
PROGRAMMING IN THREE DIMENSIONS

BY

MARC-ALEXANDER NAJORK

Dipl.-Wirtsch. Inf., Technische Hochschule Darmstadt, Germany, 1989

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

c
Copyright by

Marc-Alexander Najork

1994

PROGRAMMING IN THREE DIMENSIONS

Marc-Alexander Najork, Ph.D.

Department of Computer Science

University of Illinois at Urbana-Champaign, 1994

Simon M. Kaplan, Advisor

This thesis describes Cube, the �rst visual language to employ a three-dimensional syntax.

The third dimension provides for a richer syntax, makes the language more expressive, and

prepares the ground for novel, virtual-reality-based programming environments. We use di-

mensional extent to convey semantic meaning, or more precisely, to distinguish between logical

disjunctions and conjunctions, and between sum and product types.

Cube uses the data
ow metaphor as an intuitive way to describe logic programs. The

semantics of the language is based on a higher-order form of Horn logic. Predicates are viewed

as a special kind of terms, and are treated as �rst-class values. In particular, they can be passed

as arguments to other predicates, which allows us to de�ne higher-order predicates.

Cube has a static polymorphic type system, and uses the Hindley-Milner algorithm to

perform type inference. Well-typed programs are guaranteed to be type-safe.

We have implemented two Cube interpreters: An initial feasibility study, and a prototype

implementation with improved interactive capabilities. Both of them exploit the implicit par-

allelism of the language by simulated concurrency, implemented via time-slicing.

iii

To my family

iv

ACKNOWLEDGEMENTS

The design of Cube went through a number of iterations before it reached its �nal form. It

was shaped by continuous discussions with two people: my adviser, Prof. Simon Kaplan, and

Prof. Eric Golin, who introduced me to visual programming. I am deeply grateful to them for

their advice and their friendship.

I am equally grateful to Prof. Sam Kamin and Prof. Uday Reddy, who taught me most

of what I know about functional programming and about programming language semantics.

Their course on the implementation of lazy functional languages proved to be particularly

useful. Many of the implementation details of the Cube-I system can be traced back to this

class. Their weekly \theory of programming" seminar was a great source of stimulation to me

throughout the years.

I am also grateful to Prof. Laxmikant Kal�e and Prof. Gul Agha, who both taught me a great

deal about concurrent programming and the potential pitfalls.

I wish to thank Prof. Ralph Johnson for exposing me to the whole spectrum of object-

oriented programming, from Smalltalk to C++. The fact that the Cube-II system is imple-

mented in an object-oriented language is tribute to his convincing and persuasive arguments in

favor of object-oriented languages.

With around 400 graduate students, the Computer Science department at the U of I is

the largest in the nation. Many of these people have been good friends to me, and I wish to

thank them all collectively. In particular, I would like to thank T. K. Lakshman, Jonathan

Springer, Rune Dahl, and Josh Caplan for the many insights they have provided during our

discussions on language semantics and implementation, and for being great pals. Thanks also

to Elsa Bignoli, Doug Bogia, the unforgettable Alan Carroll, Mark Kendrat, Ted Phelps, Bill

Tolone, and Esmeralda Wijngaarde.

A very special \thank you!" goes to Riccardo Bettati, for being the best friend (and best

man!) that he has been. I am glad that we are both moving to the same corner of the world!

v

During the summer of 1992, I performed an internship at Digital Equipment's Systems

Research Center. I think this summer was one of the most productive periods of my life. I wish

to thank Marc Brown for having been a great host and mentor as well as being a good friend.

Stephen Harrison, who became an impromtu second host to me during this time, deserves

similar praise. And thanks to Bob Taylor who demonstrated con�dence in me by allowing me

to join SRC for good. I am very much looking forward to work together with all the SRCers.

The research assistantship which carried me through much of my tenure as a graduate

student was paid through NSF grant CCR-9007195. I wish to thank the National Science

Foundation for this support.

Nothing of all this would have been possible without my parents. They have helped me

in every respect, by giving me a good home, supporting me through most of my life, and

encouraging me in all my endeavors.

Finally, I am grateful to my lovely wife, Ebtisam Abbasi, for cheering me up when my

spirits are low, keeping up with me when I am a pain (which is more often than not), and

giving perspective to my life.

vi

TABLE OF CONTENTS

Chapter

1 Introduction : 1

1.1 Visual Languages : 2

1.2 Strengths of Visual Languages : 3

1.3 Weaknesses of Visual Languages : 5

1.4 Arguments for a 3D Notation : 7

1.5 Semantic Strengths of Cube : 9

1.6 Contributions : 11

1.7 Disclaimers : 12

1.8 Thesis Outline : 12

2 Related Work : 14

2.1 Show and Tell : 14

2.2 Typed Visual Languages : 15

2.3 Higher-Order Visual Languages : 16

2.4 Logic-Based Visual Languages : 17

2.5 3D in Visual Programming and in Program Visualization : : : : : : : : : : : : : 21

2.6 Higher-Order Logic Languages : 24

2.7 Type Inference Systems : 26

3 Motivation : 27

3.1 Evolution of Cube's Syntax : 27

3.2 Evolution of Cube's Semantics : 29

4 Cube by Example : 36

4.1 The Data
ow Metaphor : 36

4.2 A First Glimpse at Types : 38

4.3 Predicate Applications : 39

4.4 Uninstantiated Variables and Uninstantiated Type Variables : : : : : : : : : : : 44

4.5 Predicate De�nitions : 48

4.5.1 A Natural Number Generator : 48

4.5.2 A Factorial Predicate : 51

4.6 Predicates as Values : 54

4.6.1 A Simple Example : 55

4.6.2 A More Complex Example : 57

4.6.3 Renaming of Ports : 59

vii

4.7 Type De�nitions : 60

4.8 Some Predicates Over Lists : 66

4.8.1 Determining the Length of a List : 66

4.8.2 Mapping a Predicate Over a List : 69

4.8.3 Filtering Out Some Elements of a List : 71

5 Formal Description : 75

5.1 Translation From Pictures to Text : 75

5.2 Type Inference : 94

5.3 Operational Semantics : 102

6 Implementation : 123

6.1 The First Implementation : 123

6.2 The Second Implementation : 126

6.2.1 The User Interface : 129

6.2.2 The Editor : 131

7 Conclusion : 141

Bibliography : 146

Vita : 155

viii

LIST OF TABLES

1.1 Results of Pandey's and Burnett's User Study : 5

5.1 Syntax of L0 : 76

5.2 Syntax of L1 : 95

5.3 Type Inference Rules for L1 : 99

5.4 Syntax of L2 : 104

ix

LIST OF FIGURES

2.1 Show and Tell De�nition of Factorial : 15

2.2 Higher-Order Function in VisaVis : 17

2.3 Senay and Lazzeri's System : 18

2.4 VLP De�nition of Factorial : 19

2.5 Pictorial Janus : 20

2.6 Lingua Graphica : 21

2.7 CAEL-3D : 22

2.8 Campanai, Del Bimbo, and Nesi's System : 23

2.9 Hyper
ow's Metaphor of Stacked \Visual Planes" : : : : : : : : : : : : : : : : : : 23

3.1 Adding Undirected Links and Disjunction to Show and Tell : : : : : : : : : : : : 28

3.2 Using One Diagram Per Clause : 29

4.1 Value 1 Flowing Into Empty Holder : 37

4.2 Value 1 Has Flown Into Empty Holder : 37

4.3 Failing Data
ow : 38

4.4 Type Cubes of the Base Types : 39

4.5 Program From Figure 4.1 After Type Inference : : : : : : : : : : : : : : : : : : : 39

4.6 Addition Predicate Cube : 40

4.7 Type of Addition Predicate : 40

4.8 Prede�ned Predicates : 40

4.9 Temperature Conversion : 42

4.10 Converting Celsius to Fahrenheit : 42

4.11 Converting Celsius to Fahrenheit (Evaluated) : 42

4.12 Converting Fahrenheit to Celsius : 43

4.13 Converting Fahrenheit to Celsius (Evaluated) : 43

4.14 Reporting a Deadlock : 44

4.15 Addition With Only One Known Argument : 45

4.16 Program From Figure 4.15 After Evaluation : 45

4.17 Close-Up Onto Left Holder Cube of Figure 4.16 : : : : : : : : : : : : : : : : : : 45

4.18 Two Empty, Connected Holder Cubes : 47

4.19 Program From Figure 4.18 After Type Inference : : : : : : : : : : : : : : : : : : 47

4.20 Program From Figure 4.18 After Evaluation : 47

4.21 A Natural Number Generator : 49

4.22 Program Computing All Natural Numbers : 49

4.23 First Solution of Program From Figure 4.22 : 50

4.24 Second Solution of Program From Figure 4.22 : : : : : : : : : : : : : : : : : : : 50

x

4.25 De�nition of the Factorial Predicate : 52

4.26 Program Computing the Factorial of 3 : 52

4.27 Program From Figure 4.26 After Evaluation : 52

4.28 Transmitting a Predicate Cube Through a Pipe and Applying It Afterwards

(Oblique View) : 56

4.29 Transmitting a Predicate Cube Through a Pipe and Applying It Afterwards

(View From Above) : 56

4.30 Program From Figure 4.29 After Evaluation : 56

4.31 Curried Addition : 57

4.32 Program From Figure 4.31 After Evaluation : 57

4.33 Renaming the Ports of the Addition Predicate : 59

4.34 List Type De�nition : 61

4.35 The \cons" Constructor : 63

4.36 The List [1; 2; 3] : 63

4.37 Standard Representation of a Two-Dimensional Array : : : : : : : : : : : : : : : 64

4.38 List [1; 2; 3] Flowing Into Empty Holder Cube : 65

4.39 Program From Figure 4.38 After Type Inference : : : : : : : : : : : : : : : : : : 65

4.40 \nil" Flowing Into Empty Holder Cube : 65

4.41 Close-Up of Holder Cube From Figure 4.40 After Type Inference : : : : : : : : : 65

4.42 Unifying Two Partially Instantiated Structures : : : : : : : : : : : : : : : : : : : 66

4.43 Program From Figure 4.42 After Evaluation : 66

4.44 Predicate for Computing the Length of a List : 67

4.45 Computing the Length of the List [1; 2; 3] : 68

4.46 Program From Figure 4.45 After Evaluation : 68

4.47 Computing a List of Length 3 : 68

4.48 Program From Figure 4.47 After Evaluation : 68

4.49 Close-Up of Left Holder Cube of Figure 4.48 : 69

4.50 The \map" Predicate : 70

4.51 Mapping the Successor Predicate Over the List [1; 2; 3] : : : : : : : : : : : : : : : 71

4.52 Program From Figure 4.51 After Evaluation : 71

4.53 The \�lter" Predicate : 72

4.54 Filtering all but the odd numbers from the list [1; 2; 3] : : : : : : : : : : : : : : : 74

4.55 Program from Figure 4.54 after evaluation : 74

5.1 Visual Syntax of Type De�nition Cubes : 77

5.2 Visual Syntax of Type Variant Planes : 77

5.3 Type Constructor Application : 78

5.4 Function Type : 78

5.5 Type Reference Cube : 78

5.6 De�nition of a List Type : 80

5.7 Visual Syntax of Type Variables : 81

5.8 Term Cubes : 84

5.9 Visual Syntax of Planes : 86

5.10 Program : 86

5.11 Visual Syntax of Predicate De�nition Cubes : 86

5.12 A Program Using the Factorial Predicate, and Details of It : : : : : : : : : : : : 89

xi

5.13 Uninstantiated Variables : 93

5.14 A Program Using \�lter" : 115

6.1 Block Diagram of the Prototype System : 124

6.2 Cube-I wireframe rendering of the factorial predicate : : : : : : : : : : : : : : : 125

6.3 Cube-I high-quality rendering of the factorial predicate : : : : : : : : : : : : : : 125

6.4 Cube-II Evaluation Control Panel : 127

6.5 A Program for Computing All the Natural Numbers : : : : : : : : : : : : : : : : 128

6.6 Program From Figure 6.5 Displaying the First Solution : : : : : : : : : : : : : : 128

6.7 Program From Figure 6.5 Displaying the Second Solution : : : : : : : : : : : : : 128

6.8 Cube-II Motion Control Panel : 129

6.9 Cube-II Load File Menu : 129

6.10 Cube-II Save File Menu : 129

6.11 Cube-II Rendering Control Panel : 130

6.12 Selecting the Create Option : 131

6.13 Selecting the Atomic Formula Option : 131

6.14 Selecting the Value Holder Cube Option : 132

6.15 Selecting a Point on the Screen : 132

6.16 Rotating the Scene : 132

6.17 Selecting a Point on the Ray : 132

6.18 Fixing the Size of the Cube : 133

6.19 Selecting the Create Predicate Reference Cube Option : : : : : : : : : : : : : : : 133

6.20 Specifying a 3D Point : 134

6.21 The Predicate Cube Appears : 134

6.22 All the Holder and Predicate Cubes Have Been Created : : : : : : : : : : : : : : 135

6.23 Selecting the Create Pipe Option : 135

6.24 The Pipe Has Appeared : 135

6.25 All the Pipes Have Been Created : 135

6.26 Selecting the Create Floating-Point Term Cube Option : : : : : : : : : : : : : : : 136

6.27 Typing in the Value 1.8 : 136

6.28 The Floating-Point Term Cube Appeared : 137

6.29 Creating the Term Cube Representing 32.0 : 137

6.30 Creating the Term Cube Representing 20.0 : 137

6.31 After Type Inference : 137

6.32 After Evaluation : 138

6.33 Selecting the Delete Term Cube Option : 138

6.34 Having Deleted the Term Cube 20.0 : 139

6.35 Creating the Term Cube 50.0 : 139

6.36 After Evaluation : 139

xii

Chapter 1

Introduction

Programming is the activity of describing an algorithm in a formal notation | a programming

language | for the purpose of then executing it on a computer. The art of programming goes

back a long time, among its �rst practitioners were such pioneers as Charles Babbage and Au-

gusta Ada Lovelace. However, programming became more widespread only with the advent of

the electronic digital computer in the 1940's. The very �rst computer programs were formu-

lated in very low-level languages, which strongly re
ected the underlying machine architecture.

However, within a decade higher-level, \problem-oriented" programming languages came into

existence, with Fortran being the patriarch of a long line.

The vast majority of these languages are textual in nature. That is, phrases in these lan-

guages are formed from (essentially linear) strings of characters of some alphabet (a notable

exception is Zuse's Plankalk�ul [88], a language devised in 1945 for one of the �rst computers,

which uses a two-dimensional layout for textual formulas). This limitation to textual languages

re
ected to some extent the limitations of the available input/output hardware (teletype key-

boards and typewriters). It also re
ected the fact that textual notations are fairly easy to parse,

and thus made e�cient use of the then scarce computing resources.

Computer graphics hardware has become available in the 1960's. The year 1963 marks the

creation of the �rst graphical application program, Ivan Sutherland's Sketchpad [82]. Three

years later, his brother William created what might be considered the �rst visual programming

language [84]. The system was based on a data
ow metaphor; it allowed its user to select

1

operators from a menu and to connect them using a light pen, to assign input values to the

\circuit", and to watch it execute, all in real time.

The 1960's saw the creation of two other visual programming languages. The AMBIT

family of languages is based on two-dimensional pattern-matching and diagram rewriting.

AMBIT/L [16] was designed for rewriting graphical representations of list structures, AM-

BIT/G [15] is aimed at general graphs. The GRAIL language [21], developed at RAND, uses a

owchart notation to specify programs visually.

Since then, computer graphics hardware became more and more a�ordable. In the early

1980's, bit-mapped displays and pointing devices such as mice were �rst integrated into per-

sonal computers; today, they are standard equipment of base-level systems. Parallel to this

development of hardware technology, a multitude of visual programming languages have been

devised ([10, 19, 25, 77] being some of the earlier ones). Although they have not left a mark

on general-purpose programming, they have carved a niche in specialized application domains,

such as providing simple programming interfaces to end-users of scienti�c visualization systems

(examples are Iris Explorer [76], AVS [87], and apE [61]).

Ivan Sutherland also pioneered a technology that has since then become known as \Virtual

Reality". He designed a head-mounted display that allowed its user to view three-dimensional,

computer-generated images in a stereoscopic fashion [83, 85]. For the next 25 years, this tech-

nology remained too expensive to become widespread. Today, however, 3D graphics hardware

is becoming more and more a�ordable; at the same time, novel input/output devices, such as

head-mounted displays and data gloves, which allow a user to immerse himself into a computer-

generated 3D visualization and to directly interact with objects in this scene, are becoming

commercially available.

Will these advances in input/output hardware lead to a new family of visual programming

languages? How feasible are those languages, and what are their bene�ts over 2D visual and

over textual languages? These are the questions that have motivated this thesis.

1.1 Visual Languages

A visual language is a programming language which uses a predominantly graphical notation.

The �eld can be traced back to work done by William Sutherland [84] and others in the mid

2

1960's; however, most of the research has been done within the last 10 years, when low-cost

computers with high-resolution bit-mapped graphics capabilities became widely available.

A great number of di�erent visual paradigms have been explored. A detailed survey of the

various approaches is beyond the scope of this thesis. We just want to describe brie
y three

major paradigms: control
ow, data
ow, and visual rewriting. For a more detailed survey of

visual languages, the reader is referred to compendia such as [11, 75].

The control
ow paradigm uses the
ow chart metaphor to describe the control
ow of

a program. Simple operations, such as assignment or procedure invocation, are depicted as

boxes; sequencing is denoted by arrows connecting two boxes. In addition, there are visual

representations for the common control constructs, such as conditionals or iteration. So, control

ow language are based on the same semantic model as textual procedural languages of the

Fortran- and Algol-families. Pict [25] is an archetypical control
ow language.

The data
ow paradigm uses boxes to denote functions, and arrows to connect the output

of one function to the input of another. Data
ow languages are typically stateless, and are

based on the semantic model used by functional languages. However, almost all of them are

�rst-order (refer to Section 2.3 for a discussion of the exceptions), thereby giving up much of

the power of functional languages. Show-and-Tell [37] is a typical data
ow language.

The visual rewriting paradigm employs some form of visual rewrite rules to describe how

a given picture shall be transformed into another picture. Languages belonging to this group

are very diverse in their appearance, although they are all based on the same idea: match a

picture or a part of a picture against the left-hand side of a rewrite rule, and replace it by the

rule's right-hand side. Christensen's AMBIT languages [15, 16] operate on graph- and on list-

structures, Furnas' BITPICT system [23] operates on pixel-arrays, and Kahn and Saraswat's

Pictorial Janus [35] rewrites closed contours.

1.2 Strengths of Visual Languages

There are many arguments in favor of visual programming. Usually, these arguments cen-

ter around the fact that humans are known to process pictures easier and faster than text.

According to Raeder,

3

\It is commonly acknowledged that the human mind is strongly visually oriented

and that people acquire information at a signi�cantly higher rate by discovering

graphical relationships in complex pictures than by reading text." (cf. [67] page 12)

Raeder then outlines more speci�cally why humans can cope with pictures better than with

text:

� Random vs. Sequential Access: Text is of a sequential nature, while pictures provide

random access to any part, as well as detailed and overall views.

� Transfer Rate: As the human sensory system is set up for real-time image processing,

pictures can be accessed and decoded more rapidly.

� Dimensions of Expressions: Text is one-dimensional in nature, while pictures are

multi-dimensional, and provide through visual properties like color, shape, size, and di-

rection a richer language, which can lead to a more compact encoding of information.

� Concrete vs. Abstract: Pictures can provide concrete metaphors, which make it easier

to grasp an abstract idea.

Raeder's justi�cation of visual programming is largely psychological in nature, and can be

veri�ed only through empirical studies. The basic premise, however, is quite plausible. Pro-

grammers commonly use pictures to develop algorithms or data structures and to communicate

them to other programmers.

There have been several attempts to measure the bene�ts of visual languages and of program

visualization systems. Pandey and Burnett [62] conducted an empirical comparison between

Forms/3 [7] (a form-based visual language), Pascal, and APL. They investigated the usefulness

of these languages in a very narrow problem domain, namely matrix multiplication. In par-

ticular, they tested how well the test subjects could solve two problems with each language:

appending two matrices of compatible size, and computing the �rst n Fibonacci numbers.

They conducted this test on 60 students. All of the students had prior experience with Pascal

or C, one had experience with APL, and none had prior experience with Forms/3. The test

subjects were given a 40-minute lecture on the application of these three languages to various

matrix-manipulation tasks. Afterwards, the students had to solve each of the two problems in

4

Results for Problem 1: Appending two matrices

completely correct nearly correct conceptually but

not logically cor-

rect

incorrect

Pascal 7 1 21 31

Forms/3 53 0 2 5

APL 49 3 2 6

Results for Problem 2: Computing Fibonacci numbers

completely correct nearly correct conceptually but

not logically cor-

rect

incorrect

Pascal 38 5 4 13

Forms/3 35 9 7 9

APL 15 3 6 36

Table 1.1: Results of Pandey's and Burnett's User Study

each of the three languages, that is, they had to write 6 programs. They were allowed 5 minutes

per program. The order of languages in which the solutions had to be constructed was varied

among the participants.

Table 1.1 shows the outcome of the experiment. For the �rst problem, appending two

matrices, Forms/3 and APL were superior to Pascal, while for the second problem, computing

the �rst n Fibonacci numbers, Forms/3 and Pascal outperformed APL.

The application domain on which this study focused, namely matrix multiplication, is ad-

mittedly very narrow. Furthermore, one can of course not generalize from a particular visual

language to the whole genre. However, this study at least suggests that for certain tasks, an

appropriate visual language has the potential to outperform its textual competitors.

1.3 Weaknesses of Visual Languages

While visual programming per se shows a great deal of potential, there are also a lot of problems

associated with existing visual languages. Some of them are related to the visual notation they

employ, while others re
ect trends in language design that have dominated the visual language

community up to now. We highlight four of those problems below:

� The screen space problem

5

� Low execution speed

� The lack of static type systems

� Conservative semantics

Visual languages tend to use a relatively sparse notation, that is, they use more screen

real estate to describe a given problem than textual languages do. This problem is usually

called the screen space problem. It can be alleviated by use of procedural abstraction, i.e. by

collapsing subdiagrams into single symbols, and treating these symbols as \black boxes" similar

to prede�ned operators.

Most visual languages are interpreted, and in many cases, the interpreter operates on a

representation that is very close to the picture representation of the program. This results in

poor performance of visual programs, and has given them a reputation of being ine�cient.

The vast majority of existing visual languages are latently typed, which means that they

check whether a given operator receives values of the appropriate type only when this operator

is actually applied, i.e. at run time. One reason for this is that much of the research in visual

languages has focused on developing languages for non-programmers, and that the notion of

types was considered to be too complicated. However, not verifying the well-typedness of a

program at compile-time means that type errors are discovered only by trial-and-error. In

addition, latently typed languages typically use some form of run-time type checking, which

leads to signi�cant execution overheads.

Many visual languages are based on relatively traditional semantic models. Those languages

whose syntax is based on the control
ow paradigm are semantically procedural languages,

i.e. descendents of Fortran or Algol. As the name suggests, the notation focuses on control

structures that manipulate data instead of the data itself. The emphasis is on \how to do it"

rather than \what to do". The level of abstraction in these languages is low compared to other

paradigms, and programming mistakes are easily made.

Languages whose syntax is based on the data
ow paradigm are by and large functional lan-

guages. The functional framework is one of the cleanest and most elegant language paradigms,

although it is hard to build e�cient implementations. One of the most powerful features of

modern functional languages is that they treat values as functions, i.e. as ordinary data, which

can be passed around as arguments to other functions. Functions which take other functions

6

as arguments are called higher-order, they allow for powerful abstractions, and their liberal use

can greatly increase the potential for code reuse. Strangely enough, though, almost all visual

languages are �rst-order, and thereby miss out on this powerful abstraction mechanism. In

fact, to our best knowledge, we were the �rst to propose the use of higher-order functions in

the data
ow framework [56].

1.4 Arguments for a 3D Notation

Six years ago, Ephraim Glinert speculated about the prospects and potential bene�ts of three-

dimensional visual programming:

\But �rst, why do we advocate programming in three dimensions? Many readers

will surely argue ..., that we don't yet know how to properly utilize two dimensions!

We do not propose eschewing 2-D visual and iconic programming for 3-D. We do

propose broadening our horizons to include the third dimension when appropriate,

for several reasons. For one reason, the technology is now available in (top of the

line) workstations, and it will rapidly become a�ordable to all. Most importantly,

however, are the precedents set by analogy with other branches of science. ...

Might not a similar situation hold for programming, too? And, if it does, ought

we not to exploit it to our advantage? ... It is time for computer science to begin

exploring revolutionary rather than evolutionary means of programming, in the hope

that the tools will be ready when required." [24]

In response to Glinert's call, we have developed Cube [57, 58], the �rst full-
edged three-

dimensional visual programming language, and we have built two implementations of a Cube

environment.

It is important to stress that we use the third dimension not to enhance the beauty of a

program, but rather to convey semantic meaning, to alleviate the screen space problem, and to

facilitate new interaction environments.

One bene�t of a 3D visual language is that adding an extra dimension provides for a language

which is syntactically richer in the sense of Raeder. One can use di�erent spatial dimensions to

express di�erent kinds of information. We adopt this idea in Cube: We use horizontal extent

7

to express the conjunction of logic formulas and the product of types, and vertical extent to

express the disjunction of formulas and the sum of types.

The language is divided into two fragments: a fragment of predicate de�nitions and logic

formulas, and a fragment of type de�nitions and type expressions. In the logic fragment, terms

and atomic formulas are represented by cubes. Cubes that are located in the same xy plane

represent the conjunction of atomic formulas. So, conjunctions utilize 2 of the 3 dimensions.

The arguments of predicate applications (i.e. atomic formulas) are connected by pipes, in other

words, they form a data
ow diagram. It should be noted that data
ow diagrams are inherently

at least two-dimensional. By using a three-dimensional framework, we avoid the problem of

crossing lines | we can always route a pipe through 3-space so that it does not intersect any

other pipe or cube.

The body of a predicate de�nition is normalized to be in disjunctive normal form; that is,

it is a disjunction of conjunctions. We use the z dimension to indicate disjunctions. \Stacking"

a number of conjunctions, each of which extends in the xy dimension, on top of each other, i.e.

in the z dimension, indicates that these conjunctions shall be disjoint.

So, we use the third dimension to group various two-dimensional diagrams together. Alter-

natively, one could display each diagram in its own 2D window; however, this would require

the user to make a conscious e�ort to mentally integrate various windows into a single formula.

The 3D representation, on the other side, shifts this e�ort to the user's cognitive system.

The very same concept | using a third dimension to encode more information | has been

successfully used in program visualization and algorithm animation [6, 14, 80] and scienti�c

visualization at large.

The 3D representation also helps to alleviate the screen space problem. In a two-dimensional

framework, we would use several windows to display the various clauses of a predicate de�nition,

now, we integrate them all into one three-dimensional object, which we display in a single

window. Of course, in the 3D setting, some objects in a scene may be obscured by other

objects in front of them; the user can resolve this by rotating the scene.

Another potential reason for visual languages to adopt a three-dimensional notation is that

such a notation naturally complements a Virtual Reality (VR) environment. There are two

reasons why this might be desirable: one might want to use the VR environment as a pro-

8

gramming environment, or one might want to use a 3D visual language inside an existing VR

environment to program VR simulations.

VR environments have potential as comfortable programming environments due to the very

immediate mode of interaction which they allow. Instead of manipulating graphical objects

with a mouse, a programmer can literally reach out, grab an object, and move it around.

VR environments also promise to alleviate the screen space problem even further. Standard

solutions in the two-dimensional setting are zooming, panning, and elision techniques; however,

requiring the user to adjust the amount of detail shown through sliders or other interactors adds

another layer of complexity to the programming environment. In a VR environment, on the

other hand, the user has a much larger \virtual space" available. He can focus onto a di�erent

part of the picture simply by turning his head, or by rotating an object in front of him through

direct manipulation.

The second reason why one might want to program in a VR environment is in order to

develop VR software. This was the motivation for the work on Lingua Graphica [81]. Lingua

Graphica was developed at Lockheed's Arti�cial Intelligence Center. It is part of a larger

virtual environment system called Seraphim [27], directed at developing and delivering e�ective

training applications. The key idea is that developing virtual reality software within a virtual

reality programming environment should provide for very short edit-compile-debug cycles.

1.5 Semantic Strengths of Cube

The bene�ts of static type systems are widely recognized. They help detect programming errors

statically, which otherwise could be found only through exhaustive testing of every part of the

program, and thus they contribute to faster program development, fewer debugging cycles, and

more reliable code.

In the best of all possible worlds, the semantics of a language guarantees that a well-typed

program will never \go wrong" at run-time, that is, it will never fail due to a type error. Such

languages are called type-safe. The notion of type-safety does not cover errors like \division-

by-zero" (which could be regarded as a type error!) or non-termination of a program.

Most procedural languages like Fortran or Pascal are not completely type-safe; they do not

prevent errors such as trying to access non-existing array elements. Most modern functional

9

languages, on the other hand, have a static polymorphic type system which guarantees type-

safety. These languages typically use the Hindley-Milner inference algorithm [17] to determine

whether a program is well-typed. The Hindley-Milner algorithm is a type-reconstruction al-

gorithm, which means that the user does not have to specify the types of variables (or other

expressions) in a program; instead, the Hindley-Milner algorithm infers them through a com-

bination of uni�cation and natural deduction.

Cube has a static polymorphic type system, it is type-safe, and it uses the Hindley-Milner

algorithm to reconstruct types. Ill-typed programs are rejected, and the reconstructed types

of well-typed programs are visualized to provide feedback to the user (in this respect, Cube is

more user-friently than most textual languages that use Hindley-Milner; typically, they do not

provide such feedback).

To our best knowledge, we were the �rst to incorporate the Hindley-Milner algorithm into

a visual language [56], and to make strong guarantees about type-safety in a visual setting.

Horn logic was �rst proposed as a programming language by Robert Kowalski, whose seminal

book \Logic for Problem Solving" [40] laid the foundations for an entire branch of program-

ming language research, namely logic programming. The basic idea of logic programming is

that predicate logic is a powerful formalism for describing problems in a declarative way. Unfor-

tunately, automatic proof methods for unrestricted predicate calculus sentences are exceedingly

expensive. But if we restrict ourselves to sentences of a certain form, namely conjunctions of

Horn clauses (which in turn are disjunctions of literals with at most one positive literal), we

can use proof methods which are e�cient enough to form the basis of a programming language.

One particular such proof method, SLD resolution, is used by Prolog [13], the most popular

logic programming language to date.

Prolog is a �rst-order language: predicates are the \agents of computation", but they are

not �rst-class objects. They cannot be passed around as arguments to other predicates and then

be applied by the other predicate (Prolog has a metapredicate \call", which solves this problem,

but relies on some very unclean features in the process). In other words, Prolog misses out on

the tremendous abstraction features provided by higher-orderness, and on the payo�s in code

reduction and code reuse. Several newer logic programming languages have been developed to

solve this problem. Cube is one of them, it treats predicates as �rst-class values, and allows

the user to de�ne higher-order predicates. While our approach is quite simplistic, it is powerful

10

enough to allow us to formulate all the higher-order idioms from the functional programming

world in Cube; moreover, it is very e�cient.

1.6 Contributions

The previous sections have described the strengths and the weaknesses of visual languages, they

have given arguments in favor of a 3D notation, and they have described the contributions of

Cube in a narrative form. Some of these contributions relate to its novel, three-dimensional

syntax, others to its powerful semantics. Features from both sides contribute to overcoming

the aforementioned weaknesses of existing visual languages.

At this point, we may summarize the contributions of this thesis concisely as:

� Cube is the �rst three-dimensional programming language. It uses the third dimension in

a meaningful way, namely to encode semantic information. The use of a 3D syntax also

opens up the door for novel, virtual-reality-based programming environments.

� We address the screen space problem by placing programs in a three-dimensional space

as opposed to on a two-dimensional plane.

� Cube uses a static type inference system, and guarantees that well-typed programs will

not \go wrong" at run-time.

� It is based on a very powerful semantic model, namely a higher-order form of Horn

logic. This model provides higher-order operations, uni�cation, multi-directionality, static

scoping, nested de�nitions, and implicit parallelism on the language level.

� We apply the data
ow metaphor to logic programming. Data
ow is one of the most

appealing visual metaphors; however, none of the visual logic languages we are aware of

uses it.

� The implementations translate visual programs into a textual notation, and then operate

on this textual notation, thereby debunking the myth that visual languages are intrinsi-

cally less e�cient than textual ones.

11

1.7 Disclaimers

This thesis does not cover a number of aspects which will have to be addressed in order to ulti-

mately decide whether or not 3D visual programming is an improvement over more conventional

techniques.

Our prototype implementation falls short of the envisioned ideal environment, in that it is

not implemented on an actual Virtual Reality platform. Therefore, the interaction environment,

especially the editor, is rather tedious to use. Selecting a point in 3D is trivial, if one has a 3D

input device, but it is rather cumbersome when using a 2D device such as a mouse (Section 6.2.2

elaborates on the techniques we use for 3D point speci�cation). As a result, the construction of

even a simple Cube expression takes a fair amount of time, certainly longer than the construction

of the same expression in a 2D visual or in a textual language.

In fact, our prototype system performs all the 3D rendering in software (although it would

be easy to utilize 3D graphics hardware). Hence, generation of a high-quality rendering takes

around 10 seconds on a Sun SPARCstation 10. When the user moves around in a scene, the

system falls back onto a wireframe representation, which can be generated in real time. The

wireframe graphics, however, is rather hard to comprehend, and thereby forms another obstacle

regarding the system's usability.

These two de�ciencies of the current implementation explain why we did not perform any

user studies. Ultimately, however, the usefulness of any new programming language and pro-

gramming environment can only be determined through such empirical studies.

1.8 Thesis Outline

In the next chapter, we review related work on functional and on logic visual languages, on

typed and on higher-order visual languages, and on other forays into 3D in the areas of visual

programming and of program visualization. We also review work done in applying static type

inference to logic programming languages, and work on higher-order logic languages.

Chapter 3 gives an account of the evolution of Cube's syntax, and argues that the choice

of a three-dimensional syntax was a natural one. It describes how our semantic model resulted

from merging features of Prolog with those of a typed, higher-order functional language such

as Lazy ML.

12

Chapter 4 gives an informal, example-driven introduction to the Cube language. Chapter 5

then formalizes the syntax and the semantics of the language, by relating the visual language

to a textual counterpart, and then giving a type system and an operational semantics for this

textual language.

Chapter 6 describes the two existing implementations of a Cube environment: the initial

feasibility study Cube-I, which consists mainly of an interpreter, a type inference system, and

a renderer, and the prototype implementation Cube-II, which improves on Cube-I by o�ering

better performance and by adding interactive features, such as a rudimentary editor.

Chapter 7 �nally sums up our �ndings, and discusses areas of further research.

13

Chapter 2

Related Work

This chapter reviews previous work which in
uenced the design of Cube, as well as related work

that shares some of Cube's more unusual features. Some features of Cube and its predecessor,

ESTL, have in turn in
uenced the design of other visual languages.

2.1 Show and Tell

The design of Cube was quite heavily in
uenced by Show and Tell [36, 37, 49], a visual

language based on the data
ow paradigm. Constants, variables, and operations are shown as

boxes. Data
ows from boxes to other boxes through pipes, which are depicted as arrows. A

picture composed of boxes and pipes is called a puzzle. Show and Tell tries to complete this

puzzle by performing every possible data
ow. If data
ows into a box already containing a

di�erent value, the box becomes inconsistent. Inconsistency can be limited to a single box, or

it can \
ow out" of this box and turn its spatial environment inconsistent as well. Inconsistent

areas are shaded grey and are considered to be removed from the diagram. If a pipe leads

through an inconsistent area, no data can pass through it. This novel notion of consistency

can be utilized in many ways, in particular, it ful�lls the same purpose as a conditional or

selection function in traditional textual languages. Cube generalizes the notions of completion

and consistency to uni�cation and satis�ability.

Figure 2.1 shows a Show and Tell program for computing the factorial of a number.

14

Figure 2.1: Show and Tell De�nition of Factorial

2.2 Typed Visual Languages

There are a few visual languages that have an explicit notion of types. They can be divided

into two categories: those whose type system is modeled after traditional procedural languages,

and those whose type system is based on the Hindley-Milner approach [17, 51].

The �rst category contains two languages: Fabrik [32, 47] and DataVis [29, 30]. Both of

these languages are based on the data
ow model. Fabrik is a general-purpose programming

language, while DataVis is targeted towards scienti�c visualization.

Both of them emphasize concreteness in their type systems. They feature a rich set of

prede�ned types, such as enumerations, records, arrays, points, bitmaps, etc., but do not allow

the user to de�ne new types. In DataVis, types are associated with colors. Two boxes or ports

can be connected only if their types match, and in this case, the link appears in the color

associated with its type. This approach is limited in two ways: �rst, the mapping of types to

colors assumes a �xed and fairly small set of types, and second, the approach does not deal

well with polymorphic operations (although DataVis uses the color white to denote unknown

types).

15

Another severe drawback of the type inference system employed by Fabrik and by DataVis

is that it does not guarantee type safety: programs which are judged to be well-typed can

still produce run-time errors that are essentially type related. For instance, they might try to

reference a non-existing array element.

The second category contains four languages: Enhanced Show-and-Tell, Cube, VisaVis and

an extension of Forms/3.

Enhanced Show-and-Tell [56], or ESTL for short, improves on Show and Tell by adding a

static polymorphic type system and higher-order functions. It was the �rst visual language to

use Hindley-Milner type inference. Cube [57, 58] in turn is a successor of Show and Tell and

ESTL, it transfers some key ideas from these two languages to visual logic programming.

VisaVis [65] is a visual language with a data
ow based syntax, whose semantics is based

on FFP, the higher-order version of FP [3]. Its type inference system is based on Wand's type

inference algorithm, which in turn is a variation of the Hindley-Milner algorithm. Recently,

Poswig and Moraga modi�ed the inference system to perform incremental type inference and

to support overloaded functions [66].

Forms/3 [7], �nally, is a form-based visual language. Burnett's type inference system for

Forms/3 [8] is based on set constraints; the inference algorithm is again a variation of the

Hindley-Milner algorithm.

All the languages in this second category share one important property: they guarantee

type safety, that is, a well-typed program will not fail at run time due to a type error.

2.3 Higher-Order Visual Languages

Apart from adding a type system to Show and Tell, ESTL also introduces higher-order functions.

The naming part of a function de�nition may contain a hole, called a function slot, and the

body of the de�nition can contain operators referring to this slot. Other expressions can use

the higher-order function, they will then �ll the slot with some type-compatible function.

The concept of using function slots to provide arguments to higher-order functions is adopted

by DataVis and by VPL [44], a data
ow language used for interactive image processing.

VisaVis uses a di�erent metaphor, it refers to function slots as to \keyholes" and to lower-

order functions as to \keys"; however, the basic idea of embedding one function's icon into that

16

Figure 2.2: Higher-Order Function in VisaVis

of another function remains unchanged. Figure 2.2 shows a VisaVis higher-order function with

a �rst-order function in its \keyhole".

Another visual language which allows for higher-order functions is Holt's viz [31], a visual

notation for the � calculus. viz treats �rst- and higher-order functions uniformly; values (func-

tions and non-functions) are denoted by boxes, and application is denoted by stacking the

argument (or arguments) on top of the functor.

Cube combines ESTL's function slot concept with viz's uniform treatment of �rst- and

higher-order arguments. There is no distinction between function (or rather, predicate) slots

and argument ports; argument values can either be �lled directly into a port (\icon inside an

icon") or be supplied via a pipe (the classical data
ow approach).

2.4 Logic-Based Visual Languages

There are a wide variety of visual logic programming languages. Strangely enough, however,

none of them use the data
ow metaphor.

A fair number of these languages use a syntax which is based on AND/OR trees. In a sense,

this choice of notation is very straightforward. Kowalski himself proposed it in his seminal

\Logic for Problem Solving" [40], which laid the foundation for logic programming. On the

other hand, while AND/OR trees are well suited to visualize the SLD resolution process, i.e.

the unfolding of a logic program as it runs, they are not particularly well-suited for giving an

intuition of the meaning of a static program.

Languages in this group are the Transparent Prolog Machine [20], Senay and Lazzeri's

system [74], and VPP [63]. Figure 2.3 shows the visualization of a clause depicted by Senay

17

Figure 2.3: Senay and Lazzeri's System

and Lazzeri's system. It illustrates another problem with the AND/OR tree approach: while it

visualizes the relationship between the head of a clause and its subgoals, it does not visualize

other important aspects, such as multiple occurrences of the same shared variable. Incidentally,

this �gure contains a mistake (the subgoal \male(X)" is visualized as \male(Y)"), which the

authors most likely would have discovered, had they used a more visual way to denote variable

sharing, such as a data
ow diagram.

VLP [41] introduces a number of interesting concepts: Clauses and literals are depicted as

boxes, horizontal arrangement of boxes denotes conjunction, while vertical arrangement denotes

disjunction. Spatial enclosure is used for \procedural abstraction", i.e. predicate de�nition. All

these concepts are used in Cube as well; we derived them, however, without being aware of

Ladret and Rueher's work.

On the other hand, VLP uses shared patterns to indicate shared variables. This approach

makes it quite hard to discover all occurrences of the same variable; a data
ow notation

would alleviate the problem signi�cantly. However, data
ow diagrams are an inherently two-

dimensional notation, and Ladret and Rueher's decision to use one dimension to indicate dis-

junction leaves them with just one more dimension for conjunctions, i.e. clause bodies, where

18

Figure 2.4: VLP De�nition of Factorial

19

Figure 2.5: Pictorial Janus

most of the occurrences of a shared variable are typically located. Cube overcomes this problem

by moving into 3D. Figure 2.4 shows a VLP de�nition of the factorial predicate.

Pictorial Janus [35] is a visual notation for Janus [72], a concurrent constraint logic language.

It o�ers a powerful and elegant visual metaphor for the underlying resolution process: diagram

rewriting. Predicate de�nitions, clauses, and subgoals are represented as closed contours (such

as circles). Whenever one particular clause is selected to replace a goal, its contour is slowly

transformed to replace the contour of the original goal. This rule is not only simple, but it

also leads to a
uid animation of the resolution process. On the
ip-side, a query can mutate

considerably during the rewriting process, so that it can be hard for the user to determine

20

Figure 2.6: Lingua Graphica

the spatial correspondences between the �nal result and the initial query. Figure 2.5 shows a

Pictorial Janus program for implementing a queue.

SPARCL [79] is visual logic language based on sets. While other logic programming lan-

guages use uninterpreted functions (i.e. constructors) to combine symbols into larger data struc-

tures, SPARCL uses sets to aggregate data. It also allows its user to divide a set into pairwise

disjoint subsets. Spratt and Ambler show that they can model conventional tuples and terms

with their set notation, and that the approach is thus su�ciently powerful.

2.5 3D in Visual Programming and in Program Visualization

The potential for 3D visual languages has been realized early on by Glinert [24], who argued

that they are a natural next step in the evolution of visual programming, and that they might

provide better visual metaphors than 2D languages can provide. Cube was the �rst such

language. Recently, it has been joined by two other 3D visual languages, Lingua Graphica and

CAEL-3D. Both of them are visual layers put on top of an existing procedural textual language.

21

Figure 2.7: CAEL-3D

Lingua Graphica [81] is a visual language which provides a 3D syntax for C++ programs.

Created at Lockheed AI Labs, it is intended to allow Virtual Reality operators to inspect and

modify VR simulation code without having to leave the virtual environment. Figure 2.6 shows

an example of a Lingua Graphica program.

The interactive \Computer Animation Environment Language" CAEL is a textual language,

which augments a subset of Pascal with procedures that allow its user to describe arbitrary 3D

animations. CAEL-3D [68] is a 3D visual syntax for CAEL. Figure 2.7 shows a CAEL-3D

example program.

Campanai, Del Bimbo, and Nesi [9, 18] have been using a 3D query language and a virtual

reality setup to access the contents of a database storing 3D scenes. The basic idea here is that

the user constructs a virtual scene from existing 3D icons (such as houses, trees, and cars),

using a data glove as the input device, and that this scene is then matched against the contents

of the database to access all the stored scenes containing a matching arrangement of objects.

Figure 2.8 shows a view of their system.

22

Figure 2.8: Campanai, Del Bimbo, and Nesi's System

Figure 2.9: Hyper
ow's Metaphor of Stacked \Visual Planes"

23

Kimura's Hyper
ow [38] is a 2D visual language with a data
ow syntax and an object-

oriented semantics. Although the language is two-dimensional, it employs a three-dimensional

metaphor: Objects are viewed as stacks of diagrams; and each diagram shows a di�erent aspect

of an objects de�nition. Figure 2.9 illustrates this metaphor. The diagram stack metaphor

played a key role in the development of Cube's syntax.

There are various program visualization and algorithm animation systems which use 3D

graphics to visualize the behavior of a running program. The earliest such system we are aware

of is Lieberman's system for visualizing the execution of Lisp programs [45]. The view shows

the code for an expression on the front side of a block. As the expression gets evaluated, each

application causes a smaller block with the corresponding code to be displayed in front of the

caller's block. When an expression is evaluated, its block is removed.

Pavane [14, 71] supports both 2D and 3D views of concurrent computations. Its formalism

is based on a combination of Prolog clauses and Linda's tuple space concept. As a computation

unfolds, it adds tuples to the tuple space which characterize its internal state. A visualizer

continuously retrieves these tuples and uses an application-speci�c set of rules to map them

into 2D or 3D pictures. The system also supports smooth transitions from one state to the

next.

Zeus3D [6] is a 3D extension of the Zeus algorithm animation system. Algorithms in Zeus are

annotated with event-generating procedures, these events then cause various views associated

with the algorithm to be updated. Polka-3D [80] is a 3D extension of the Polka algorithm

animation system. Its basic philosophy is quite similar to Zeus3D.

Finally, Plum [69] is a package to visualize abstract data in 3D. Plum has been used to

visualize static and dynamic properties of programs, such as their call graphs.

2.6 Higher-Order Logic Languages

Since the early 1970's, logic, and in particular Horn logic, has been proposed as a programming

language [40], which eventually led to the development of Prolog [13], a textual language based

on Horn logic.

24

There have been several attempts to add higher-order features to the �rst-order logic of

Prolog. The �rst higher-order logic programming language we are aware of is �Prolog by Miller

and Nadathur. In its initial form it was based on higher-order de�nite clauses [50].

�Prolog does not distinguish between terms and atomic formulas. A term can be a variable,

a constant (constructor or predicate) symbol, an application, or a � abstraction. So, the term

fragment of the language corresponds to the lambda calculus.

In the initial version of �Prolog, the formula fragment corresponded precisely to Horn

formulas, i.e. Prolog programs, except that Prolog's terms got replaced by this richer notion

of terms, and that terms could appear in place of atomic formulas. A later version of the

language [53], based on higher-order hereditary Harrop formulas, uses a richer syntax for the

formula fragment of the language as well.

The proof mechanism employed by �Prolog is considerably more powerful than the one

used by Cube. For example, given an appropriate de�nition of map, a well-known higher-order

predicate, and the query \map F [1; 1] [(g 1 1); (g 1 2)]", �Prolog will infer a solution for the

variable F, namely �x : g 1 x. Cube, on the other side, would simply suspend. �Prolog achieves

this extra degree of power by using a higher-order form of uni�cation: it is able to compute a

uni�er for the equation \(F 1) = (g 1 1)". However, higher-order uni�cation is in general only

undecidable [26], the search for a non-existing uni�er may lead to divergence.

�Prolog uses a curried notation for predicate applications, and features an ML-like type

inference system. Predicates are viewed as functions mapping to truth values, for example,

map has the type (A ! B) ! (listA) ! (listB) ! o (where A;B are type variables and o is

the type of propositions). Cube adopted these two features from �Prolog.

A prototype interpreter for �Prolog has been implemented, and a more e�cient, abstract-

machine based implementation is under way [54].

HiLog [12] is a logic programming language with a higher-order syntax, but a �rst-order

semantics. There is no distinction between terms and atomic formulas. Two terms denoting

predicates are considered to be equal if their intensions are equal (e.g. if they are denoted by the

same symbol); no attempt is made to decide if their extensions (i.e. the relations they describe)

are equal (the latter is in general undecidable [26]).

A term which is an application may in turn be applied to another term; in other words,

HiLog allows for a curried style of programming.

25

HiLog appears to be more powerful than Cube, it features universal and existential quan-

ti�cation as well as negation. Chen, Warren, and Kifer give a model theory as well as a proof

theory for HiLog; however, they do not mention any implementation of the language.

Andrews' logic G [1] is the third attempt we know of to incorporate higher-order features into

logic programming. G, just like HiLog, has a higher-order syntax and a �rst-order semantics.

Predicate names are considered to be terms; uni�cation determines intensional identity, not

extensional equivalence between two terms. Other additions to the syntax of terms are tuples

and set abstraction terms. Predicates are regarded as sets of term tuples, predicate application

is thus viewed as set membership test.

Andrews gives both a model theory and a proof theory for the language. In addition, he

provides an operational semantics, which is similar to the standard semantics of prolog given

by Lloyd [46].

The proof mechanism of G is more powerful than the one of Cube. Given an appropriate de�-

nition of the higher-order predicateMap, G is able to satisfy the query \9x :Map(x; [a; b]; [c; db])",

and derives a substitution of \fy j y = ha; ci _ hb; dig" for x. Given the same query, Cube

would simply suspend. On the other side, G neither allows for terms with variable functor,

nor for curried applications, both of which are permissible in Cube. As far as we know, no

implementation of G exists so far.

2.7 Type Inference Systems

Milner developed a static type inference system for the polymorphic lambda calculus [17, 51],

known as the Hindley-Milner type system, which has since then been widely used for func-

tional languages. Mycroft and O'Keefe adopted it for Prolog [52], and recently Lakshman and

Reddy [43] gave a semantic foundation to this adaptation. �Prolog also uses Milner's type

system.

Cube's type system is based on Milner's system as well. Thus it resembles the one used by

�Prolog. It di�ers from the one proposed by Lakshman and Reddy by viewing predicates as

functions mapping to truth-values, and thus assigning a function type to them. This view is

convenient in the presence of curried predicate applications.

26

Chapter 3

Motivation

The development of Cube was driven by two basic goals: To �nd a better visual syntax for logic

programming, and to make an existing logic programming language { Prolog { cleaner, safer,

and more expressive.

This chapter explains some of the motivations behind this thesis. We account how Cube's

syntax evolved from the two-dimensional notation of Show and Tell into its current three-

dimensional form, and we explain how Cube's semantics resulted from combining Prolog with

features of higher-order functional languages.

3.1 Evolution of Cube's Syntax

During our work on ESTL [56], we realized that Show and Tell embodies many ideas of logic

programming in a weakened form. One of its key concepts is the notion of consistency: during

an evaluation of a data
ow diagram (a boxgraph in Show and Tell terminology), parts of the

diagram may become inconsistent, and are then considered to be removed from the computation.

There are two possible causes for inconsistency: two con
icting values
ow into the same box,

or a relational predicate fails. The former resembles a failed uni�cation, the latter a failed

predicate application in logic programming.

Another key concept is the notion of completion: a data
ow diagram may contain a number

of empty boxes, which may receive a value during evaluation, but do not have to. In the simple

case, these values are immutable: once a box receives a value, it will not be changed (Show and

27

0 1

> 0

1

-

*

!

Figure 3.1: Adding Undirected Links and Disjunction to Show and Tell

Tell departs from this rule when showing the evaluation of certain \iterators"). This notion of

completion resembles the concept of uni�cation in logic programming.

Other features of Show and Tell, however, are more restrictive than those found in Prolog.

The links of a data
ow diagram are directed, data can
ow only in the direction of the links.

Hence, this model of data propagation is less powerful than uni�cation, where information can

ow in either direction.

Second, Show and Tell has no notion of disjunction. All the parts of a diagram contribute

to the same solution. If one uses the concept of inconsistency to perform a case analysis, he

must be sure that the various cases exclude each other, otherwise the results of two matching

cases might collide when they are merged.

We initially tried to transform Show and Tell into a two-dimensional visual logic language

by generalizing data
ow links to be undirected, with the semantics that two boxes or ports

that are connected by a link are uni�ed, and by introducing a notation for disjunction into the

language. Figure 3.1 shows the de�nition of factorial in this notation.

However, we found that the diagrams were becoming rather confusing. One solution to this

problem seemed to be to have a separate data
ow diagram for each clause. Figure 3.2 shows

the de�nition of factorial, represented by two diagrams.

In such a framework, a predicate de�nition would consist of an arbitrary number of \box-

graphs". One could put them next to each other, or one could display only one at a time, and

provide controls to switch between them. The latter idea gives rise to a stack metaphor: The

28

0 1

> 0

1

-

*

!

Figure 3.2: Using One Diagram Per Clause

di�erent boxgraphs of a predicate de�nition are stacked on top of each other, the interactive con-

trols allow the user to browse through the stack. From there, the move to a three-dimensional

representation is only a small step.

Kimura's Hyper
ow [38], a two-dimensional data
ow language with provisions for object-

oriented programming, appears to have been in
uenced by Cube. It uses the very same

metaphor of stacked visual planes, where each plane is a diagram which describes a di�erent

aspect of the object.

3.2 Evolution of Cube's Semantics

One of the most interesting features of modern functional languages is their treatment of func-

tions as �rst-class objects. This feature allows for the de�nition of higher-order functions,

functions that take other functions as arguments.

Suppose we want to de�ne a function map which behaves as follows:

map f [e1 ; � � � ; en] = [f e1 ; � � � ; f en]

i.e., map applied to a function f and a list of elements e1 ; � � � ; en returns the list resulting

from applying f to each element in the list.

In a functional language such as Lazy ML, we could de�ne map in a recursive fashion as

follows:

29

map f [] = []

map f (x : l) = (f x) : (map f l)

Prolog, on the other side, is a �rst-order language, and therefore does not allow for such an

elegant de�nition of the map function. One can, however, use the built-in metapredicate call to

achieve a similar e�ect:

map(F; []; []):

map(F; (X :L); (X 0 :L0)) :� P = :: [F;X ;X 0]; call(P);map(F;L;L0):

= :: (pronounced \univ") is a binary in�x predicate that relates a structure to a list. In

particular, the relation

f (t1 ; � � � ; tn) = :: [f ; t1 ; � � � ; tn]

holds. call takes a term, interprets it as a goal (i.e. a predicate application), and tries to prove

it.

The base case of this predicate de�nition is analogous to the base case of the functional

de�nition: Mapping a predicate F over the empty list yields the empty list. The recursive case,

however, is more convoluted: The head of the clause takes a predicate F and a list, which it

decomposes into a head X and a tail L, and returns a result list consisting of head X 0 and tail

L0. The subgoal P = :: [F;X ;X 0] uni�es P with the term F(X ;X 0), call(P) then interprets P

as a goal and tries to prove it. In other words, P = :: [F;X ;X 0]; call(P) holds if F(X ;X 0) holds.

map(F;L;L0) �nally applies map recursively to F and L, yielding L0.

There are two problems with this approach: First, the list [F;X ;X 0] is usually heterogeneous,

which makes it impossible to apply standard type checking algorithms such as [43]. And second,

P, which is formally a term, really denotes a predicate application, and F, which is formally a

term, really denotes a predicate symbol.

There is an obvious solution to those two problems: Lift the distinction between terms and

predicates, and allow variables to occur as functors of terms. Given these two modi�cations,

we can reformulate our de�nition of map as follows:

map(F; []; []):

map(F; (X :L); (X 0 :L0)) :� F(X ;X 0);map(F;L;L0):

30

This de�nition looks much more similar to the functional de�nition of map. The main

remaining di�erence is that in the logic framework, the body of a clause consists of a \
at"

conjunction of subgoals, whereas in the functional framework, the body of a function de�nition

may consist of nested function applications. The
at notation makes clauses harder to read,

and it introduces extra variables used to connect the producer of a value to its consumer (in

this case, X 0 and L0). The visual notation used by Cube, however, alleviates these problems to

a large degree.

There is, however, a more serious problem: If we treat predicates and predicate symbols as

terms, then we can also unify them. The expression

fact = fact0

should be true if fact and fact0 are equal. We could interpret \being equal" as meaning \de-

scribing the same relation". Unfortunately, this question is in general only semi-decidable [26].

Therefore, we instead interpret \being equal" as \being de�ned in exactly the same way".

This question can be answered e�ciently (through �rst-order uni�cation), and it appears as if

this restrictive notion of equality is powerful enough to bring all the forms of higher-orderness

exploited by functional languages to the logic programming world.

This modi�cation of Prolog allows us to use Hindley-Milner type inference even for higher-

order predicates such as map. The type of map, in the notation of Lakshman and Reddy [43],

is:

Pred(Pred(�; �); List(�); List(�))

Alternatively, we can view predicates as functions that map to propositional values, i.e. truth

or falsity. If we denote the type of propositions by Prop, the type of map is:

(�� � ! Prop)� List(�)� List(�)! Prop

In many functional languages, an nary function is expressed as a unary function mapping

to an (n� 1)ary function. For example, the map-function

map = �(f ; a) : if a = [] then [] else (f (hd a)) : (map (f ; (tl a)))

31

is instead written as

map0 = �f : �a : if a = [] then [] else (f (hd a)) : ((map0 f)(tl a))

This technique, known as currying, can be quite useful. Suppose we want to de�ne a function

sqrlist which computes the square of all elements of a list. In the absence of currying, we would

de�ne it as

sqrlist l = map (sqr; l)

Using currying, however, the de�nition simpli�es to

sqrlist0 = map0 sqr

The type of map is ((�! �)� List �)! List �, the type of map0 is (�! �)! (List � !

List �). ! is a right-associative operator, so we can omit the last pair of parentheses. Similarly,

application (denoted by juxtaposition of functor and argument) is a left-associative operation,

and again we can frequently omit some of the parentheses.

We adopt these ideas to our derivate of Prolog. We use juxtaposition to denote application,

that is, we write f a1 � � � an instead of f (a1 ; � � � ; an). The de�nition of map therefore changes

to

map F [] []:

map F (X :L) (X 0 :L0) :� F X X 0;map F L L0:

and its type to (�! � ! Prop)! List �! List � ! Prop.

We also introduce an abstraction construct �. Now we might try to de�ne the map predicate

as follows:

map = �f : �a : �b : (a = []^ b = []) _ (a = x : l ^ b = x0 : l0 ^ f x x0 ^map f l l0)

While the use of the �-abstraction apparently made our de�nition more complex, it also brought

a quite fundamental change of view. Beforehand, we viewed map as a constant symbol denoting

32

a predicate, now, we view it as a variable which gets bound through uni�cation to an anonymous

predicate!1

It turns out, however, that this brings along a new problem: By the de�nition of uni�cation,

there is no uni�er for an equation of the form x = f (� � � ; x ; � � �). So, we cannot express map

as shown above. However, introducing a �xed-point operator solves this problem, as it allows

us to transform the recursive de�nition of map into a nonrecursive form:

map = �x map0 : �f : �a : �b : (a = [] ^ b = [])_ (a = x : l ^ b = x0 : l0 ^ f x x0 ^map0 f l l0)

To make the formulation of predicate de�nitions | recursive and non-recursive ones |

easier, we introduce a piece of syntactic sugar, namely the letrec binding construct. Now we

can write map as

letrec map = �f : �a : �b : (a = []^ b = [])_ (a = x : l ^ b = x0 : l0^ f x x0 ^map f l l0) in � � �

The ellipsis denotes an expression (such as a goal) to which the de�nition of map is visible. For

example, a query which computes the square of all the elements of a list, and which uses the

currying technique described above, could be written as:

letrec map = �f : �a : �b : (a = [] ^ b = [])_ (a = x : l ^ b = x0 : l0 ^ f x x0 ^map f l l0) in

letrec sqr = �u : �v : times u u v in

letrec sqrlist = map sqr in

sqrlist [1; 2; 3] z

Evaluating this query would yield a solution z = [1; 4; 9].

The introduction of letrec adds another very powerful feature to our language: the concept

of nested scope. An example may demonstrate its usefulness. Consider a predicate to reverse

a list. A naive de�nition (in \classic" Prolog) would be:

reverse([]; []):

reverse(X :L;Y) :� reverse(L;L0); append(L0; [X];Y):

1The fact that map is now shown in the same font as other variables shall indicate this change of view. Also,

starting from this example, I shall use lower-case names for all the variables instead of the upper-case names

common in Prolog.

33

Unfortunately, this de�nition is rather ine�cient; reversing a list with n elements takes

O(n2) time. The following de�nition works in O(n) time:

reverse(X ;Y) :� rev(X ;Y ; []):

rev([];L;L):

rev(X :L;Y ;Z) :� rev(L;Y ;X :Z):

In this example, rev is an auxiliary predicate, which is only supposed to be called by reverse.

However, in Prolog it is visible to all other predicates. In our language, however, we can write

the reverse predicate as follows:

letrec reverse = �x : �y :

letrec rev = �a : �b : �c :

(a = [] ^ b = c)_

(a = d : e ^ rev e b (d : c))

in rev x y []

in � � �

Now, the de�nition of rev is visible only to the de�nition of reverse, but invisible to the

clients of reverse (denoted by the ellipsis).

In Prolog, the variables used in a clause are implicitly universally quanti�ed, i.e.

reverse(X :L;Y) :� reverse(L;L0); append(L0; [X];Y):

stands for

8X ;Y ;L;L0:reverse(X :L;Y) :� reverse(L;L0); append(L0; [X];Y):

We could take the same stand in our language, that is, we could say that variables which

are not introduced by a � or a letrec are implicitly universally quanti�ed. The scope of such

a quanti�cation, however, would be the entire program, as we have replaced the set of clauses

that makes up a Prolog program by a single expression, usually a letrec. This approach

would contradict the information-hiding idea which we wanted to promote through the letrec-

construct in the �rst place. Therefore, we abolish the idea of implicit universal quanti�cation,

and instead introduce the existential quanti�er 9 into our language. All variables have to be

explicitly introduced, either by a �, a letrec , or an 9.

34

It is easy to see that universally quantifying a variable within the scope of a clause is

equivalent to existentially quantifying it within the scope of a clause body (provided that the

variable does not occur in the head of the clause), i.e. that

8X ;Y ;L;L0:reverse(X :L;Y) :� reverse(L;L0); append(L0; [X];Y):

and

8X ;Y ;L : reverse(X :L;Y) :� 9L0 : reverse(L;L0); append(L0; [X];Y):

are equivalent.

The existential quanti�er allows us to precisely specify the scope of a variable, and thus

makes programs much easier to read. The new and �nal de�nitions of map and reverse are:

letrec map = �f : �a : �b :

(a = [] ^ b = [])_

(9x; x0; l; l0 : a = x : l ^ b = x0 : l0 ^ f x x0 ^map f l l0)

in � � �

letrec reverse = �x : �y :

letrec rev = �a : �b : �c :

(a = [] ^ b = c)_

(9d; e : a = d : e ^ rev e b (d : c))

in rev x y []

in � � �

The textual language we have developed here is almost identical to the textual version of

Cube introduced in Chapter 5. The only di�erences stem from the fact that this language

uses a positional binding strategy | the �rst actual parameter gets bound to the �rst formal

parameter, whereas Cube and its textual counterpart use named parameters and employ a

binding-by-name strategy.

35

Chapter 4

Cube by Example

The following chapter presents a number of Cube example programs, intended to give the

reader an intuitive understanding of the semantics of the language. Chapter 5 will then provide

a formal de�nition of both syntax and semantics.

All the �gures shown in this chapter were generated byCube-II, a prototype implementation

of a Cube programming environment (see Section 6.2). It should be noted that black-and-white

�gures cannot do full justice to the visualization provided by the system, which is not only in

color, but moreover interactive, that is, it allows the user to move through the program.

4.1 The Data
ow Metaphor

Consider the simple program shown in Figure 4.1. It consists of two transparent cubes (which

are green in the original picture) that are connected by a pipe. The transparent cubes are

termed holder cubes, they may contain terms (which are represented by cubes as well), and

thus correspond quite closely to variables in a textual language.

The left holder cube contains a term: an opaque cube (which is green in the original picture)

with the icon \1" on its top side. This cube is called an integer cube, and represents the integer

1. The two holder cubes are connected by a pipe, which serves as a \conduit" for values. The

metaphor we use here is the data
ow metaphor: A value contained in a holder cube
ows to

all the other holder cubes connected to it1. If a holder cube receiving a value is empty, it

1This data
ow takes place when triggered by the user. In Cube-I and Cube-II, the user presses an \Eval"

button.

36

Figure 4.1: Value 1 Flowing Into Empty

Holder

Figure 4.2: Value 1 Has Flown Into Empty

Holder

will be �lled with this value, if it already contains a value, the two values must be equal (or,

more general, uni�able), both holder cubes will then contain the same value (namely, the most

general uni�er of the two values). If this is not possible, the data
ow fails.

Note that pipes have no particular directionality: data can
ow through them in either

direction, and as we will see (on page 64), it can indeed
ow in both directions at once! It

should also be noted that the value contained in a holder cube never gets changed, but only

re�ned.

So, we can extend the analogy we have drawn between Cube and textual languages: Holder

cubes correspond to logic variables, and connecting two holder cubes by a pipe corresponds to

unifying two logic variables. Furthermore, a holder cube containing a term cube (such as an

integer cube) corresponds to a logic variable uni�ed with a term.

In the textual framework, a uni�cation is a special case of an atomic formula. A Cube

program (i.e. the entire \virtual space" in which Cube expressions are located) corresponds to

a query in a textual logic language, that is, a conjunction of all the atomic formulas.

Figure 4.2 shows the Cube program of Figure 4.1 after evaluation. The integer cube 1
owed

from the left to the right holder cube (intuitive interpretation); or the left holder cube got uni�ed

with 1 and with the right one, leaving both being instantiated to 1 (logic interpretation).

By contrast, the program shown in Figure 4.3 does not have any solutions: The two holder

cubes are connected by a pipe, but one contains the integer cube 1, while the other contains

37

Figure 4.3: Failing Data
ow

the integer cube 2. These two integer cubes are not uni�able, the data
ow between the two

holder cubes fails, and so does the entire computation.

4.2 A First Glimpse at Types

We have mentioned before that Cube is a statically typed language, and uses a type inference

system. In fact, the user can trigger the type inference mechanism at any time. The Cube

environment will then determine if the entire program is well-typed. Moreover, if the program

is well-typed, it will indicate the type of every empty holder cube by placing a type cube inside

it. Type cubes are opaque grey cubes with an icon on their top, which identi�es the type. There

are three prede�ned based types: Int, the integer type, Float, the
oating-point type, and Prop,

the type of propositions.

Figure 4.4 shows the type cubes representing these three base types. As we will see later,

Cube provides a mechanism that allows users to de�ne other interesting types (such as charac-

ters, strings, lists, or trees) themselves.

So, given the program from Figure 4.1, Cube will infer that 1 is an integer, so the left holder

cube contains an integer, and therefore the right holder cube must contain an integer as well.

It will thus �ll the right holder cube with an Int type cube (see Figure 4.5).

38

Figure 4.4: Type Cubes of the Base Types Figure 4.5: Program From Figure 4.1 After

Type Inference

4.3 Predicate Applications

The fragment of Cube that we have seen so far hardly quali�es as a programming language |

it can move values around, but not perform any computations on them. The device that we

are encountering now, however, solves this problem.

Consider the object shown in Figure 4.6, which is called a predicate cube. It is represented

as an opaque green cube with an icon on its top. The icon identi�es the predicate we are

referring to (integer addition in this case). The cube also has a number of \holes" in its sides:

cubic intrusions with a transparent cover on the outside and an icon on top of it. The \holes"

are called ports and serve as arguments to the predicate. They may be moved around freely

over all 6 sides of the predicate cube; thus, an icon is needed to identify each port. A port is a

special case of a holder cube (hence the transparent cover), and as such it can be connected to

pipes and can be �lled with a value.

It should also be pointed out that the similarity between predicate cubes and integer cubes

(both being opaque green cubes with an icon on their top) is not coincidental: both are term

cubes, they represent a �rst-class value, i.e. they can both be contained in a holder cube and

ow through a pipe. In fact, they are both a form of reference cube: a cube that refers to a

de�nition cube visible to it. In the case of integer cubes, we just imagine that a de�nition of

all the integer values is visible. In the case of predicate cubes, however, these de�nitions are

39

Figure 4.6: Addition Predicate Cube Figure 4.7: Type of Addition Predicate

Figure 4.8: Prede�ned Predicates

40

indeed present: The initial program contains a \toolkit" of 18 primitive predicate de�nitions

(see Figure 4.8).

As predicates are values, they also have a type associated with them. As said in Section 3.2,

we view predicates as functions mapping to propositions. So, each predicate belongs to a

function type, which is visualized by a function type cube. An n-ary function is visualized by

the type cube representing the function's domain. This type cube has n ports set into its sides,

each one carrying the port icon of the corresponding argument of the function, and �lled with

the type cube representing the type of this argument.

For example, the type of the integer addition predicate is represented by the type cube

shown in Figure 4.7. It consists of a grey opaque cube with the icon \o" on its top, representing

the type Prop, and three ports in its side, which carry the same icons as the ports of the addition

predicate (see Figure 4.6), and are �lled with integer type cubes.

The key di�erence between function types in Cube and those in functional languages such

as ML is that the name (or here, the port icon) of each argument of a function becomes part

of its type.

So how can we apply predicate cubes? Assume we want to build a program to convert

temperatures between the Celsius and the Fahrenheit scale. Recall that those two scales are

related as follows: F = 1:8 � C + 32:0 (or C = F�32
1:8

). We can transform this relation into the

logic program

conv(C ;F)(times(C ; 1:8;X); plus(X ; 32;F):

The program shown in Figure 4.9 is the Cube analog to the above textual logic program.

It consists of two empty holder cubes (corresponding to the variables C and F) and two holder

cubes �lled with
oating-point values 1.8 and 32.0, respectively. It also contains a predicate cube

referring to the
oating-point multiplication predicate, and another predicate cube referring to

the
oating-point addition predicate. The �rst port of the multiplication predicate is connected

by a pipe to the leftmost empty holder cube, the second one is connected to the holder cube

containing the value 1.8, and the third one (the \result") is connected to the �rst port of the

addition predicate. So, if the user puts a value into the leftmost holder cube, the multiplication

predicate will receive this value, will multiply it with 1.8, and transfer the result to the addition

41

Figure 4.9: Temperature Conversion

Figure 4.10: Converting Celsius to Fahren-

heit

Figure 4.11: Converting Celsius to Fahren-

heit (Evaluated)

42

Figure 4.12: Converting Fahrenheit to Cel-

sius

Figure 4.13: Converting Fahrenheit to Cel-

sius (Evaluated)

predicate, which then adds 32.0 to it, and transfers the result to the rightmost holder cube (see

Figures 4.10 and 4.11). Alternatively, if the user puts a value into the rightmost holder cube,

it will
ow into the \result" port of the addition predicate cube, which will now subtract 32.0

from it, and transfer the result of this subtraction to the \result" port of the multiplication

predicate cube. This cube will divide the result of the subtraction by 1.8, and transfer the

result of this division to the left holder cube (see Figures 4.12 and 4.13).

This example demonstrates that arithmetic predicates work in either direction. Addition,

for instance, can use the �rst two arguments to produce the third one, or the last two to produce

the �rst one. The \multidirectionality" of predicate applications thus complements nicely the

bidirectionality of data
ow in Cube.

Cube is not as powerful as a constraint logic language, such as CLP (R) [34] or Janus [72].

It binds variables to values, rather than associating them with constraints. So, in order for an

addition to be performed, at least two of its arguments must be known (there is one exception,

namely if the �rst or second argument is 0). As long as not enough arguments are known, the

addition is not performed | the predicate is not resolved. The semantics of the language (as

described in Section 5.3) simply states that such underspeci�ed predicates are not eligible for

resolution. The actual implementations (i.e. the Cube-I and Cube-II systems), which model

goals as concurrent threads, suspend the thread belonging to the underspeci�ed addition until

enough data is available.

43

Figure 4.14: Reporting a Deadlock

There are Cube programs which cannot be \solved" because not enough information is

available. This is similar to the situation in CLP (R), where a query can yield three answers:

Yes (plus the solution constraints), No, or Maybe. The temperature-conversion program, with

neither a Celsius- nor a Fahrenheit-value supplied to it, is such a program. If we try to evaluate

it, the system reports that a deadlock occurred: Some threads (supposed to solve a subgoal)

are suspended, and there are no threads to wake them up again.

The Cube-II system reports deadlocks through its solution browser (see Figure 4.14); future

implementations might be able to actually highlight the suspended predicate cubes in the

program. However, this would require additional run-time information for every thread and

cause a performance penalty during evaluation.

4.4 Uninstantiated Variables and Uninstantiated Type Vari-

ables

We just mentioned that there is one special case in which the addition predicate can perform a

computation, even though only one of its arguments is known (or \ground"). This case arises

when the value 0
ows into the �rst or the second argument. The equation x+ 0 = y does not

allow us to determine the values of x or y, but we know that they must be equal. And equality

is the one constraint that even ordinary logic programming languages can handle. Hence, if we

evaluate the Cube program shown in Figure 4.15, we would like to learn that the two empty

holder cubes must contain the same value.

The question now is how an equality constraint should be visualized. When we write a

program, we indicate equality constraints between two holder cubes (i.e. uni�cation of two

44

Figure 4.15: Addition With Only One

Known Argument

Figure 4.16: Program From Figure 4.15 Af-

ter Evaluation

Figure 4.17: Close-Up Onto Left Holder

Cube of Figure 4.16

45

variables) by connecting them through a pipe. So, one solution would be to use the same

technique when visualizing results. That is, evaluating the program from Figure 4.15 should

create a pipe between the two empty holder cubes.

One of the basic motives for our work on Cube, however, was to use the key ideas of visual

data
ow languages | with Show and Tell as the prototypical example | to create a visual

notation for logic programming. In data
ow languages, results of a computation manifest

themselves as values
owing into and �lling previously empty boxes (variables). Hence, we

decided to use the same metaphor | the result of a Cube computation manifests itself through

value cubes �lling previously empty holder cubes. In retrospect, this decision may have been

too conservative | for example, because it barred us from transforming Cube into a visual

notation for concurrent constraint logic. It would be interesting to pursue the idea of visualizing

equality constraints through pipes, and possibly general constraints between variables through

new predicate cubes which appear during a computation. The result might be a language

halfway between Show and Tell [37] and Pictorial Janus [35].

Our solution to the problem of visualizing equality constraints follows the tradition of Prolog.

In Prolog, new uninstantiated variables are represented as \ n", where n is a unique index, and

solving a query which uni�es two variables causes them to be bound to the same uninstantiated

variable. That is, a Prolog system might behave as follows:

? � X = Y:

Yes.

X = 35

Y = 35

Cube uses the same idea: an uninstantiated variable is shown as an opaque green cube with

a unique index in the lower right corner of its top side. As Cube is a statically typed language,

i.e. every variable is associated with a type, we represent this information as well: we show a

variable of, say, type Int by superimposing the integer type cube over the indexed opaque green

cube. So, in the example from Figure 4.15, the two empty holder cubes both get �lled with an

opaque green cube with the integer icon \Z" and the index \69" on its top. Figure 4.16 shows

this result; Figure 4.17 shows a close-up of the uninstantiated variable.

46

Figure 4.18: Two Empty, Connected Holder

Cubes

Figure 4.19: Program From Figure 4.18 Af-

ter Type Inference

Figure 4.20: Program From Figure 4.18 Af-

ter Evaluation

47

Just as there are cases where we know that two holder cubes must contain the same value,

although we don't know which, there are also cases where we know that they must contain

values of the same type, although we cannot say what this type should be. Figure 4.18 shows

such a case: two empty holder cubes are connected by a pipe. After evaluation, they shall

contain the same value, and therefore, they must have the same type as well. But the value

could be anything of any type | the integer 1 just as well as the predicate \plus".

So, we are faced with the problem of visualizing uninstantiated type variables. We adopt

the same technique which we used for uninstantiated variables: We represent an uninstantiated

type variable by an opaque grey cube with a unique index in the upper left corner of the

cube's top side. Figure 4.19 shows the result of performing type inference on the program from

Figure 4.18. Both holder cubes contain the same uninstantiated type variable, represented as

an opaque grey cube with the index \238" in the upper left corner of its top side.

Figure 4.20 shows the result of evaluating the same program. Both holder cubes now contain

the same value, namely the uninstantiated variable number 65 which belongs to the unknown

type number 238.

4.5 Predicate De�nitions

The part of Cube we have seen so far allows us to combine and connect existing predicates;

however, it does not allow us to de�ne new predicates. This ability is crucial in two respects:

it provides a mechanism for \procedural abstraction", and it gives us a possibility to perform

potentially unbounded computations by allowing us to de�ne recursive predicates, predicates

which refer to themselves.

4.5.1 A Natural Number Generator

An example of such a predicate would be a natural-number generator: a predicate which

generates all the natural numbers, i.e. the integers greater than or equal to 1. In Prolog,

we could de�ne such a predicate as follows:

nat(1):

nat(X) :� nat(X 0);X is X 0 + 1:

48

Figure 4.21: A Natural Number Generator Figure 4.22: Program Computing All Nat-

ural Numbers

The query \? � nat(X):" would return successive solutions X = 1, X = 2, X = 3, and so

on. Note, however, that we cannot use this de�nition as a tester : The query \? � nat(�1):"

diverges, instead of failing. In order to prevent this, we would have to add an extra subgoal

X > 0 to the body of the second clause.

Figure 4.21 shows the Cube equivalent of this de�nition. The outer cube, called a predicate

de�nition cube, is a transparent green cube with an icon on its top. This icon provides a name

for the new predicate. The small transparent cube set into the center of the front side of the

de�nition cube is a port, it represents the formal parameter of the predicate under de�nition.

The icon on its outer side identi�es the port.

Inside the predicate de�nition cube are two transparent boxes, called planes. Each plane

corresponds to a clause of a textual logic program. Planes are stacked vertically; in Cube,

vertical arrangement (in the value world) indicates disjunction, while horizontal arrangement

indicates conjunction.

Predicate de�nition cubes and planes may contain local predicate de�nition cubes. Predicate

de�nitions occurring at the top level are visible to the entire program (including each other),

predicate de�nitions local to another predicate de�nition cube are visible to all objects inside

this cube, and predicate de�nitions local to a plane are visible to all objects inside the plane.

49

Figure 4.23: First Solution of Program

From Figure 4.22

Figure 4.24: Second Solution of Program

From Figure 4.22

The lower plane forms the base case of the recursive de�nition. It contains a holder cube,

�lled with the value 1, which is connected by a pipe to the port representing the formal param-

eter.

The upper plane forms the recursive case of the de�nition. It contains an addition predicate

cube, whose �rst argument is connected to a recursive application of the natural-number pred-

icate, while the second port is connected to a holder cube containing the value 1, and the third

argument is connected to the port representing the formal parameter. Note that the recursive

case of the natural-number predicate is represented by an opaque cube, i.e. a reference cube.

The icon on its top indicates which de�nition cube it refers to | in this case, the surrounding

de�nition cube. The port in its side carries the same icon as the port of the surrounding de�-

nition cube; for predicate cubes which have several parameters, these icons are used to match

up actual with formal parameters.

The intuitive meaning of a predicate reference cube is that we could replace it by its cor-

responding de�nition cube (after moving the ports around to match them up). This intuition

corresponds exactly to what is known as call-by-name semantics in textual programming lan-

guages.

If we pose a \query" like the one shown in Figure 4.22, we can imagine that the large

reference cube referring to the natural-number predicate gets replaced by the corresponding

50

predicate de�nition cube2. The value 1 will then
ow from the holder cube in the lower plane of

the expanded reference cube through the pipe into the port and from there out of the expanded

reference cube and into the large empty holder cube. This constitutes the �rst solution to our

query (see Figure 4.23).

We can also imagine that not only the large reference cube got replaced by the de�nition

cube, but that at the same time the recursive reference cube inside the top plane of the expanded

reference cube got replaced by the de�nition cube as well (and the recursive reference cube inside

this cube as well, and so on ad in�nitum). So, the value 1
ows from the holder cube of this

second-level expanded reference cube through its port out into a pipe inside the upper plane

of the �rst-level expansion, which takes it to the addition predicate. The addition predicate

receives the constant value 1 as a second argument, and returns the value 2, which
ows out

of its \result" port and through a pipe to the port of the �rst-level expanded reference cube,

and from there into the large holder cube. This constitutes the second solution to the query

(see Figure 4.24). It is easy to see how the expansion process can be continued, leading to an

in�nite number of solutions.

In summary, this example illustrated two key points. One of them is that a Cube query

can have multiple solutions (just like a Prolog query). Cube, however, unlike Prolog, explores

the paths leading to the various solutions in parallel, and it is guaranteed to �nd every solution

that can be found in �nite time (i.e. by a �nite number of \expansions"). The second key

aspect is that the logical notion of a resolution step | replacing a goal by the subgoals of a

matching clause | has an intuitive visual counterpart, namely replacing a reference cube by

the corresponding de�nition cube.

4.5.2 A Factorial Predicate

Figure 4.25 shows another example of a predicate de�nition cube. This cube de�nes the factorial

predicate. Again, it consists of a transparent green cube, with an icon \!" on its top to name

the predicate. Its two ports are set into the left and the right side of the outer cube, and are

2In the actual implementation, however, the reference cube remains opaque. Allowing an interpreter to

visualize the \expansion" of predicate applications would require additional run-time data structures and imply

a performance penalty.

51

Figure 4.25: De�nition of the Factorial

Predicate

Figure 4.26: Program Computing the Fac-

torial of 3

Figure 4.27: Program From Figure 4.26 Af-

ter Evaluation

52

labeled \n" and \n!". It contains two planes, the upper one representing the base case, and the

lower one the recursive case.

The upper plane contains two holder cubes. The left one is �lled with the value 0 and

connected by a pipe to the left port (\n"); the right one is �lled with the value 1 and connected

to the right port (\n!").

The lower case contains a comparison predicate, whose two arguments are connected by

pipes to the left port (\n") and to a holder cube which contains the value 0. It also contains a

subtraction predicate cube, whose two \input" arguments are connected to the left port (\n")

and to a holder cube containing the value 1, and whose \output" port is connected by a pipe

to the \input" port of a predicate cube which recursively refers to the factorial predicate. The

\output" port of the factorial predicate cube is connected to one of the \input" ports of a

multiplication predicate cube, whose other \input" port is connected to the left port (\n"),

while its \output" port is connected to the right port of the de�nition cube (\n!").

Now envision a query (like the one shown in Figure 4.26) which contains a predicate cube

referring to this de�nition, and where the user supplies a value, say v, to the left port (\n") of

the factorial predicate. Again, we can imagine that the opaque reference cube gets replaced by

(\expanded to") the transparent de�nition cube. The value v
ows into the left port, where it

splits up, one copy of v
owing through a pipe into the upper plane, and the other copy
owing

through the other pipe into the lower plane.

The copy of v which goes to the upper plane
ows into a holder cube which already contains

the value 0. If v does not unify with 0, then the data
ow fails, and with it the entire upper

plane. One can imagine that it is simply taken out of the computation. Otherwise, the value 1

contained in the right holder cube
ows out through a pipe and into the right port of the ex-

panded reference cube (and possibly into an attached empty holder cube), thereby constituting

a solution to the query.

Two remarks are in order here. First, the above intuitive description suggests that the

various data
ow operations are performed in some particular sequence, and that data
ows

into some prescribed direction. While it is often convenient to think about Cube evaluations

in such a way, it is also misleading.

Intuitively speaking, all data
ows take place simultaneously, and continue to happen until

the system is in equilibrium (has reached a �xed-point). A nice analogy is pipes connecting

53

containers with di�erent air pressures (di�erent amounts of information) inside. Once the pipes

are opened (evaluation is started), air will
ow through them until all connected containers

have equal pressures. The same equilibrium is reached regardless of the sequence in which the

pipes are opened, and the direction of air
ow in a pipe is determined only by the pressure

di�erence between two containers.

The second point that should be emphasized is that the result of a uni�cation a�ects only

the computation that happens, logically speaking, within the same conjunction. When the

value v entered the port of the expanded reference cube, it got split up into two copies; one

went to the upper, the other to the lower plane. A uni�cation that re�nes v in the upper plane

will not a�ect the copy of v in the lower plane.

Let's get back to our example. As we said before, one copy of the value v
ows through a

pipe leading into the lower plane, where the pipe branches. One of its ends is connected to one

port of a comparison predicate, whose other port receives the value 0. If v is not greater than

0, the comparison fails, and with it the entire plane. The second end of the branching pipe is

connected to a subtraction predicate, so v
ows into the �rst argument of this predicate, which

receives the value 1 as its second argument. The result of the subtraction, v � 1,
ows out of

the third argument port and into the port \n" of a predicate cube recursively referring to the

factorial predicate. The result of this computation, (v�1)!, then
ows out of the \n!" port and

into one of the two input ports of a multiplication predicate, its other input port is connected to

the third end of the branching pipe, which carries v. The result of the multiplication, v(v� 1)!,

ows �nally out of the lower plane and into the port \n!" of the expanded reference cube (and

from there possibly into an attached empty holder cube).

Figure 4.27 shows the result of evaluating the query from Figure 4.26.

4.6 Predicates as Values

Cube is a higher-order language, meaning that predicates are �rst-class values. They can be

contained in a holder cube,
ow through a pipe, or be argument to another predicate.

54

Whenever we treat a predicate in such a way | contain it in a holder, transmit it through

a pipe, or supply it to another predicate | the ultimate purpose is to eventually apply the

predicate3. So, we need to devise a visual notation for applying this predicate.

Let us look back for a moment to the notation used for an \ordinary" predicate application.

A predicate cube is a reference cube, referring to the corresponding predicate de�nition. We

can use a reference cube because the predicate has a name, provided by the de�nition cube.

We use the same idea to refer to predicate arguments within higher-order predicates. Each

port of a predicate de�nition cube carries an icon, i.e. a name, and we can use this name to

refer to the corresponding formal parameter. In other words, the de�nition cube could contain

reference cubes which carry the same icon as one of the outer ports; when the user supplies a

value to the port, all the corresponding reference cubes get replaced by this value. We will see

an example of this technique in Section 4.8.2.

But how should we apply predicate values for which we don't have a name? For example,

how shall we apply a predicate that is supplied through a pipe? The device we employ to do

this is called an application holder cube, it combines some features of a predicate cube with

those of a holder cube. It has ports labeled with icons set into its sides. These ports can be

�lled with values or connected to pipes. In this respect, it resembles a predicate cube. But

unlike a predicate cube, it is neither opaque, nor does it carry an icon that identi�es it. Rather,

it is transparent like a holder cube, and pipes can be connected to it to supply a value4.

When an application holder cube receives a value (i.e. a predicate cube) through a pipe,

this value will
ow inside the holder cube, and its port will be matched up with the ports of

the application holder cube (matching is done by icon name).

4.6.1 A Simple Example

Consider the program shown in Figure 4.28. The holder cube on the left side contains the

natural-number predicate cube (see Section 4.5.1). It is connected by a pipe to the application

holder cube on the right. The application holder cube also contains one port. The icon on the

outside of this port is the same as the icon on the port of the natural-number predicate. The

3As stated in Section 3.2, Cube does not allow us to compare two predicates for semantic equality.
4Holder cubes may contain values as well. However, if we were to �ll a value (which must be a predicate, i.e.

a reference cube or another application holder cube) into an application holder cube, then we could as well omit

the application holder cube and instead directly connect to the ports of its value.

55

Figure 4.28: Transmitting a Predicate Cube

Through a Pipe and Applying It Afterwards

(Oblique View)

Figure 4.29: Transmitting a Predicate Cube

Through a Pipe and Applying It Afterwards

(View From Above)

Figure 4.30: Program From Figure 4.29 Af-

ter Evaluation

56

Figure 4.31: Curried Addition Figure 4.32: Program From Figure 4.31 Af-

ter Evaluation

port of the application holder cube is connected by a pipe to an empty holder cube in the front

right of the picture. Figure 4.29 shows the same program, this time viewed from straight above.

When the user triggers the evaluation of this program, the natural-number predicate cube

ows from the left holder cube into the connected application holder cube. Here it gets applied,

and starts to produce all the natural numbers. Each natural number
ows out of its port (which

is matched up with the corresponding port of the application holder cube) and into the empty

holder cube on the right. Figure 4.30 shows the �rst such solution (viewed again from straight

abover).

4.6.2 A More Complex Example

Consider the program shown in Figure 4.31. It demonstrates how we can use application holder

cubes to achieve the e�ects of currying, i.e. apply the arguments of a predicate one at a time

instead of all together.

The holder cube on the left contains an addition predicate. It is connected by a pipe to

an addition holder cube on its right, which has one port with a \�rst argument of addition"

icon on its outside. The port is connected to a holder cube which contains the value 1. The

application holder cube is not standing free in the program; it is rather contained inside another

holder cube.

57

We have stated before that enclosing a term cube inside a holder cube corresponds to

unifying a term with a variable in a textual logic framework, while an application holder cube

corresponds to applying an unknown (i.e. variable) predicate to some argument. So, the textual

counterpart of the part of this program we have described so far would be:

w = add ^ x = 1 ^ w = y ^ z = y(add
1
= x) ^ � � �

where w denotes the left holder cube, x denotes the holder cube which contains 1, y denotes

the application holder cube, and z denotes the holder cube around it.

The holder cube containing the application holder cube is connected by a pipe to a second

application holder cube on its right. This cube has one port, carrying a \second argument

of addition" icon. The port is connected to a holder cube which contains the value 2. The

application holder cube is surrounded by a holder cube, which is connected by a pipe to a third

application holder cube on its right. This application holder cube is free-standing; it has one

port, labeled \third argument of addition", which is connected by a pipe to an empty holder

cube below it. So, if we assume that the third application holder cube is denoted by the variable

u and the holder cube below it by the variable v , the textual fragment corresponding to this

part of the picture is:

� � � ^ u(add
3
= v)

What happens when this program gets evaluated? The addition predicate cube (or rather

the value denoted by it, which is called a closure in the textual functional framework)
ows

from the left holder cube into the application holder cube to its right. Here the value 1
ows

into its �rst port (producing a new closure of arity 2). The result of this application | a cube

with two ports left to go |
ows from the holder cube into the second application holder cube

to its right. Here the value 2
ows into the next port (producing a new closure of arity 1).

The result of this application | a predicate cube with one port to go |
ows into the third

application holder cube, where the port is connected to (i.e. uni�ed with) an empty holder cube.

The result of this application is a predicate cube with all ports used up (i.e. a closure of arity

0). The predicate is resolved, and as a result, its third argument gets instantiated to 3. The

value of the third argument
ows out into the empty holder cube on the right (see Figure 4.32).

58

Figure 4.33: Renaming the Ports of the Ad-

dition Predicate

4.6.3 Renaming of Ports

An application holder cube makes assumptions about the port icons of the predicate that

is supplied to it; however, it may receive many di�erent predicates at runtime. Likewise, a

predicate (i.e. reference) cube makes assumptions about the port icons of the predicate it refers

to; it also may receive many di�erent values at runtime, if the predicate cube refers to a port

of a surrounding de�nition cube instead of directly to a predicate de�nition. In both cases, the

port icons of the reference cube or the application holder cube and the port icons of the value

it refers to or contains must match up. In practice, this presents a serious impediment, since

it is rare that the port icons of two predicates coincide, although the predicates may well be

otherwise of the same type.

We therefore introduce a new device, called a port renaming cube. A port renaming cube

is a transparent cube (not to be confused with a holder cube) which surrounds a term cube

(usually a predicate cube, an application holder cube, or a constructor cube | see below). If we

want to rename the port p to p0, the port renaming cube carries the icon p0 on its transparent

hull right above the port labeled p of the term cube inside. Figure 4.33 shows a port renaming

cube surrounding an addition predicate cube and renaming all its ports.

59

4.7 Type De�nitions

Cube uses a type system similar to the one used in modern functional languages, such as

Miranda [86] or Lazy ML [2]. Similar to those languages, it allows the user to de�ne new types.

Let's take a closer look at type de�nitions in those textual functional languages. The

de�nition

List � = nil + cons � (List �)

de�nes two new constructors, nil and cons. A constructor is an uninterpreted function symbol.

In this particular case, nil is a nullary function (i.e. a simple value) of type \List of �", where �

could be any type. nil is conventionally used to denote the empty list. cons is a binary function,

which takes a value of type � as �rst and a value of type \List of �" as second argument, and

returns a new \List of �". Again, � ranges over all the types.

Note that the List type is de�ned in a recursive fashion: the nil constructor forms the base

case, the cons constructor is the recursive case, as it creates a list by using another list. It is

obvious that every �nite list must be terminated by a nil constructor.

The expression cons 1 nil denotes a list whose head is 1, and whose tail is the empty list; or

restated, a list which has one element, namely 1. Similarly, the expression cons 1 (cons 2 nil)

denotes a two-element list, with 1 as the �rst and two as the second element.

The expression cons 1 (cons \a" nil) is ill-typed, since cons \a" nil is of type List String

whereas 1 is of type Int (we call such a list a heterogeneous list).

List is referred to as a type constructor, i.e. an uninterpreted function which takes n types as

arguments, and returns a new type. So far, we have encountered the nullary type constructors

Int, Float, and Prop, and the unary type constructor List.

Now it also becomes clear why Int and Float are distinguished as base types in Cube. The

(textual) de�nition of the integer type would be:

Int = � � � + \� 2" + \� 1" + \0" + \1" + \2" + � � �

declaring all the integers as constructors of the type Int. But as there are in�nitely many

integers, such a de�nition is not possible. The same argument holds for the
oating-point type.

60

Figure 4.34: List Type De�nition

What modi�cations are needed to adapt this standard notation of type de�nitions to Cube?

Constructors are functions, and as such they have arguments; Cube di�ers from most functional

languages by binding actual to formal parameters not by position, but rather by name (that is,

by matching up icons). So, when de�ning a constructor, we not only need to specify the types

of its arguments, but also their icons. By symmetry, we also associate the arguments of type

constructors with icons.

Figure 4.34 shows a type de�nition cube which de�nes the list type. It consists of a grey

transparent cube with an icon on its top. The color grey distinguishes types from values, which

are green. The icon names the type constructor that is to be de�ned (List in the textual

de�nition).

The type de�nition cube has a port on its top side, which represents the one formal pa-

rameter of the type constructor (� in the textual de�nition). The port carries an icon on its

outside, which is used to distinguish it from other ports.

Inside the type de�nition cube are two grey transparent boxes, called type planes, which

represent the two constructors of the list type. The planes are stacked on top of each other; in

the context of types, vertical arrangement denotes a type sum, whereas horizontal arrangement

denotes a type product. Each plane carries an icon on its top, identifying the constructor. The

upper plane, which represents the nil constructor, is empty, as nil is a nullary constructor.

The lower plane represents the cons constructor; it contains two type cubes. The left type

cube is a type reference cube, which refers to the port of the enclosing de�nition cube, i.e. to

61

�. Note that this notation | referring to a port by using a reference cube which carries the

same icon as the port | is used both in the context of types and of values (see Section 4.6).

Right above the cube, on the transparent wall of the enclosing box, is an icon (let's call it arg
1
)

which associates a name with the �rst argument of the type constructor. The right type cube

is a type constructor application. It consists of a type constructor cube, which has a port, and

a type contained inside the port.

The type constructor cube is an opaque grey cube with a port set into its top. The icon

on top of the cube is the same as that on top of the enclosing de�nition cube, and the icon

labeling the port is the same as that labeling the port of the enclosing de�nition cube. So, this

type constructor is a recursive reference to the type constructor under de�nition.

The type contained inside the port of this type constructor cube is a type reference cube,

referring to the argument of the enclosing type constructor.

This type constructor application cube speci�es the type of the second argument of the cons

constructor, namely List �. Above the cube, on the transparent wall of the surrounding box, is

an icon (let's call it arg
2
) which associates a name with this argument.

The two type cubes inside the box are arranged horizontally, so they form a type product;

the icon on the box provides a tag for this product, and the vertically stacked planes form a

sum of tagged type products.

It should be noted how similar type de�nition cubes and predicate de�nition cubes are.

Both are represented as transparent cubes with an icon on their top, which names the icon un-

der de�nition. Ports on their side or top serve as formal parameters. Inside the de�nition cube

are vertically stacked planes, which denote clauses for predicates and variants for types. Ver-

tical arrangement denotes _" for predicates and \+" for types, while horizontal arrangement

denotes \^" for predicates and \�" for types.

Type de�nition cubes can occur in a Cube program wherever predicate de�nition cubes

may occur, and their scope extends just as far. Within this scope, there may be reference (i.e.

term) cubes which refer to the constructors de�ned by the type de�nition cube. We call such

reference cubes constructor cubes.

Figure 4.35 shows a constructor cube referring to the cons constructor de�ned by the list

type de�nition cube from Figure 4.34. Like all (value) reference cubes, it is represented by an

opaque green cube. It carries the cons icon on its top, the same icon which is on top of the

62

Figure 4.35: The \cons" Constructor Figure 4.36: The List [1; 2; 3]

lower plane de�ning the cons constructor, and it has two ports in its side, which are labeled by

the same two icons as those which are hovering above the two type cubes in the lower plane.

The left port can take an argument of any type, say � , and the right port can take an argument

of type \List of �".

Constructor cubes are �rst-class values, hence they can be contained in holder cubes,
ow

through pipes, be passed as arguments to predicates or to other constructors, etc. Their port

can be connected to pipes or be �lled with values. Whenever we do the latter to build up

complex structures, it is customary to move each port so that the icon labeling it occupies

the same position as it has in the type plane de�ning the constructor. The result is a visually

pleasing representation of recursive data structures. Figure 4.36 shows the list \[1; 2; 3]"enclosed

in a holder cube.

This example shows how crucial the choice of constructor icon is for achieving a pleasing

representation of recursive structures, and it explains why we chose these particular icons for

nil and cons.

Unfortunately, this technique does not always produce visually pleasing data representa-

tions. For example, a two-dimensional array would be modeled in Cube as a list of lists.

Figure 4.37 shows the standard representation of the array

�
1 2
3 4

�
. The most intuitive vi-

sualization, however, would be to display a two-dimensional grid on top of a cube. Further

63

Figure 4.37: Standard Representation of a

Two-Dimensional Array

research is needed to devise ways to specify customized visualizations of values, depending on

their types.

The program shown in Figure 4.38 shows two holder cubes connected by a pipe. The left

holder cube contains a cube representing the list \[1; 2; 3]". Upon type inference, the Cube

system infers that, since the left holder cube contains a list of integers and the two holder cubes

are connected, the right holder cube is also restricted to lists of integers. Therefore it �lls the

right holder cube with a type cube representing lists of integers: A type reference cube referring

to the list type constructor, whose one port is �lled with a type reference cube referring to the

integer type constructor (see Figure 4.39).

Now consider the program shown in Figure 4.40. Again, it shows two holder cubes connected

by a pipe; however, this time the left holder cube contains the value nil, which is of type \List

of �", i.e. polymorphic. So, upon type inference, Cube �lls the right holder cube with a type

reference cube referring to the list constructor, whose port is �lled with an uninstantiated type

variable (see Figure 4.41).

Constructors are used in Cube | just as in Prolog | both to construct terms and to

deconstruct them. We have already seen one way to use constructors to build up new terms:

by �lling their ports with other term cubes. Alternatively, we can connect them to pipes, which

can supply them with values. The same technique is used for deconstruction, except that now

values
ow out of the ports.

64

Figure 4.38: List [1; 2; 3] Flowing Into

Empty Holder Cube

Figure 4.39: Program From Figure 4.38 Af-

ter Type Inference

Figure 4.40: \nil" Flowing Into Empty

Holder Cube

Figure 4.41: Close-Up of Holder Cube From

Figure 4.40 After Type Inference

65

Figure 4.42: Unifying Two Partially Instan-

tiated Structures

Figure 4.43: Program From Figure 4.42 Af-

ter Evaluation

Indeed, the distinction between constructor and deconstructor is often blurred. Consider

the program shown in Figure 4.42. It shows two holder cubes which are both �lled with a cons

constructor cube, and connected by a pipe. The ports of both constructor cubes are connected

via pipes to other holder cubes. One of these holder cubes contains the value 1 and is connected

to the \arg
1
" port of the constructor cube on the left, another holder cube contains the value

nil and is connected to the \arg
2
" port of the constructor cube on the right.

Evaluating this program yields the solution shown in Figure 4.43. Note that both construc-

tor cubes served both as constructors and as deconstructors at the same time | one supplied

the head of the list and extracted the tail, the other supplied the tail and extracted the head.

Note also that the pipe in the center carried data in both directions at once.

4.8 Some Predicates Over Lists

The remainder of this chapter shows some more predicate de�nitions and typical usages. In

particular, we focus on �rst- and higher-order predicates over lists.

4.8.1 Determining the Length of a List

Consider the predicate de�nition cube shown in Figure 4.44, which takes two arguments, a list

l and an integer n, and holds if the length of l is n.

66

Figure 4.44: Predicate for Computing the

Length of a List

The upper plane contains the base case of the de�nition: the length of the empty list is 0.

This is represented by connecting the left port to a holder cube which contains the value nil,

and the right port to a holder cube which contains the value 0.

The lower plane contains the recursive case: The length of a non-empty list is 1 plus the

length of its tail. This is expressed by connecting the left port to a holder cube which contains

a cons constructor. cons is used here to deconstruct the list. Its \arg
1
" port (i.e. the head) is

connected by a pipe to an empty holder cube, while its \arg
2
" port is connected by a pipe to

the \list" port of a recursive reference to the length predicate. The \number" port of the length

predicate is connected by a pipe to one of the input ports of an addition predicate, whose other

input port receives the value 1, and whose output port is connected by a pipe to the right port

of the enclosing de�nition cube.

So, the cons constructor matches an incoming non-empty list, takes it apart, forwards its

head to the empty holder cube (i.e. e�ectively discards it) and its tail to a recursive invocation

of the length predicate, which thus determines the length of the tail of the incoming list. The

addition predicate adds 1 to this length, yielding the length of the whole incoming list, and

sends this value to the right port.

Figure 4.45 shows how this predicate can be used to compute the length of the list \[1; 2; 3]";

the solution to this query is shown in Figure 4.46. Interestingly enough, the predicate can also

be used with a reversed directionality. Figure 4.47 shows a query that asks for a list of length

67

Figure 4.45: Computing the Length of the

List [1; 2; 3]

Figure 4.46: Program From Figure 4.45 Af-

ter Evaluation

Figure 4.47: Computing a List of Length 3 Figure 4.48: Program From Figure 4.47 Af-

ter Evaluation

68

Figure 4.49: Close-Up of Left Holder Cube

of Figure 4.48

3, and Figure 4.48 shows the solution to this query: a list with 3 elements, each being a distinct

uninstantiated variable, but all of them being of the same, however unknown, type. Figure 4.49

shows a closeup of this list.

4.8.2 Mapping a Predicate Over a List

This example shows the Cube de�nition of the map predicate which was introduced in Sec-

tion 3.2. map is a higher-order predicate, which takes another (lower-order) binary predicate

(say p) and two lists (say [t1; � � � ; tm] and [t01; � � � ; t
0

n]), and holds if both lists are of equal length

(i.e. if m = n) and if the binary predicate holds when applied to corresponding elements in the

two lists (i.e. if p ti t
0

i holds for all 1 � i � m).

Figure 4.50 shows the de�nition cube for this predicate. The port for the lower-order

predicate is on the top of the predicate de�nition cube (which is the convention for predicate

arguments), the ports for the two list arguments are on the left and the right.

The upper plane represents the base case: mapping any predicate over the empty list yields

the empty list. This is expressed by connecting both \list" ports to holder cubes which contain

the value nil.

The lower plane represents the recursive case: both lists are decomposed, the lower-order

predicate is applied to their heads, andmap is applied recursively to their tails. This is expressed

by two holder cubes, one being connected to the left port, the other to the right port, and both

69

Figure 4.50: The \map" Predicate

being �lled with a cons constructor. The \head" and the \tail" ports of both constructors are

connected to pipes. The two pipes attached to the \head" ports connect them to the two ports

of a reference cube referring to the lower-order predicate; the two pipes attached to the \tail"

ports connect them to the two \list" ports of a reference cube referring to map itself, the third

port (the predicate argument) of this reference cube is �lled with a reference to the lower-order

predicate.

Figure 4.51 shows a query which uses the map predicate to map the successor predicate

(represented by the de�nition cube at the top right) over the list \[1; 2; 3]". Figure 4.52 shows

the solution to this query. The previously empty holder cube on the right is now being �lled

with the list \[2; 3; 4]".

The icons used inside the map predicate de�nition cube to identify the ports of the lower-

order predicate are not the same as the icons identifying the two ports of the successor predicate.

Hence, we needed to \wrap" the successor reference cube into a port renaming cube before

supplying it to the map predicate.

Note that the \predicate" argument of map must always be completely ground; otherwise,

the evaluation of the recursive case in which it is used will suspend until the predicate is

ground. The allowable instantiation patterns of the two \list" arguments, on the other hand,

depends only on the predicate argument. If we use a predicate argument which expects both

of its arguments to be ground (such as \greater"), then both list arguments of map have to be

completely ground; otherwise, the evaluation suspends. If we use a predicate argument which

70

Figure 4.51: Mapping the Successor Predi-

cate Over the List [1; 2; 3]

Figure 4.52: Program From Figure 4.51 Af-

ter Evaluation

expects at least one of its arguments to be ground, then for each two corresponding elements

of the two lists, at least one has to be ground. Finally, if we use a predicate argument which

expects neither of its arguments to be ground or even instantiated (such as \equal"), then the

two list arguments do not have to be instantiated at all, instead, map will generate all possible

solutions.

4.8.3 Filtering Out Some Elements of a List

�lter is a higher-order function frequently used by functional programmers. Axiomatically, it

is de�ned as follows:

�lter p [e1 ; � � � ; en] � [ei1 ; � � � ; eik]

where 1 � i1 < � � � < ik � n and for all j 2 f1; � � � ; ng : p ej =

8><
>:

true if j 2 fi1; � � � ; ikg

false otherwise

So, �lter takes a function p and a list [e1 ; � � � ; en]. p is a function which maps a value of type

� to a boolean, and the ei are of type �. It returns a list of all those ei for which p \holds"

(i.e. returns true).

In Lazy ML5, we could de�ne �lter as follows:

5Lazy ML in some way resembles Prolog, as it allows function de�nitions to be split into several cases (a weaker

form of clauses) and uses pattern matching (a weaker form of uni�cation) to bind actual to formal parameters.

71

Figure 4.53: The \�lter" Predicate

�lter p [] = []

�lter p (h : t) = if p h then t : (�lter p t) else �lter p t

Translating this function into a predicate gives rise to three clauses: one for the base case,

one for the recursive case where the predicate holds for the head of the list, and one for the

case where it does not hold. This third case requires the use of negation to explicitly state that

the predicate may not hold. Here is the Prolog de�nition of �lter:

�lter(P; []; []):

�lter(P;X :L;X :L0) :� Q = :: [P;X]; call(Q); �lter(P;L;L0):

�lter(P;X :L;L0) :�Q = :: [P;X]; not(Q); �lter(P;L;L0):

It should be mentioned that Prolog's not is a rather problematic metapredicate, as it does not

capture the semantics of negation correctly. For instance, the query

? � not(X = 0);X = 1:

fails, although logically it should succeed. This \unlogical" behavior is caused by the fact that

not tried to decide on the validity of \X = 0" before X was ground. In Cube, negation is

suspended until the negated atomic formula is completely ground.

72

Figure 4.53 shows the �lter predicate de�nition cube. The port on its top takes the lower-

order predicate (the \tester"), the left port takes the incoming list, and the right port returns

the �ltered list. Inside the cube are three planes.

The top plane represents the base case: Filtering the empty list produces the empty list.

This is expressed by connecting both \list" ports to holder cubes which contain the value nil.

The second plane represents the recursive case in which the tester holds. The left port is

connected to a holder cube which contains a cons constructor cube. The \tail" port of the

constructor is connected by a pipe to the \input list" port of a reference cube which recursively

refers to the �lter predicate, while the \head" port of the constructor is connected to the port

of a reference cube referring to the \tester" predicate (by using the same icon as the \predicate"

port of the enclosing de�nition cube). The pipe connecting the \head" port to the tester has

a T-joint, its third end leads to the \head" port of a second cons constructor cube, whose

\tail" port is connected to the \result list" port of the �lter predicate. This constructor cube

is contained in a holder cube, which is connected by a pipe to the \result list" port of the

enclosing de�nition cube.

Finally, the lower plane represents the recursive case in which the tester does not hold. The

left port of the enclosing de�nition cube is connected to a holder cube which contains a cons

constructor cube. Again, the \tail" port of the constructor is connected to the \input list" port

of a recursive reference to the �lter predicate, while the \head" port is connected to the port

of the tester predicate. But in this plane, the tester predicate is contained inside the port of a

negation predicate cube. The \result list" port of the recursive reference to the �lter predicate

is connected by a pipe to the \result list" port of the enclosing de�nition cube.

Figure 4.54 shows the �lter predicate being applied to the lower-order predicate odd and to

the list \[1; 2; 3]". Figure 4.55 shows the same query after evaluation. The previously empty

holder cube on the right has been �lled with the list \[1; 3]".

Note that both the predicate argument to �lter and the \input" list argument have to

be ground: the negation predicate expects its argument to be completely ground, and this

argument is the lower-order predicate applied to each of the elements of the input list in turn.

So, the �lter predicate is truly unidirectional.

73

Figure 4.54: Filtering all but the odd num-

bers from the list [1; 2; 3]

Figure 4.55: Program from Figure 4.54 af-

ter evaluation

74

Chapter 5

Formal Description

This chapter develops a formal de�nition of Cube. The way we do this is rather indirect. Instead

of giving a semantics based directly on pictures, we �rst describe a translation algorithm from

Cube pictures into a textual language, and then give type inference rules and an operational

(rewrite) semantics for this textual language. The understanding is that a Cube program is

well-typed if it translates into a well-typed textual program, and that a Cube program yields

a particular (visual) result if it translates into a textual program which yields a textual result

that is the translation of the visual result.

The structure of this section is as follows: Section 5.1 develops a translation scheme from

Cube into a textual language L0, Section 5.2 describes a type system for L0 (or a derivative of

it), and Section 5.3 de�nes a rewrite system which takes expressions of (a derivative of) L0 into

a normal form.

5.1 Translation From Pictures to Text

This section gives translation rules from Cube pictures into words of a textual language L0.

Table 5.1 gives the context-free syntax of L0.

In our textual language, the nonterminal symbols P , k, K, p, �, i, and f refer to predicate,

constructor, typeconstructor, port, and typeport symbols, and integer and
oatingpoint con-

stants. For convenience, we will use the symbols P , k , K , p , � , i , and f to refer

to predicate, constructor, typeconstructor, port, typeport, integer and
oatingpoint icons in

75

E 2 Program

c 2 Conjunction

d 2 Disjunction

t 2 Term

D 2 De�nition

x 2 Variable

k 2 Constructor � Variable

P 2 Predicate � Variable

i 2 Integer

f 2 Floatingpoint

p 2 Portname

K 2 Typeconstructor

� 2 Typevariable

V 2 Typevariant

� 2 Typeportname

� 2 Type

E :: (c Program

d :: letrec D1; � � � ; Dm in c1 _ � � � _ cn Disjunction

c :: letrec D1; � � � ; Dk in 9x1; � � � ; xm:t1 ^ � � � ^ tn Conjunction

t :: i Integer constant

j f Floating-point constant

j x Variable

j t1 = t2 Uni�cation

j t1(p = t2) Application

j t (p! p0) Parameter renaming

D :: type Kf�1 = �1; � � � ; �m = �mg = V 1 + � � �+ V n Type de�nition

j pred P = �fp1 = x1; � � � ; pk = xkg:d Predicate de�nition

V :: k fp1 : �1; � � � ; pn : �ng Type variant

� :: � Type variable

j K f�1 = �1; � � � ; �n = �ng Type constructor application

j fp1 : �1; � � � ; pn : �ng ! � Function type

Table 5.1: Syntax of L0

76

Type variant planes

Figure 5.1: Visual Syntax of Type De�nition Cubes

Type cube

Figure 5.2: Visual Syntax of Type Variant Planes

the visual language. The understanding is that x and x refer to two di�erent representations

of the same symbol.

Concrete predicate, constructor, typeconstructor, port, and typeport symbols of the textual

language are represented by strings. By convention, we start typeconstructor names (such as

Int or List) with an uppercase letter, and predicate and constructor names (such as plus or

cons) with a lowercase letter. Predicates and constructors are both special kinds of variables.

In addition, there is a sequence x1 ; x2 ; x3 ; ::: of variable names used to obtain new variables.

Analogously, there is a sequence t1 ; t2 ; t3 ; ::: of type variable names used to obtain new type

variables. By convention, we use a slanted font to refer to type constructors and type variables,

and predicates, constructors and other variables.

We use subscripted strings to refer to the parameters of type constructors, predicates, and

constructors. For example, List
1
refers to the �rst parameter of the List type constructor, and

plus
3
refers to the third parameter of the plus predicate. In Cube, ports are not �rst-class

values, so port symbols will always be constants, which we indicate by using a sans-serif font.

A type de�nition cube has the form shown in Figure 5.1. It consists of a transparent grey

cube with icon K , ports with icons �1 ; :::; �m (m � 0), and n type variant planes (n > 0),

77

Type cube

Figure 5.3: Type Constructor Application Figure 5.4: Function Type

Figure 5.5: Type Reference Cube

which represent the n variants of the sum-type de�ned here. By convention, we place the type

ports always on top of the type naming cube.

A type variant plane has the form shown in Figure 5.2. It consists of an enclosing grey

plane, carrying a transparent, grey constructor icon k on its top, and n type cubes inside the

plane (n � 0). The part of the plane above each type cube carries a transparent, green port

icon pi (1 � i � n).

A type cube can have one of three forms:

1. A type constructor application cube, as shown in Figure 5.3, consists of an opaque, grey

cube with a type constructor icon K on its top, and ports with port icons �1 ; :::; �n

(n � 0) set into the top. Each port must be �lled with a type cube. In order for this

expression to be well-formed, it must be within the scope (see page 49) of a type de�nition

cube (i.e. a naming cube) de�ning a type constructor K with exactly n ports labeled

�1 ; :::; �n .

78

2. A function type cube of the form shown in Figure 5.4. It consists of a (non-function) type

cube, called the result type cube, and ports labeled p1 ; :::; pn set into its side. Each

port must be �lled with a type cube, called an argument type cube.

3. A type port reference cube of the form shown in Figure 5.5 is an iconic reference to a

type parameter. It consists of an opaque, grey cube with a type port icon � on top. In

order to be well-formed, the enclosing type de�nition cube must have a port named � .

At this point, a small digression is in order. Initially, we wanted the syntax of type de�nitions

and predicate de�nitions to be as similar as possible. Therefore, we included type holder cubes

(representing type variables) and type pipes (representing the uni�cation of type variables)

into the language. These constructs mirrored the holder cube and pipe constructs of the value-

denoting fragment of the language, and thus provided a nice symmetry. On the other side, they

added a signi�cant layer of complexity to the translation scheme for types, since uni�cation

of types had to be performed statically, and could potentially fail, indicating a syntactically

ill-formed program. For this reason, we omitted type holder cubes and type pipes from the

�nal version of the language. The initial version of the language and the more complicated

translation scheme are described in [55].

Type de�nition cubes are translated into their textual representation by the following rules:

1. A type de�nition cube with type constructor icon K , type ports labeled �1 ; :::; �m ,

and variants translating to V 1; :::; V n translates to

type Kf�1 = �1; � � � ; �m = �mg = V 1 + � � �+ V n

where �1; :::; �m are new and distinct type variables. We say that �i is associated with

�i (1 � i � m).

2. A type variant plane with constructor icon k , and type cubes translating to �1; :::; �n

under port icons p1 ; :::; pn translates to

k fp1 : �1; � � � ; pn : �ng

79

List

List

nil

cons

cons

cons

1

2

1

Figure 5.6: De�nition of a List Type

3. A type constructor application cube with type constructor name K and type ports

�1 ; :::; �n , where the holder cubes of the ports translate to �1; :::; �n, translates to

K f�1 = �1; � � � ; �n = �ng

4. A type port reference cube with type port icon � , referring to the type parameter �

associated with the type variable �, translates to �.

5. A function type cube with argument type cubes translating to �1; :::; �n in ports labeled

p1 ; :::; pn and a result type cube translating to � , translates to

fp1 : �1; � � � ; pn : �ng ! �

At this point, we have a representation DT of the type de�nition cube. DT is of the form

type Kf�1 = �1; :::; �m = �mg = V 1 + :::+ V n.

Example 5.1.1 (Translation of the list type de�nition) The type de�nition cube shown

in Figure 5.6, which de�nes the list type, consists of a type de�nition cube with icon List, which

has one port, labeled List
1
, set into its top. Inside the type de�nition cube are two type variant

planes, the upper one carrying the type constructor icon nil and being empty, and the lower

one carrying the type constructor icon cons, and being �lled with two type cubes below port

icons cons
1
and cons

2
. One of them is a type reference cube (call it �1) with icon List

1
on its

80

Figure 5.7: Visual Syntax of Type Variables

top (thus referring to the port of the type de�nition cube). This type cube is below the port

icon cons
1
. The other is a type constructor application cube (call it �2), consisting of an opaque

cube with icon List on its top, and a port labeled List
1
set into it. The port contains another

type reference cube (call it �3), also with icon List
1
on its top.

The type de�nition cube is translated as follows: We associate the type port icon List
1

with a type variable t1 (by rule 1). The type reference cube �1 carries the icon List
1
and

thus translates to t1 (by rule 4). The same rule applies for the type reference cube �3. The

type constructor application cube �2 then translates to ListfList
1
= t1g (by rule 3). The lower

type variant plane now translates to consfcons
1
: t1 ; cons2 : ListfList1 = t1gg and the upper

plane simply to nil (by rule 2). The type de�nition cube �nally translates (by rule 1) to the

representation DT

type ListfList
1
= t1g = nil + consfcons

1
: t1 ; cons2 : ListfList1 = t1gg

Section 5.2 describes a type inference system which determines if an expression is well-typed,

and computes the type of each subexpression. Some of these types will be displayed right inside

the Cube program. In particular, the type of each empty holder cube (including empty ports)

is indicated by �lling the holder cube with a type cube.

An inferred type can be a type variable, a type constructor application, or a function type.

The corresponding type cubes are constructed using the following three rules:

1. a type variable ti (where i indicates the position of ti in the sequence of type variables)

is represented by an opaque grey cube with a grey icon on its top, such that the number

81

i in the top left corner of the (otherwise blank) icon. Figure 5.7 shows the representation

of the type variable t3 .

2. A type constructor application K f�1 = �1; � � � ; �n = �ng (n � 0) is represented by a

type constructor application cube: an opaque grey cube with icon K and ports named

by transparent grey icons �1 ; :::; �n set into the cube's top, and �lled with the repre-

sentations of �1; :::; �n.

3. A function type fp1 : �1; � � � ; pn : �ng ! � (n > 0) is represented by a function type cube:

a type cube representing � , with ports named p1 ; :::; pn set into its sides and �lled with

the representations of �1; :::; �n.

This concludes the translation schemes for types and type de�nitions. The remainder of

this section speci�es schemes for translating value-denoting pictures into L0 expressions, and

vice versa. The �rst few de�nitions are aimed at resolving the pipes in a picture:

De�nition 5.1.1 Let x be a variable and t be a term. A constraint is an equation of the form

x = t.

De�nition 5.1.2 Each holder cube in a Cube program (including the ports of predicate de�ni-

tion cubes and of application cubes) is associated with a variable, such that there is an injective

(1-1) mapping from holder cubes to variables.

De�nition 5.1.3 A holder cube is called a top-level holder cube if it is inside a conjunction (see

below), with no cube inside this conjunction surrounding it. Otherwise, it is called a lower-level

holder cube.

Icons are visible only within a certain scope, namely the box enclosing the naming cube by

which they are de�ned. In order to deal with the issue of scope, we need to establish some more

de�nitions, leading up to the notion of an icon environment.

De�nition 5.1.4 An icon binding is an association x 7! x between an icon x and a variable

x.

De�nition 5.1.5 An icon environment � = f x1 7! x1; :::; xn 7! xng (n � 0) is a set of

icon bindings, i.e. a mapping from icons to variables. �0 denotes the initial icon environment,

82

the icon environment which maps the icons of the prede�ned predicates and constructors to

variable names.

De�nition 5.1.6 Let � be an icon environment and x be an icon. Then �(x) is de�ned to

be x if there is a binding x 7! x in �. Otherwise, �(x) is unde�ned.

De�nition 5.1.7 Let � be an icon environment and x 7! x be a binding. Then �[x 7! x],

the extension of � by x 7! x, is de�ned as follows:

(�[x 7! x])(x0) =

8><
>:

x if x0 = x

�(x0) otherwise

�[x1 7! x1; :::; xn 7! xn] is an abbreviation of (:::(�[x1 7! x1]):::)[xn 7! xn].

De�nition 5.1.8 (Yielding of Bindings)

1. A type variant plane with icon k , which translates to kfx1 : �1; :::; xn : �ng, yields the

bindings k 7! k.

2. A type de�nition cube, whose n type variant planes yield the bindings k1 7! k1; :::; kn 7!

kn, yields the bindings k1 7! k1; :::; kn 7! kn.

3. A predicate de�nition cube with predicate icon P , which translates (as described below)

to pred P = e, yields the binding P 7! P .

There are six kind of term cubes: reference cubes, integer cubes,
oatingpoint cubes, holder

cubes, application cubes, and port renaming cubes.

� A reference cube is of the form shown in Figure 5.8.a. It consists of an opaque green cube

with icon x on its top.

� An integer cube is of the form shown in Figure 5.8.b. It consists of an opaque green cube

with an integer icon i on its top.

� An
oatingpoint cube is of the form shown in Figure 5.8.c. It consists of an opaque green

cube with a
oatingpoint icon f on its top.

83

42

(a) Reference Cube (b) Integer Cube

3.14159

(c) Floatingpoint cube (d) Holder cube

(e) Application cube using reference cube (f) Application cube using holder cube

Term cube

(g) Port renaming cube

Figure 5.8: Term Cubes

84

� A holder cube is of the form shown in Figure 5.8.d. It consists of a transparent green

cube which can either be empty or �lled with another term cube, and can be connected

to pipes. A port of a predicate de�nition cube (which is a special kind of holder) must

always be empty 1.

� An application cube is a term cube with n ports (n � 1) set into its walls. The term

cube must be either a reference cube (see Figure 5.8.e) or an empty holder cube (see

Figure 5.8.f)2. The icon of each port is on the wall touching the term cube, which is

transparent, the other walls are opaque.

� A port renaming cube is of the form shown in Figure 5.8.g. It consists of a term cube

with (at least) ports named p1 ; :::; pn (n � 1) in its walls (i.e. the term cube is an \ap-

plication" cube, where no values are supplied to the ports p1 ; :::; pn), and a transparent

cube surrounding it, with port icons p01 ; :::; p
0

n over p1 ; :::; pn .

A pipe is an opaque structure shaped like a spanning tree, having at least two ends, such

that each end is connected to a holder cube.

A conjunctive region is a region of space containing a set of k de�nition cubes (see below)

(k � 0), a set of m term cubes (m � 0), and a set of n pipes (n � 0).

A plane, as shown in Figure 5.9, is a conjunctive region surrounded by a transparent green

box. A pipe may go through the wall of a plane, if it connects some cubes outside the plane

with some cubes inside the plane.

A Cube program, as shown in Figure 5.10, is a conjunctive region.

A predicate de�nition cube has the form shown in Figure 5.11. It consists of a transparent

green cube with icon P and ports labeled p1 ; :::; pk (k � 0), and m local de�nition cubes

(m � 0) and n planes (n � 0) inside the predicate de�nition cube. Pipes can be used to connect

the ports of the predicate de�nition cube to cubes inside the plane. However, pipes may not

pass through the walls of the predicate de�nition cube, and they may not connect ports directly.

A de�nition cube is either a predicate de�nition cube or a type de�nition cube.

1We make this restriction only to ease the translation.
2It cannot be an integer or a
oatingpoint cube, as these do not have a function type and thus cannot have

ports. A �lled holder cube can be replaced by the term cube inside it. An application cube can be merged with

the outer application cube. A port renaming cube would be useless, as values can be supplied to ports regardless

of their names.

85

Term cubes

Definition cubes

Figure 5.9: Visual Syntax of Planes

Term cubes

Definition cubes

Figure 5.10: Program

Definition cube

Planes

Definition cube

Port

Figure 5.11: Visual Syntax of Predicate De�nition Cubes

86

The translation method is as follows:

1. (Term cubes) Term cubes are translated with respect to an icon environment �, their

translation may modify a set C of value constraints, and the result of the translation is a

term.

(a) (Reference cubes) A reference cube with icon x translates to �(x).

(b) (Integer cubes) An integer cube with icon i translates to i.

(c) (Floatingpoint cubes) A
oatingpoint cube with icon f translates to f .

(d) (Holder cubes) Assume the holder cube is associated with the variable x. A top-

level holder cube translates to true (a prede�ned predicate which always succeeds),

a lower-level holder cube translates to x. If the holder cube is �lled with a term cube

which translates with respect to � and C to t, add the constraint x = t to C.

(e) (Application cubes) Assume the application cube consists of a term cube which

translates with respect to � and C to t, and ports labeled p1 ; :::; pm ; pm+1 ; :::; pn

(0 � m � n; 1 � n), such that the holder cubes making up the ports p1 ; :::; pm

are either connected to a pipe, or �lled with a term cube, that these holder cubes

translate with respect to � and C into terms t1; :::; tm, and that the holder cubes

making up the ports pm+1 ; :::; pn are neither connected to a pipe, nor �lled with

a term cube3. Then the application cube translates to t(p1 = t1):::(pm = tm).

(f) (Port renaming cubes) A port renaming cube consisting of a term cube which

translates with respect to � and C to t, ports labeled p1 ; :::; pn set into the term

cube, and icons p01 ; :::; p
0

n superimposing them, translates to t (p1 ! p01) � � �(pn !

p0n).

2. (Pipes) Pipes are resolved, this process may modify a constraint set C. In order to resolve

a pipe connecting n holder cubes associated with variables x1; :::; xn, add the constraints

x1 = x2; :::; x1 = xn to C.

3The translation scheme for application cubes re
ects a design choice we had to make. In an alternative

setting, each port in the picture, regardless whether it is supplied a value or not, is considered to be a binding of

an actual to a formal parameter. In particular, a port which is empty, i.e. not supplied any value, is considered

to be the binding of a variable with only one occurrence (like \ " in Prolog) to a formal parameter. The problem

with this approach is that ports are visible in a Cube program only if and when they are used. This con
icts

with our ideas about interactive editing of Cube programs: Unused ports in occurrences of (previously de�ned)

predicates or constructors should be visible while editing, so that pipes can be connected to these ports.

87

3. (Conjunctive regions) Conjunctive regions are translated with respect to an icon en-

vironment �, the result of the translation is a conjunction. Assume a conjunctive region

contains k de�nition cubes, m term cubes, and n pipes. Let b1; :::; bp be the bindings

yielded by the k de�nition cubes (see De�nition 5.1.8). Let �0 = �[b1; :::; bp]. Translate

the k de�nition cubes with respect to �0, obtaining de�nitions D1; :::; Dk. Associate the

holder cubes in the conjunctive region which are not part of the local de�nition cubes

with new and distinct variables x1; :::; xq. Let C be an initially empty set of value con-

straints. Translate the m term cubes with respect to �0 and C, obtaining terms t1; :::; tm,

and resolve the n pipes with respect to C. Assume C is fx0

1 = t01; :::; x
0

r = t0rg afterwards.

Then the conjunctive region translates to

letrec D1; :::; Dk in 9x1; :::; xq:t1 ^ :::^ tm ^ x
0

1 = t01 ^ :::^ x
0

r = t0r ^ true

We drop all the true in the conjunction, as long as at least one conjunct remains.

4. (Planes) Planes are translated with respect to an icon environment �. The translation

of a plane is the same as the translation of its conjunctive region.

5. (Programs) Assume a program consists of a conjunctive region which translates with

respect to the initial icon environment �0 to c. Then the program translates to (c.

6. (De�nition cubes) De�nition cubes are translated with respect to an icon environment

�, the result being a de�nition.

(a) (Type de�nition cubes) The translation method for a type de�nition cube is

described on page 79. This method actually ignores �.

(b) (Predicate de�nition cubes) Assume a predicate de�nition cube with icon P , k

ports labeled p1 ; :::; pk , m local de�nition cubes, and n planes. Associate new and

distinct variables x1; :::; xk with the ports. Let b1; :::; bp be the bindings yielded by

the m local de�nition cubes. Let �0 = �[p1 7! x1; :::; pk 7! xk; b1; :::; bp]. Translate

the m de�nition cubes with respect to �0, obtaining de�nitions D1; :::; Dm. Translate

the n planes with respect to �0, obtaining conjunctions c1; :::; cn. Then the predicate

88

t9 t11 t10

t1 t2

t6 t4 t8

t5 t3 t7

Top view onto lower plane Top view onto upper plane

Figure 5.12: A Program Using the Factorial Predicate, and Details of It

de�nition cube translates to

pred P = �fp1 = x1; � � � ; pk = xkg:letrec D1; :::; Dm in c1 _ :::_ cn _ false

false is a primitive predicate which always fails. If n > 0, we can drop false.

Example 5.1.2 Consider the factorial program shown in Figure 5.12. In order to translate

it, we have (by rule 5) to translate the conjunctive region it is contained in with respect to

the initial icon environment �0 = f � 7! minus; > 7! greater; � 7! times; :::g 4. This

conjunctive region contains one de�nition cube, which yields (by De�nition 5.1.8) the binding

4For this example, no other parts of �0 matter.

89

! 7! fact. We set �1 to be �0[! 7! fact] (by rule 3), and translate the de�nition cube

with respect to �1. This de�nition cube is a predicate de�nition cube with predicate icon ! ,

ports labeled n and n! , and two planes, so rule 6b applies. We associate the variables x1

and x2 with the ports. As the predicate de�nition cube contains no local de�nition cubes,

�2 = �1[n 7! x1 ; n! 7! x2]. Now we have to translate the two planes with respect to �2. In

order to translate the lower plane (see Figure 5.12), we translate (by rule 4) the conjunctive

region it encloses. The conjunctive region contains no local de�nition cubes, two term cubes t1

and t2, and two pipes. So (by rule 3) �2 does not have to be extended. We associate the two

holder cubes t1 and t2 with variables x3 and x4 , and initialize C := ;. Next we translate t1

with respect to �2 and C. t1 is a top-level holder cube, so it translates (by rule 1d) to true.

It contains an integer cube with icon 1 , which translates (by rule 1b) to 0, so we add (by

rule 1d) the constraint x3 = 0 to C. Similarly, t2 translates to true, and x4 = 1 is added to

C. Now we have to resolve (by rule 3) the two pipes connected to t1 and t2. The �rst pipe

connects to t1 which is associated with x3 , and to the left port of the predicate de�nition cube,

which is associated with x1 , so we add (by rule 2) the constraint x1 = x3 to C. Similarly, for

the second pipe we add x2 = x4 to C. C is now fx3 = 0; x4 = 1; x1 = x3 ; x2 = x4g. So the

conjunctive region translates (by rule 3) to

9x3 ; x4 :x3 = 0 ^ x4 = 1 ^ x1 = x3 ^ x2 = x4

or e1 for short. This is also (by rule 4) the translation of the lower plane of the predicate

de�nition cube.

In order to translate the upper plane (see Figure 5.12), we have (by rule 4) again to translate

with respect to �2 the conjunctive region it encloses. The conjunctive region contains no local

de�nition cubes, 6 term cubes t3; :::; t8, and 6 pipes. So (by rule 3) �2 does not have to be

extended. There are a total of 12 holder cubes in the region (two of them top-level holder

cubes), and we associate the variables x5 ; :::; x16 with them. We initialize C := ;. Then

we translate the term cubes t3; :::; t8 with respect to �2 and C. t3 is a top-level holder cube,

associated with x5 , and �lled with an integer cube with icon 0 , so it translates (by rules 1d

and 1b) to true, and x5 = 0 is added to C. t4 is a top-level holder cube associated with x6

and �lled with an integer cube with icon 1 , so it translates to true, and x6 = 1 is added

90

to C. t5 is an application cube, consisting of a reference cube with icon > , which translates

(by rule 1a) with respect to �2 and C to greater, and two ports labeled !> and > .

Ports are lower-level holder cubes. The �rst port translates (by rule 1d) to x7 , the second

to x8 . As both are empty, no constraints are added to C. But each of them is connected

to a pipe, and thus really represents an application. So the application cube translates (by

rule 1e) to greater(greater
1
= x7)(greater2 = x8) . Similarly, t6 translates to minus(minus

1
=

x9)(minus
2
= x10)(minus

3
= x11), t7 translates to times(times

1
= x12)(times

2
= x13)(times

3
=

x14), and t8 translates to fact(fact
1
= x15)(fact2 = x16). Note that the icon ! occurs

recursively within the predicate de�nition cube de�ning it.

Next we have to translate the 6 pipes within the conjunctive region. The �rst is a pipe with

four ends, connecting the holder cubes associated with the variables x1 , x7 , x9 , and x12 , so

we add the constraints x1 = x7 , x1 = x9 , and x1 = x12 to C. The 5 other pipes each have

only two ends, connecting the holder cubes associated with the variables x5 and x8 , x6 and

x10 , x11 and x15 , x13 and x16 , and x14 and x2 , respectively. Hence we add the constraints

x5 = x8 , x6 = x10 , x11 = x15 , x13 = x16 , and x14 = x2 to C. C is now fx5 = 0; x6 = 1; x1 =

x7 ; x1 = x9 ; x1 = x12 ; x5 = x8 ; x6 = x10 ; x11 = x15 ; x13 = x16 ; x14 = x2g. So (by rule 3) the

conjunctive region translates to

9x5 ; :::; x16:

greater(greater
1
= x7)(greater2 = x8)^

minus(minus
1
= x9)(minus

2
= x10)(minus

3
= x11)^

times(times
1
= x12)(times

2
= x13)(times

3
= x14)^

fact(fact
1
= x15)(fact2 = x16)^

x5 = 0 ^ x6 = 1 ^ x1 = x7 ^ x1 = x9 ^ x1 = x12^

x5 = x8 ^ x6 = x10 ^ x11 = x15 ^ x13 = x16 ^ x14 = x2

or e2 for short. This is also (by rule 4) the translation of the upper plane. So the entire predicate

de�nition cube translates (by rule 6b) to

pred fact = �ffact
1
= x1 ; fact2 = x2g:e1 _ e2

91

We are back to the translation of the overall conjunctive region. We associate (by rule 3)

the four holder cubes in the conjunctive region with variables x17 ; :::; x20, and initialize C := ;.

Then we translate the term cubes t9, t10, and t11 with respect to �1 and C. t9 is a top-level

holder cube, associated with x17 , and �lled with an integer cube with icon 3 , which translates

(by rule 1b) to 3. Hence t9 translates (by rule 1d) to true, and x17 = 3 is added to C. t10 is

an empty top-level holder cube, associated with x18 , and translates (by rule 1d) to true. t11 is

an application cube, consisting of a reference cube with icon ! , which translates (by rule 1a)

to fact, and two ports labeled n and n! . These ports, both lower-level holder cubes, are

associated with variables x19 and x20 , and thus translate (by rule 1d) to x19 and x20 . So t11

translates to fact(fact
1
= x19)(fact2 = x20).

Now we need (again by rule 3) to resolve the two pipes. One of them connects the holder

cube t9, associated with x17 , to the left port of t11, associated with x19 , so we add (by rule 2)

x17 = x19 to C. Similarly, for the other pipe, we add x18 = x20 to C. C is now fx17 =

3; x17 = x19 ; x18 = x20g. So the outermost conjunctive region translates (by rule 3) to

letrec pred fact = �ffact
1
= x1 ; fact2 = x2g:e1 _ e2

in 9x17 ; :::; x20:

fact(fact
1
= x19)(fact2 = x20) ^ x17 = 3 ^ x17 = x19 ^ x18 = x20

92

x3 : Int x3 : t2

Figure 5.13: Uninstantiated Variables

Hence the overall program translates (by rule 5) to

(letrec pred fact =

�ffact
1
= x1 ; fact2 = x2g:

(9x3 ; x4 :

x3 = 0 ^ x4 = 1 ^ x1 = x3 ^ x2 = x4)_

(9x5 ; :::; x16:

greater(greater
1
= x7)(greater2 = x8)^

minus(minus
1
= x9)(minus

2
= x10)(minus

3
= x11)^

times(times
1
= x12)(times

2
= x13)(times

3
= x14)^

fact(fact
1
= x15)(fact2 = x16)^ x5 = 0 ^ x6 = 1^

x1 = x7 ^ x1 = x9 ^ x1 = x12 ^ x5 = x8 ^ x6 = x10 ^ x11 = x15^

x13 = x16 ^ x14 = x2)

in 9x17 ; :::; x20:

fact(fact
1
= x19)(fact2 = x20) ^ x17 = 3 ^ x17 = x19 ^ x18 = x20

Section 5.3 describes an operational semantics which rewrites a textual program into a

normal form, if there is one, and which obtains as a side e�ect the terms certain variables of

the original program get replaced by when deriving this normal form. These terms can be

integer and
oating point constants, variables, and \closures". They shall then be displayed

right inside the original Cube program. So, we need to translate the textual terms back into

visual term cubes. This is done according to the following four rules:

93

1. An integer constant i is visualized by an integer term cube with icon i .

2. A
oatingpoint constant f is visualized by a
oatingpoint term cube with icon f .

3. A variable xi of type � is visualized by a type cube representing � (see page 81), with

the number i being in the lower right corner of the top side of the type cube. Figure 5.13

shows two such variable cubes.

4. A \closure" 5 results from applying either a constructor or a predicate to some arguments.

The closure is represented by an application cube consisting of a reference cube referring

to the constructor or predicate, and empty ports representing the remaining arguments.

5.2 Type Inference

This section describes a type inference system for Cube. It does this by giving a set of type

inference rules for (a derivate of) L0. The understanding is that a Cube program is well-typed

if and only if its translation into L0 by the translation method described in the previous section

is well-typed.

First we want to establish some terminology. It turns out to be convenient if we collapse

disjunctions, conjunctions, and terms of L0 into one single syntactic category, namely expres-

sions. Table 5.2 shows this simpli�ed version of L0, called L1. Clearly, every word in L0 is also

a word in L1 (but not vice versa).

Associated with every expression e is a type scheme �; we denote this by e : � and call it

a typing. A type scheme is of the form 8�1: � � � 8�n:� (n � 0) and universally quanti�es the

type variables �1; � � � ; �n in � . A type can be a type variable �, a type constructor application

K f�1 = �1; � � � ; �n = �ng, or a function type fp1 : �1; � � � ; pn : �ng ! � . The \base types" Int,

Float, and Prop are treated as nullary type constructors.

5In the standard terminology, a closure is a value. However, in this context, we do not distinguish between

terms and values.

94

E 2 Program

e 2 Expression

D 2 De�nition

x 2 Variable

k 2 Constructor � Variable

P 2 Predicate � Variable

i 2 Integer

f 2 Floatingpoint

p 2 Portname

K 2 Typeconstructor

� 2 Typevariable

V 2 Typevariant

� 2 Typeportname

� 2 Type

� 2 Typescheme

E :: (e Program

e :: i Integer constant

j f Floating-point constant

j x Variable

j e1 = e2 Uni�cation

j e1(p = e2) Application

j e (p! p0) Parameter Renaming

j �fp1 = x1; � � � ; pn = xng:e Abstraction

j letrec D1; � � � ; Dn in e De�nitions

j e1 _ � � � _ en Disjunction

j e1 ^ � � � ^ en Conjunction

j 9x1; � � � ; xn:e Existential quanti�cation

D :: pred P = e Predicate de�nition

j type Kf�1 = �1; � � � ; �m = �mg = V 1 + � � �+ V n Type de�nition

V :: k fp1 : �1; � � � ; pn : �ng Typevariant

� :: � Type variable

j fp1 : �1; � � � ; pn : �ng ! � Function type

j K f�1 = �1; � � � ; �n = �ng Type constructor application

� :: 8�:� Type variable generalization

j � Type

Table 5.2: Syntax of L1

95

For example, the following typings hold:

1 : Int

3:14159 : Float

fact : ffact
1
: Int; fact

2
: Intg ! Prop

where fact refers to the factorial predicate translated in Example 5.1.2.

Now consider the expression �fport
1
= x1g:true. This predicate can be applied to one

argument, as in (�fport
1
= x1g:true)(port1 = 5). But the type of the argument does not

matter, the application will always be \well-typed". We call such a predicate polymorphic. The

type scheme of this predicate is 8t1 :fport1 : t1g ! Prop. The universal quanti�er indicates

that t1 can take on any type. The function type indicates that the predicate takes one argument

of type t1 at \port" port
1
, and returns a truth-value.

Recall the list type de�nition from Example 5.1.1. It gives rise to two constructors, cons

and nil. Their typings are

cons : 8t1 :fcons1 : t1 ; cons2 : ListfList1 = t1gg ! ListfList
1
= t1g

nil : 8t1 :ListfList1 = t1g

These typings are derived directly from the de�nition of List, by universally quantifying the

free type variables occurring in the parameter list of the type de�nition.

The expression cons(cons
1
= 5)(cons

2
= nil) is well-typed: applying cons at \port" cons

1

to 5 specializes t1 in the type of cons to Int, and removes the cons
1
argument from the function

type, so that the resulting expression has type

fcons
2
: ListfList

1
= Intgg ! ListfList

1
= Intg

Applying this expression at port cons
2
to nil works, as the type of nil can be specialized to be

the same as the type of cons
2
, so the resulting expression has type fg ! ListfList

1
= Intg or

simply ListfList
1
= Intg. But

cons(cons
1
= 5)(cons

2
= cons(cons

1
= 3:14159)(cons

2
= nil))

96

is not well-typed, because t1 cannot be specialized to Int and to Float at the same time.

The above example demonstrates a technique known as currying: \functions" (including

predicates) which take multiple arguments can be applied to one argument at a time. This is

re
ected by the following law:

De�nition 5.2.1 (Equivalence of function types)

1. fg ! � and � are equivalent

2. fp1 : �1; � � � ; pm : �mg ! (fp01 : �
0

1; � � � ; p
0

n : �
0

ng ! �) and

fp1 : �1; � � � ; pm : �m; p
0

1 : �
0

1; � � � ; p
0

n : �
0

ng ! � are equivalent

Unfortunately, the Hindley-Milner type inference system is more conservative than one

would hope: it rules out some type-safe expressions, expressions which will not \go wrong" due

to a type error. One particular restriction is that the variables bound by a set of mutually

recursive de�nitions may occur only monomorphically in the bodies of the de�nitions. For

example, in the expression

letrec pred foo = e1;pred bar = e2 in e

all occurrences of foo and bar within e1 and e2 must have the same type. So

letrec pred alwaysTrue = �fport
1
= x1g:true;

pred trueAsWell = alwaysTrue(port
1
= 5) ^ alwaysTrue(port

1
= 3:14159)

in trueAsWell

is rejected by our type system as ill-typed, because alwaysTrue is used in trueAsWell once as

a predicate over integers, and once as a predicate over
oatingpoint numbers. The expression

is, however, perfectly type-safe.

In order to minimize the impact of this restrictiveness, it is customary to split up each

letrec, such that de�nitions which are not truly mutually recursive are not in the same letrec.

97

The above example could for instance be transformed into

letrec pred alwaysTrue = �fport
1
= x1g:true in

letrec pred trueAsWell = alwaysTrue(port
1
= 5)^ alwaysTrue(port

1
= 3:14159) in

trueAsWell

which is well-typed in our type-system.

This transformation is accomplished by building a dependency graph for each letrec, such

that each de�nition is represented by a vertex, and each use of a variable de�ned in the letrec

is represented by an arc from the de�nition it is used in to its own de�nition. The strongly

connected components of the graph are then identi�ed and collapsed into single nodes. The

resulting graph is acyclic, so it can be sorted topologically. The resulting ordering of nodes

(each node now containing a set of de�nitions) is the desired ordering of letrecs, such that each

letrec contains only truly mutually recursive de�nitions. Further details on this technique can

be found in [64].

In the following, we assume that the expressions obtained from the picture-to-text transla-

tion have been transformed in such a way.

The type system we are describing now is formulated in form of type inference rules. This

technique goes back to Damas and Milner [17]. We use the same notation as [22].

An assumption is an association of a variable x with a type scheme �, denoted by x : �

as described above. A denotes a �nite set of unique assumptions. A ` e : � means \from A

we can deduce that e has type scheme �", and is called a sequent. A:x : � denotes the set

of assumptions formed by removing any assumption about x from A, and then adding x : �.

s1���sn
s

is read \from the sequents s1 and ... and sn we can infer s". Finally, [�=�]� is the result

of substituting each free occurrence of the type variable � in the type scheme � by the type � .

Table 5.3 shows the type inference rules for L1.

Example 5.2.1 Consider the program

(letrec pred alwaysTrue = �fport
1
= x1g:true in

alwaysTrue(port
1
= 5)^ alwaysTrue(port

1
= 3:14159)

98

[INT] A ` i : Int

[FLOAT] A ` f : Float

[VAR] A:x : � ` x : �

[UNIF]
A ` e1 : � A ` e2 : �

A ` (e1 = e2) : Prop

[APP]
A ` e1 : fp : �g ! � 0 A ` e2 : �

A ` (e1(p = e2)) : � 0

[DISJ]
A ` e1 : Prop � � � A ` en : Prop

A ` (e1 _ � � � _ en) : Prop

[CONJ]
A ` e1 : Prop � � � A ` en : Prop

A ` (e1 ^ � � � ^ en) : Prop

[EXIST]
A : x1 : �1 : � � � : xn : �n ` e : Prop

A ` (9x1; � � � ; xn:e) : Prop

[ABS]
A : x1 : �1 : � � � : xn : �n ` e : �

A ` (�fp1 = x1; � � � ; pn = xng:e) : fp1 : �1; � � � ; pn : �ng ! �

[PROG]
A ` e : Prop

A `(e : Prop

[SPEC]
A ` e : 8�:�

A ` e : [�=�]�

[TDEF]
A : k1 : (8�1; � � � ; �k:fp11 : �11; � � � ; p1n1 : �1n1g ! K f�1 = �1; � � � ; �k = �kg) : � � � ` e : �

A ` (letrec type Kf�1 = �1; � � � ; �k = �kg = k1 fp11 : �11; � � � ; p1n1 : �1n1g+ � � � in e) : �

[PDEF]

A : P 1 : �1 : � � � : P n : �n ` e1 : �1
...

A : P 1 : �1 : � � � : Pn : �n ` en : �n
A : P 1 : 8 ~�1:�1 : � � � : P n : 8 ~�n:�n ` e : �

A ` (letrec pred P 1 = e1; � � � ;pred P n = en in e) : �

where 8 ~�i = 8�i1: � � � :�imi
s.t. �i1; � � � ; �imi

are not free in A

Table 5.3: Type Inference Rules for L1

99

For brevity, we will abbreviate �fport
1
= x1g:true as e1, alwaysTrue(port1 = 5) as e2, and

alwaysTrue(port
1
= 3:14159) as e3.

Our initial set of assumptions A0 contains assumptions about the type schemes of the pre-

de�ned predicates and constructors. In particular, as true and false are viewed as variables

referring to prede�ned nullary predicates, A0 will contain assumptions about them. For sim-

plicity, in this example we assume that A0 = ftrue : Propg.

The overall expression is a program, so the [PROG] rule applies:

letrec pred alwaysTrue = e1 in e2 ^ e3
[PROG]

ftrue : Propg ` ((letrec pred alwaysTrue = e1 in e2 ^ e3) : Prop

The next expression is a predicate de�nition, so the [PDEF] rule applies:

ftrue : Prop; alwaysTrue : �1g ` e1 : �1 ftrue : Prop; alwaysTrue : 8~�:�1g ` (e2 ^ e3) : Prop
[PDEF]

ftrue : Propg ` (letrec pred alwaysTrue = e1 in e2 ^ e3) : Prop

e1 is a �-abstraction, so the [ABS] rule applies:

ftrue : Prop; alwaysTrue : �1; x1 : �2g ` true : �3
[ABS]

ftrue : Prop; alwaysTrue : �1g ` (�fport1 = x1g:true) : fport1 : �2g ! �3

and �1 gets replaced by fport
1
: �2g ! �3 throughout the proof. true is a variable, so the

[VAR] rule applies:

[VAR]
ftrue : Prop; alwaysTrue : �1; x1 : �2g ` true : Prop

and �3 gets replaced by Prop throughout the proof. Now we get back to the body of the

predicate de�nition. The set of assumptions ftrue : Prop; alwaysTrue : 8~�:�1g is by now

ftrue : Prop; alwaysTrue : 8~�:fport
1
: �2g ! Propg. Setting �2 = t1 , we get

A1 = ftrue : Prop; alwaysTrue : 8t1 :fport1 : t1g ! Propg

The body of the letrec is a conjunction, so the [CONJ] rule applies:

A1 ` e2 : Prop A1 ` e3 : Prop
[CONJ]

A1 ` (e2 ^ e3) : Prop

100

e2 is an application, so the [APP] rule applies:

A1 ` alwaysTrue : fport1 : �4g ! Prop A1 ` 5 : �4
[APP]

A1 ` (alwaysTrue(port1 = 5)) : Prop

Next we apply the [SPEC] rule to the variable alwaysTrue:

A1 ` alwaysTrue : 8t1 :fport1 : t1g ! Prop
[SPEC]

A1 ` alwaysTrue : fport1 : Intg ! Prop

and we replace �4 by Int throughout the proof. Now we can apply the [VAR] rule:

[VAR]
ftrue : Prop; alwaysTrue : 8t1 :fport1 : t1g ! Propg ` alwaysTrue : 8t1 :fport1 : t1g ! Prop

For the argument 5 of the application, the [INT] rule applies:

[INT]
A1 ` 5 : Int

The type derivation of e3 is similar, except that t1 is specialized to
oatingpoint numbers:

[VAR]
A1 ` alwaysTrue : 8t1 :fport1 : t1g ! Prop

[SPEC]
A1 ` alwaysTrue : fport1 : Floatg ! Prop

[FLOAT]
A1 ` 3:14159 : Float

[APP]
A1 ` (alwaysTrue(port1 = 3:14159)) : Prop

Example 5.2.2 For an example involving type de�nitions, consider the program

(letrec type ListfList
1
= t1g = nil + consfcons

1
: t1 ; cons2 : ListfList1 = t1gg in

9x1 :x1 = nil

This program will succeed when evaluated, and by doing so, will instantiate x1 to be nil.

As this example does not involve any prede�ned predicates or constructors, we assume for

the sake of simplicity that the initial set of assumptions is empty.

If we use the following abbreviations:

101

A1 = f cons : 8t1 :fcons1 : t1 ; cons2 : ListfList1 = t1gg ! ListfList
1
= t1g;

nil : 8t1 :ListfList1 = t1g g

A2 = f cons : 8t1 :fcons1 : t1 ; cons2 : ListfList1 = t1gg ! ListfList
1
= t1g;

nil : 8t1 :ListfList1 = t1g; x1 : ListfList
1
= t1g g

then the type derivation tree of the program looks as follows:

[VAR]
A2 ` x1 : ListfList

1
= t1g

[VAR]
A2 ` nil : 8t1 :ListfList1 = t1g

[SPEC]
A2 ` nil : ListfList1 = t1g

[UNIF]
A2 ` (x1 = nil) : Prop

[EXIST]
A1 ` (9x1 :x1 = nil) : Prop

[TDEF]
fg ` (letrec � � � in 9x1 :x1 = nil) : Prop

[PROG]
fg ` ((letrec � � � in 9x1 :x1 = nil) : Prop

5.3 Operational Semantics

This section formally describes the meaning the Cube programs, in form of an operational

semantics for (a derivate of) L0. The understanding is that the result of evaluating a Cube

program can be determined by translating it into a textual form (by the rules provided in

Section 5.1), evaluating this textual form, and then translating the result back into a picture

(again as described in Section 5.1).

The operational semantics of Cube is given in form of a rewrite system with two rewrite

rules: A rule for reducing terms, and a rule for resolving formulas. This rewrite system loosely

orients itself on the operational semantics for Prolog given by Lloyd [46]. In Lloyd's operational

semantics, whenever a variable gets \bound" to a term, all free occurrences of the variable are

replaced by this term. This works �ne in Prolog, as the term is guaranteed (by the \occurs

check" built into uni�cation) not to contain itself a free occurrence of the variable, and thus

will not become in�nite. In Cube, however, a problem arises: predicates are treated as terms.

A predicate de�nition is viewed as a uni�cation of a variable naming the predicate with the

�-abstraction de�ning it. So, de�ning a recursive predicate would be impossible, as it would

mean unifying a variable with a term containing a free occurrence of this variable.

102

We resolve this problem by introducing a �xed-point operator into our textual language.

The operator �xx : e reduces to e with each free occurrence of x in e replaced by �xx : e, written

as e[�xx : e=x]. This operator allows us to transform a recursive predicate de�nition

foo = � � � foo � � �

into a non-recursive form

foo = �x foo0 : (� � � foo0 � � �)

This technique is su�cient for dealing with directly recursive predicates. In order to deal with

mutually recursive de�nitions of the form

letrec x1 = e1; :::; xn = en in e

we form a tuple out of e1; :::; en, �x this tuple against a new variable x, and replace each

occurrence of xi (1 � i � n) in ej (1 � j � n) and e by sel-i x, the selector function for the

ith component of a tuple.

Recall that the introduction of the �xed-point operator was motivated by the idea that

we want to replace variables by their values once they receive one. But we view plus etc. as

variables referring to prede�ned predicates, i.e. bound variables. So, we need to replace them

by a �-abstraction, containing the prede�ned predicate itself. Similarly, we view a constructor

name like nil which occurs within the scope of a type de�nition de�ning it as a variable referring

to a �-abstraction which contains a \primitive" constructor.

These issues give rise to an even more simpli�ed version of our textual language L0, called

L2. As in L1, disjunctions, conjunction, and terms are collapsed into one syntactic category,

namely expressions. In addition, L2 eliminates letrecs, types, and type de�nitions. On the

ip side, it introduces a �xed-point operator, tuple constructors and selectors, and primitive

predicates and constructors. Table 5.4 gives the syntax of L2.

Programs are translated from L0 to L2 as follows:

De�nition 5.3.1 (Translation fromL0 to L2) The left-associative constructor expansion operator

� : Expression! Variant! Expression is de�ned as follows:

103

E 2 Program

e 2 Expression

x 2 Variable

i 2 Integer

f 2 Floatingpoint

p 2 Portname

k 2 Prim-Constructor

P 2 Prim-Predicate

E :: (e Program

e :: i Integer constant

j f Floatingpoint constant

j x Variable

j e1 = e2 Uni�cation

j e1(p = e2) Application

j e (p! p0) Parameter renaming

j �fp1 = x1; � � � ; pn = xng:e Abstraction

j e1 _ ::: _ en Disjunction

j e1 ^ ::: ^ en Conjunction

j 9x1; :::; xn:e Existential quanti�cation

j k e1:::en Prim. constructor application

j P e1:::en Prim. predicate application

j �x x : e Fixed-point operator application

j n-tuple e1:::en Tuple construction

j sel-i e Tuple destruction

Table 5.4: Syntax of L2

104

e � (k fp1 : �1; � � � ; pn : �ng) � e[�fp1 = x1; � � � ; pn = xng:k x1 ::: xn = k]

where k is a new primitive constructor and x1; :::; xn are new and distinct variables.

The left-associative type-de�nition expansion operator � : Expression ! De�nition !

Expression is de�ned as follows:

e � (type Kf�1 = �1; � � � ; �m = �mg = V 1 + � � �+ V n) � e� V 1 � :::� V n

The letrec expansion function expand is de�ned as follows: given an expression e0, replace

each subexpression e of the form letrec DT
1 ; :::; D

T
m; :::; D

P
1 ; :::; D

P
n in e0, where DT

1 ; :::; D
T
m are

type de�nitions, and DP
1 ; :::; D

P
n are predicate de�nitions, such that each DP

i is of the form

pred P i = ei, by

(e0 �DT
1 � :::�DT

m)[sel-1 F=P 1; :::; sel-n F=Pn]

where F = �xx : (n-tuple e01 ::: e
0

n), e0i = (ei �DT
1 � :::�DT

m)[sel-1 x =P 1; :::; sel-n x =Pn]

(1 � i � n), and x is a new variable.

Given a program E 2 L0 of the form (c, let

c0 = c[�fplus
1
= x0

1; plus2 = x0

2; plus3 = x0

3g:plus x
0

1 x
0

2 x
0

3 = plus; :::]

where x0

1; � � � are new and distinct variables, then (expand(c0) is the translation of E to L2.

Example 5.3.1 Example 5.1.2 showed the translation of the Cube program shown in Fig-

ure 5.12, and representing a de�nition of factorial and the query \factorial of 3" into a textual

105

form, namely

(letrec pred fact =

�ffact
1
= x1 ; fact2 = x2g:

(9x3 ; x4 :x3 = 0 ^ x4 = 1 ^ x1 = x3 ^ x2 = x4)_

(9x5 ; :::; x16:

greater(greater
1
= x7)(greater2 = x8)^

minus(minus
1
= x9)(minus

2
= x10)(minus

3
= x11)^

times(times
1
= x12)(times

2
= x13)(times

3
= x14)^

fact(fact
1
= x15)(fact2 = x16)^

x5 = 0 ^ x6 = 1 ^ x1 = x7 ^ x1 = x9 ^ x1 = x12 ^ x5 = x8^

x6 = x10 ^ x11 = x15 ^ x13 = x16 ^ x14 = x2)

in 9x17 ; :::; x20:fact(fact1 = x19)(fact2 = x20) ^ x17 = 3 ^ x17 = x19 ^ x18 = x20

Replacing the variables referring to prede�ned predicates by the appropriate �-abstractions

yields

(letrec pred fact =

�ffact
1
= x1 ; fact2 = x2g:

(9x3 ; x4 :x3 = 0 ^ x4 = 1 ^ x1 = x3 ^ x2 = x4)_

(9x5 ; :::; x16:

(�fgreater
1
= x1 ; greater2 = x2g:greater x1 x2)

(greater
1
= x7)(greater2 = x8)^

(�fminus
1
= x1 ;minus

2
= x2 ;minus

3
= x3g:minus x1 x2 x3)

(minus
1
= x9)(minus

2
= x10)(minus

3
= x11)^

(�ftimes
1
= x1 ; times

2
= x2 ; times

3
= x3g:times x1 x2 x3)

(times
1
= x12)(times

2
= x13)(times

3
= x14)^

fact(fact
1
= x15)(fact2 = x16)^

x5 = 0 ^ x6 = 1 ^ x1 = x7 ^ x1 = x9 ^ x1 = x12 ^ x5 = x8^

x6 = x10 ^ x11 = x15 ^ x13 = x16 ^ x14 = x2)

in 9x17 ; :::; x20:fact(fact1 = x19)(fact2 = x20) ^ x17 = 3 ^ x17 = x19 ^ x18 = x20

106

Removing recursive de�nitions then yields a program in L2, namely

(9x17 ; :::; x20:

(sel-1 (�xx0 : (1-tuple (�ffact
1
= x1 ; fact2 = x2g:

(9x3 ; x4 :x3 = 0 ^ x4 = 1 ^ x1 = x3 ^ x2 = x4)_

(9x5 ; :::; x16:

(�fgreater
1
= x1 ; greater2 = x2g:greater x1 x2)

(greater
1
= x7)(greater2 = x8)^

(�fminus
1
= x1 ;minus

2
= x2 ;minus

3
= x3g:minus x1 x2 x3)

(minus
1
= x9)(minus

2
= x10)(minus

3
= x11)^

(�ftimes
1
= x1 ; times

2
= x2 ; times

3
= x3g:times x1 x2 x3)

(times
1
= x12)(times

2
= x13)(times

3
= x14)^

(sel-1 x0)(fact1 = x15)(fact2 = x16)^

x5 = 0 ^ x6 = 1 ^ x1 = x7 ^ x1 = x9 ^ x1 = x12 ^ x5 = x8^

x6 = x10 ^ x11 = x15 ^ x13 = x16 ^ x14 = x2)))))

(fact
1
= x19)(fact2 = x20)^

x17 = 3 ^ x17 = x19 ^ x18 = x20

The next issue we have to deal with is the reduction of terms. In Prolog, this issue does not

arise, as terms are uninterpreted. In Cube, however, terms can be applications of �-abstractions

to arguments, so we need to reduce them to a normal form. This process is essentially what is

known as �-reduction in the �-calculus. The following three de�nitions formalize the reduction

concept:

De�nition 5.3.2 The substitution of e for x in e0, written e0[e=x], is de�ned as follows:

107

i[e=x] = i

f [e=x] = f

x[e=x] = e

x0[e=x] = x0 if x 6= x0

(e1 = e2)[e=x] = (e1[e=x]) = (e2[e=x])

(e1(p = e2))[e=x] = (e1[e=x])(p = (e2[e=x]))

(e0 (p! p0))[e=x] = (e0[e=x]) (p! p0)

(e1 _ ::: _ en)[e=x] = ((e1[e=x])_ :::_ (en[e=x]))

(e1 ^ ::: ^ en)[e=x] = ((e1[e=x])^ :::^ (en[e=x]))

(k e1:::en)[e=x] = (k (e1[e=x]):::(en[e=x]))

(P e1:::en)[e=x] = (P (e1[e=x]):::(en[e=x]))

(n-tuple e1:::en)[e=x] = (n-tuple (e1[e=x]):::(en[e=x]))

(sel-i e0)[e=x] = (sel-i e0[e=x])

�fp1 = x1; � � � ; pn = xng:e
0[e=x] = �fp1 = x1; � � � ; pn = xng:e

0

if x = xi for any 1 � i � n

�fp1 = x1; � � � ; pn = xng:e
0[e=x] = �fp1 = x0

1; � � � ; pn = x0

ng:(e
0[x0

1=x1][x
0

n=xn][e=x])

if for all 1 � i � n, x 6= xi and x0

i is not free in e or e0

9x1; :::; xn:e
0[e=x] = 9x1; :::; xn:e

0

if x = xi for any 1 � i � n

9x1; :::; xn:e
0[e=x] = 9x0

1; :::; x
0

n:(e
0[x01=x1][x

0

n=xn][e=x])

if for all 1 � i � n, x 6= xi and x0

i is not free in e or e0

�xx : e0[e=x] = �xx : e0

�x x0 : e0[e=x] = �xx00 : (e0[x00=x0][e=x])

if x 6= x0 and x00 is not free in e or e0

De�nition 5.3.3 The reduction-rule
red
7�! denotes a relation between two expressions, and is

de�ned as follows:

108

[APP] (�fp1 = x1; p2 = x2; :::; pi = xig:e)(p1 = e0)
red
7�! �fp2 = x2; :::; pi = xig:e[e

0=x1]

[CAST] (�fp1 = x1; p2 = x2; :::; pi = xig:e) (p1 ! p01)
red
7�! (�fp01 = x1; p2 = x2; :::; pi = xig:e)

[SEL] (sel-i (n-tuple e1 � � �ei � � �en))
red
7�! ei

[FIX] (�xx : e)
red
7�! e[�xx : e=x]

We write e
red
7�! e0 if a subexpression of e is reduced to create e0.

red
7�!! denotes the compatible

closure of
red
7�! .

De�nition 5.3.4 An expression e is said to be in normal form if none of its subexpressions is

an application or a parameter renaming.

Example 5.3.2 The following two expressions both reduce into normal forms:

1. (�farg = x1g:x1 = 5) (arg! newarg)
red
7�!

(�fnewarg = x1g:x1 = 5)

2. (�fcons
1
= x1 ; cons2 = x2g:cons x1 x2)(cons1 = 3)(cons

2
=

(�fcons
1
= x1 ; cons2 = x2g:cons x1 x2)(cons1 = 5)(cons

2
= nil))

red
7�!

(�fcons
2
= x2g:cons 3 x2)(cons2 =

(�fcons
1
= x1 ; cons2 = x2g:cons x1 x2)(cons1 = 5)(cons

2
= nil))

red
7�!

(cons 3 (�fcons
1
= x1 ; cons2 = x2g:cons x1 x2)(cons1 = 5)(cons

2
= nil))

red
7�!

(cons 3 (�fcons
2
= x2g:cons 5 x2)(cons2 = nil))

red
7�!

(cons 3 (cons 5 nil))

The �x operator is used only to express recursive predicates nonrecursively. Such a predicate

is conceptually an in�nite structure, but no real \computation" has to be performed to build

this structure.

Note that not every expression reduces to a normal form: x1(arg = 5) does not reduce to

a normal form, as it is an application which cannot be rewritten, because the [APP] rule does

not apply. Once x1 gets replaced by a value, reduction can continue, and the expression might

rewrite into a normal form.

Uni�cation in Cube is slightly more complicated than uni�cation in Prolog: two expressions

unify if they can be reduced to normal forms which unify in the conventional sense. For example,

109

(�fcons
1
= x1 ; cons2 = x2g:cons x1 x2)(cons1 = 5)(cons

2
= nil) and (cons 5 nil) unify. But

as not every expression can be reduced into a normal form, it is not always possible to decide

whether two expressions unify. For instance, x3(cons1 = 5) and x4(cons2 = nil) unify, if x3

gets bound to (�fcons
1
= x1g:cons x1 nil) and x4 gets bound to (�fcons

2
= x2g:cons 5 x2).

So, unifying two expressions might succeed, fail, or be simply undecidable for the time being.

This is made precise in the following de�nitions:

De�nition 5.3.5 A substitution � = fx1 7! e1; :::; xn 7! eng is a mapping from variables to

expressions such that x1; :::; xn are distinct and do not occur free in e1; :::; en.

De�nition 5.3.6 Let � = fx1 7! e1; :::; xn 7! eng be a substitution and e be an expression.

Then e�, the instance of e by �, is the expression obtained from e by simultaneously replacing

each free occurrence of the variable xi in e by the expression ei (i = 1; :::; n).

De�nition 5.3.7 Let � and �0 be two substitutions, Then � � �0, the composition of � and �0,

is de�ned such that for every expression e, e(� � �0) = (e�0)�.

De�nition 5.3.8 (Uni�cation) Consider two expressions e1 and e2:

� e1 and e2 unify with a most general uni�er � if e1 reduces to a normal form e01, e2 reduces

to a normal form e02, and there is a substitution � such that e01� = e02�, and for every �0

such that e01�
0 = e02�

0, there is a �00 such that �0 = �00 � �.

� e1 and e2 potentially unify if there is a substitution � such that e1�
red
7�!! e and e2�

red
7�!! e.

� e1 and e2 fail to unify if they neither unify nor potentially unify.

Example 5.3.3

1. (�fcons
1

= x1g:cons x1 nil)(cons
1

= x3) and (cons x4 x5) unify, as

(�fcons
1
= x1g:cons x1 nil)(cons

1
= x3)

red
7�!! (cons x3 nil), which is in normal form,

(cons x4 x5) is in normal form, and the two normal forms unify with most general uni�er

� = fx3 7! x4 ; x5 7! nilg.

2. x3(cons1 = 5) and x4 potentially unify, as under the substitution

� = fx3 7! (�fcons
1
= x1g:cons x1nil); x4 7! (cons 5 nil)g, they both reduce to the

same normal form.

110

3. x2(arg = 5) and x2(arg = 3) potentially unify, as under the substitution � = fx2 7!

(�farg = x1g:true)g, they both reduce to the same normal form.

4. (cons 1 nil) and nil fail to unify.

5. (�fcons
2
= x2g:cons 1 nil) and (�fcons

2
= x2g:cons 2 nil) fail to unify.

The second rewrite rule used in Cube's operational semantics is the resolution rule. This

rule is again loosely based on Lloyd [46]. Our formalism, however, di�ers in a number of

aspects. One of them is the way the \state" of a rewriting is represented. While Lloyd simply

uses a set of atomic formulas to represent the goals, we use a set of expressions to represent the

goals, together with a tuple of expressions, which re
ects the bindings performed on variables

of the initial query. These bindings are needed for visualizing the outcome of a computation.

Formally, this \state" is de�ned as follows:

De�nition 5.3.9 A goal g is a truth-valued expression. A con�guration C is either a pair

(fg1; :::; gmg; he1; :::; eni) consisting of a set of goals and a sequence of expressions, or the failure-

con�guration failure. failure denotes a failed proof., (fg1; :::; gmg; he1; :::; eni) informally means

that the goals g1; :::; gm still have to be resolved in order to complete the proof at hand, and

the free variables x1; :::; xn in the formula to be proven have so far received values e1; :::; en.

Given a program E 2 L2 of the form (9x1; :::; xm:e1 ^ ::: ^ en (m � 0; n � 1) the initial

con�guration CE of E is of the form (fe1; :::; eng; hx1; :::; xmi).

Before being able to formalize the resolution rule, we need a few more de�nitions:

De�nition 5.3.10 An expression is said to be ground if it does not contain any free variables.

De�nition 5.3.11 The many-step-resolution-rule
res
7�!! denotes a relation between two con-

�gurations, and is de�ned in terms of the one-step-resolution-rule
res
7�! , which will be de�ned

later, as follows:

C0
res
7�!! Cn , 9C1; :::; Cn�1:C0

res
7�! C1

res
7�! :::

res
7�! Cn�1

res
7�! Cn ^ :9Cn+1:Cn

res
7�! Cn+1

De�nition 5.3.12 The solution set Sol(C) of a con�guration C is de�ned as follows:

Sol(C) = fhe1; :::; enijC
res
7�!! (fg; he1; :::; eni)g

111

The deadlock set Dead(C) of a con�guration C is de�ned as follows:

Dead(C) = f(fg1; :::; gmg; he1; :::; eni)jC
res
7�!! (fg1; :::; gmg; he1; :::; eni) ^ m > 0g

De�nition 5.3.13 A con�guration C fails if Sol(C) = ;, Dead(C) = ;, and there is no in�nite

sequence C
res
7�! C0

res
7�! C00

res
7�! � � �. A con�guration C succeeds if Sol(C) 6= ;.

Finally, we can formulate the resolution rule:

De�nition 5.3.14 The one-step-resolution-rule
res
7�! relates two con�gurations and is de�ned

as follows:

1. (Disjunction)

(fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1; � � � ; gi�1; ej ; gi+1; � � � ; gag; hê1; � � � ; êbi)

6

if gi
red
7�!! e1 _ ::: _ ej _ ::: _ en (1 � j � n) 7

2. (Conjunction)

(fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1; � � � ; gi�1; e1; :::; et; gi+1; � � � ; gag; hê1; � � � ; êbi)

if gi
red
7�!! e1 ^ ::: ^ et

3. (Existential Quanti�cation)

(fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1; � � � ; gi�1; e

0; gi+1; � � � ; gag; hê1; � � � ; êbi)

if gi
red
7�!! 9x1; :::; xn:e

where e0 = e[x0

1=x1; :::; x
0

n=xn] and x0

1; :::; x
0

n are new and distinct variables.

4. (Uni�cation)

(a) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1�; � � � ; gi�1�; gi+1�; � � � ; ga�g; hê1�; � � � ; êb�i)

if gi
red
7�!! (e1 = e2) and e1 and e2 unify with a most general uni�er �.

(b) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! failure

if gi
red
7�!! (e1 = e2) and e1 and e2 fail to unify.

5. (Primitive Negation)

6
i is chosen arbitrarily in all the

res

7�! rules, leading to one degree of nondeterminism.
7
j is chosen arbitrarily in this rule, leading to a second degree of nondeterminism.

112

(a) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1; � � � ; gi�1; gi+1; � � � ; gag; hê1; � � � ; êbi)

if gi
red
7�!! (not e) and e is ground and the con�guration C0 = (feg; hi) fails.

(b) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! failure

if gi
red
7�!! (not e) and e is ground and the con�guration C0 = (feg; hi) succeeds.

6. (Primitive Addition)

(a) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1; � � � ; gi�1; gi+1; � � � ; gag; hê1; � � � ; êbi)

if gi
red
7�!! (plus i1 i2 i3) and i1 + i2 = i3

(b) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! failure

if gi
red
7�!! (plus i1 i2 i3) and i1 + i2 6= i3

(c) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1�; � � � ; gi�1�; gi+1�; � � � ; ga�g; hê1�; � � � ; êb�i)

if gi
red
7�!! (plus i1 i2 x) and i3 = i1 + i2, where � = fx 7! i3g

(d) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1�; � � � ; gi�1�; gi+1�; � � � ; ga�g; hê1�; � � � ; êb�i)

if gi
red
7�!! (plus i1 x i3) and i2 = i3 � i1, where � = fx 7! i2g

(e) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1�; � � � ; gi�1�; gi+1�; � � � ; ga�g; hê1�; � � � ; êb�i)

if gi
red
7�!! (plus x i2 i3) and i1 = i3 � i2, where � = fx 7! i1g

(f) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1�; � � � ; gi�1�; gi+1�; � � � ; ga�g; hê1�; � � � ; êb�i)

if gi
red
7�!! (plus x1 0 x3), where � = fx1 7! x3g

(g) (fg1; � � � ; gi; � � � ; gag; hê1; � � � ; êbi)
res
7�! (fg1�; � � � ; gi�1�; gi+1�; � � � ; ga�g; hê1�; � � � ; êb�i)

if gi
red
7�!! (plus 0 x2 x3), where � = fx2 7! x3g

7. Other arithmetic and comparison primitives are handled similarly.

Given a Cube program E, we can obtain its meaning by translating it into L2, and deter-

mining Sol(CE). Each (fg; he1; :::; eni) in Sol(CE) represents one solution of the program, and

can be visualized by transforming each ei back into a term cube (as described on page 93), and

�lling these term cubes into the appropriate holder cubes in the original program.

A Cube computation may deadlock. This can happen for instance if we attempt to resolve

an arithmetic predicate with an insu�cient number of ground arguments. In the existing im-

plementations, we indicate that a deadlock occurred, but we do not visualize where it occurred.

113

This could for instance be done by highlighting the predicate in the query in which the deadlock

occurred.

Example 5.3.4 Consider the program shown in Figure 5.14. This program consists of the List

type de�nition cube (also shown in Figure 5.6), a higher-order predicate �lter (also shown in

Figure 4.53), a predicate even, which succeeds whenever its only argument is even, and a goal

�lter applied to even, a list with elements 1 and 2, and an empty holder cube. Translating this

program into L0 yields:

(letrec

type ListfList
1
= t1g = nil + consfcons

1
: t1 ; cons2 : ListfList

1
= t1gg;

pred �lter = �f�lter
1
= x1 ; �lter2 = x2 ; �lter

3
= x3g:

(9x4 ; x5 :x4 = nil ^ x5 = nil ^ x4 = x2 ^ x5 = x3)_

(9x6 ; � � � ; x14 :

x6 = cons(cons
1
= x7)(cons2 = x8)^

x9 = cons(cons
1
= x10)(cons2 = x11) ^ x1 (in = x12)^

�lter(�lter
1
= x1)(�lter2 = x13)(�lter3 = x14)^

x8 = x13 ^ x11 = x14 ^ x2 = x6 ^ x3 = x9 ^ x7 = x12 ^ x7 = x10)_

(9x15 ; � � � ; x21 :

x15 = cons(cons
1
= x16)(cons2 = x17)^

�lter(�lter
1
= x1)(�lter2 = x18)(�lter3 = x19)^

not(not
1
= x21)^

x15 = x2 ^ x19 = x3 ^ x17 = x18 ^ x16 = x20 ^ x21 = x1 (in = x20));

pred even = �feven
1
= x22g:

9x23 ; x24 ; x25 :

mod(mod
1
= x23)(mod

2
= x24)(mod

3
= x25) ^ x23 = x22 ^ x24 = 2 ^ x25 = 0

in 9x26 ; � � � ; x34 :

�lter(�lter
1
= x26)(�lter2 = x27)(�lter3 = x28)^

x26 = even (even
1
! in) ^ x27 = x29 ^ x28 = x30^

x29 = cons(cons
1
= x31)(cons2 = x32) ^ x31 = 1^

x32 = cons(cons
1
= x33)(cons2 = x34) ^ x33 = 2 ^ x34 = nil

This program is quite in
ated, as the translation algorithm presented in Section 5.1 is simple

and straightforward, but produces lengthy expressions. Therefore, we compact the program

| without changing its meaning | by resolving trivial uni�cations and eliminating unneeded

variables:

114

even

even

 definition cube
(Internals omitted)

 definition cube
(Internals omitted)

 definition cube
(internals omitted)

List filter even

Figure 5.14: A Program Using \�lter"

(letrec

type ListfList
1
= t1g = nil + consfcons

1
: t1 ; cons2 : ListfList

1
= t1gg;

pred �lter = �f�lter
1
= x1 ; �lter2 = x2 ; �lter

3
= x3g:

(x2 = nil ^ x3 = nil)_

(9x4 ; x5 ; x6 :

x2 = cons(cons
1
= x4)(cons2 = x5)^

x3 = cons(cons
1
= x4)(cons2 = x6) ^ x1 (in = x4)^

�lter(�lter
1
= x1)(�lter2 = x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = cons(cons
1
= x7)(cons2 = x8)^

�lter(�lter
1
= x1)(�lter2 = x8)(�lter3 = x3)^

not(not
1
= x1 (in = x7)));

pred even = �feven
1
= x9g:mod(mod

1
= x9)(mod

2
= 2)(mod

3
= 0)

in 9x10 :�lter(�lter1 = even (even
1
! in))(�lter

3
= x10)(�lter2 =

cons(cons
1
= 1)(cons

2
= cons(cons

1
= 2)(cons

2
= nil)))

Translating this program into L2 yields:

115

(9x10 :(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

3
= x10)(�lter2 =

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

where C is (�fcons
1
= x12 ; cons2 = x13g:cons x12 x13) and F is

�xx11 : (2-tuple

(�f�lter
1
= x1 ; �lter2 = x2 ; �lter3 = x3g:

(x2 = nil ^ x3 = nil)_

(9x4 ; x5 ; x6 :

x2 = C(cons
1
= x4)(cons2 = x5)^

x3 = C(cons
1
= x4)(cons2 = x6) ^ x1 (in = x4)^

(sel-1 x11)(�lter1 = x1)(�lter2 = x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = C(cons
1
= x7)(cons2 = x8)^

(sel-1 x11)(�lter1 = x1)(�lter2 = x8)(�lter3 = x3)^

(�fnot
1
= x17g:not x17)(not1 = x1 (in = x7))))

(�feven
1
= x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0)))

So, the initial con�guration is C0 = (fe0g; hx10i) with e0 being

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

3
= x10)(�lter2 =

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

One possible sequence of resolution steps leading to a con�guration in Sol(C) is the following:

� Select the goal e0 from the con�guration C0.

116

e0 = (sel-1 �xx11 : (2-tuple

(�f�lter
1
= x1 ; �lter2 = x2 ; �lter3 = x3g:

(x2 = nil ^ x3 = nil)_

(9x4 ; x5 ; x6 :

x2 = C(cons
1
= x4)(cons2 = x5)^

x3 = C(cons
1
= x4)(cons2 = x6) ^ x1 (in = x4)^

(sel-1 x11)(�lter1 = x1)(�lter2 = x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = C(cons
1
= x7)(cons2 = x8)^

(sel-1 x11)(�lter1 = x1)(�lter2 = x8)(�lter3 = x3)^

(�fnot
1
= x17g:not x17)(not1 = x1 (in = x7))))

(�feven
1
= x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0))))

(�lter
1
= (sel-2 F) (even

1
! in))(�lter

3
= x10)(�lter2 =

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

red
7�! [FIX] (sel-1 (2-tuple

(�f�lter
1
= x1 ; �lter2 = x2 ; �lter

3
= x3g:

(x2 = nil ^ x3 = nil)_

(9x4 ; x5 ; x6 :

x2 = C(cons
1
= x4)(cons2 = x5)^

x3 = C(cons
1
= x4)(cons2 = x6) ^ x1 (in = x4)^

(sel-1 F)(�lter
1
= x1)(�lter2 = x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = C(cons
1
= x7)(cons2 = x8)^

(sel-1 F)(�lter
1
= x1)(�lter2 = x8)(�lter3 = x3)^

(�fnot
1
= x17g:not x17)(not1 = x1 (in = x7))))

(�feven
1
= x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0))))

(�lter
1
= (sel-2 F) (even

1
! in))(�lter

3
= x10)(�lter2 =

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

117

red
7�! [SEL] (�f�lter

1
= x1 ; �lter2 = x2 ; �lter3 = x3g:

(x2 = nil ^ x3 = nil)_

(9x4 ; x5 ; x6 :

x2 = C(cons
1
= x4)(cons2 = x5)^

x3 = C(cons
1
= x4)(cons2 = x6) ^ x1 (in = x4)^

(sel-1 F)(�lter
1
= x1)(�lter2 = x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = C(cons
1
= x7)(cons2 = x8)^

(sel-1 F)(�lter
1
= x1)(�lter2 = x8)(�lter3 = x3)^

(�fnot
1
= x17g:not x17)(not1 = x1 (in = x7))))

(�lter
1
= (sel-2 F) (even

1
! in))(�lter

3
= x10)(�lter2 =

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

red
7�! [APP] (�f�lter

2
= x2 ; �lter3 = x3g:

(x2 = nil ^ x3 = nil)_

(9x4 ; x5 ; x6 :

x2 = C(cons
1
= x4)(cons2 = x5)^

x3 = C(cons
1
= x4)(cons2 = x6)^

(sel-2 F) (even
1
! in)(in = x4)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = C(cons
1
= x7)(cons2 = x8)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x8)(�lter3 = x3)^

(�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = x7))))

(�lter
3
= x10)(�lter2 = C(cons

1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

118

red
7�! [APP] (�f�lter

2
= x2g:

(x2 = nil ^ x10 = nil)_

(9x4 ; x5 ; x6 :

x2 = C(cons
1
= x4)(cons2 = x5)^

x10 = C(cons
1
= x4)(cons2 = x6)^

(sel-2 F) (even
1
! in)(in = x4)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x5)(�lter3 = x6))_

(9x7 ; x8 :

x2 = C(cons
1
= x7)(cons2 = x8)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x8)(�lter3 = x10)^

(�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = x7))))

(�lter
2
= C(cons

1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)))

red
7�! [APP] (C(cons

1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)) = nil ^ x10 = nil)_

(9x4 ; x5 ; x6 :

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)) = C(cons

1
= x4)(cons2 = x5)^

x10 = C(cons
1
= x4)(cons2 = x6)^

(sel-2 F) (even
1
! in)(in = x4)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x5)(�lter3 = x6))_

(9x7 ; x8 :

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)) = C(cons

1
= x7)(cons2 = x8)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x8)(�lter3 = x10)^

(�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = x7)))

We nondeterministically choose the third part of the overall disjunction, so C0
res
7�! [DISJ] C1 =

(fe1g; hx10i), where e1 is

9x7 ; x8 :

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)) = C(cons

1
= x7)(cons2 = x8)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x8)(�lter3 = x10)^

(�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = x7))

� C1
res
7�! [EXIST] C2 = (fe2g; hx10i), where e2 is

119

C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)) = C(cons

1
= x18)(cons2 = x19)^

(sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x19)(�lter3 = x10)^

(�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = x18))

� C2
res
7�! [CONJ] C3 = (fe3; e4; e5g; hx10i), where

e3 = C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil)) = C(cons

1
= x18)(cons2 = x19)

e4 = (sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= x19)(�lter3 = x10)

e5 = (�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = x18))

� C(cons
1
= 1)(cons

2
= C(cons

1
= 2)(cons

2
= nil))

red
7�!! (cons 1 (cons 2 nil)),

C(cons
1
= x18)(cons2 = x19)

red
7�!! (cons x18 x19), and

(cons 1 (cons 2 nil)) and (cons x18 x19) unify with mgu � = fx18 7! 1; x19 7! (cons 2 nil)g.

So C3
res
7�! [UNIF] C4 = (fe04; e

0

5g; hx10i), where

e0

4 = (sel-1 F)(�lter
1
= (sel-2 F) (even

1
! in))(�lter

2
= (cons 2 nil))(�lter

3
= x10)

e0

5 = (�fnot
1
= x17g:not x17)(not1 = (sel-2 F) (even

1
! in)(in = 1))

� e05
red
7�!! (not (sel-2 F) (even

1
! in)(in = 1))

(sel-2 F) (even
1
! in)(in = 1) is ground. So, the negation resolution rule is applicable if

the con�guration (f(sel-2 F) (even
1
! in)(in = 1)g; hi) either succeeds or fails:

120

(sel-2

(�x x11 :

(2-tuple

(� � �)

(�feven
1
= x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0)))))

(even
1
! in)(in = 1)

red
7�! [FIX] (sel-2

(2-tuple

(� � �)

(�feven
1
= x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0))))

(even
1
! in)(in = 1)

red
7�! [SEL] (�feven

1
= x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0))

(even
1
! in)(in = 1)

red
7�! [CAST] (�fin = x9g:

(�fmod
1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= x9)(mod

2
= 2)(mod

3
= 0))

(in = 1)

red
7�! [APP] ((�fmod

1
= x14 ;mod

2
= x15 ;mod

3
= x16g:mod x14 x15 x16)

(mod
1
= 1)(mod

2
= 2)(mod

3
= 0))

red
7�! [APP] ((�fmod

2
= x15 ;mod

3
= x16g:mod 1 x15 x16)(mod

2
= 2)(mod

3
= 0))

red
7�! [APP] ((�fmod

3
= x16g:mod 1 2 x16)(mod

3
= 0))

red
7�! [APP] (mod 1 2 0)

(f(mod 1 2 0)g; hi)
res
7�! [PRIM] failure. So C4

res
7�! [NOT] C5 = (fe04g; hx10i).

At this point, each reduction and each resolution rule was used at least once. Therefore, we do

not show the rest of the resolution process in detail. The only resolution sequence from C0 to

121

a success-con�guration is

C0
red
7�! � � �

red
7�! C5

red
7�! � � �

red
7�! CFIN = (fg; h(cons 2 nil)i)

All other sequences either lead to failure, or do not terminate. So Sol(C0) = fCFINg.

CFIN is visualized by �lling the holder cube associated with x10 with the term cube repre-

senting (cons 2 nil).

122

Chapter 6

Implementation

Currently, there are two implementations of a Cube environment. The �rst implementation,

called Cube-I, served as a feasibility study and as a test-bed for trying out various language

design choices, concerning both the visual appearance of constructs and their semantic behavior.

In order to be able to explore out new ideas quickly, we chose to implement the bulk of the �rst

system in Lazy ML [2], which greatly sped up the development.

The twomain limitations of the �rst system were low speed and the almost complete absence

of an interactive user interface. The second implementation of Cube, Cube-II, improves on

both of these shortcomings.

The next two subsections contain more details about the capabilities and the general archi-

tecture of these two implementations.

6.1 The First Implementation

The Cube-I system is able to read in a prefabricated program, infer its type and the types of

its subexpressions, evaluate it, and render the program, the inferred types, and the computed

values onto an X window. It allows the user to navigate through the program; however, it does

not support any editing actions. It also lacks interactive features such as an option to load

other programs, to change the colors of objects, etc.

The system consists of two programs: The Front-End, a C program responsible for rendering

and for mouse interaction, and the Back-End, a Lazy ML program responsible for everything

123

C graphics routines responsible for
projecting 3D description onto 2D,
and for mouse interaction.

lex/yacc parser

LML program, responsible for reading
a Cube program, typechecking and
executing it, and generating a 3D polygon
description at every stage.

Command-Language

Cube-I Front End Cube-I Back End

xgks graphics library

X window system parameter file Cube program

Polygon-Language

Figure 6.1: Block Diagram of the Prototype System

else. The two programs run concurrently, and communicate over Unix streams. Figure 6.1

shows a block diagram of the di�erent components of the system.

We implemented the system in such a way in an attempt to achieve fast rendering on

one hand, and easy and rapid system development on the other. The rendering step is the

performance bottleneck, so it was mandatory to implement it in a fast, low-level language, such

as C. On the other hand, the rendering routines comprise less than a quarter of the code, the

less time-critical parts could still be implemented in a high-level language such as Lazy ML,

whose advanced features greatly sped up development time.

The Front-End displays a Cube program either as a wireframe rendering (see Figure 6.2),

or it uses a more complex technique, which not only performs hidden-surface removal, but is

also able to deal with transparent surfaces (see Figure 6.3). The user can toggle between the

two rendering qualities with the button labeled \flip".

The high-quality rendering technique works as follows: The Front-End receives a set of

colored, and possibly transparent polygons in 3-space, which may contain holes. It performs

the appropriate translation, rotation, and scaling operations, and then computes which pixels

each polygon covers, using a scan conversion algorithm (see for instance [28]). For each covered

pixel, it records the color (denoted by a triple (r; g; b) representing the spectral components),

transparency (denoted by a coe�cient �), and z-coordinate. As there may be several transpar-

ent polygons covering the same pixel, the renderer needs to retain a list of (r; g; b; z; �) values

for each pixel.

After the polygons have been rasterized, the list of (r; g; b; z; �) values of each pixel is �rst

sorted by z value and then blended together from back (high z) to front (low z). This results

124

Figure 6.2: Cube-I wireframe rendering of

the factorial predicate

Figure 6.3: Cube-I high-quality rendering

of the factorial predicate

in a single (r; g; b) triple for each pixel. These (r; g; b) values are then drawn onto the rendering

area of the window.

The �rst implementation uses xgks [70], the X windows implementation of the Graphics

Kernel System [33], to perform the actual drawing. Due to ine�ciencies in the implementation

of xgks, establishing a high-resolution picture covering 477�477 pixels takes about 30 seconds.

The Front-End can send three types of messages to the Back-End: \loadFile foo", \type-

Check", and \execute". The Back-End, in turn, replies to each request of the Front-End by

sending it a list of colored polygons in 3-space, describing the new scene, and then waits for

the next request. The system is thus driven by the Front-End.

Upon startup of the system, the Front-End parses the command-line arguments, expecting

the name of a �le describing a Cube program, and then asks the Back-End to load this program.

Upon such a \loadFile foo" request, the Back-End reads in a structured picture description

(dubbed HLPD, or \High-Level Picture Description") from the �le foo, converts it into an

unstructured set of polygons, and hands those to the Front-End.

The Front-End also controls the \buttons" on the left of the drawing area. The top eight but-

tons (rotate left/right/up/down/counterclockwise/clockwise, move forward/backward, zoom

in/out) control the position of the \camera"; these requests are handled by the Front-End di-

125

rectly. The \flip" button toggles between wireframe and high-quality rendering, this request

can also be handled directly by the Front-End. The buttons labeled \tc" and \eval" trigger

type inference and evaluation, the Front-End sends the appropriate message to the Back-End.

Upon a \typeCheck" request, the Back-End converts the structured picture description into a

more textual form (very similar to L0), performs type inference on this textual form, visualizes

the inferred types, translates the structured picture description and the visualized types into a

set of polygons, and transmits those back to the Front-End.

Upon an \execute" request, it converts the structured picture description into a textual form

similar to L2, and then evaluates this textual program. Evaluation is conceptually performed in

parallel; we realized this by maintaining queues of \processes" and \threads", performing one

resolution step on a thread, and then selecting a new thread in a new process. The result of the

computation | provided it terminates | is then mapped back into a visual form, translated

together with the initial program into a set of polygons, and transmitted to the Front-End.

The \quit" button terminates the program; the Front-End closes the stream connecting it to

the Back-End, and then terminates. The Back-End, noticing that its incoming communication

channel has been closed, then terminates as well.

6.2 The Second Implementation

The second implementation of the Cube system consists of a single program, written entirely

in Modula-3 [60]. We chose this language, as it is almost as e�cient as C, but at the same

time o�ers a rich set of features that make development much easier. Modula-3 is an o�spring

of Modula-2. It o�ers modules, object-oriented features, generics (known as \templates" in

C++), exceptions, preemptive multitasking, and garbage collection1 . It also comes with an

extensive library of existing modules and classes. In particular, it supplies a multi-threaded,

object-oriented windowing system, Trestle [48], which is implemented on top of X Windows.

Trestle is complemented by a hierarchy of window abstractions and a rich widget set containing

buttons, scrollers, �lebrowsers, etc. [4, 5]. Cube-II's entire user interface is based on this widget

set.

1Modula-3 could be described as \C++ plus modules plus threads plus garbage collection minus multiple

inheritance"

126

Figure 6.4: Cube-II Evaluation Control Panel

Reimplementing the �rst Cube system in Modula-3 greatly increased the performance of

the system, in particular of the components which were located in the former Back-End. Aban-

doning the use of xgks and instead using the X Window System [73] directly brought along

another dramatic increase in speed. Rendering a picture containing a few hundred polygons

onto an area of 640� 512 pixels takes now around 10 seconds.

In the �rst system, the user had to press a button to switch from wireframe to high-quality

rendering, and was then unable to interact with the system for some 30 seconds, until the

rendering was complete. In the new system, a change in the scene or in the camera-position

causes the rendering area to be immediately updated by a wireframe representation of the new

scene. At the same time, a dedicated rendering thread starts to compute a high-quality picture

in the background. If the scene changes before the rendering thread has completed its task,

it is alerted by the thread which caused the change, and restarts its computation. Otherwise,

upon successful completion, it replaces the wireframe rendering by a high-quality picture.

The result of this approach is that the user never has to wait for a high-quality rendering

to complete, but can constantly interact with the system. If he remains idle long enough, the

high-quality rendering appears automatically.

Multi-threading is also used by the Cube interpreter to deal with in�nite computations.

When the user presses the \eval" button, a separate thread is created to perform the evaluation.

At the same time, a control panel (see Figure 6.4) is popped up, which informs the user how

many solutions have been found so far, and allows him to interrupt the evaluation. In addition,

this control panel allows him to browse through the various solutions. Figure 6.5 shows a

program which will generate all the natural numbers. Figure 6.6 shows the user inspecting the

127

Figure 6.5: A Program for Computing All

the Natural Numbers

Figure 6.6: Program From Figure 6.5 Dis-

playing the First Solution

Figure 6.7: Program From Figure 6.5 Dis-

playing the Second Solution

128

Figure 6.8: Cube-II Motion Control Panel

Figure 6.9: Cube-II Load File Menu Figure 6.10: Cube-II Save File Menu

�rst solution, Figure 6.7 shows him inspecting the second one, having aborted the computation

after 52 solutions have been found.

6.2.1 The User Interface

The main window of the new system consists of a menu bar at the top and the rendering area

below. The menu bar o�ers nine di�erent options: \Load", \Save", \Colours", \Motion",

\Reset", \TypeCheck", \Eval", \Edit", and \Quit".

\TypeCheck", \Eval", and \Quit" do the obvious things. The \Reset" option removes

inferred types and computed values from the visualized program. The \Motion" button pops

up a motion control panel, which provides controls for moving the \camera" through the scene

shown in the rendering area. Figure 6.8 shows the motion control panel.

129

Figure 6.11: Cube-II Rendering Control Panel

\Load" and \Save" provide options to load existing programs, and to save new or modi�ed

ones. A program description consists of two parts: The program itself (usually stored in a

�le with the su�x .hlpd) and a description of the camera's relevant parameters (location,

orientation, zoom factor, etc.), which is usually stored in a �le with the su�x .view. The view

�le contains a reference to the HLPD �le, so in order to load a program, the user loads a view

�le, which will then automatically load the corresponding HLPD �le. Figure 6.9 shows the

menu used to select a view �le. In order to save a program description, the user has to specify

both view �le and HLPD �le (see Figure 6.10).

The \Colours" button pops up a menu (see Figure 6.11) which allows the user to ma-

nipulate the important parameters used by the high-quality renderer: transparency coe�cient,

direction and intensity of light sources, and color values of the di�erent objects, such as types,

values, pipes, icons, etc. It also allows him to save his customizations of these rendering param-

eters to a �le, and to load them back again. When the Cube system is started, it will look for

a �le .cube-renderparams in the current working directory, and if it exists, interpret it as a

rendering parameter �le. This mechanism is intended to allow users to customize some aspects

of Cube's visual representation to their liking.

The \Edit" option, �nally, allows the user to edit existing programs, or to create new

ones. Due to time limitations, we were unable to build a full-
edged editor that supports every

syntactic construct; however, the crucial operations are supported.

130

Figure 6.12: Selecting the Create Option Figure 6.13: Selecting the Atomic Formula

Option

6.2.2 The Editor

Editing a three-dimensional program on a two-dimensional screen is an interesting and di�cult

problem. A two-dimensional pointing device, such as a mouse, can only be used to specify a

point in 2-space, which translates to a line rather than a point in 3-space. This means that

either the user must perform two pointing operations to completely specify a point in 3-space,

or the system has to use information obtained from the user's intent and the structure of the

existing picture to select one particular point on the line.

The following example shall illustrate how editing works in the new system. Assume that

we want to construct an expression that performs temperature conversions between Celsius and

Fahrenheit (see page 41).

First, we want to create a holder cube that shall contain the temperature value in Celsius.

A holder cube could be located anywhere; specifying a line as opposed to a point in 3-space

is not su�cient, the system would be unable to use any information based on the structure of

the existing picture to determine the right point on the line. Hence we have to supply more

location information than just a simple mouse-click. We press the \Edit" button, select the

\Create" option from the Edit menu (Figure 6.12), the \Atomic Formula" option from

the Create submenu (Figure 6.13), and the \Value Holder Cube" option from the Create

Atomic Formula submenu (Figure 6.14). Now we locate a point in the rendering area and press

131

Figure 6.14: Selecting the Value Holder

Cube Option

Figure 6.15: Selecting a Point on the Screen

Figure 6.16: Rotating the Scene Figure 6.17: Selecting a Point on the Ray

132

Figure 6.18: Fixing the Size of the Cube Figure 6.19: Selecting the Create Predicate

Reference Cube Option

down the left mouse button (Figure 6.15), thereby specifying a line in 3-space. We drag the

mouse to the left or to the right; the scene will rotate around a point on the line we just selected,

and the line | highlighted in red | will thus become visible (Figure 6.16). Once we release

the left mouse button, the rotation stops, and a vertical bar (highlighted in red) appears, which

slides along the line we just speci�ed and tracks the x position of the mouse (Figure 6.17). The

point where bar and line cross describes a unique 3D location. We move the bar to the point

on the line that we want, and �nish the selection process by clicking the left mouse button.

The selected point is taken to be the center of the holder cube that we want to construct.

Line and bar disappear, and get replaced by the holder cube. We move the mouse away from

the cube's center to increase its size (Figure 6.18). Clicking the left mouse button �xes the size

and �nishes the holder cube construction process.

Next we would like to create a reference cube referring to the
oating-point multiplication

predicate. We work our way through various submenus to the \Create Predicate Ref-

erence Cube" option and select it (Figure 6.19). Now we need to specify which predicate

we would like to refer to. This can be done by simply locating the predicate de�nition cube

de�ning the primitive
oating-point multiplication predicate in the rendering area and clicking

on it. The 2D point translates into a 3D line, but the system can use structural information

133

Figure 6.20: Specifying a 3D Point Figure 6.21: The Predicate Cube Appears

| the existing predicate de�nition cubes | and the user's intent | selecting such a cube |

to determine which object on the line to select.

Having selected the predicate we would like to refer to, we need to position the reference

cube in 3-space. This operation is similar to positioning a holder cube; the reference cube could

be positioned anywhere. We have to go through the same motions as before: locate a point

in the rendering area, press down the left mouse button to specify a line going through this

point, move the mouse to rotate the scene, release the button to terminate rotation and make

the intersecting bar appear (Figure 6.20), position the bar on the desired point on the line, and

click the left mouse button to terminate the 3D point selection process. The speci�ed point is

taken to be the center of the new reference cube, the cube appears around it (Figure 6.21), its

size is the same as that of the de�nition cube it refers to.

We perform similar actions to create a reference cube referring to the
oating-point addition

predicate and three more holder cubes (Figure 6.22).

Next we would like to connect the various holder cubes and ports through pipes. There are

many techniques imaginable that Cube could use for pipe construction, from asking the user

to specify the end points and every single joint of a pipe through 3-space point selection (this

would be easy to implement, but would place a heavy burden on the user) to just asking the

user to specify the end-points (which can be done with a single mouse-click per end-point, as

134

Figure 6.22: All the Holder and Predicate

Cubes Have Been Created

Figure 6.23: Selecting the Create Pipe Op-

tion

Figure 6.24: The Pipe Has Appeared Figure 6.25: All the Pipes Have Been Cre-

ated

135

Figure 6.26: Selecting the Create Floating-

Point Term Cube Option

Figure 6.27: Typing in the Value 1.8

the system can use structural information) and then routing the pipe automatically, avoiding

obstacles while minimizing its length and the number of joints.

The current implementation represents a compromise: The user has to specify the end-points

of a pipe, simply by clicking on them; the system can use structural information to determine

which objects that could serve as pipe termini are located on the 3D line corresponding to the

2D point supplied by the user. The system then attempts to route a pipe between those two

termini. It will avoid routing the pipe through another \solid" object, but it will not try to

achieve a visually pleasing routing. Of course, in many of the simpler cases this is entirely

su�cient.

In our example, we select the \Create a Pipe" option from the appropriate submenu

(Figure 6.23), then click on the leftmost holder cube, thereby specifying one terminus of the

pipe, and on the port representing the �rst argument to the addition cube, thereby specifying

the second terminus. The system now connects those two termini through a pipe (Figure 6.24).

We repeat the process, until all the ports are connected either to another port or to a holder

cube (Figure 6.25).

Finally, we want to place a
oating-point constant (namely 1.8) into the holder cube

connected to the second argument of the multiplication predicate. We select the \Create

Floating-Point Term Cube" option (Figure 6.26), use the mouse to locate the holder cube

136

Figure 6.28: The Floating-Point Term

Cube Appeared

Figure 6.29: Creating the Term Cube Rep-

resenting 32.0

Figure 6.30: Creating the Term Cube Rep-

resenting 20.0

Figure 6.31: After Type Inference

137

Figure 6.32: After Evaluation Figure 6.33: Selecting the Delete Term

Cube Option

in the rendering area, and click on it. The system knows that we are trying to select an empty

holder cube, and it determines which such cube lies on the 3D line corresponding to the 2D

point we clicked on. A
oating-point keyboard pops up, and we type in the number 1.8 (Fig-

ure 6.27). Now a
oating-point term cube referring to the constant 1.8 appears inside the holder

cube (Figure 6.28).

We use the same approach to place the constant 32.0 into the holder cube connected to

the second argument of the addition predicate (Figure 6.29). This leaves us with a complete

temperature conversion program.

To convert from Celsius to Fahrenheit, we place a
oating-point value | say 20.0 | into

the left empty holder cube (Figure 6.30). Type inference tells us that the right holder cube will

receive a
oating-point value (Figure 6.31), and pressing the \Eval" button �lls it with the

right value, namely 68.0 (Figure 6.32).

In order to perform another computation, we have to \reset" the program, and delete the

value 20.0 from the leftmost holder cube. We do this by selecting the \Delete Term Cube"

option (Figure 6.33), locating the
oating-point term cube in the rendering area, and clicking

on it. The system knows that we want to delete an existing term; it determines which term lies

on the line we just speci�ed, and removes it from the program (Figure 6.34).

138

Figure 6.34: Having Deleted the Term Cube

20.0

Figure 6.35: Creating the Term Cube 50.0

Figure 6.36: After Evaluation

139

In order to convert from Fahrenheit to Celsius, we place a
oating-point value | say 50.0

| into the right empty holder cube (Figure 6.35) and press \Eval". This time, the leftmost

holder cube receives a result, namely 10.0 (Figure 6.36).

Creating this temperature conversion program takes a skilled user a few minutes | for

sure longer than it would take someone to specify the same program in a high-level textual

language. However, much of the tediousness of program construction can be attributed to the

fact that Cube currently uses a 2D window system and a 2D pointing device. A virtual-reality-

based programming environment will certainly speed up the editing process considerably. The

remaining editing overhead to textual languages will be made up (or so we hope) by the greater

intuitiveness and better debugging features of those future 3D visual languages.

140

Chapter 7

Conclusion

Our work has been an exploratory foray into the use of three-dimensional graphics for visual

programming. We have developed Cube, a 3D visual language, and we have demonstrated the

feasibility of the underlying ideas by building two prototype implementations of the language.

Our contributions to the �eld of visual programming can be summarized as follows:

� Cube is the �rst full-
edged three-dimensional visual language. For the last 6 years, there

has been interest in the visual language community regarding 3D languages [24], and

speculations about their potential. But no such languages have been developed prior to

Cube. However, there have been subsequent designs of 3D visual languages, e.g. Lingua

Graphica [81] and CAEL-3D [68].

� The third dimension can be used to provide a syntactically richer language, much like

color, texture, distance, directions, and spatial enclosure have been used before. We use

3D to encode semantic information: We represent terms, atomic logic formulas, and types

by cubes; we express conjunction of atomic formulas and product of types by arranging

the corresponding cubes horizontally to each other (i.e. in the xy plane); and we express

disjunction of conjoint formulas and sum of tagged product types by arranging the corre-

sponding horizontal planes vertically, in the z dimension (i.e. by stacking them on top of

each other). The fact that we have two dimensions | x and y | to denote conjunctions

allows us to connect the various cubes which form the conjunction through pipes, i.e.

a data
ow diagram. Data
ow diagrams are inherently an (at least) two-dimensional

formalism, the fact that we have a third dimension at our disposal helps us in avoiding

141

the problem of crossing lines | we can always route a pipe in 3-space so that it does not

collide with any other pipe.

� A three-dimensional syntax opens up the possibility of utilizing a virtual-reality-based

programming environment. Programming in Virtual Reality is interesting in its own right,

due to the immersive and reactive nature of virtual realities. VR environments improve

the input component of graphical user interfaces by allowing for direct manipulation:

instead of using a mouse to interact with an object on the screen, the user can handle

a virtual object directly, by mediation of a data glove. Moreover, selecting the focus of

attention is simpli�ed: in a 2D window system, the user is confronted with many windows;

he has to use the mouse to select a window. In a virtual reality environment, on the other

hand, all objects occupy the same virtual world; the user focuses on a particular object

simply by looking at it and manipulating it directly. Finally, in the 2D setting, if the

virtual canvas of a window is larger than the physical window, the user has to perform

panning operations to access hidden parts of the window. This is usually done either by

using scrollbars, or by \dragging" the canvas with the mouse. In a Virtual Reality setting,

however, panning is replaced by simple head movement.

Another situation in which a 3D language is useful is when the application domain of the

language deals with three-dimensional representations, such as 3D animations or virtual

reality applications. CAEL-3D [68] was developed to support the development of 3D

animations, and Lingua Graphica [81] is aimed at supporting the development of virtual-

reality applications.

� Cube shows how to incorporate a static polymorphic type system into a visual language.

The bene�ts of static type systems are widely recognized: they help in detecting pro-

gramming errors statically, without the need to perform exhaustive run-time testing. We

use the Hindley-Milner algorithm to ensure the well-typedness of programs. The Hindley-

Milner algorithm does not rely on user-supplied type declarations, instead, it infers (or

reconstructs) the types of the expressions of a program. We provide additional feedback

to the user by visualizing the inferred types of variables. In this respect, Cube is superior

to most textual languages that use Hindley-Milner; these languages typically just indicate

whether or not the program is well-typed.

142

Cube guarantees that a well-typed program is type-safe, i.e. that it will not fail at run-

time due to a type error. We were the �rst to propose the use of Hindley-Milner type

inference for visual languages and to make strong guarantees about type-safety [56]. Our

work has in
uenced several other visual languages [8, 65, 66].

� Cube is based on Horn logic, a powerful, declarative formalism. Horn logic was �rst pro-

posed as a programming language by Robert Kowalski in the 1970's [40]. Prolog [13],

jointly developed by him and Alain Colmerauer, is the most widespread logic program-

ming language to date. Logic programming is an attractive paradigm due to its declarative

nature, its inherent parallelism (in form of AND and OR nondeterminism), and its multi-

directional nature (predicates have no input/output patterns, and logic variables can be

viewed as multidirectional communication channels).

One problematic feature of logic languages such as Prolog is that programs are represented

by a
at set of clauses; there are no mechanisms to localize de�nitions. Cube solves this

problem by allowing for nested predicate de�nitions. It also eliminates Prolog's unclean

features, such as the \cut" predicate (a mechanism to prune the search space, which

sacri�ces completeness), its dependency on clause and subgoal orderings, or its depth-

�rst-search resolution strategy. Cube exploits the implicit parallelism of logic programs

by using a pseudo-concurrent interpreter; concurrency is simulated via time-slicing.

� Cube is a higher-order programming language. It treats predicates (the \agents of com-

putation") as �rst-class objects, and allows them to be passed as arguments to other

predicates. A predicate which takes another predicate as an argument is called higher-

order. In the functional programming community, higher-orderness has been identi�ed as

one of the most powerful abstraction mechanisms, which can leads to a very high degree

of code reuse.

Cube's notion of higher-orderness is simplistic (we use an intensional notion of equality for

predicates), but it is powerful enough to allow us to build the higher-order abstractions

common in functional programming; moreover, it is implemented very e�ciently.

� Cube applies the visual data
ow metaphor to logic programming. Cube uses data
ow

to denote \shared variables". This idea would appear to be obvious; in fact, in the area

143

of concurrent logic programming, logic variables are often referred to as \communication

channels", a term which even more so evokes the mental image of a link connecting two

parties. However, we are not aware of any other visual programming language which is

based on logic and uses the data
ow metaphor. Consequently, these other languages have

been rather weak in describing variable sharing: Some of them (like Senay and Lazzeri's

system [74]) use textual symbols to identify variables, others (like VLP [41]) use \shared

patterns", i.e. an iconic approach. Either way, no visual aid is provided to the user in

noticing interconnections.

� Finally, Cube demonstrates that there is no inherent performance penalty to visual lan-

guages. We show this by de�ning an isomorphic textual language, translating visual

programs into their textual counterparts, and performing all computations on the textual

structure. The only price we pay for using a visual notation is the overhead of mapping

visual programs into a textual form, and mapping the results back into pictures. This

overhead is constant, that is, it does not depend on the length of the actual computation.

We see several possible directions for future work. The most obvious omission in this thesis

is a Cube environment that is virtual-reality-based. Such an environment would alleviate much

of the tediousness which is currently associated with the construction of Cube programs. It is a

de�nite requirement for constructing programs that are larger than the toy programs we have

shown here.

The second major omission of this thesis is an evaluation of the usefulness of Cube. Ulti-

mately, the usefulness of a programming language can be determined only through empirical

studies, either by conducting an experiment that compares how well a number of test subjects

can solve a problem or a set of problems in di�erent languages, or by using the language to

complete a signi�cant programming project, and then analyzing how fast the task could be

completed, and how correct, how maintainable, and possibly how reusable the resulting pro-

gram is. Both approaches would have required a more comfortable programming environment

than the one we were able to build with the technology available to us.

A second promising direction for future research lies in providing customizable visual rep-

resentations of values. For example, a two- or three-dimensional array should be visualized

as a two- or three-dimensional grid, not as a list of lists (or list of lists of lists), as it is now.

144

Each visualization method should be associated with a type. Taken to the extreme, this means

embedding a complete 3D graphics package into our visual language.

If we view the constructs of our programming language as data themselves, then this might

lead to a user-customizable syntax (which would presumably also require either meta-interpreter

technology or re
ective capabilities in the language).

Finally, we should strive to apply the lessons we have learned to other programming paradigms.

Cube's computational model is based on higher-order Horn logic. We were attracted to this

model because of its expressiveness and its (relatively) clean semantics. However, there are also

problems associated with it, e�ciency not being the least. We have learned that in the best

case, the performance penalty one pays for a visual syntax is negligible. It would be interesting

to devise a 3D notation for a language whose semantics is targeted towards run-time e�ciency.

145

Bibliography

[1] James H. Andrews. Predicates as Parameters in Logic Programming: A Set-Theoretic

Basis. In Proceedings of Workshop on Extensions to Logic Programming, T�ubingen, Ger-

many, December 1989. Published as Lecture Notes in Arti�cial Intelligence, 475:31 { 47,

Springer-Verlag, 1989.

[2] Lennart Augustsson and Thomas Johnsson. Lazy ML user's manual. Chalmers University

of Technology, G�oteborg, Sweden, December 16, 1991.

[3] John Backus. Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs. Communications of the ACM, 21(8):613 { 641, August

1978.

[4] Marc H. Brown and James R. Meehan. The FormsVBT Reference Manual. Available via

anonymous ftp from gatekeeper.dec.com, March 1993.

[5] Marc H. Brown and James R. Meehan. VBTkit Reference Manual | A toolkit for Trestle.

Available via anonymous ftp from gatekeeper.dec.com, March 1993.

[6] Marc H. Brown and Marc A. Najork. Algorithm Animation using 3D Interactive Graphics.

In User Interface Software and Technology, November 1993.

[7] Margaret M. Burnett. Abstraction in the demand-driven, temporal-assignment, visual

language model. Ph. D. Thesis, University of Kansas, 1991.

[8] Margaret M. Burnett. Types and Type Inference in a Visual Programming Language. In

IEEE Symposium on Visual Languages, pages 238 { 243, Bergen, Norway, 1993.

146

[9] M. Campanai, A. Del Bimbo, and P. Nesi. Using 3D Spatial Relationships for Image

Retrieval by Contents. In 1992 IEEE Workshop on Visual Languages, pages 184 { 190,

Seattle, WA, September 1992.

[10] Luca Cardelli. Two-Dimensional Syntax for Functional Languages. In Integrated Interactive

Computing Systems, pages 139 { 151, North-Holland Publishing Company, 1983.

[11] Shi-Kuo Chang, editor. Visual Languages and Visual Programming. Plenum Press, New

York, 1990.

[12] Weidong Chen, Michael Kifer, and David S. Warren. HiLog: A First-Order Semantics for

Higher-Order Logic Programming Constructs. In Ewing L. Lusk and Ross A. Overbeck,

editors, Logic Programming: Proceedings of the North American Conference 1989, pages

1090 { 1114, MIT Press, Cambridge, MA, 1989.

[13] W. F. Clocksin and C. F. Mellish. Programming in Prolog. Springer Verlag, Heidelberg,

Germany, 1981.

[14] Kenneth C. Cox and Gruia-Catalin Roman. Abstraction in algorithm animation. In 1992

IEEE Workshop on Visual Languages, pages 18 { 24, Seattle, WA, September 1992.

[15] Carlos Christensen. An Example of the Manipulation of Directed Graphs in the AMBIT/G

Programming Language. In M. Klerer and J. Reinfelds (editors), Interactive Systems for

Experimental and Applied Mathematics, Academic Press, New York, 1968.

[16] Carlos Christensen. An Introduction to AMBIT/L, and Diagrammatic Language for List

Processing. In Second Symposium on Symbolic and Algebraic Manipulation, Los Angeles,

CA, 1971.

[17] Luis Damas and Robin Milner. Principal type schemes for functional programs. In 9th

ACM Symposium on Principles of Programming Languages, pages 207 { 212, 1982.

[18] A. Del Bimbo, M.Campanai, and P. Nesi. 3-D Visual Query Language for Image Databases.

Journal of Visual Languages and Computing, 3(3):257 { 271, September 1992.

147

[19] E. Denert, R. Franck, and W. Streng. PLAN2D { Towards a Two-Dimensional Program-

ming Language. In Gesellschaft f�ur Informatik | 4. Jahrestagung, Berlin, October 1974.

Published as Lecture Notes in Computer Science, 26:202 { 213, Springer Verlag, 1974.

[20] Marc Eisenstadt and Mike Brayshaw. The Transparent Prolog Machine (TPM): An execu-

tion model and graphical debugger for logic programming. Journal of Logic Programming,

5(4):277 { 342, December 1988.

[21] T. O. Ellis, J. F. Heafner, and W. L. Sibley. The GRAIL Project: An Experiment in

Man-Machine Communications, RAND Report RM-5999-ARPA, 1969.

[22] Anthony J. Field and Peter G. Harrison. Functional Programming. International Computer

Science Series. Addison Wesley, 1988.

[23] George W. Furnas. New Graphical Reasoning Models for Understanding Graphical Inter-

faces. In Proc. CHI '91, pages 71 { 78, New Orleans, LA, 1991.

[24] Ephraim P. Glinert. Out of Flatland: Towards 3-D Visual Programming. In Fall Joint

Computer Conference, pages 292 { 299, Dallas, TX, 1987.

[25] Ephraim P. Glinert and Steven L. Tanimoto. PICT: An Interactive, Graphical Program-

ming Environment. IEEE Computer 17(11):7 { 25, November 1984.

[26] Warren D. Goldfarb. The Undecidability of the Second-Order Uni�cation Problem. The-

oretical Computer Science, 13:225 { 230, 1981.

[27] F. Grant, L. McCarthy, M. Pontecorvo, and R. Stiles. Training in Virtual Environments.

Proceedings of the Intelligent Computer-Aided Training Conference, Houston, TX, Novem-

ber 1991.

[28] Donald Hearn and M. Pauline Baker. Computer Graphics. Prentice-Hall, 1986.

[29] Daniel D. Hils. DataVis: A Visual Programming Language for Scienti�c Visualization. In

Proc. 1991 ACM Computer Science Conference, pages 439 { 448, San Antonio, TX, March

5 { 7 1991.

148

[30] Daniel D. Hils. A Visual Programming Language for Visualization of Scienti�c Data. Ph.D.

Thesis. Technical Report No. UIUCDCS-R-93-1809, Department of Computer Science,

University of Illinois at Urbana-Champaign, June 1993.

[31] C. M. Holt. viz: A visual language based on functions. In 1990 IEEE Workshop on Visual

Languages, pages 221 { 226, Skokie, IL, October 1990.

[32] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. Fabrik: A

Visual Programming Environment. OOPSLA '88, San Diego, September 1988. Appeared

as ACM Sigplan Notices, 23(11):176 { 190, November 1988.

[33] International Organization for Standardisation (ISO). Information Processing Systems {

Computer Graphics { Graphics Kernel System (GKS). ISO 7942. ISO Central Secretatiat

(1985).

[34] Joxan Ja�ar, Spiro Michaylov, Peter J. Stuchey, and Roland H. C. Yap. The CLP(R)

Language and System. Technical Report CMU-CS-90-181, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, 1990.

[35] Kenneth M. Kahn and Vijay A. Saraswat. Complete visualizations of concurrent programs

and their executions. In 1990 IEEE Workshop on Visual Languages, pages 7 { 15, Skokie,

IL, October 1990.

[36] Takayuki D. Kimura. Show and Tell Sample Programs. Technical report, Department of

Computer Science, Washington University, St. Louis, MO, January 1986.

[37] Takayuki D. Kimura, Julie W. Choi, and Jane M. Mack. A visual language for keyboardless

programming. Technical Report WUCS-86-6, Department of Computer Science, Washing-

ton University, St. Louis, MO, March 1986.

[38] Takayuki D. Kimura. Hyper
ow: A Visual Programming Language for Pen Computers.

In IEEE Workshop on Visual Languages, pages 125 { 132, Seattle, WA, 1992.

[39] Hideki Koike. An application of three-dimensional visualization to object-oriented pro-

gramming. In Advanced Visual Interface, pages 180 { 192, Rome, Italy, 1992.

[40] Robert A. Kowalski. Logic for Problem Solving. North-Holland, 1979.

149

[41] Didier Ladret and Michel Rueher. VLP: a Visual Programming Language. Journal of

Visual Languages and Computing, 2(2):163 { 189, June 1991.

[42] Fred Lakin. Computing with text-graphic forms. In Proceedings of the First Lisp Confer-

ence, Stanford, 1980.

[43] T. K. Lakshman and Uday S. Reddy. Typed Prolog: A semantic reconstruction of the

Mycroft-O'Keefe type system. In V. Saraswat and K. Ueda, editors, Logic Programming:

Proceedings of the 1991 International Symposium, pages 202 { 217, Cambridge, MA, 1991.

MIT Press.

[44] David Lau-Kee, Adam Billyard, Robin Faichney, Yasuo Kozata, Paul Otto, Mark Smith,

and Ian Wilkinson. VPL: An active, Declarative Visual Programming System. In 1991

IEEE Workshop on Visual Languages, pages 40 { 46, Kobe, Japan, October 1991.

[45] Henry Lieberman. A three-dimensional representation for program execution. In 1989

IEEE Workshop on Visual Languages, pages 111 { 116, Rome, Italy, October 1989.

[46] John W. Lloyd. Foundations of Logic Programming. Springer Verlag, second edition, 1987.

[47] Frank Ludolph, Yu-Ying Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. The Fab-

rik Programming Environment. IEEE Workshop on Visual Languages, pages 222 { 230,

Pittsburgh, PA, 1988.

[48] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Technical Report 68, Digital

Equipment Corp., Systems Research Center, Palo Alto, CA, December 1991.

[49] P. McLain and Takayuki D. Kimura. Show and Tell User's Manual. Technical Report

WUCS-86-84, Department of Computer Science, Washington University, St. Louis, MO,

March 1986.

[50] Dale A. Miller and Gopolan Nadathur. Higher-order logic programming. In 3rd Interna-

tional Conference on Logic Programming, London. Published as Lecture Notes in Computer

Science, 225:448 { 462, Springer-Verlag, New York, 1986.

[51] Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer

and System Sciences, 17:348 { 375, 1978.

150

[52] Alan Mycroft and Richard A. O'Keefe. A polymorphic type system for Prolog. Arti�cial

Intelligence, 23:295 { 307, 1984.

[53] Gopalan Nadathur and Dale Miller. An overview of �Prolog. In Robert A. Kowalski

and Kenneth A. Bowen, editors, 5th International Conference and Symposium on Logic

Programming, pages 810 { 827, 1988.

[54] Gopalan Nadathur and Bharat Jayaraman. Towards a WAMModel for �Prolog. In Ewing

L. Lusk and Ross A. Overbeck, editors, Logic Programming: Proceedings of the North

American Conference 1989, pages 1180 { 1198, MIT Press, Cambridge, MA, 1989.

[55] Marc A. Najork. Design and Implementation of the Cube Language | A Preliminary

Examination Statement. University of Illinois, Department of Computer Science, March

1992.

[56] Marc A. Najork and Eric J. Golin. Enhancing Show-and-Tell with a polymorphic type

system and higher-order functions. In IEEE Workshop on Visual Languages, pages 215 {

220, Skokie, IL, October 1990.

[57] Marc A. Najork and Simon M. Kaplan. The Cube Language. In IEEE Workshop on Visual

Languages, pages 218 { 224, Kobe, Japan, 1991.

[58] Marc A. Najork and SimonM. Kaplan. A Prototype Implementation of the Cube Language.

In IEEE Workshop on Visual Languages, pages 270 { 272, Seattle, WA, 1992.

[59] Marc A. Najork and Simon M. Kaplan. Specifying Visual Languages with Conditional

Set Rewrite Systems. In IEEE Symposium on Visual Languages, pages 12 { 18, Bergen,

Norway, 1993.

[60] Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, 1991.

[61] apE: The Animation Production Environment { Version 1.1 Release Notes. The Ohio

Supercomputer Graphics Project, The Ohio Supercomputer Center, Columbus, OH, 1989.

[62] Rajeev K. Pandey and Margaret M. Burnett. Is it Easier to Write Matrix Manipulation

Programs Visually or Textually? An Empirical Study. In IEEE Symposium on Visual

Languages, pages 344 { 351, Bergen, Norway, 1993.

151

[63] L. F. Pau and H. Olason. Visual Logic Programming. Journal of Visual Languages and

Computing, 2(1):3 { 15, March 1991.

[64] Simon L. Peyton Jones. The Implementation of Functional Languages. Prentice Hall

International Series in Computer Science. Prentice Hall, 1987.

[65] J�org Poswig, Klaus Teves, Guido Vrankar, and Claudio Moraga. VisaVis { Contributions

to Practice and Theory of Highly Interactive Visual Languages In IEEE Workshop on

Visual Languages, pages 155 { 161, Seattle, WA, 1992.

[66] J�org Poswig and Claudio Moraga. Incremental Type Systems and Implicit Parametric

Overloading in Visual Languages. In IEEE Symposium on Visual Languages, pages 126 {

133, Bergen, Norway, 1993.

[67] Georg Raeder. A Survey of Current Graphical Programming Techniques. IEEE Computer

18(8):11 { 25, August 1985.

[68] Frank Van Reeth and Eddy Flerackers. Three-Dimensional Graphical Programming in

CAEL. In IEEE Symposium on Visual Languages, pages 389 { 391, Bergen, Norway, 1993.

[69] Steven P. Reiss. A Framework for Abstract 3D Visualization. In IEEE Symposium on

Visual Languages, pages 108 { 115, Bergen, Norway, 1993.

[70] Greg Rogers, Kelvin Sung, and William Kubitz. Combining Graphics and Windowing

Standards in the XGKS System. Computer Graphics Forum 9:229 { 237, 1990.

[71] Gruia-Catalin Roman, Kenneth C. Cox, Donald Wilcox, and Jerome Plun. Pavane: a sys-

tem for declarative visualization of concurrent computations. Journal of Visual Languages

and Computing, 3(2):161{193, June 1992.

[72] Vijay A. Saraswat, Ken Kahn, and Jacob Levy. Janus: A Step towards Distributed Con-

straint Programming. In North American Conference on Logic Programming, pages 431 {

446, 1990.

[73] Robert W. Schei
er and James Gettys. X Window System. Digital Press, third edition,

1992.

152

[74] Hikmet Senay and Santos G. Lazzeri. Graphical representation of logic programs and their

behavior. In 1991 IEEE Workshop on Visual Languages, pages 25 { 31, Kobe, Japan,

October 1991.

[75] Nan C. Shu. Visual Programming. Van Nostrand Reinhold Company, New York, 1988.

[76] Silicon Graphics Computer Systems. Iris Explorer User's Guide. Document 007-1371-010,

Silicon Graphics Computer Systems Inc., Mountain View, CA, 1992.

[77] David C. Smith. PYGMALION: A Creative Programming Environment. Ph.D. Thesis.

Technical Report STAN-CS-75-499, Department of Computer Science, Stanford University,

1975.

[78] David C. Smith. PYGMALION: A Computer Program to Model and Stimulate Creative

Thought. Birkh�auser Verlag, Basel, 1977.

[79] Lindsey Spratt and Allen Ambler. A Visual Logic Programming Language Based on Sets

and Partitioning Contraints. In IEEE Symposium on Visual Languages, pages 204 { 208,

Bergen, Norway, 1993.

[80] John T. Stasko and Joseph F. Wehrli. Three-Dimensional Computation Visualization. In

IEEE Symposium on Visual Languages, pages 100 { 107, Bergen, Norway, 1993.

[81] Randy Stiles and Michael Pontecorvo. Lingua Graphica: A visual language for virtual

environments. In 1992 IEEE Workshop on Visual Languages, pages 225 { 227, Seattle,

WA, September 1992.

[82] Ivan E. Sutherland. Sketchpad, A Man-Machine Graphical Communication System. In

Proceedings of the AFIPS Spring Joint Computer Conference 23:329 { 346, 1963.

[83] Ivan E. Sutherland. The Ultimate Display. In Proceedings of the IFIP Congress, pages 506

{ 508, 1965.

[84] William R. Sutherland. On-Line Graphical Speci�cations of Computer Procedures. Ph.D.

thesis, MIT, Cambridge, MA, 1966.

[85] Ivan E. Sutherland. A Head-Mounted Three-Dimensional Display. In Proceedings of the

AFIPS Spring Joint Computer Conference 33:757 { 764, 1968.

153

[86] David A. Turner. Miranda| a non-strict functional language with polymorphic types. In

Conference on Functional Programming and Computer Architecture, Nancy, France, 1985.

Published as Lecture Notes in Computer Science, 201:1 { 16, Springer-Verlag, New York,

1985.

[87] C. Upson, T. Faulhaber Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,

and A. van Dam. The Application Visualization System: A Computational Environment

for Scienti�c Visualization. IEEE Computer Graphics and Applications, 9(4):30 { 42, July

1989

[88] Konrad Zuse. Beschreibung des Plankalk�uls. R. Oldenbourg, M�unchen, 1977.

154

Vita

Marc Alexander Najork was born on August 14, 1963, in Frankfurt, Germany. He attended

Geschwister-Scholl Schule in Schwalbach and Altk�onigschule in Kronberg, from which he re-

ceived a High School degree in December 1981. Between April 1982 and June 1983, Marc

completed the mandatory service in the German Army.

In October 1983, he entered the Technical University of Darmstadt to study Wirtschaftsin-

formatik, a program which merges Computer Science with Business Administration, Economics,

and Law.

While studying at Darmstadt, he received a scholarship from the German Academic Ex-

change Service which enabled him to spend a year abroad. He spent the period from August

1987 to May 1988 as a non-degree student in the College of Engineering of the University of

Illinois at Urbana-Champaign.

Marc received the degree of Diplom-Wirtschaftsinformatiker from the Technical University

of Darmstadt in May 1989.

In January 1989, Marc joined the Department of Computer Science at the University of

Illinois to pursue his graduate education. His adviser was Prof. Simon Kaplan. During this

time, he held positions as Teaching and as Research Assistant. He also was awarded two

University Fellowships.

After receiving his Ph.D., Dr. Najork joined Digital Equipment Corporation. He is currently

a Principal Software Engineer at the Systems Research Center in Palo Alto, California.

155

