ).

(7)

The first equation basically implies training each LSTM with se-
quences z⋆ corresponding to the time when its active as specified
by y⋆. The other two equations are simply the MLE of switch
variable, and the MLE of the given emission model, which is same
as LDA or LLA. The full algorithm is summarized in Figure 3

4 EXPERIMENTS
In this section we study empirically the properties of thLLA to
establish that (1) it is flexible in capturing underlying nonlinear
dynamics in sequences with mixed themes and abrupt jumps, (2)
the inference algorithm is efficient (3) it produces cleaner and more
interpretable topic transitions compared to LLA especially with the
add layer of structure due to the dynamic mixture components.

4.1 Setup and Datasets
For all experiments we follow the standard setup for evaluating tem-
poral models, i.e. we use the first 60% portion of the each sequence
for training and then predict the remaining 40% of the sequence
based on the representation inferred from the first 60%. We use
perplexity as our metric (lower values are better) and compare
against the baseline LLA. Since [25] established the superiority of
LLA against other temporal variants of topic models such as [2, 4],

(a) Base LLA transition graph

(b) thLLA transition graph for finance-related topics

(c) thLLA transition graph for film-related topics

Figure 4: Transition graphs on Wikipedia dataset. Top row
shows base LLA and bottom row depicts transition from two
difference thLLAmixtures about Movies and Finance. As ev-
ident thLLA gives cleaner representation. Probabilities are
trimmed to the first two decimal digits.

we exclude those comparison for space limitations Similarly we
exclude comparisons against base LSTM as the same trade-off holds
as in LLA [25]. We focus here on the effect of the added layer of
structure. Unless otherwise stated we run our experiments with
number of topics K = 1000 and number of mixtures M = 20 (for
thLLA). For both, we chose the dimensions of the input embedding



(a) User Search History

(b) Wikipedia

Figure 5: Converge curves for LLA and thLLA on a) User his-
tory and b) Wikpedia (lower better)

to LSTM in the range {50, 100, 150} and the size of the evolving
hidden LSTM state in the range of {50, ..., 500}. For thLLA, we share
the embeddings of topics among all LSTM in the mixtures, leaving
each mixture to only learn the evolving hidden LSTM state. For
SMC inference, we gradually increase the number of particles P
from 1 to K during training, where K is the number of topics. Fi-
nally, all the algorithms are implemented on TensorFlow and run
on machines with 4 GPUs.

To establish our claims we use data of different characteristics:
• Wikipedia: The publicly available Wikipedia dataset comprised
of short documents containing 0.7 billion tokens and 1 million
documents (Each document is a sequence). We chose the most fre-
quent 50k words as a vocabulary. This domain is structured with
each sequence having a few themes with no sharp transitions.
• User Search History: An anonymized sample of user search
query history from a web search engine. For privacy reasons, we
remove all queries appearing less than a given threshold, and use
only head queries. This results in a dataset of 10M users and 1M
vocabulary. This domain is less structured than the Wikipedia
dataset with longer sequences ( history of a given user), and
abrupt jumps back and forth between themes in each sequence.

4.2 Qualitative Evaluation: Topic Graph
First we test the claim that thLLA gives cleaner and more inter-
pretable representation compared to LLA. In Figure 4 and 6 we

(a) Transition graph for dessert-related topics

(b) Transition graph for outdoors-related topics

Figure 6: Transition graphs on user history dataset. Figure
depicts transition from two copa difference thLLAmixtures
about Camping and Desert. As evident thLLA gives cleaner
representation compared results obtained fromLLA show in
Figure 1. Probabilities are trimmed to the first two decimal.

show the topic transition graph from both LLA and thLLA, each
fit with 1000 topics and a comparable size of the LSTM(s) hid-
den state. For user history dataset the LLA transition graph is
shown in Figure 1. There are various ways to illustrate the dy-
namic behavior learned by the LSTM component(s) in each model.
For instance in [25], the authors applied hierarchical clustering
over the input topic embedding from the LSTM component and
showed that topics that appears closer in time also appears closer
in the hierarchy. Here we make this more explicit and visualize
the dynamics learnt by each model as a topic transition graph us-
ing the one step transition from the LSTM components, i.e for
LLA we use PLLA(topict = k |topict−1 = k ′, LSTM parameters) and
for mixturem from thLLA, we use PthLLA(topict = k |topict−1 =
k ′, LSTM parameters of mixture m). In the above figures, we show
top words (queries) for each topic as well as top transitions. As
evident, while LLA still captures useful transition, the added layer
of structure (themes) in thLLA results in a much cleaner models
that uncovers fine-grained transitions such as between camping
basics, equipments and parks, as can be seen in Figure 6(b), due to
having a separate dynamic model for each mixture.

4.3 Quantitative Evaluation: Perplexity
Figure 5 compares LLA and thLLA quantitatively using held-out
perplexity on both datasets. We use number of topics = 1000, for



(a) Effect of LSTM hidden state size on User Data (b) Effect of Number of thLLA mixtures on User Data (c) Effect of Number of topics on User Data

(d) Effect of LSTM hidden state size on Wikipedia Data (e) Effect of Number of thLLA mixtures on Wikipedia (f) Effect of Number of topics on Wikipedia Data

Figure 7: Ablation study comparing. From Left to right: effect of LSTM size, number of mixtures in thLLA, and number of
topics. Top shows results on User Search History dataset and bottom shows results on the Wikipedia dataset.

thLLA number of mixtures = 10 and we fix the size of the hidden
state of each LSTM mixture to be 50 while for LLA we use a value
of 500. We use the same size for topic embedding in all models (100)
and we share topic embedding across all mixtures in thLLA making
the overall size of the two models comparable. First, overall thLLA
give better results in both domain, however, the improvement is
more pronounced over the user history dataset as expected due to
its mixed-theme nature and abrupt transitions. Second, thLLAwhile
being more complex still converges at the same rate compared to
LLA. To understand this, we refer to [25] who noted that the time
complexity of LLA training is dominated by the M-Step due to the
LSTM component. Since thLLA utilizes smaller-sized LSTMs in its
mixtures, this compensates for the extra complexity introduced in
the E-step to sample both the topic and mixture assignment for
each item in the sequence.

4.4 Effect of LSTM Size
In this section we preform an ablation study to show the effect of
the LSTM size on the thLLA and LLA. One might argue that if we
increase the size of the evolving LSTM hidden state in LLA we can
capture the same effect introduced by thLLA, i.e the LSTM will
figure it out due to its ability to model long-range dependencies.
To test this hypothesis, we fix the number of topics to be 1000, the
number of mixtures in thLLA to be 10, and LSTM topic embedding
to be 100. We vary the size of the evolving hidden LSTM state in
both LLA and each mixture in thLLA from 50 to 500. As shown in
figure 7(a,d), this is not the case, and in fact thLLA outperforms LLA
across the entire range especially in the User History dataset. In the
Wikipedia dataset, thLLA peaks at around hidden sizes = 50-100
while LLA peaks around 500, given that we use 10 mixtures for
thLLAwe see that at comparable LSTM sizes thLLA still outperform
LLA. One should note here that while the LSTM in LLA can theoret-
ically model very long-range dependencies, in practice this is hard

due to the diminishing gradient problem, thus especially for user
sequences, the fact that users go back and forth between themes
over weeks poses a real challenge to LLA. In contrast, in thLLA,
each mixture considers only a small portion of the input sequence
that share the same theme modeled by this mixture, thus two items
might be adjacent in the input to the LSTM’s mixture (thanks to the
inference in the E-Step) while in fact they are separated by many
steps in the observed sequence. This ability of thLLA to model
long-range dependencies via jumps as explained in Section 3 is a
key to it performance.

4.5 Effect of Number of Topics
In Figure 7(c,f) we show how varying the number of topics affect
the quality of both models. We fix number of mixtures in thLLA to
be 10 and use the best performing setting for LSTM configuration in
each model. As shown in the figure thLLA outperform LLA across
the entire topic range. Note that for the Wikipedia following [25]
we vary number of topics in the range {250, 500, 1000} which does
not change the overall trend.

4.6 Effect of Number of Mixtures
In Figure 7(b,e) we show how varying the number of mixtures in
thLLA affects the model quality while fixing the number of topics
to be 1000. As expected from the figure, this is a model selection
problem where the performance peaks at 20 mixtures for the User
Search history dataset. However, it should be noted that overall
thLLA is not very sensitive to slight variation around the optimal
value. In practice, cross validation over a development dataset can
be used to find the best value of the number of mixtures.



Table 1: Query prediction on the user search history dataset.
All improvements are statistically significant.

Model P@5 P@10 P@15

LLA 0.174 0.151 0.139
thLLA 0.219 0.192 0.183

4.7 A User Prediction Task
In this section we provide an additional quantitative evaluation
besides the standard preplexity metric using the user search history
dataset. The task here is users’ future query prediction. We divide
queries in each test user into 80% for topic inference and 20% for
evaluation. Each model produces a ranked list of queries based on
the first 80% portion of the user history. We use precision@K to
evaluate the accuracy of each model in predicting future queries
where P(Query = q |user history) is computed as follows:

PLLA(q |u) =
K∑
k=1

PLLA(topic = k |u)P(q |k)

P thLLA(q |u) =
M∑

m=1
πu,m

K∑
k=1

P thLLA,m (topic = k |u)P(q |k)

(8)

In other words, in LLA we first run inference and use the last state
of the LSTM to produce a future topic distribution that we combine
with the topic-query distribution to produce the predicted ranked
list of queries. In thLLA we perform the same computation on a per-
mixture basis where the contribution of each mixture is weighted
by its prevalence in the user history given by πu,m . The results are
shown in Table 1

As the table shows thLLA produced better results than LLA as
it learns much more tighter topics that enables a more accurate
prediction. To further explain this result, we refer the reader to
Figure 8 where we show how LLA and thLLA segments a user
history into topics. As evident from the figure, thLLA produces a
fine-grained annotation of the user activities in both outdoor and
desert-making themes. For instance, while LLA groups many events
into "camping gear", thLLA breaks them down into camping tents
and camping equipments which allows for better future prediction
as the scope of future queries is reduced from all possible queries
in camping gears in addition to their immediate neighboring topics
(as in LLA, Figure 1) to only those queries in tents and camping
equipments in addition to their immediate neighboring topics (as in
thLLA, Figure 6). This happens as thLLA devotes a whole mixture to
modeling camping activities and this enables learning fine-grained
topics with accurate, theme-focused transitions.

5 DISCUSSIONS AND RELATEDWORK
In this paper we introduced threading Latent LSTM Allocation
model (thLLA) for sequence modeling. Like its predecessor LLA
[25], thLLA leverages the powerful dynamic modeling capability of
LSTM without blowing up the number of parameters while adding
interpretability to the model. However, unlike LLA, thLLA can
deal gracefully with sequence data composed of multiple themes
(modes of behavior) and abrupt transitions between these modes.
In addition, thLLA adds an extra layer of interpretability via its
mixture components that uncovers more structure in sequence

Figure 8: Illustrating how LLA and thLLA breaks a user his-
tory into topics. As evident, thLLA first breaks the history
into themes: outdoor (red) and deserts (blue), then gives a
more fine-grained annotation in each theme resulting in bet-
ter prediction as shown in Table 1 (best viewed in color).

data. By employing a mixture of LLA models to generate each
sequence, the new model threads each sequence by breaking it
into smaller subsequences each of which corresponds to a given
theme such as planning an outdoor activity. This threading results
in easier subproblems for optimizing the dynamic LSTM model
corresponding to each theme and avoids the vanishing gradient
problems[13]. Experimental results over two datasets corporate our
claims and proved the promise of our approach.

Our work is related to marrying topics models an deep models
such as[20, 23], however, as detailed in [25], these efforts cannot
capture long-range temporal dependencies which is the goal in this
work. Several other line of work endow LSTM with latent variables
such as [8, 11], however they focus mainly on continuous spaces
such as images whereas here we focus on discreet data.

Our model is related to switching state-space (SSS) models such
as [6, 12],however, here we apply this idea to recurrent models with
latent variables. Furthermore, in standard SSS models all mixtures
evolve at each time step and a switch variable at time t selects a
them to generate the input, whereas thLLA introduces the concept
of long-range jumps to break each sequence into smaller pieces
thus mitigating the vanishing gradient problem [13]. Finally our
model is related to attention [7], however, like LSTM, attention lack
interpretability as it can’t provide the extra layer of mixtures as in
thLLA and in addition requires a large number of parameters that
scale with the input data as opposed to the number of topics.

A APPENDIX: SMC FOR INFERENCE IN
THREADING LLA MODELS

In this subsection, we discuss how to draw samples from the poste-
rior (5), corresponding to the S-step of the stochastic EM algorithm.
For sake of simplicity of notation, we consider a single user history
x1, ...,xT of length T . Thus, the poster from (5) is:

(y⋆1:T , z
⋆
1:T ) ∼ p(y1:T , z1:T |x1:T )

=

∏
t p(zt |z1:t−1,y1:t ,ω)p(xt |zt ,ϕ)p(y |π )∑

y1:T z1:T
∏

t p(zt |z1:t−1,y1:t ,ω)p(xt |zt ,ϕ)p(y |π )
.

(9)

The integration and normalization can be performed efficiently,
to perform this we define the following quantities which can be



computed in the standard forward pass:

αt ≡ p(xt |y1:t−1, z1:t−1)

∝
∑
yt ,zt

p(zt |z1:t−1,y1:t ,ω)p(yt |π )p(xt |zt ,ϕ)

γt ≡ p(yt , zt |z1:t−1,y1:t−1,xt )
∝ p(zt |z1:t−1,y1:t ,ω)p(yt |π )p(xt |zt ,ϕ).

(10)

Then the problem reduces to drawing from the joint posterior of
(y1:T , z1:T ) only given access to these defined forward messages.

We use an SMC algorithm to approximate the posterior (9) with
point masses, i.e., weighted particles. Let f (yt , zt |z1:t−1,y1:t−1,xt )
be the importance density, and P be the number of particles. We
then can use SMC as in (2) with νt (z1:t ) = p(x1:t ,y1:t , z1:t ) (i.e.
z ← (y, z)) being the unnormalized target distribution at time t ,
where the weight becomes

α
p
t ∝

p(x1:t ,yp1:t , z
p
1:t )

p(x1:t−1,y
apt−1
1:t−1, z

apt−1
1:t−1)f (y

p
t , z

p
t |z

apt−1
1:t−1,y

apt−1
1:t−1,xt )

=
p(zpt |z

apt−1
1:t−1,y

apt−1
1:t−1,y

p
t ,ω)p(y

p
t |π )p(xt |z

p
t ,ϕ)

f (ypt , z
p
t |y

apt−1
1:t−1, z

apt−1
1:t−1,xt )

.

(11)

The computational cost for sampling from above at each time step
is O(M(K + H2)) where M is the number of mixtures, K is the
number of topics (needed to compute P(xt |zt )) and H is the size of
the LSTM hidden state (required to compute P(zt |z1:t−1), Finally
M is required since we need to normalize the distribution across
all possible mixture assignments for yt .

As for the choice of the proposal distribution f (·), one could
use the transition density pω (zt |z1:t−1,y1:t )p(yt |π ), in which case
the algorithm is also referred to as the bootstrap particle filter. An
alternative is the predictive distribution, a locally optimal proposal
in terms of variance [3]:

f ⋆(yt , zt |z1:t−1,y1:t−1,xt )

=
p(zt |z1:t−1,y1:t ,ω)p(yt |π )p(xt |zt ,ϕ)∑

yt ,zt p(zt |z1:t−1,y1:t ,ω)p(yt |π )p(xt |zt ,ϕ)
,

(12)

which is precisely one of the available forward messages:

γ
p
t = f ⋆(yt , zt |z

apt−1
1:t−1,y

apt−1
1:t−1,xt ). (13)

Notice the similarity between terms in (11) and (12). Indeed, with
the choice of predictive distribution as the proposal density, the
importance weight simplifies to

α
p
t ∝ α̃

p
t =

∑
yt ,zt

p(zt |z
apt−1
1:t−1,y

apt−1
1:t−1,yt ,ω)p(yt |π )p(xt |zt ,ϕ), (14)

which is not a coincidence that the name collides with the message
αt . Interestingly, this quantity no longer depends on the current
particle ypt , z

p
t . Instead, it marginalizes over all possible particle

assignments of the current time step. This is beneficial computa-
tionally since the intermediate terms from (12) can be reused in
(14). Also note that the optimal proposal relies on the fact that the
normalization in (12) can be performed efficiently, otherwise the
bootstrap proposal should be used. Here also cost of sampling is
O(M(K + H2)), as previously for (11).

Algorithm 1 Inference with Particle Gibbs

(1) Let yp0 = y0, z
p
0 = z0 and α

p
0 = 1/P for p = 1, . . . , P .

(2) For t = 1, . . . ,T :
(a) Fix reference path: set a1t−1 = 1 and y11:t = y

⋆
1:t , z

1
1:t = z⋆1:t

from previous iteration.
(b) Sample ancestors apt−1 ∼ αt−1 according to (11) for p =

2, . . . , P .
(c) Sample particles ypt , z

p
t ∼ γ

p
t according to (13) and set

y
p
1:t = (y

apt−1
1:t−1,y

p
t ), z

p
1:t = (z

apt−1
1:t−1, z

p
t ) for p = 2, . . . , P .

(d) Compute normalized weights αpt according to (14) for
p = 1, . . . , P .

(3) Sample r ∼ αT , return the particle path (ya
r
T

1:T , z
arT
1:T ).

After a full pass over the sequence, the algorithm producesMonte
Carlo approximation of the posterior and the marginal likelihood:

p̂(y1:T , z1:T |x1:T ) =
∑
p

α
p
T δ(yp1:T ,z

p
1:T )
(y1:T , z1:T ) ,

p̂(x1:T ) =
∏
t

1
P

∑
p

α̃
p
t .

(15)

where δ is the Dirac-delta function. The inference is completed by
a final draw from the approximate posterior,

y⋆1:T , z
⋆
1:T ∼ p̂(y1:T , z1:T |x1:T ), (16)

which is essentially sampling a particle path indexed by the last
particle. Specifically, the last particle ypT , z

p
T is chosen according to

the final weights αT , and then earlier particles can be obtained by
tracing backwards to the beginning of the sequence according to
the ancestry indicators apt at each position.

However, as the length of the sequence T increases, the number
of particles needed to provide a good approximation grows expo-
nentially. This is the well-known depletion problem of SMC [3].

One elegant way to avoid simulating enormous number of par-
ticles is to marry the idea of MCMC with SMC [3]. The idea of
such Particle MCMC (PMCMC) methods is to treat the particle
estimate p̂(·) as a proposal, and design a Markov kernel that leaves
the target distribution invariant. Since the invariance is ensured
by the MCMC, it does not demand SMC to provide an accurate
approximation to the true distribution, but only to give samples
that are approximately distributed according to the target. As a
result, for any fixed P > 0 the PMCMC methods ensure the target
distribution is invariant.

We choose the Gibbs kernel that requires minimal modification
from the basic SMC. The resulting algorithm is Particle Gibbs (PG),
which is a conditional SMC update in a sense that a reference path
yref1:T , z

ref
1:T with its ancestral lineage is fixed throughout the particle

propagation of SMC. It can be shown that this simple modification
to SMC produces a transition kernel that is not only invariant,
but also ergodic under mild assumptions. In practice, we use the
assignments from previous step as the reference path. The final
algorithm is summarized in Algorithm 1.
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