PROGRAMMING IN THREE DIMENSIONS

BY
MARC-ALEXANDER NAJORK

Dipl.-Wirtsch. Inf., Technische Hochschule Darmstadt, Germany, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1994

Urbana, lllinois



(©Copyright by
Marc-Alexander Najork
1994



PROGRAMMING IN THREE DIMENSIONS

Marc-Alexander Najork, Ph.D.
Department of Computer Science
University of lllinois at Urbana-Champaign, 1994
Simon M. Kaplan, Advisor

This thesis describes Cube, the first visual language to employ a three-dimensional syntax.
The third dimension provides for a richer syntax, makes the language more expressive, and
prepares the ground for novel, virtual-reality-based programming environments. We use di-
mensional extent to convey semantic meaning, or more precisely, to distinguish between logical
disjunctions and conjunctions, and between sum and product types.

Cube uses the data flow metaphor as an intuitive way to describe logic programs. The
semantics of the language is based on a higher-order form of Horn logic. Predicates are viewed
as a special kind of terms, and are treated as first-class values. In particular, they can be passed
as arguments to other predicates, which allows us to define higher-order predicates.

Cube has a static polymorphic type system, and uses the Hindley-Milner algorithm to
perform type inference. Well-typed programs are guaranteed to be type-safe.

We have implemented two Cube interpreters: An initial feasibility study, and a prototype
implementation with improved interactive capabilities. Both of them exploit the implicit par-

allelism of the language by simulated concurrency, implemented via time-slicing.
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Chapter 1

Introduction

Programming is the activity of describing an algorithm in a formal notation — a programming
language — for the purpose of then executing it on a computer. The art of programming goes
back a long time, among its first practitioners were such pioneers as Charles Babbage and Au-
gusta Ada Lovelace. However, programming became more widespread only with the advent of
the electronic digital computer in the 1940’s. The very first computer programs were formu-
lated in very low-level languages, which strongly reflected the underlying machine architecture.
However, within a decade higher-level, “problem-oriented” programming languages came into
existence, with Fortran being the patriarch of a long line.

The vast majority of these languages are textual in nature. That is, phrases in these lan-
guages are formed from (essentially linear) strings of characters of some alphabet (a notable
exception is Zuse’s Plankalkiil [88], a language devised in 1945 for one of the first computers,
which uses a two-dimensional layout for textual formulas). This limitation to textual languages
reflected to some extent the limitations of the available input/output hardware (teletype key-
boards and typewriters). It also reflected the fact that textual notations are fairly easy to parse,
and thus made efficient use of the then scarce computing resources.

Computer graphics hardware has become available in the 1960’s. The year 1963 marks the
creation of the first graphical application program, Ivan Sutherland’s Sketchpad [82]. Three
years later, his brother William created what might be considered the first visual programming

language [84]. The system was based on a data flow metaphor; it allowed its user to select



operators from a menu and to connect them using a light pen, to assign input values to the
“circuit”, and to watch it execute, all in real time.

The 1960°s saw the creation of two other visual programming languages. The AMBIT
family of languages is based on two-dimensional pattern-matching and diagram rewriting.
AMBIT/L [16] was designed for rewriting graphical representations of list structures, AM-
BIT/G [15] is aimed at general graphs. The GRAIL language [21], developed at RAND, uses a
flowchart notation to specify programs visually.

Since then, computer graphics hardware became more and more affordable. In the early
1980’s, bit-mapped displays and pointing devices such as mice were first integrated into per-
sonal computers; today, they are standard equipment of base-level systems. Parallel to this
development of hardware technology, a multitude of visual programming languages have been
devised ([10, 19, 25, 77] being some of the earlier ones). Although they have not left a mark
on general-purpose programming, they have carved a niche in specialized application domains,
such as providing simple programming interfaces to end-users of scientific visualization systems
( examples are Iris Explorer [76], AVS [87], and apE [61]).

Ivan Sutherland also pioneered a technology that has since then become known as “Virtual
Reality”. He designed a head-mounted display that allowed its user to view three-dimensional,
computer-generated images in a stereoscopic fashion [83, 85]. For the next 25 years, this tech-
nology remained too expensive to become widespread. Today, however, 3D graphics hardware
is becoming more and more affordable; at the same time, novel input/output devices, such as
head-mounted displays and data gloves, which allow a user to immerse himself into a computer-
generated 3D visualization and to directly interact with objects in this scene, are becoming
commercially available.

Will these advances in input/output hardware lead to a new family of visual programming
languages? How feasible are those languages, and what are their benefits over 2D visual and

over textual languages? These are the questions that have motivated this thesis.

1.1 Visual Languages

A visual language is a programming language which uses a predominantly graphical notation.

The field can be traced back to work done by William Sutherland [84] and others in the mid



1960’s; however, most of the research has been done within the last 10 years, when low-cost
computers with high-resolution bit-mapped graphics capabilities became widely available.

A great number of different visual paradigms have been explored. A detailed survey of the
various approaches is beyond the scope of this thesis. We just want to describe briefly three
major paradigms: control flow, data flow, and visual rewriting. For a more detailed survey of
visual languages, the reader is referred to compendia such as [11, 75].

The control flow paradigm uses the flow chart metaphor to describe the control flow of
a program. Simple operations, such as assignment or procedure invocation, are depicted as
boxes; sequencing is denoted by arrows connecting two boxes. In addition, there are visual
representations for the common control constructs, such as conditionals or iteration. So, control
flow language are based on the same semantic model as textual procedural languages of the
Fortran- and Algol-families. Pict [25] is an archetypical control flow language.

The data flow paradigm uses boxes to denote functions, and arrows to connect the output
of one function to the input of another. Data flow languages are typically stateless, and are
based on the semantic model used by functional languages. However, almost all of them are
first-order (refer to Section 2.3 for a discussion of the exceptions), thereby giving up much of
the power of functional languages. Show-and-Tell [37] is a typical data flow language.

The visual rewriting paradigm employs some form of visual rewrite rules to describe how
a given picture shall be transformed into another picture. Languages belonging to this group
are very diverse in their appearance, although they are all based on the same idea: match a
picture or a part of a picture against the left-hand side of a rewrite rule, and replace it by the
rule’s right-hand side. Christensen’s AMBIT languages [15, 16] operate on graph- and on list-
structures, Furnas” BITPICT system [23] operates on pixel-arrays, and Kahn and Saraswat’s

Pictorial Janus [35] rewrites closed contours.

1.2 Strengths of Visual Languages

There are many arguments in favor of visual programming. Usually, these arguments cen-
ter around the fact that humans are known to process pictures easier and faster than text.

According to Raeder,



“It is commonly acknowledged that the human mind is strongly visually oriented
and that people acquire information at a significantly higher rate by discovering

graphical relationships in complex pictures than by reading text.” (cf. [67] page 12)

Raeder then outlines more specifically why humans can cope with pictures better than with

text:

¢ Random vs. Sequential Access: Text is of a sequential nature, while pictures provide

random access to any part, as well as detailed and overall views.

¢ Transfer Rate: As the human sensory system is set up for real-time image processing,

pictures can be accessed and decoded more rapidly.

¢ Dimensions of Expressions: Text is one-dimensional in nature, while pictures are
multi-dimensional, and provide through visual properties like color, shape, size, and di-

rection a richer language, which can lead to a more compact encoding of information.

e Concrete vs. Abstract: Pictures can provide concrete metaphors, which make it easier

to grasp an abstract idea.

Raeder’s justification of visual programming is largely psychological in nature, and can be
verified only through empirical studies. The basic premise, however, is quite plausible. Pro-
grammers commonly use pictures to develop algorithms or data structures and to communicate
them to other programmers.

There have been several attempts to measure the benefits of visual languages and of program
visualization systems. Pandey and Burnett [62] conducted an empirical comparison between
Forms/3 [7] (a form-based visual language), Pascal, and APL. They investigated the usefulness
of these languages in a very narrow problem domain, namely matrix multiplication. In par-
ticular, they tested how well the test subjects could solve two problems with each language:
appending two matrices of compatible size, and computing the first n» Fibonacci numbers.

They conducted this test on 60 students. All of the students had prior experience with Pascal
or C, one had experience with APL, and none had prior experience with Forms/3. The test
subjects were given a 40-minute lecture on the application of these three languages to various

matrix-manipulation tasks. Afterwards, the students had to solve each of the two problems in



Results for Problem 1: Appending two matrices

completely correct | nearly correct | conceptually but | incorrect
not logically cor-
rect
Pascal 7 1 21 31
Forms/3 53 0 2 5
APL 49 3 2 6
‘ Results for Problem 2: Computing Fibonacci numbers
completely correct | nearly correct | conceptually but | incorrect
not logically cor-
rect
Pascal 38 5 4 13
Forms/3 35 9 7 9
APL 15 3 6 36

Table 1.1: Results of Pandey’s and Burnett’s User Study

each of the three languages, that is, they had to write 6 programs. They were allowed 5 minutes
per program. The order of languages in which the solutions had to be constructed was varied
among the participants.

Table 1.1 shows the outcome of the experiment. For the first problem, appending two
matrices, Forms/3 and APL were superior to Pascal, while for the second problem, computing
the first n Fibonacci numbers, Forms/3 and Pascal outperformed APL.

The application domain on which this study focused, namely matrix multiplication, is ad-
mittedly very narrow. Furthermore, one can of course not generalize from a particular visual

language to the whole genre. However, this study at least suggests that for certain tasks, an

appropriate visual language has the potential to outperform its textual competitors.

1.3 Weaknesses of Visual Languages

While visual programming per se shows a great deal of potential, there are also a lot of problems
agsociated with existing visual languages. Some of them are related to the visual notation they
employ, while others reflect trends in language design that have dominated the visual language

community up to now. We highlight four of those problems below:

e The screen space problem



e Low execution speed
e The lack of static type systems

o Conservative semantics

Visual languages tend to use a relatively sparse notation, that is, they use more screen
real estate to describe a given problem than textual languages do. This problem is usually
called the screen space problem. It can be alleviated by use of procedural abstraction, i.e. by
collapsing subdiagrams into single symbols, and treating these symbols as “black boxes” similar
to predefined operators.

Most visual languages are interpreted, and in many cases, the interpreter operates on a
representation that is very close to the picture representation of the program. This results in
poor performance of visual programs, and has given them a reputation of being inefficient.

The vast majority of existing visual languages are latently typed, which means that they
check whether a given operator receives values of the appropriate type only when this operator
is actually applied, i.e. at run time. One reason for this is that much of the research in visual
languages has focused on developing languages for non-programmers, and that the notion of
types was considered to be too complicated. However, not verifying the well-typedness of a
program at compile-time means that type errors are discovered only by trial-and-error. In
addition, latently typed languages typically use some form of run-time type checking, which
leads to significant execution overheads.

Many visual languages are based on relatively traditional semantic models. Those languages
whose syntax is based on the control flow paradigm are semantically procedural languages,
i.e. descendents of Fortran or Algol. As the name suggests, the notation focuses on control
structures that manipulate data instead of the data itself. The emphasis is on “how to do it”
rather than “what to do”. The level of abstraction in these languages is low compared to other
paradigms, and programming mistakes are easily made.

Languages whose syntax is based on the data flow paradigm are by and large functional lan-
guages. The functional framework is one of the cleanest and most elegant language paradigms,
although it is hard to build efficient implementations. One of the most powerful features of
modern functional languages is that they treat values as functions, i.e. as ordinary data, which

can be passed around as arguments to other functions. Functions which take other functions



as arguments are called higher-order, they allow for powerful abstractions, and their liberal use
can greatly increase the potential for code reuse. Strangely enough, though, almost all visual
languages are first-order, and thereby miss out on this powerful abstraction mechanism. In
fact, to our best knowledge, we were the first to propose the use of higher-order functions in

the data flow framework [56].

1.4 Arguments for a 3D Notation

Six years ago, Ephraim Glinert speculated about the prospects and potential benefits of three-

dimensional visual programming:

“But first, why do we advocate programming in three dimensions? Many readers

will surely argue ..., that we don’t yet know how to properly utilize two dimensions!

We do not propose eschewing 2-D visual and iconic programming for 3-D. We do
propose broadening our horizons to include the third dimension when appropriate,
for several reasons. For one reason, the technology is now available in (top of the
line) workstations, and it will rapidly become affordable to all. Most importantly,

however, are the precedents set by analogy with other branches of science. ...

Might not a similar situation hold for programming, too? And, if it does, ought
we not to exploit it to our advantage? ... It is time for computer science to begin
exploring revolutionary rather than evolutionary means of programming, in the hope

that the tools will be ready when required.” [24]

In response to Glinert’s call, we have developed Cube [57, 58], the first full-fledged three-
dimensional visual programming language, and we have built two implementations of a Cube
environment.

It is important to stress that we use the third dimension not to enhance the beauty of a
program, but rather to convey semantic meaning, to alleviate the screen space problem, and to
facilitate new interaction environments.

One benefit of a 3D visual language is that adding an extra dimension provides for a language
which is syntactically richer in the sense of Raeder. One can use different spatial dimensions to

express different kinds of information. We adopt this idea in Cube: We use horizontal extent



to express the conjunction of logic formulas and the product of types, and vertical extent to
express the disjunction of formulas and the sum of types.

The language is divided into two fragments: a fragment of predicate definitions and logic
formulas, and a fragment of type definitions and type expressions. In the logic fragment, terms
and atomic formulas are represented by cubes. Cubes that are located in the same zy plane
represent the conjunction of atomic formulas. So, conjunctions utilize 2 of the 3 dimensions.
The arguments of predicate applications (i.e. atomic formulas) are connected by pipes, in other
words, they form a data flow diagram. It should be noted that data flow diagrams are inherently
at least two-dimensional. By using a three-dimensional framework, we avoid the problem of
crossing lines — we can always route a pipe through 3-space so that it does not intersect any
other pipe or cube.

The body of a predicate definition is normalized to be in disjunctive normal form; that is,
it is a disjunction of conjunctions. We use the z dimension to indicate disjunctions. “Stacking”
a number of conjunctions, each of which extends in the zy dimension, on top of each other, i.e.
in the z dimension, indicates that these conjunctions shall be disjoint.

So, we use the third dimension to group various two-dimensional diagrams together. Alter-
natively, one could display each diagram in its own 2D window; however, this would require
the user to make a conscious effort to mentally integrate various windows into a single formula.
The 3D representation, on the other side, shifts this effort to the user’s cognitive system.

The very same concept — using a third dimension to encode more information — has been
successfully used in program visualization and algorithm animation [6, 14, 80] and scientific
visualization at large.

The 3D representation also helps to alleviate the screen space problem. In a two-dimensional
framework, we would use several windows to display the various clauses of a predicate definition,
now, we integrate them all into one three-dimensional object, which we display in a single
window. Of course, in the 3D setting, some objects in a scene may be obscured by other
objects in front of them; the user can resolve this by rotating the scene.

Another potential reason for visual languages to adopt a three-dimensional notation is that
such a notation naturally complements a Virtual Reality (VR) environment. There are two

reasons why this might be desirable: one might want to use the VR environment as a pro-



gramming environment, or one might want to use a 3D visual language inside an existing VR
environment to program VR simulations.

VR environments have potential as comfortable programming environments due to the very
immediate mode of interaction which they allow. Instead of manipulating graphical objects
with a mouse, a programmer can literally reach out, grab an object, and move it around.
VR environments also promise to alleviate the screen space problem even further. Standard
solutions in the two-dimensional setting are zooming, panning, and elision techniques; however,
requiring the user to adjust the amount of detail shown through sliders or other interactors adds
another layer of complexity to the programming environment. In a VR environment, on the
other hand, the user has a much larger “virtual space” available. He can focus onto a different
part of the picture simply by turning his head, or by rotating an object in front of him through
direct manipulation.

The second reason why one might want to program in a VR environment is in order to
develop VR software. This was the motivation for the work on Lingua Graphica [81]. Lingua
Graphica was developed at Lockheed’s Artificial Intelligence Center. It is part of a larger
virtual environment system called Seraphim [27], directed at developing and delivering effective
training applications. The key idea is that developing virtual reality software within a virtual

reality programming environment should provide for very short edit-compile-debug cycles.

1.5 Semantic Strengths of Cube

The benefits of static type systems are widely recognized. They help detect programming errors
statically, which otherwise could be found only through exhaustive testing of every part of the
program, and thus they contribute to faster program development, fewer debugging cycles, and
more reliable code.

In the best of all possible worlds, the semantics of a language guarantees that a well-typed
program will never “go wrong” at run-time, that is, it will never fail due to a type error. Such
languages are called type-safe. The notion of type-safety does not cover errors like “division-
by-zero” (which could be regarded as a type error!) or non-termination of a program.

Most procedural languages like Fortran or Pascal are not completely type-safe; they do not

prevent errors such as trying to access non-existing array elements. Most modern functional



languages, on the other hand, have a static polymorphic type system which guarantees type-
safety. These languages typically use the Hindley-Milner inference algorithm [17] to determine
whether a program is well-typed. The Hindley-Milner algorithm is a type-reconstruction al-
gorithm, which means that the user does not have to specify the types of variables (or other
expressions) in a program; instead, the Hindley-Milner algorithm infers them through a com-
bination of unification and natural deduction.

Cube has a static polymorphic type system, it is type-safe, and it uses the Hindley-Milner
algorithm to reconstruct types. Ill-typed programs are rejected, and the reconstructed types
of well-typed programs are visualized to provide feedback to the user (in this respect, Cube is
more user-friently than most textual languages that use Hindley-Milner; typically, they do not
provide such feedback).

To our best knowledge, we were the first to incorporate the Hindley-Milner algorithm into
a visual language [56], and to make strong guarantees about type-safety in a visual setting.

Horn logic was first proposed as a programming language by Robert Kowalski, whose seminal
book “Logic for Problem Solving” [40] laid the foundations for an entire branch of program-
ming language research, namely logic programming. The basic idea of logic programming is
that predicate logic is a powerful formalism for describing problems in a declarative way. Unfor-
tunately, automatic proof methods for unrestricted predicate calculus sentences are exceedingly
expensive. But if we restrict ourselves to sentences of a certain form, namely conjunctions of
Horn clauses (which in turn are disjunctions of literals with at most one positive literal), we
can use proof methods which are efficient enough to form the basis of a programming language.
One particular such proof method, SLD resolution, is used by Prolog [13], the most popular
logic programming language to date.

Prolog is a first-order language: predicates are the “agents of computation”, but they are
not first-class objects. They cannot be passed around as arguments to other predicates and then
be applied by the other predicate (Prolog has a metapredicate “call”, which solves this problem,
but relies on some very unclean features in the process). In other words, Prolog misses out on
the tremendous abstraction features provided by higher-orderness, and on the payofls in code
reduction and code reuse. Several newer logic programming languages have been developed to
solve this problem. Cube is one of them, it treats predicates as first-class values, and allows

the user to define higher-order predicates. While our approach is quite simplistic, it is powerful
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enough to allow us to formulate all the higher-order idioms from the functional programming

world in Cube; moreover, it is very efficient.

1.6 Contributions

The previous sections have described the strengths and the weaknesses of visual languages, they
have given arguments in favor of a 3D notation, and they have described the contributions of
Cube in a narrative form. Some of these contributions relate to its novel, three-dimensional
syntax, others to its powerful semantics. Features from both sides contribute to overcoming
the aforementioned weaknesses of existing visual languages.

At this point, we may summarize the contributions of this thesis concisely as:

e Cube is the first three-dimensional programming language. It uses the third dimension in
a meaningful way, namely to encode semantic information. The use of a 3D syntax also

opens up the door for novel, virtual-reality-based programming environments.

o We address the screen space problem by placing programs in a three-dimensional space

as opposed to on a two-dimensional plane.

e Cube uses a static type inference system, and guarantees that well-typed programs will

not “go wrong” at run-time.

o It is based on a very powerful semantic model, namely a higher-order form of Horn
logic. This model provides higher-order operations, unification, multi-directionality, static

scoping, nested definitions, and implicit parallelism on the language level.

o We apply the data flow metaphor to logic programming. Data flow is one of the most
appealing visual metaphors; however, none of the visual logic languages we are aware of

uses it.

e The implementations translate visual programs into a textual notation, and then operate
on this textual notation, thereby debunking the myth that visual languages are intrinsi-

cally less efficient than textual ones.
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1.7 Disclaimers

This thesis does not cover a number of aspects which will have to be addressed in order to ulti-
mately decide whether or not 3D visual programming is an improvement over more conventional
techniques.

Our prototype implementation falls short of the envisioned ideal environment, in that it is
not implemented on an actual Virtual Reality platform. Therefore, the interaction environment,
especially the editor, is rather tedious to use. Selecting a point in 3D is trivial, if one has a 3D
input device, but it is rather cumbersome when using a 2D device such as a mouse (Section 6.2.2
elaborates on the techniques we use for 3D point specification). As a result, the construction of
even a simple Cube expression takes a fair amount of time, certainly longer than the construction
of the same expression in a 2D visual or in a textual language.

In fact, our prototype system performs all the 3D rendering in software (although it would
be easy to utilize 3D graphics hardware). Hence, generation of a high-quality rendering takes
around 10 seconds on a Sun SPARCstation 10. When the user moves around in a scene, the
system falls back onto a wireframe representation, which can be generated in real time. The
wireframe graphics, however, is rather hard to comprehend, and thereby forms another obstacle
regarding the system’s usability.

These two deficiencies of the current implementation explain why we did not perform any
user studies. Ultimately, however, the usefulness of any new programming language and pro-

gramming environment can only be determined through such empirical studies.

1.8 Thesis Outline

In the next chapter, we review related work on functional and on logic visual languages, on
typed and on higher-order visual languages, and on other forays into 3D in the areas of visual
programming and of program visualization. We also review work done in applying static type
inference to logic programming languages, and work on higher-order logic languages.

Chapter 3 gives an account of the evolution of Cube’s syntax, and argues that the choice
of a three-dimensional syntax was a natural one. It describes how our semantic model resulted
from merging features of Prolog with those of a typed, higher-order functional language such

as Lazy ML.
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Chapter 4 gives an informal, example-driven introduction to the Cube language. Chapter 5
then formalizes the syntax and the semantics of the language, by relating the visual language
to a textual counterpart, and then giving a type system and an operational semantics for this
textual language.

Chapter 6 describes the two existing implementations of a Cube environment: the initial
feasibility study CUBE-I, which consists mainly of an interpreter, a type inference system, and
a renderer, and the prototype implementation CUBE-II, which improves on CUBE-I by offering
better performance and by adding interactive features, such as a rudimentary editor.

Chapter 7 finally sums up our findings, and discusses areas of further research.

13



Chapter 2

Related Work

This chapter reviews previous work which influenced the design of Cube, as well as related work
that shares some of Cube’s more unusual features. Some features of Cube and its predecessor,

ESTL, have in turn influenced the design of other visual languages.

2.1 Show and Tell

The design of Cube was quite heavily influenced by Show and Tell [36, 37, 49], a visual
language based on the data flow paradigm. Constants, variables, and operations are shown as
bozes. Data flows from boxes to other boxes through pipes, which are depicted as arrows. A
picture composed of boxes and pipes is called a puzzle. Show and Tell tries to complete this
puzzle by performing every possible data flow. If data flows into a box already containing a
different value, the box becomes inconsistent. Inconsistency can be limited to a single box, or
it can “flow out” of this box and turn its spatial environment inconsistent as well. Inconsistent
areas are shaded grey and are considered to be removed from the diagram. If a pipe leads
through an inconsistent area, no data can pass through it. This novel notion of consistency
can be utilized in many ways, in particular, it fulfills the same purpose as a conditional or
selection function in traditional textual languages. Cube generalizes the notions of completion
and consistency to unification and satisfiability.

Figure 2.1 shows a Show and Tell program for computing the factorial of a number.
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Figure 2.1: Show and Tell Definition of Factorial

2.2 Typed Visual Languages

There are a few visual languages that have an explicit notion of types. They can be divided
into two categories: those whose type system is modeled after traditional procedural languages,
and those whose type system is based on the Hindley-Milner approach [17, 51].

The first category contains two languages: Fabrik [32, 47] and DataVis [29, 30]. Both of
these languages are based on the data flow model. Fabrik is a general-purpose programming
language, while DataVis is targeted towards scientific visualization.

Both of them emphasize concreteness in their type systems. They feature a rich set of
predefined types, such as enumerations, records, arrays, points, bitmaps, etc., but do not allow
the user to define new types. In DataVis, types are associated with colors. Two boxes or ports
can be connected only if their types match, and in this case, the link appears in the color
associated with its type. This approach is limited in two ways: first, the mapping of types to
colors assumes a fixed and fairly small set of types, and second, the approach does not deal

well with polymorphic operations (although DataVis uses the color white to denote unknown

types).
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Another severe drawback of the type inference system employed by Fabrik and by DataVis
is that it does not guarantee type safety: programs which are judged to be well-typed can
still produce run-time errors that are essentially type related. For instance, they might try to
reference a non-existing array element.

The second category contains four languages: Enhanced Show-and-Tell, Cube, VisaVis and
an extension of Forms/3.

Enhanced Show-and-Tell [56], or ESTL for short, improves on Show and Tell by adding a
static polymorphic type system and higher-order functions. It was the first visual language to
use Hindley-Milner type inference. Cube [57, 58] in turn is a successor of Show and Tell and
ESTL, it transfers some key ideas from these two languages to visual logic programming.

VisaVis [65] is a visual language with a data flow based syntax, whose semantics is based
on FFP, the higher-order version of FP [3]. Its type inference system is based on Wand’s type
inference algorithm, which in turn is a variation of the Hindley-Milner algorithm. Recently,
Poswig and Moraga modified the inference system to perform incremental type inference and
to support overloaded functions [66].

Forms/3 [7], finally, is a form-based visual language. Burnett’s type inference system for
Forms/3 [8] is based on set constraints; the inference algorithm is again a variation of the
Hindley-Milner algorithm.

All the languages in this second category share one important property: they guarantee

type safety, that is, a well-typed program will not fail at run time due to a type error.

2.3 Higher-Order Visual Languages

Apart from adding a type system to Show and Tell, ESTL also introduces higher-order functions.
The naming part of a function definition may contain a hole, called a function slot, and the
body of the definition can contain operators referring to this slot. Other expressions can use
the higher-order function, they will then fill the slot with some type-compatible function.
The concept of using function slots to provide arguments to higher-order functions is adopted
by DataVis and by VPL [44], a data flow language used for interactive image processing.
VisaVis uses a different metaphor, it refers to function slots as to “keyholes” and to lower-

order functions as to “keys”; however, the basic idea of embedding one function’s icon into that
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Figure 2.2: Higher-Order Function in VisaVis

of another function remains unchanged. Figure 2.2 shows a VisaVis higher-order function with
a first-order function in its “keyhole”.

Another visual language which allows for higher-order functions is Holt’s viz [31], a visual
notation for the A calculus. viz treats first- and higher-order functions uniformly; values (func-
tions and non-functions) are denoted by boxes, and application is denoted by stacking the
argument (or arguments) on top of the functor.

Cube combines ESTL’s function slot concept with viz’s uniform treatment of first- and
higher-order arguments. There is no distinction between function (or rather, predicate) slots
and argument ports; argument values can either be filled directly into a port (“icon inside an

icon”) or be supplied via a pipe (the classical data flow approach).

2.4 Logic-Based Visual Languages

There are a wide variety of visual logic programming languages. Strangely enough, however,
none of them use the data flow metaphor.

A fair number of these languages use a syntax which is based on AND/OR trees. In a sense,
this choice of notation is very straightforward. Kowalski himself proposed it in his seminal
“Logic for Problem Solving” [40], which laid the foundation for logic programming. On the
other hand, while AND/OR trees are well suited to visualize the SLD resolution process, i.e.
the unfolding of a logic program as it runs, they are not particularly well-suited for giving an
intuition of the meaning of a static program.

Languages in this group are the Transparent Prolog Machine [20], Senay and Lazzeri’s

system [74], and VPP [63]. Figure 2.3 shows the visualization of a clause depicted by Senay
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Figure 2.3: Senay and Lazzeri’s System

and Lazzeri’s system. It illustrates another problem with the AND/OR tree approach: while it
visualizes the relationship between the head of a clause and its subgoals, it does not visualize
other important aspects, such as multiple occurrences of the same shared variable. Incidentally,
this figure contains a mistake (the subgoal “male(X)” is visualized as “male(Y)”), which the
authors most likely would have discovered, had they used a more visual way to denote variable
sharing, such as a data flow diagram.

VLP [41] introduces a number of interesting concepts: Clauses and literals are depicted as
boxes, horizontal arrangement of boxes denotes conjunction, while vertical arrangement denotes
disjunction. Spatial enclosure is used for “procedural abstraction”, i.e. predicate definition. All
these concepts are used in Cube as well; we derived them, however, without being aware of
Ladret and Rueher’s work.

On the other hand, VLP uses shared patterns to indicate shared variables. This approach
makes it quite hard to discover all occurrences of the same variable; a data flow notation
would alleviate the problem significantly. However, data flow diagrams are an inherently two-
dimensional notation, and Ladret and Rueher’s decision to use one dimension to indicate dis-

junction leaves them with just one more dimension for conjunctions, i.e. clause bodies, where
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Figure 2.5: Pictorial Janus

most of the occurrences of a shared variable are typically located. Cube overcomes this problem
by moving into 3D. Figure 2.4 shows a VLP definition of the factorial predicate.

Pictorial Janus [35] is a visual notation for Janus [72], a concurrent constraint logic language.
It offers a powerful and elegant visual metaphor for the underlying resolution process: diagram
rewriting. Predicate definitions, clauses, and subgoals are represented as closed contours (such
as circles). Whenever one particular clause is selected to replace a goal, its contour is slowly
transformed to replace the contour of the original goal. This rule is not only simple, but it
also leads to a fluid animation of the resolution process. On the flip-side, a query can mutate

considerably during the rewriting process, so that it can be hard for the user to determine
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the spatial correspondences between the final result and the initial query. Figure 2.5 shows a
Pictorial Janus program for implementing a queue.

SPARCL [79] is visual logic language based on sets. While other logic programming lan-
guages use uninterpreted functions (i.e. constructors) to combine symbols into larger data struc-
tures, SPARCL uses sets to aggregate data. It also allows its user to divide a set into pairwise
disjoint subsets. Spratt and Ambler show that they can model conventional tuples and terms

with their set notation, and that the approach is thus sufficiently powerful.

2.5 3D in Visual Programming and in Program Visualization

The potential for 3D visual languages has been realized early on by Glinert [24], who argued
that they are a natural next step in the evolution of visual programming, and that they might
provide better visual metaphors than 2D languages can provide. Cube was the first such
language. Recently, it has been joined by two other 3D visual languages, Lingua Graphica and

CAEL-3D. Both of them are visual layers put on top of an existing procedural textual language.

21



Figure 2.7: CAEL-3D

Lingua Graphica [81] is a visual language which provides a 3D syntax for C++ programs.
Created at Lockheed AI Labs, it is intended to allow Virtual Reality operators to inspect and
modify VR simulation code without having to leave the virtual environment. Figure 2.6 shows
an example of a Lingua Graphica program.

The interactive “Computer Animation Environment Language” CAEL is a textual language,
which augments a subset of Pascal with procedures that allow its user to describe arbitrary 3D
animations. CAEL-3D [68] is a 3D visual syntax for CAEL. Figure 2.7 shows a CAEL-3D
example program.

Campanai, Del Bimbo, and Nesi [9, 18] have been using a 3D query language and a virtual
reality setup to access the contents of a database storing 3D scenes. The basic idea here is that
the user constructs a virtual scene from existing 3D icons (such as houses, trees, and cars),
using a data glove as the input device, and that this scene is then matched against the contents
of the database to access all the stored scenes containing a matching arrangement of objects.

Figure 2.8 shows a view of their system.
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Kimura’s Hyperflow [38] is a 2D visual language with a data flow syntax and an object-
oriented semantics. Although the language is two-dimensional, it employs a three-dimensional
metaphor: Objects are viewed as stacks of diagrams; and each diagram shows a different aspect
of an objects definition. Figure 2.9 illustrates this metaphor. The diagram stack metaphor
played a key role in the development of Cube’s syntax.

There are various program visualization and algorithm animation systems which use 3D
graphics to visualize the behavior of a running program. The earliest such system we are aware
of is Lieberman’s system for visualizing the execution of Lisp programs [45]. The view shows
the code for an expression on the front side of a block. As the expression gets evaluated, each
application causes a smaller block with the corresponding code to be displayed in front of the
caller’s block. When an expression is evaluated, its block is removed.

Pavane [14, 71] supports both 2D and 3D views of concurrent computations. Its formalism
is based on a combination of Prolog clauses and Linda’s tuple space concept. As a computation
unfolds, it adds tuples to the tuple space which characterize its internal state. A visualizer
continuously retrieves these tuples and uses an application-specific set of rules to map them
into 2D or 3D pictures. The system also supports smooth transitions from one state to the
next.

Zeus3D [6] is a 3D extension of the Zeus algorithm animation system. Algorithms in Zeus are
annotated with event-generating procedures, these events then cause various views associated
with the algorithm to be updated. Polka-3D [80] is a 3D extension of the Polka algorithm
animation system. Its basic philosophy is quite similar to Zeus3D.

Finally, Plum [69] is a package to visualize abstract data in 3D. Plum has been used to

visualize static and dynamic properties of programs, such as their call graphs.

2.6 Higher-Order Logic Languages

Since the early 1970’s, logic, and in particular Horn logic, has been proposed as a programming
language [40], which eventually led to the development of Prolog [13], a textual language based

on Horn logic.
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There have been several attempts to add higher-order features to the first-order logic of
Prolog. The first higher-order logic programming language we are aware of is AProlog by Miller
and Nadathur. In its initial form it was based on higher-order definite clauses [50].

AProlog does not distinguish between terms and atomic formulas. A term can be a variable,
a constant (constructor or predicate) symbol, an application, or a A abstraction. So, the term
fragment of the language corresponds to the lambda calculus.

In the initial version of AProlog, the formula fragment corresponded precisely to Horn
formulas, i.e. Prolog programs, except that Prolog’s terms got replaced by this richer notion
of terms, and that terms could appear in place of atomic formulas. A later version of the
language [53], based on higher-order hereditary Harrop formulas, uses a richer syntax for the
formula fragment of the language as well.

The proof mechanism employed by AProlog is considerably more powerful than the one
used by Cube. For example, given an appropriate definition of map, a well-known higher-order
predicate, and the query “map F' [1,1] [(g 1 1),(g 1 2)]”, AProlog will infer a solution for the
variable F, namely Ax.g 1 x. Cube, on the other side, would simply suspend. AProlog achieves
this extra degree of power by using a higher-order form of unification: it is able to compute a
unifier for the equation “(F' 1) = (g 1 1)”. However, higher-order unification is in general only
undecidable [26], the search for a non-existing unifier may lead to divergence.

AProlog uses a curried notation for predicate applications, and features an ML-like type
inference system. Predicates are viewed as functions mapping to truth values, for example,
map has the type (A — B) — (listA) — (listB) — o (where A, B are type variables and o is
the type of propositions). Cube adopted these two features from AProlog.

A prototype interpreter for AProlog has been implemented, and a more efficient, abstract-
machine based implementation is under way [54].

HiLog [12] is a logic programming language with a higher-order syntax, but a first-order
semantics. There is no distinction between terms and atomic formulas. Two terms denoting
predicates are considered to be equal if their intensions are equal (e.g. if they are denoted by the
same symbol); no attempt is made to decide if their extensions (i.e. the relations they describe)
are equal (the latter is in general undecidable [26]).

A term which is an application may in turn be applied to another term; in other words,

HiLog allows for a curried style of programming.
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Hil.og appears to be more powerful than Cube, it features universal and existential quan-
tification as well as negation. Chen, Warren, and Kifer give a model theory as well as a proof
theory for HiLog; however, they do not mention any implementation of the language.

Andrews’ logic G [1] is the third attempt we know of to incorporate higher-order features into
logic programming. G, just like HiLog, has a higher-order syntax and a first-order semantics.
Predicate names are considered to be terms; unification determines intensional identity, not
extensional equivalence between two terms. Other additions to the syntax of terms are tuples
and set abstraction terms. Predicates are regarded as sets of term tuples, predicate application
is thus viewed as set membership test.

Andrews gives both a model theory and a proof theory for the language. In addition, he
provides an operational semantics, which is similar to the standard semantics of prolog given
by Lloyd [46].

The proof mechanism of G is more powerful than the one of Cube. Given an appropriate defi-
nition of the higher-order predicate Map, G is able to satisfy the query “Jx . Map(x, [a, b], [c, db])”,
and derives a substitution of “{y | y = (a,c) VvV (b,d)}” for x. Given the same query, Cube
would simply suspend. On the other side, G neither allows for terms with variable functor,
nor for curried applications, both of which are permissible in Cube. As far as we know, no

implementation of G exists so far.

2.7 Type Inference Systems

Milner developed a static type inference system for the polymorphic lambda calculus [17, 51],
known as the Hindley-Milner type system, which has since then been widely used for func-
tional languages. Mycroft and O’Keefe adopted it for Prolog [52], and recently Lakshman and
Reddy [43] gave a semantic foundation to this adaptation. AProlog also uses Milner’s type
system.

Cube’s type system is based on Milner’s system as well. Thus it resembles the one used by
AProlog. It differs from the one proposed by Lakshman and Reddy by viewing predicates as
functions mapping to truth-values, and thus assigning a function type to them. This view is

convenient in the presence of curried predicate applications.
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Chapter 3

Motivation

The development of Cube was driven by two basic goals: To find a better visual syntax for logic
programming, and to make an existing logic programming language — Prolog — cleaner, safer,
and more expressive.

This chapter explains some of the motivations behind this thesis. We account how Cube’s
syntax evolved from the two-dimensional notation of Show and Tell into its current three-
dimensional form, and we explain how Cube’s semantics resulted from combining Prolog with

features of higher-order functional languages.

3.1 Evolution of Cube’s Syntax

During our work on ESTL [56], we realized that Show and Tell embodies many ideas of logic
programming in a weakened form. One of its key concepts is the notion of consistency: during
an evaluation of a data flow diagram (a boxgraph in Show and Tell terminology), parts of the
diagram may become inconsistent, and are then considered to be removed from the computation.
There are two possible causes for inconsistency: two conflicting values flow into the same box,
or a relational predicate fails. The former resembles a failed unification, the latter a failed
predicate application in logic programming.

Another key concept is the notion of completion: a data flow diagram may contain a number
of empty boxes, which may receive a value during evaluation, but do not have to. In the simple

case, these values are immutable: once a box receives a value, it will not be changed (Show and
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Figure 3.1: Adding Undirected Links and Disjunction to Show and Tell

Tell departs from this rule when showing the evaluation of certain “iterators”). This notion of
completion resembles the concept of unification in logic programming.

Other features of Show and Tell, however, are more restrictive than those found in Prolog.
The links of a data flow diagram are directed, data can flow only in the direction of the links.
Hence, this model of data propagation is less powerful than unification, where information can
flow in either direction.

Second, Show and Tell has no notion of disjunction. All the parts of a diagram contribute
to the same solution. If one uses the concept of inconsistency to perform a case analysis, he
must be sure that the various cases exclude each other, otherwise the results of two matching
cases might collide when they are merged.

We initially tried to transform Show and Tell into a two-dimensional visual logic language
by generalizing data flow links to be undirected, with the semantics that two boxes or ports
that are connected by a link are unified, and by introducing a notation for disjunction into the
language. Figure 3.1 shows the definition of factorial in this notation.

However, we found that the diagrams were becoming rather confusing. One solution to this
problem seemed to be to have a separate data flow diagram for each clause. Figure 3.2 shows
the definition of factorial, represented by two diagrams.

In such a framework, a predicate definition would consist of an arbitrary number of “box-
graphs”. One could put them next to each other, or one could display only one at a time, and

provide controls to switch between them. The latter idea gives rise to a stack metaphor: The
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Figure 3.2: Using One Diagram Per Clause

different boxgraphs of a predicate definition are stacked on top of each other, the interactive con-
trols allow the user to browse through the stack. From there, the move to a three-dimensional
representation is only a small step.

Kimura’s Hyperflow [38], a two-dimensional data flow language with provisions for object-
oriented programming, appears to have been influenced by Cube. It uses the very same
metaphor of stacked visual planes, where each plane is a diagram which describes a different

aspect of the object.

3.2 Evolution of Cube’s Semantics

One of the most interesting features of modern functional languages is their treatment of func-
tions as first-class objects. This feature allows for the definition of higher-order functions,
functions that take other functions as arguments.

Suppose we want to define a function map which behaves as follows:

mapf[elv"'ven] = [f elv"'vf en]

i.e., map applied to a function f and a list of elements e;,-- -, e, returns the list resulting
from applying f to each element in the list.
In a functional language such as Lazy ML, we could define map in a recursive fashion as

follows:
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map £ [] = []
map f (x.1) = (f x).(map £ I)

Prolog, on the other side, is a first-order language, and therefore does not allow for such an
elegant definition of the map function. One can, however, use the built-in metapredicate call to

achieve a similar effect:

map(F, [],[]).
map(F,(X.L),(X". L") :&P =..[F,X,X],call(P),map(F, L, L').

=.. (pronounced “univ”) is a binary infix predicate that relates a structure to a list. In

particular, the relation

f(tlv"'vtn) :"[fvtlv"'vtn]

holds. call takes a term, interprets it as a goal (i.e. a predicate application), and tries to prove
it.

The base case of this predicate definition is analogous to the base case of the functional
definition: Mapping a predicate F over the empty list yields the empty list. The recursive case,
however, is more convoluted: The head of the clause takes a predicate F' and a list, which it
decomposes into a head X and a tail L, and returns a result list consisting of head X’ and tail
I'. The subgoal P =..[F, X, X'] unifies P with the term F(X,X’), call(P) then interprets P
as a goal and tries to prove it. In other words, P =..[F, X, X'], call(P) holds if F(X, X’) holds.
map(F, L, I') finally applies map recursively to I and L, yielding L'.

There are two problems with this approach: First, the list [F, X, X'] is usually heterogeneous,
which makes it impossible to apply standard type checking algorithms such as [43]. And second,
P, which is formally a term, really denotes a predicate application, and F, which is formally a
term, really denotes a predicate symbol.

There is an obvious solution to those two problems: Lift the distinction between terms and
predicates, and allow variables to occur as functors of terms. Given these two modifications,

we can reformulate our definition of map as follows:

map(F, [],[]).
map(F,(X.L),(X'. L") :&F(X,X’"),map(}F, L, L').
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This definition looks much more similar to the functional definition of map. The main
remaining difference is that in the logic framework, the body of a clause consists of a “flat”
conjunction of subgoals, whereas in the functional framework, the body of a function definition
may consist of nested function applications. The flat notation makes clauses harder to read,
and it introduces extra variables used to connect the producer of a value to its consumer (in
this case, X’ and L'). The visual notation used by Cube, however, alleviates these problems to
a large degree.

There is, however, a more serious problem: If we treat predicates and predicate symbols as

terms, then we can also unify them. The expression

fact = fact’

should be true if fact and fact’ are equal. We could interpret “being equal” as meaning “de-
scribing the same relation”. Unfortunately, this question is in general only semi-decidable [26].
Therefore, we instead interpret “being equal” as “being defined in exactly the same way”.
This question can be answered efficiently (through first-order unification), and it appears as if
this restrictive notion of equality is powerful enough to bring all the forms of higher-orderness
exploited by functional languages to the logic programming world.

This modification of Prolog allows us to use Hindley-Milner type inference even for higher-
order predicates such as map. The type of map, in the notation of Lakshman and Reddy [43],
is:

Pred(Pred(a, ), List(a), List(3))

Alternatively, we can view predicates as functions that map to propositional values, i.e. truth

or falsity. If we denote the type of propositions by Prop, the type of map is:

(a X 8 — Prop) x List(a) x List() — Prop

In many functional languages, an nary function is expressed as a unary function mapping

to an (n <1)ary function. For example, the map-function

map = A(f,a).if a=[]then []else (f (hd a)).(map (f,(tl a)))
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is instead written as

map’ = Af.)a.if a=[]then []else (f (hd a)).((map’ 1)(tl a))

This technique, known as currying, can be quite useful. Suppose we want to define a function
sqrlist which computes the square of all elements of a list. In the absence of currying, we would
define it as

sqrlist | = map (sqr,1)

Using currying, however, the definition simplifies to

sqrlist’ = map’ sqr

The type of map is ((ow — ) x List @) — List 3, the type of map’ is (o« — 3) — (List & —
List 7). — is a right-associative operator, so we can omit the last pair of parentheses. Similarly,
application (denoted by juxtaposition of functor and argument) is a left-associative operation,
and again we can frequently omit some of the parentheses.

We adopt these ideas to our derivate of Prolog. We use juxtaposition to denote application,
that is, we write f a; --- a, instead of f(a;, -, a,). The definition of map therefore changes

to

map F'[][].
map F' (X.L)(X'.I') :F X X', map F' L L.

and its type to (&« —  — Prop) — List @ — List 5 — Prop.
We also introduce an abstraction construct A. Now we might try to define the map predicate

as follows:

map = M.Xa.Ab.(a=[]Ab=[])V(a=x.IAb=x".TAfxx Amap1])

While the use of the A-abstraction apparently made our definition more complex, it also brought

a quite fundamental change of view. Beforehand, we viewed map as a constant symbol denoting
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a predicate, now, we view it as a variable which gets bound through unification to an anonymous
predicate!!

It turns out, however, that this brings along a new problem: By the definition of unification,
there is no unifier for an equation of the form z = f(---,z,---). So, we cannot express map
as shown above. However, introducing a fixed-point operator solves this problem, as it allows

us to transform the recursive definition of map into a nonrecursive form:

map = fix map’. M. Xa. Ab.(a=[]Ab=[])V(a=x.IAb=x"."'Afxx Amap 1)

To make the formulation of predicate definitions — recursive and non-recursive ones —
easier, we introduce a piece of syntactic sugar, namely the letrec binding construct. Now we

can write map as

letrec map = M .Xa.Ab.(a=[]Ab=[])V(a=x.IAb=x"IAfxx'Amapf]])in ---

The ellipsis denotes an expression (such as a goal) to which the definition of map is visible. For
example, a query which computes the square of all the elements of a list, and which uses the

currying technique described above, could be written as:

letrec map = Af.da.Ab.(a=[]Ab=[])V(a=x.IANb=x"I'ANfxx'Amapfl/l)in
letrec sqr = Au.Av.times u u v in
letrec sqrlist = map sqr in

sqrlist [1,2,3] z

Evaluating this query would yield a solution z = [1,4,9].
The introduction of letrec adds another very powerful feature to our language: the concept
of nested scope. An example may demonstrate its usefulness. Consider a predicate to reverse

a list. A naive definition (in “classic” Prolog) would be:

reverse([ |,[ ]).
reverse(X . L, Y) :<reverse(L, '), append(L/,[X], Y).

!The fact that map is now shown in the same font as other variables shall indicate this change of view. Also,
starting from this example, I shall use lower-case names for all the variables instead of the upper-case names
common in Prolog.
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Unfortunately, this definition is rather inefficient; reversing a list with n elements takes

O(n?) time. The following definition works in O(n) time:

reverse(X,Y) :&rev(X, Y,[]).
V([ 1.1, L),
rev(X.L Y, Z) :<rev(L, Y, X . Z).

In this example, rev is an auxiliary predicate, which is only supposed to be called by reverse.
However, in Prolog it is visible to all other predicates. In our language, however, we can write

the reverse predicate as follows:

letrec reverse = Ax.A\y.
letrec rev. = Aa.Ab.Ac.
(a=[]Ab=rc)V
(a=d.enreveb(d.c))
inrevxy|]

in .-

Now, the definition of rev is visible only to the definition of reverse, but invisible to the
clients of reverse (denoted by the ellipsis).

In Prolog, the variables used in a clause are implicitly universally quantified, i.e.

reverse(X . L,Y) :&reverse(L, L), append(L’,[X], Y).

stands for

VX,Y,L ' reverse(X.L,Y) :&reverse(L, L), append(L', [X], Y).

We could take the same stand in our language, that is, we could say that variables which
are not introduced by a A or a letrec are implicitly universally quantified. The scope of such
a quantification, however, would be the entire program, as we have replaced the set of clauses
that makes up a Prolog program by a single expression, usually a letrec. This approach
would contradict the information-hiding idea which we wanted to promote through the letrec-
construct in the first place. Therefore, we abolish the idea of implicit universal quantification,
and instead introduce the existential quantifier 3 into our language. All variables have to be

explicitly introduced, either by a A, a letrec , or an 3.
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It is easy to see that universally quantifying a variable within the scope of a clause is
equivalent to existentially quantifying it within the scope of a clause body (provided that the

variable does not occur in the head of the clause), i.e. that

VX,Y,L ' reverse(X.L,Y) :&reverse(L, L), append(L', [X], Y).

and

VX,Y,L.reverse(X .L,Y) : 3L .reverse(L, L"), append(L’, [X], Y).

are equivalent.
The existential quantifier allows us to precisely specify the scope of a variable, and thus

makes programs much easier to read. The new and final definitions of map and reverse are:

letrec map = Af.Aa.\b.
(a=[]Ab=[]V
(3x,x",LI'.a=x.INb=x""I'ANf xx'Amap f1])

in .-
letrec reverse = Ax.A\y.
letrec rev. = Aa.Ab.Ac.
(a=[]Ab=rc)V
(3d,e.a=d.eAreve b (d.c))
inrevxy|]
in .-

The textual language we have developed here is almost identical to the textual version of
Cube introduced in Chapter 5. The only differences stem from the fact that this language
uses a positional binding strategy — the first actual parameter gets bound to the first formal
parameter, whereas Cube and its textual counterpart use named parameters and employ a

binding-by-name strategy.
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Chapter 4

Cube by Example

The following chapter presents a number of Cube example programs, intended to give the
reader an intuitive understanding of the semantics of the language. Chapter 5 will then provide
a formal definition of both syntax and semantics.

All the figures shown in this chapter were generated by CUBE-11, a prototype implementation
of a Cube programming environment (see Section 6.2). It should be noted that black-and-white
figures cannot do full justice to the visualization provided by the system, which is not only in

color, but moreover interactive, that is, it allows the user to move through the program.

4.1 The Dataflow Metaphor

Consider the simple program shown in Figure 4.1. It consists of two transparent cubes (which
are green in the original picture) that are connected by a pipe. The transparent cubes are
termed holder cubes, they may contain terms (which are represented by cubes as well), and
thus correspond quite closely to variables in a textual language.

The left holder cube contains a term: an opaque cube (which is green in the original picture)
with the icon “1” on its top side. This cube is called an integer cube, and represents the integer
1. The two holder cubes are connected by a pipe, which serves as a “conduit” for values. The
metaphor we use here is the dataflow metaphor: A value contained in a holder cube flows to

all the other holder cubes connected to it'. If a holder cube receiving a value is empty, it

!This dataflow takes place when triggered by the user. In CUBE-I and CUBE-11, the user presses an “EvAL”
button.
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Figure 4.1: Value 1 Flowing Into Empty Figure 4.2: Value 1 Has Flown Into Empty
Holder Holder

will be filled with this value, if it already contains a value, the two values must be equal (or,
more general, unifiable), both holder cubes will then contain the same value (namely, the most
general unifier of the two values). If this is not possible, the data flow fails.

Note that pipes have no particular directionality: data can flow through them in either
direction, and as we will see (on page 64), it can indeed flow in both directions at once! It
should also be noted that the value contained in a holder cube never gets changed, but only
refined.

So, we can extend the analogy we have drawn between Cube and textual languages: Holder
cubes correspond to logic variables, and connecting two holder cubes by a pipe corresponds to
unifying two logic variables. Furthermore, a holder cube containing a term cube (such as an
integer cube) corresponds to a logic variable unified with a term.

In the textual framework, a unification is a special case of an atomic formula. A Cube
program (i.e. the entire “virtual space” in which Cube expressions are located) corresponds to
a query in a textual logic language, that is, a conjunction of all the atomic formulas.

Figure 4.2 shows the Cube program of Figure 4.1 after evaluation. The integer cube 1 flowed
from the left to the right holder cube (intuitive interpretation); or the left holder cube got unified
with 1 and with the right one, leaving both being instantiated to 1 (logic interpretation).

By contrast, the program shown in Figure 4.3 does not have any solutions: The two holder

cubes are connected by a pipe, but one contains the integer cube 1, while the other contains
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Figure 4.3: Failing Dataflow

the integer cube 2. These two integer cubes are not unifiable, the data flow between the two

holder cubes fails, and so does the entire computation.

4.2 A First Glimpse at Types

We have mentioned before that Cube is a statically typed language, and uses a type inference
system. In fact, the user can trigger the type inference mechanism at any time. The Cube
environment will then determine if the entire program is well-typed. Moreover, if the program
is well-typed, it will indicate the type of every empty holder cube by placing a type cube inside
it. Type cubes are opaque grey cubes with an icon on their top, which identifies the type. There
are three predefined based types: Int, the integer type, Float, the floating-point type, and Prop,
the type of propositions.

Figure 4.4 shows the type cubes representing these three base types. As we will see later,
Cube provides a mechanism that allows users to define other interesting types (such as charac-
ters, strings, lists, or trees) themselves.

So, given the program from Figure 4.1, Cube will infer that 1 is an integer, so the left holder
cube contains an integer, and therefore the right holder cube must contain an integer as well.

It will thus fill the right holder cube with an Int type cube (see Figure 4.5).
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Figure 4.4: Type Cubes of the Base Types Figure 4.5: Program From Figure 4.1 After
Type Inference

4.3 Predicate Applications

The fragment of Cube that we have seen so far hardly qualifies as a programming language —
it can move values around, but not perform any computations on them. The device that we
are encountering now, however, solves this problem.

Consider the object shown in Figure 4.6, which is called a predicate cube. It is represented
as an opaque green cube with an icon on its top. The icon identifies the predicate we are
referring to (integer addition in this case). The cube also has a number of “holes” in its sides:
cubic intrusions with a transparent cover on the outside and an icon on top of it. The “holes”
are called ports and serve as arguments to the predicate. They may be moved around freely
over all 6 sides of the predicate cube; thus, an icon is needed to identify each port. A port is a
special case of a holder cube (hence the transparent cover), and as such it can be connected to
pipes and can be filled with a value.

It should also be pointed out that the similarity between predicate cubes and integer cubes
(both being opaque green cubes with an icon on their top) is not coincidental: both are term
cubes, they represent a first-class value, i.e. they can both be contained in a holder cube and
flow through a pipe. In fact, they are both a form of reference cube: a cube that refers to a
definition cube visible to it. In the case of integer cubes, we just imagine that a definition of

all the integer values is visible. In the case of predicate cubes, however, these definitions are
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Figure 4.6: Addition Predicate Cube Figure 4.7: Type of Addition Predicate

Figure 4.8: Predefined Predicates
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indeed present: The initial program contains a “toolkit” of 18 primitive predicate definitions
(see Figure 4.8).

As predicates are values, they also have a type associated with them. As said in Section 3.2,
we view predicates as functions mapping to propositions. So, each predicate belongs to a
function type, which is visualized by a function type cube. An n-ary function is visualized by
the type cube representing the function’s domain. This type cube has n ports set into its sides,
each one carrying the port icon of the corresponding argument of the function, and filled with
the type cube representing the type of this argument.

For example, the type of the integer addition predicate is represented by the type cube
shown in Figure 4.7. It consists of a grey opaque cube with the icon “0” on its top, representing
the type Prop, and three ports in its side, which carry the same icons as the ports of the addition
predicate (see Figure 4.6), and are filled with integer type cubes.

The key difference between function types in Cube and those in functional languages such
as ML is that the name (or here, the port icon) of each argument of a function becomes part
of its type.

So how can we apply predicate cubes? Assume we want to build a program to convert

temperatures between the Celsius and the Fahrenheit scale. Recall that those two scales are

related as follows: F' = 1.8%C +32.0 (or C' = Fl—.sz). We can transform this relation into the

logic program

conv(C, I') < times(C, 1.8, X ), plus( X, 32, I).

The program shown in Figure 4.9 is the Cube analog to the above textual logic program.
It consists of two empty holder cubes (corresponding to the variables C and F') and two holder
cubes filled with floating-point values 1.8 and 32.0, respectively. It also contains a predicate cube
referring to the floating-point multiplication predicate, and another predicate cube referring to
the floating-point addition predicate. The first port of the multiplication predicate is connected
by a pipe to the leftmost empty holder cube, the second one is connected to the holder cube
containing the value 1.8, and the third one (the “result”) is connected to the first port of the
addition predicate. So, if the user puts a value into the leftmost holder cube, the multiplication

predicate will receive this value, will multiply it with 1.8, and transfer the result to the addition
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Figure 4.9: Temperature Conversion

Figure 4.10: Converting Celsius to Fahren- Figure 4.11: Converting Celsius to Fahren-
heit heit (Evaluated)
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Figure 4.12: Converting Fahrenheit to Cel- Figure 4.13: Converting Fahrenheit to Cel-
sius sius (Evaluated)

predicate, which then adds 32.0 to it, and transfers the result to the rightmost holder cube (see
Figures 4.10 and 4.11). Alternatively, if the user puts a value into the rightmost holder cube,
it will flow into the “result” port of the addition predicate cube, which will now subtract 32.0
from it, and transfer the result of this subtraction to the “result” port of the multiplication
predicate cube. This cube will divide the result of the subtraction by 1.8, and transfer the
result of this division to the left holder cube (see Figures 4.12 and 4.13).

This example demonstrates that arithmetic predicates work in either direction. Addition,
for instance, can use the first two arguments to produce the third one, or the last two to produce
the first one. The “multidirectionality” of predicate applications thus complements nicely the
bidirectionality of dataflow in Cube.

Cube is not as powerful as a constraint logic language, such as CLP(R) [34] or Janus [72].
It binds variables to values, rather than associating them with constraints. So, in order for an
addition to be performed, at least two of its arguments must be known (there is one exception,
namely if the first or second argument is 0). As long as not enough arguments are known, the
addition is not performed — the predicate is not resolved. The semantics of the language (as
described in Section 5.3) simply states that such underspecified predicates are not eligible for
resolution. The actual implementations (i.e. the CuBE-I and CuBE-II systems), which model
goals as concurrent threads, suspend the thread belonging to the underspecified addition until

enough data is available.

43



C Evaluation Control G

Stop

Found no solutions

Found no deadlocks

{] Ho solutions yet [:}

Figure 4.14: Reporting a Deadlock

There are Cube programs which cannot be “solved” because not enough information is
available. This is similar to the situation in CLP(R), where a query can yield three answers:
Yes (plus the solution constraints), No, or Maybe. The temperature-conversion program, with
neither a Celsius- nor a Fahrenheit-value supplied to it, is such a program. If we try to evaluate
it, the system reports that a deadlock occurred: Some threads (supposed to solve a subgoal)
are suspended, and there are no threads to wake them up again.

The CuBE-II system reports deadlocks through its solution browser (see Figure 4.14); future
implementations might be able to actually highlight the suspended predicate cubes in the
program. However, this would require additional run-time information for every thread and

cause a performance penalty during evaluation.

4.4 Uninstantiated Variables and Uninstantiated Type Vari-

ables

We just mentioned that there is one special case in which the addition predicate can perform a
computation, even though only one of its arguments is known (or “ground”). This case arises
when the value 0 flows into the first or the second argument. The equation z 4+ 0 = y does not
allow us to determine the values of z or y, but we know that they must be equal. And equality
is the one constraint that even ordinary logic programming languages can handle. Hence, if we
evaluate the Cube program shown in Figure 4.15, we would like to learn that the two empty
holder cubes must contain the same value.

The question now is how an equality constraint should be visualized. When we write a

program, we indicate equality constraints between two holder cubes (i.e. unification of two
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Figure 4.15: Addition With Only One Figure 4.16: Program From Figure 4.15 Af-
Known Argument ter Evaluation

Figure 4.17: Close-Up Onto Left Holder
Cube of Figure 4.16
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variables) by connecting them through a pipe. So, one solution would be to use the same
technique when visualizing results. That is, evaluating the program from Figure 4.15 should
create a pipe between the two empty holder cubes.

One of the basic motives for our work on Cube, however, was to use the key ideas of visual
data flow languages — with Show and Tell as the prototypical example — to create a visual
notation for logic programming. In data flow languages, results of a computation manifest
themselves as values flowing into and filling previously empty boxes (variables). Hence, we
decided to use the same metaphor — the result of a Cube computation manifests itself through
value cubes filling previously empty holder cubes. In retrospect, this decision may have been
too conservative — for example, because it barred us from transforming Cube into a visual
notation for concurrent constraint logic. It would be interesting to pursue the idea of visualizing
equality constraints through pipes, and possibly general constraints between variables through
new predicate cubes which appear during a computation. The result might be a language
halfway between Show and Tell [37] and Pictorial Janus [35].

Our solution to the problem of visualizing equality constraints follows the tradition of Prolog.

“_n”, where n is a unique index, and

In Prolog, new uninstantiated variables are represented as
solving a query which unifies two variables causes them to be bound to the same uninstantiated

variable. That is, a Prolog system might behave as follows:

e X =Y.
Yes.
X =35
Y =35

Cube uses the same idea: an uninstantiated variable is shown as an opaque green cube with
a unique index in the lower right corner of its top side. As Cube is a statically typed language,
i.e. every variable is associated with a type, we represent this information as well: we show a
variable of, say, type Int by superimposing the integer type cube over the indexed opaque green
cube. So, in the example from Figure 4.15, the two empty holder cubes both get filled with an
opaque green cube with the integer icon “Z” and the index “69” on its top. Figure 4.16 shows

this result; Figure 4.17 shows a close-up of the uninstantiated variable.
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Figure 4.18: Two Empty, Connected Holder Figure 4.19: Program From Figure 4.18 Af-
Cubes ter Type Inference

Figure 4.20: Program From Figure 4.18 Af-
ter Evaluation
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Just as there are cases where we know that two holder cubes must contain the same value,
although we don’t know which, there are also cases where we know that they must contain
values of the same type, although we cannot say what this type should be. Figure 4.18 shows
such a case: two empty holder cubes are connected by a pipe. After evaluation, they shall
contain the same value, and therefore, they must have the same type as well. But the value
could be anything of any type — the integer 1 just as well as the predicate “plus”.

So, we are faced with the problem of visualizing uninstantiated type variables. We adopt
the same technique which we used for uninstantiated variables: We represent an uninstantiated
type variable by an opaque grey cube with a unique index in the upper left corner of the
cube’s top side. Figure 4.19 shows the result of performing type inference on the program from
Figure 4.18. Both holder cubes contain the same uninstantiated type variable, represented as
an opaque grey cube with the index “238” in the upper left corner of its top side.

Figure 4.20 shows the result of evaluating the same program. Both holder cubes now contain
the same value, namely the uninstantiated variable number 65 which belongs to the unknown

type number 238.

4.5 Predicate Definitions

The part of Cube we have seen so far allows us to combine and connect existing predicates;
however, it does not allow us to define new predicates. This ability is crucial in two respects:
it provides a mechanism for “procedural abstraction”, and it gives us a possibility to perform
potentially unbounded computations by allowing us to define recursive predicates, predicates

which refer to themselves.

4.5.1 A Natural Number Generator

An example of such a predicate would be a natural-number generator: a predicate which
generates all the natural numbers, i.e. the integers greater than or equal to 1. In Prolog,

we could define such a predicate as follows:

nat(1).
nat(X) :&nat(X’), X is X' + 1.
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Figure 4.21: A Natural Number Generator Figure 4.22: Program Computing All Nat-
ural Numbers

The query “? < nat(X).” would return successive solutions X = 1, X =2, X = 3, and so
on. Note, however, that we cannot use this definition as a tester: The query “? & nat(&l).”
diverges, instead of failing. In order to prevent this, we would have to add an extra subgoal
X > 0 to the body of the second clause.

Figure 4.21 shows the Cube equivalent of this definition. The outer cube, called a predicate
definition cube, is a transparent green cube with an icon on its top. This icon provides a name
for the new predicate. The small transparent cube set into the center of the front side of the
definition cube is a port, it represents the formal parameter of the predicate under definition.
The icon on its outer side identifies the port.

Inside the predicate definition cube are two transparent boxes, called planes. Each plane
corresponds to a clause of a textual logic program. Planes are stacked vertically; in Cube,
vertical arrangement (in the value world) indicates disjunction, while horizontal arrangement
indicates conjunction.

Predicate definition cubes and planes may contain local predicate definition cubes. Predicate
definitions occurring at the top level are visible to the entire program (including each other),
predicate definitions local to another predicate definition cube are visible to all objects inside

this cube, and predicate definitions local to a plane are visible to all objects inside the plane.
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Figure 4.23: First Solution of Program Figure 4.24: Second Solution of Program
From Figure 4.22 From Figure 4.22

The lower plane forms the base case of the recursive definition. It contains a holder cube,
filled with the value 1, which is connected by a pipe to the port representing the formal param-
eter.

The upper plane forms the recursive case of the definition. It contains an addition predicate
cube, whose first argument is connected to a recursive application of the natural-number pred-
icate, while the second port is connected to a holder cube containing the value 1, and the third
argument is connected to the port representing the formal parameter. Note that the recursive
case of the natural-number predicate is represented by an opaque cube, i.e. a reference cube.
The icon on its top indicates which definition cube it refers to — in this case, the surrounding
definition cube. The port in its side carries the same icon as the port of the surrounding defi-
nition cube; for predicate cubes which have several parameters, these icons are used to match
up actual with formal parameters.

The intuitive meaning of a predicate reference cube is that we could replace it by its cor-
responding definition cube (after moving the ports around to match them up). This intuition
corresponds exactly to what is known as call-by-name semantics in textual programming lan-
guages.

If we pose a “query” like the one shown in Figure 4.22, we can imagine that the large

reference cube referring to the natural-number predicate gets replaced by the corresponding
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predicate definition cube?. The value 1 will then flow from the holder cube in the lower plane of
the expanded reference cube through the pipe into the port and from there out of the expanded
reference cube and into the large empty holder cube. This constitutes the first solution to our
query (see Figure 4.23).

We can also imagine that not only the large reference cube got replaced by the definition
cube, but that at the same time the recursive reference cube inside the top plane of the expanded
reference cube got replaced by the definition cube as well (and the recursive reference cube inside
this cube as well, and so on ad infinitum). So, the value 1 flows from the holder cube of this
second-level expanded reference cube through its port out into a pipe inside the upper plane
of the first-level expansion, which takes it to the addition predicate. The addition predicate
receives the constant value 1 as a second argument, and returns the value 2, which flows out
of its “result” port and through a pipe to the port of the first-level expanded reference cube,
and from there into the large holder cube. This constitutes the second solution to the query
(see Figure 4.24). It is easy to see how the expansion process can be continued, leading to an
infinite number of solutions.

In summary, this example illustrated two key points. One of them is that a Cube query
can have multiple solutions (just like a Prolog query). Cube, however, unlike Prolog, explores
the paths leading to the various solutions in parallel, and it is guaranteed to find every solution
that can be found in finite time (i.e. by a finite number of “expansions”). The second key
aspect is that the logical notion of a resolution step — replacing a goal by the subgoals of a
matching clause — has an intuitive visual counterpart, namely replacing a reference cube by

the corresponding definition cube.

4.5.2 A Factorial Predicate

Figure 4.25 shows another example of a predicate definition cube. This cube defines the factorial

@y

predicate. Again, it consists of a transparent green cube, with an icon on its top to name

the predicate. Its two ports are set into the left and the right side of the outer cube, and are

?In the actunal implementation, however, the reference cube remains opaque. Allowing an interpreter to
visualize the “expansion” of predicate applications would require additional run-time data structures and imply
a performance penalty.
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Figure 4.25: Definition of the Factorial
Predicate

L Al A A
e &

Figure 4.26: Program Computing the Fac- Figure 4.27: Program From Figure 4.26 Af-
torial of 3 ter Evaluation
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labeled “n” and “n!”. It contains two planes, the upper one representing the base case, and the
lower one the recursive case.

The upper plane contains two holder cubes. The left one is filled with the value 0 and
connected by a pipe to the left port (“n”); the right one is filled with the value 1 and connected
to the right port (“n!”).

The lower case contains a comparison predicate, whose two arguments are connected by
pipes to the left port (“n”) and to a holder cube which contains the value 0. It also contains a
subtraction predicate cube, whose two “input” arguments are connected to the left port (“n”)
and to a holder cube containing the value 1, and whose “output” port is connected by a pipe
to the “input” port of a predicate cube which recursively refers to the factorial predicate. The
“output” port of the factorial predicate cube is connected to one of the “input” ports of a
multiplication predicate cube, whose other “input” port is connected to the left port (“n”),
while its “output” port is connected to the right port of the definition cube (“n!”).

Now envision a query (like the one shown in Figure 4.26) which contains a predicate cube
referring to this definition, and where the user supplies a value, say v, to the left port (“n”) of
the factorial predicate. Again, we can imagine that the opaque reference cube gets replaced by
(“expanded to”) the transparent definition cube. The value v flows into the left port, where it
splits up, one copy of v flowing through a pipe into the upper plane, and the other copy flowing
through the other pipe into the lower plane.

The copy of v which goes to the upper plane flows into a holder cube which already contains
the value 0. If v does not unify with 0, then the data flow fails, and with it the entire upper
plane. One can imagine that it is simply taken out of the computation. Otherwise, the value 1
contained in the right holder cube flows out through a pipe and into the right port of the ex-
panded reference cube (and possibly into an attached empty holder cube), thereby constituting
a solution to the query.

Two remarks are in order here. First, the above intuitive description suggests that the
various dataflow operations are performed in some particular sequence, and that data flows
into some prescribed direction. While it is often convenient to think about Cube evaluations
in such a way, it is also misleading.

Intuitively speaking, all dataflows take place simultaneously, and continue to happen until

the system is in equilibrium (has reached a fixed-point). A nice analogy is pipes connecting
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containers with different air pressures (different amounts of information) inside. Once the pipes
are opened (evaluation is started), air will flow through them until all connected containers
have equal pressures. The same equilibrium is reached regardless of the sequence in which the
pipes are opened, and the direction of air flow in a pipe is determined only by the pressure
difference between two containers.

The second point that should be emphasized is that the result of a unification affects only
the computation that happens, logically speaking, within the same conjunction. When the
value v entered the port of the expanded reference cube, it got split up into two copies; one
went to the upper, the other to the lower plane. A unification that refines » in the upper plane
will not affect the copy of v in the lower plane.

Let’s get back to our example. As we said before, one copy of the value v flows through a
pipe leading into the lower plane, where the pipe branches. One of its ends is connected to one
port of a comparison predicate, whose other port receives the value 0. If v is not greater than
0, the comparison fails, and with it the entire plane. The second end of the branching pipe is
connected to a subtraction predicate, so v flows into the first argument of this predicate, which
receives the value 1 as its second argument. The result of the subtraction, v <1, flows out of
the third argument port and into the port “n” of a predicate cube recursively referring to the
factorial predicate. The result of this computation, (v<1)!, then flows out of the “n!” port and
into one of the two input ports of a multiplication predicate, its other input port is connected to
the third end of the branching pipe, which carries v. The result of the multiplication, v(v <1)!,
flows finally out of the lower plane and into the port “n!” of the expanded reference cube (and
from there possibly into an attached empty holder cube).

Figure 4.27 shows the result of evaluating the query from Figure 4.26.

4.6 Predicates as Values

Cube is a higher-order language, meaning that predicates are first-class values. They can be

contained in a holder cube, flow through a pipe, or be argument to another predicate.
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Whenever we treat a predicate in such a way — contain it in a holder, transmit it through
a pipe, or supply it to another predicate — the ultimate purpose is to eventually apply the
predicate®. So, we need to devise a visual notation for applying this predicate.

Let us look back for a moment to the notation used for an “ordinary” predicate application.
A predicate cube is a reference cube, referring to the corresponding predicate definition. We
can use a reference cube because the predicate has a name, provided by the definition cube.

We use the same idea to refer to predicate arguments within higher-order predicates. Each
port of a predicate definition cube carries an icon, i.e. a name, and we can use this name to
refer to the corresponding formal parameter. In other words, the definition cube could contain
reference cubes which carry the same icon as one of the outer ports; when the user supplies a
value to the port, all the corresponding reference cubes get replaced by this value. We will see
an example of this technique in Section 4.8.2.

But how should we apply predicate values for which we don’t have a name? For example,
how shall we apply a predicate that is supplied through a pipe? The device we employ to do
this is called an application holder cube, it combines some features of a predicate cube with
those of a holder cube. It has ports labeled with icons set into its sides. These ports can be
filled with values or connected to pipes. In this respect, it resembles a predicate cube. But
unlike a predicate cube, it is neither opaque, nor does it carry an icon that identifies it. Rather,
it is transparent like a holder cube, and pipes can be connected to it to supply a value?.

When an application holder cube receives a value (i.e. a predicate cube) through a pipe,
this value will flow inside the holder cube, and its port will be matched up with the ports of

the application holder cube (matching is done by icon name).

4.6.1 A Simple Example

Consider the program shown in Figure 4.28. The holder cube on the left side contains the
natural-number predicate cube (see Section 4.5.1). It is connected by a pipe to the application
holder cube on the right. The application holder cube also contains one port. The icon on the

outside of this port is the same as the icon on the port of the natural-number predicate. The

® As stated in Section 3.2, Cube does not allow us to compare two predicates for semantic equality.

*Holder cubes may contain values as well. However, if we were to fill a value (which must be a predicate, i.e.
a reference cube or another application holder cube) into an application holder cube, then we could as well omit
the application holder cube and instead directly connect to the ports of its value.
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Figure 4.28: Transmitting a Predicate Cube Figure 4.29: Transmitting a Predicate Cube
Through a Pipe and Applying It Afterwards Through a Pipe and Applying It Afterwards
(Oblique View) (View From Above)

Figure 4.30: Program From Figure 4.29 Af-
ter Evaluation
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Figure 4.31: Curried Addition Figure 4.32: Program From Figure 4.31 Af-
ter Evaluation

port of the application holder cube is connected by a pipe to an empty holder cube in the front
right of the picture. Figure 4.29 shows the same program, this time viewed from straight above.

When the user triggers the evaluation of this program, the natural-number predicate cube
flows from the left holder cube into the connected application holder cube. Here it gets applied,
and starts to produce all the natural numbers. Each natural number flows out of its port (which
is matched up with the corresponding port of the application holder cube) and into the empty
holder cube on the right. Figure 4.30 shows the first such solution (viewed again from straight

abover).

4.6.2 A More Complex Example

Consider the program shown in Figure 4.31. It demonstrates how we can use application holder
cubes to achieve the effects of currying, i.e. apply the arguments of a predicate one at a time
instead of all together.

The holder cube on the left contains an addition predicate. It is connected by a pipe to
an addition holder cube on its right, which has one port with a “first argument of addition”
icon on its outside. The port is connected to a holder cube which contains the value 1. The

application holder cube is not standing free in the program; it is rather contained inside another

holder cube.

57



We have stated before that enclosing a term cube inside a holder cube corresponds to
unifying a term with a variable in a textual logic framework, while an application holder cube
corresponds to applying an unknown (i.e. variable) predicate to some argument. So, the textual

counterpart of the part of this program we have described so far would be:

w=addANx=1Aw=yAz=y(add] = x)A---

where w denotes the left holder cube, x denotes the holder cube which contains 1, y denotes
the application holder cube, and z denotes the holder cube around it.

The holder cube containing the application holder cube is connected by a pipe to a second
application holder cube on its right. This cube has one port, carrying a “second argument
of addition” icon. The port is connected to a holder cube which contains the value 2. The
application holder cube is surrounded by a holder cube, which is connected by a pipe to a third
application holder cube on its right. This application holder cube is free-standing; it has one
port, labeled “third argument of addition”, which is connected by a pipe to an empty holder
cube below it. So, if we assume that the third application holder cube is denoted by the variable
u and the holder cube below it by the variable v, the textual fragment corresponding to this
part of the picture is:

-+ Au(addg = v)

What happens when this program gets evaluated? The addition predicate cube (or rather
the value denoted by it, which is called a closure in the textual functional framework) flows
from the left holder cube into the application holder cube to its right. Here the value 1 flows
into its first port (producing a new closure of arity 2). The result of this application — a cube
with two ports left to go — flows from the holder cube into the second application holder cube
to its right. Here the value 2 flows into the next port (producing a new closure of arity 1).
The result of this application — a predicate cube with one port to go — flows into the third
application holder cube, where the port is connected to (i.e. unified with) an empty holder cube.
The result of this application is a predicate cube with all ports used up (i.e. a closure of arity
0). The predicate is resolved, and as a result, its third argument gets instantiated to 3. The

value of the third argument flows out into the empty holder cube on the right (see Figure 4.32).
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Figure 4.33: Renaming the Ports of the Ad-
dition Predicate

4.6.3 Renaming of Ports

An application holder cube makes assumptions about the port icons of the predicate that
is supplied to it; however, it may receive many different predicates at runtime. Likewise, a
predicate (i.e. reference) cube makes assumptions about the port icons of the predicate it refers
to; it also may receive many different values at runtime, if the predicate cube refers to a port
of a surrounding definition cube instead of directly to a predicate definition. In both cases, the
port icons of the reference cube or the application holder cube and the port icons of the value
it refers to or contains must match up. In practice, this presents a serious impediment, since
it is rare that the port icons of two predicates coincide, although the predicates may well be
otherwise of the same type.

We therefore introduce a new device, called a port renaming cube. A port renaming cube
is a transparent cube (not to be confused with a holder cube) which surrounds a term cube
(usually a predicate cube, an application holder cube, or a constructor cube — see below). If we
want to rename the port p to p’, the port renaming cube carries the icon p’ on its transparent
hull right above the port labeled p of the term cube inside. Figure 4.33 shows a port renaming

cube surrounding an addition predicate cube and renaming all its ports.
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4.7 Type Definitions

Cube uses a type system similar to the one used in modern functional languages, such as
Miranda [86] or Lazy ML [2]. Similar to those languages, it allows the user to define new types.

Let’s take a closer look at type definitions in those textual functional languages. The
definition

List @ = nil 4+ cons a (List a)

defines two new constructors, nil and cons. A constructor is an uninterpreted function symbol.
In this particular case, nil is a nullary function (i.e. a simple value) of type “List of a”, where «
could be any type. nil is conventionally used to denote the empty list. cons is a binary function,
which takes a value of type a as first and a value of type “List of @” as second argument, and
returns a new “List of @”. Again, a ranges over all the types.

Note that the List type is defined in a recursive fashion: the nil constructor forms the base
case, the cons constructor is the recursive case, as it creates a list by using another list. It is
obvious that every finite list must be terminated by a nil constructor.

The expression cons 1 nil denotes a list whose head is 1, and whose tail is the empty list; or
restated, a list which has one element, namely 1. Similarly, the expression cons 1 (cons 2 nil)
denotes a two-element list, with 1 as the first and two as the second element.

The expression cons 1 (cons “a” nil) is ill-typed, since cons “a” nil is of type List String
whereas 1 is of type Int (we call such a list a heterogeneous list).

List is referred to as a type constructor, i.e. an uninterpreted function which takes n types as
arguments, and returns a new type. So far, we have encountered the nullary type constructors
Int, Float, and Prop, and the unary type constructor List.

Now it also becomes clear why Int and Float are distinguished as base types in Cube. The

(textual) definition of the integer type would be:
Int — ... _I_ “ @277 _I_ “ @177 _I_ “077 _I_ “177 _I_ “277 _I_ e

declaring all the integers as constructors of the type Int. But as there are infinitely many

integers, such a definition is not possible. The same argument holds for the floating-point type.
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Figure 4.34: List Type Definition

What modifications are needed to adapt this standard notation of type definitions to Cube?
Constructors are functions, and as such they have arguments; Cube differs from most functional
languages by binding actual to formal parameters not by position, but rather by name (that is,
by matching up icons). So, when defining a constructor, we not only need to specify the types
of its arguments, but also their icons. By symmetry, we also associate the arguments of type
constructors with icons.

Figure 4.34 shows a type definition cube which defines the list type. It consists of a grey
transparent cube with an icon on its top. The color grey distinguishes types from values, which
are green.  The icon names the type constructor that is to be defined (List in the textual
definition).

The type definition cube has a port on its top side, which represents the one formal pa-
rameter of the type constructor (a in the textual definition). The port carries an icon on its
outside, which is used to distinguish it from other ports.

Inside the type definition cube are two grey transparent boxes, called type planes, which
represent the two constructors of the list type. The planes are stacked on top of each other; in
the context of types, vertical arrangement denotes a type sum, whereas horizontal arrangement
denotes a type product. Fach plane carries an icon on its top, identifying the constructor. The
upper plane, which represents the nil constructor, is empty, as nil is a nullary constructor.

The lower plane represents the cons constructor; it contains two type cubes. The left type

cube is a type reference cube, which refers to the port of the enclosing definition cube, i.e. to
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a. Note that this notation — referring to a port by using a reference cube which carries the
same icon as the port — is used both in the context of types and of values (see Section 4.6).
Right above the cube, on the transparent wall of the enclosing box, is an icon (let’s call it argq)
which associates a name with the first argument of the type constructor. The right type cube
is a type constructor application. It consists of a type constructor cube, which has a port, and
a type contained inside the port.

The type constructor cube is an opaque grey cube with a port set into its top. The icon
on top of the cube is the same as that on top of the enclosing definition cube, and the icon
labeling the port is the same as that labeling the port of the enclosing definition cube. So, this
type constructor is a recursive reference to the type constructor under definition.

The type contained inside the port of this type constructor cube is a type reference cube,
referring to the argument of the enclosing type constructor.

This type constructor application cube specifies the type of the second argument of the cons
constructor, namely List . Above the cube, on the transparent wall of the surrounding box, is
an icon (let’s call it argy) which associates a name with this argument.

The two type cubes inside the box are arranged horizontally, so they form a type product;
the icon on the box provides a tag for this product, and the vertically stacked planes form a
sum of tagged type products.

It should be noted how similar type definition cubes and predicate definition cubes are.
Both are represented as transparent cubes with an icon on their top, which names the icon un-
der definition. Ports on their side or top serve as formal parameters. Inside the definition cube
are vertically stacked planes, which denote clauses for predicates and variants for types. Ver-
tical arrangement denotes “V” for predicates and “+” for types, while horizontal arrangement
denotes “A” for predicates and “x” for types.

Type definition cubes can occur in a Cube program wherever predicate definition cubes
may occur, and their scope extends just as far. Within this scope, there may be reference (i.e.
term) cubes which refer to the constructors defined by the type definition cube. We call such
reference cubes constructor cubes.

Figure 4.35 shows a constructor cube referring to the cons constructor defined by the list
type definition cube from Figure 4.34. Like all (value) reference cubes, it is represented by an

opaque green cube. It carries the cons icon on its top, the same icon which is on top of the
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Figure 4.35: The “cons” Constructor Figure 4.36: The List [1,2, 3]

lower plane defining the cons constructor, and it has two ports in its side, which are labeled by
the same two icons as those which are hovering above the two type cubes in the lower plane.
The left port can take an argument of any type, say 7, and the right port can take an argument
of type “List of 77.

Constructor cubes are first-class values, hence they can be contained in holder cubes, flow
through pipes, be passed as arguments to predicates or to other constructors, etc. Their port
can be connected to pipes or be filled with values. Whenever we do the latter to build up
complex structures, it is customary to move each port so that the icon labeling it occupies
the same position as it has in the type plane defining the constructor. The result is a visually
pleasing representation of recursive data structures. Figure 4.36 shows the list “[1, 2, 3]”enclosed
in a holder cube.

This example shows how crucial the choice of constructor icon is for achieving a pleasing
representation of recursive structures, and it explains why we chose these particular icons for
nil and cons.

Unfortunately, this technique does not always produce visually pleasing data representa-
tions. For example, a two-dimensional array would be modeled in Cube as a list of lists.
Figure 4.37 shows the standard representation of the array ( % Z ) The most intuitive vi-

sualization, however, would be to display a two-dimensional grid on top of a cube. Further
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Figure 4.37: Standard Representation of a
Two-Dimensional Array

research is needed to devise ways to specify customized visualizations of values, depending on
their types.

The program shown in Figure 4.38 shows two holder cubes connected by a pipe. The left
holder cube contains a cube representing the list “[1,2,3]”. Upon type inference, the Cube
system infers that, since the left holder cube contains a list of integers and the two holder cubes
are connected, the right holder cube is also restricted to lists of integers. Therefore it fills the
right holder cube with a type cube representing lists of integers: A type reference cube referring
to the list type constructor, whose one port is filled with a type reference cube referring to the
integer type constructor (see Figure 4.39).

Now consider the program shown in Figure 4.40. Again, it shows two holder cubes connected
by a pipe; however, this time the left holder cube contains the value nil, which is of type “List
of &”, i.e. polymorphic. So, upon type inference, Cube fills the right holder cube with a type
reference cube referring to the list constructor, whose port is filled with an uninstantiated type
variable (see Figure 4.41).

Constructors are used in Cube — just as in Prolog — both to construct terms and to
deconstruct them. We have already seen one way to use constructors to build up new terms:
by filling their ports with other term cubes. Alternatively, we can connect them to pipes, which
can supply them with values. The same technique is used for deconstruction, except that now

values flow out of the ports.
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Figure 4.38: List [1,2,3] Flowing Into Figure 4.39: Program Irom Figure 4.38 Af-
Empty Holder Cube ter Type Inference

cols

Figure 4.40: “nil” Flowing Into Empty Figure 4.41: Close-Up of Holder Cube From
Holder Cube Figure 4.40 After Type Inference
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Figure 4.42: Unifying Two Partially Instan- Figure 4.43: Program From Figure 4.42 Af-
tiated Structures ter Evaluation

Indeed, the distinction between constructor and deconstructor is often blurred. Consider
the program shown in Figure 4.42. It shows two holder cubes which are both filled with a cons
constructor cube, and connected by a pipe. The ports of both constructor cubes are connected
via pipes to other holder cubes. One of these holder cubes contains the value 1 and is connected
to the “argy” port of the constructor cube on the left, another holder cube contains the value
nil and is connected to the “argy” port of the constructor cube on the right.

Evaluating this program yields the solution shown in Figure 4.43. Note that both construc-
tor cubes served both as constructors and as deconstructors at the same time — one supplied
the head of the list and extracted the tail, the other supplied the tail and extracted the head.

Note also that the pipe in the center carried data in both directions at once.

4.8 Some Predicates Over Lists

The remainder of this chapter shows some more predicate definitions and typical usages. In

particular, we focus on first- and higher-order predicates over lists.

4.8.1 Determining the Length of a List

Consider the predicate definition cube shown in Figure 4.44, which takes two arguments, a list

[ and an integer n, and holds if the length of [ is n.
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Figure 4.44: Predicate for Computing the
Length of a List

The upper plane contains the base case of the definition: the length of the empty list is 0.
This is represented by connecting the left port to a holder cube which contains the value nil,
and the right port to a holder cube which contains the value 0.

The lower plane contains the recursive case: The length of a non-empty list is 1 plus the
length of its tail. This is expressed by connecting the left port to a holder cube which contains
a cons constructor. cons is used here to deconstruct the list. Its “argy” port (i.e. the head) is
connected by a pipe to an empty holder cube, while its “argy” port is connected by a pipe to
the “list” port of a recursive reference to the length predicate. The “number” port of the length
predicate is connected by a pipe to one of the input ports of an addition predicate, whose other
input port receives the value 1, and whose output port is connected by a pipe to the right port
of the enclosing definition cube.

So, the cons constructor matches an incoming non-empty list, takes it apart, forwards its
head to the empty holder cube (i.e. effectively discards it) and its tail to a recursive invocation
of the length predicate, which thus determines the length of the tail of the incoming list. The
addition predicate adds 1 to this length, yielding the length of the whole incoming list, and
sends this value to the right port.

Figure 4.45 shows how this predicate can be used to compute the length of the list “[1, 2, 3]”;
the solution to this query is shown in Figure 4.46. Interestingly enough, the predicate can also

be used with a reversed directionality. Figure 4.47 shows a query that asks for a list of length
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Figure 4.45: Computing the Length of the Figure 4.46: Program From Figure 4.45 Af-
List [1,2, 3] ter Evaluation

Figure 4.47: Computing a List of Length 3 Figure 4.48: Program From Figure 4.47 Af-
ter Evaluation

68



Figure 4.49: Close-Up of Left Holder Cube
of Figure 4.48

3, and Figure 4.48 shows the solution to this query: a list with 3 elements, each being a distinct
uninstantiated variable, but all of them being of the same, however unknown, type. Figure 4.49

shows a closeup of this list.

4.8.2 Mapping a Predicate Over a List

This example shows the Cube definition of the map predicate which was introduced in Sec-
tion 3.2. map is a higher-order predicate, which takes another (lower-order) binary predicate
(say p) and two lists (say [t1,---,t,] and [¢],---,1.]), and holds if both lists are of equal length
(i.e. if m = n) and if the binary predicate holds when applied to corresponding elements in the
two lists (i.e. if p ¢; ¢/ holds for all 1 <i < m).

Figure 4.50 shows the definition cube for this predicate. The port for the lower-order
predicate is on the top of the predicate definition cube (which is the convention for predicate
arguments), the ports for the two list arguments are on the left and the right.

The upper plane represents the base case: mapping any predicate over the empty list yields
the empty list. This is expressed by connecting both “list” ports to holder cubes which contain
the value nil.

The lower plane represents the recursive case: both lists are decomposed, the lower-order
predicate is applied to their heads, and map is applied recursively to their tails. This is expressed

by two holder cubes, one being connected to the left port, the other to the right port, and both
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Figure 4.50: The “map” Predicate

being filled with a cons constructor. The “head” and the “tail” ports of both constructors are
connected to pipes. The two pipes attached to the “head” ports connect them to the two ports
of a reference cube referring to the lower-order predicate; the two pipes attached to the “tail”
ports connect them to the two “list” ports of a reference cube referring to map itself, the third
port (the predicate argument) of this reference cube is filled with a reference to the lower-order
predicate.

Figure 4.51 shows a query which uses the map predicate to map the successor predicate
(represented by the definition cube at the top right) over the list “[1,2,3]”. Figure 4.52 shows
the solution to this query. The previously empty holder cube on the right is now being filled
with the list “[2,3,4]”.

The icons used inside the map predicate definition cube to identify the ports of the lower-
order predicate are not the same as the icons identifying the two ports of the successor predicate.
Hence, we needed to “wrap” the successor reference cube into a port renaming cube before
supplying it to the map predicate.

Note that the “predicate” argument of map must always be completely ground; otherwise,
the evaluation of the recursive case in which it is used will suspend until the predicate is
ground. The allowable instantiation patterns of the two “list” arguments, on the other hand,
depends only on the predicate argument. If we use a predicate argument which expects both
of its arguments to be ground (such as “greater”), then both list arguments of map have to be

completely ground; otherwise, the evaluation suspends. If we use a predicate argument which
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expects at least one of its arguments to be ground, then for each two corresponding elements
of the two lists, at least one has to be ground. Finally, if we use a predicate argument which
expects neither of its arguments to be ground or even instantiated (such as “equal”), then the
two list arguments do not have to be instantiated at all, instead, map will generate all possible

solutions.

4.8.3 Filtering Out Some Elements of a List

filter is a higher-order function frequently used by functional programmers. Axiomatically, it

is defined as follows:

ﬁlterp[617"'7672]5[ei17"'7eik]
true if j € {4, -, 0
where 1<i; <---<ip<n andforall je{l,---,n}: pe = Lo i)
false otherwise

So, filter takes a function p and a list [e;,---, e,]. p is a function which maps a value of type
a to a boolean, and the ¢; are of type a. It returns a list of all those e; for which p “holds”
(i.e. returns true).

In Lazy ML?, we could define filter as follows:

®Lazy ML in some way resembles Prolog, as it allows function definitions to be split into several cases (a weaker
form of clauses) and uses pattern matching (a weaker form of unification) to bind actual to formal parameters.
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Figure 4.53: The “filter” Predicate

filter p[] = []
filter p (h.t) = if p h then t.(filter p t) else filter p t

Translating this function into a predicate gives rise to three clauses: one for the base case,
one for the recursive case where the predicate holds for the head of the list, and one for the
case where it does not hold. This third case requires the use of negation to explicitly state that

the predicate may not hold. Here is the Prolog definition of filter:

filter(P,[],[ ])-
filter(P,X. L, X. L) :&Q =..[P,X],call(Q), filter(P, L, L').
filter(P,X . L, I') :&Q =..[P,X],not(Q),filter(P, L, L').

It should be mentioned that Prolog’s not is a rather problematic metapredicate, as it does not

capture the semantics of negation correctly. For instance, the query

?onot( X =0),X=1.

fails, although logically it should succeed. This “unlogical” behavior is caused by the fact that
not tried to decide on the validity of “X = 0”7 before X was ground. In Cube, negation is

suspended until the negated atomic formula is completely ground.
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Figure 4.53 shows the filter predicate definition cube. The port on its top takes the lower-
order predicate (the “tester”), the left port takes the incoming list, and the right port returns
the filtered list. Inside the cube are three planes.

The top plane represents the base case: Filtering the empty list produces the empty list.
This is expressed by connecting both “list” ports to holder cubes which contain the value nil.

The second plane represents the recursive case in which the tester holds. The left port is
connected to a holder cube which contains a cons constructor cube. The “tail” port of the
constructor is connected by a pipe to the “input list” port of a reference cube which recursively
refers to the filter predicate, while the “head” port of the constructor is connected to the port
of a reference cube referring to the “tester” predicate (by using the same icon as the “predicate”
port of the enclosing definition cube). The pipe connecting the “head” port to the tester has
a T-joint, its third end leads to the “head” port of a second cons constructor cube, whose
“tail” port is connected to the “result list” port of the filter predicate. This constructor cube
is contained in a holder cube, which is connected by a pipe to the “result list” port of the
enclosing definition cube.

Finally, the lower plane represents the recursive case in which the tester does not hold. The
left port of the enclosing definition cube is connected to a holder cube which contains a cons
constructor cube. Again, the “tail” port of the constructor is connected to the “input list” port
of a recursive reference to the filter predicate, while the “head” port is connected to the port
of the tester predicate. But in this plane, the tester predicate is contained inside the port of a
negation predicate cube. The “result list” port of the recursive reference to the filter predicate
is connected by a pipe to the “result list” port of the enclosing definition cube.

Figure 4.54 shows the filter predicate being applied to the lower-order predicate odd and to
the list “[1,2,3]”. Figure 4.55 shows the same query after evaluation. The previously empty
holder cube on the right has been filled with the list “[1,3]”.

Note that both the predicate argument to filter and the “input” list argument have to
be ground: the negation predicate expects its argument to be completely ground, and this
argument is the lower-order predicate applied to each of the elements of the input list in turn.

So, the filter predicate is truly unidirectional.
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Chapter 5

Formal Description

This chapter develops a formal definition of Cube. The way we do this is rather indirect. Instead
of giving a semantics based directly on pictures, we first describe a translation algorithm from
Cube pictures into a textual language, and then give type inference rules and an operational
(rewrite) semantics for this textual language. The understanding is that a Cube program is
well-typed if it translates into a well-typed textual program, and that a Cube program yields
a particular (visual) result if it translates into a textual program which yields a textual result
that is the translation of the visual result.

The structure of this section is as follows: Section 5.1 develops a translation scheme from
Cube into a textual language Lg, Section 5.2 describes a type system for L (or a derivative of
it), and Section 5.3 defines a rewrite system which takes expressions of (a derivative of) Lg into

a normal form.

5.1 Translation From Pictures to Text

This section gives translation rules from Cube pictures into words of a textual language Lg.
Table 5.1 gives the context-free syntax of L.

In our textual language, the nonterminal symbols P, k, K, p, 7, 7, and f refer to predicate,
constructor, typeconstructor, port, and typeport symbols, and integer and floatingpoint con-

stants. For convenience, we will use the symbols , , , , , , and to refer

to predicate, constructor, typeconstructor, port, typeport, integer and floatingpoint icons in
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Table 5.1: Syntax of Lg
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Type variant planes

Figure 5.1: Visual Syntax of Type Definition Cubes

| Type cube

Figure 5.2: Visual Syntax of Type Variant Planes

the visual language. The understanding is that and z refer to two different representations
of the same symbol.

Concrete predicate, constructor, typeconstructor, port, and typeport symbols of the textual
language are represented by strings. By convention, we start typeconstructor names (such as
Int or List) with an uppercase letter, and predicate and constructor names (such as plus or
cons) with a lowercase letter. Predicates and constructors are both special kinds of variables.
In addition, there is a sequence xj,x»9,x3,... of variable names used to obtain new variables.
Analogously, there is a sequence ty,t9,t3,... of type variable names used to obtain new type
variables. By convention, we use a slanted font to refer to type constructors and type variables,
and predicates, constructors and other variables.

We use subscripted strings to refer to the parameters of type constructors, predicates, and
constructors. For example, List] refers to the first parameter of the List type constructor, and
plusg refers to the third parameter of the plus predicate. In Cube, ports are not first-class
values, so port symbols will always be constants, which we indicate by using a sans-serif font.

A type definition cube has the form shown in Figure 5.1. It consists of a transparent grey

cube with icon , ports with icons , ..., (m > 0), and n type variant planes (n > 0),
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Figure 5.3: Type Constructor Application Figure 5.4: Function Type

e

Figure 5.5: Type Reference Cube

which represent the n variants of the sum-type defined here. By convention, we place the type
ports always on top of the type naming cube.

A type variant plane has the form shown in Figure 5.2. It consists of an enclosing grey
plane, carrying a transparent, grey constructor icon on its top, and n type cubes inside the
plane (n > 0). The part of the plane above each type cube carries a transparent, green port

icon (1 <i<n).

A type cube can have one of three forms:

1. A type constructor application cube, as shown in Figure 5.3, consists of an opaque, grey

cube with a type constructor icon on its top, and ports with port icons , ...,

(n > 0) set into the top. Each port must be filled with a type cube. In order for this
expression to be well-formed, it must be within the scope (see page 49) of a type definition

cube (i.e. a naming cube) defining a type constructor with exactly n ports labeled

7 “‘7‘
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2. A function type cube of the form shown in Figure 5.4. It consists of a (non-function) type

cube, called the result type cube, and ports labeled , ..., set into its side. Each
port must be filled with a type cube, called an argument type cube.

3. A type port reference cube of the form shown in Figure 5.5 is an iconic reference to a
type parameter. It consists of an opaque, grey cube with a type port icon on top. In
order to be well-formed, the enclosing type definition cube must have a port named .

At this point, a small digression is in order. Initially, we wanted the syntax of type definitions
and predicate definitions to be as similar as possible. Therefore, we included type holder cubes
(representing type variables) and type pipes (representing the unification of type variables)
into the language. These constructs mirrored the holder cube and pipe constructs of the value-
denoting fragment of the language, and thus provided a nice symmetry. On the other side, they
added a significant layer of complexity to the translation scheme for types, since unification
of types had to be performed statically, and could potentially fail, indicating a syntactically
ill-formed program. For this reason, we omitted type holder cubes and type pipes from the
final version of the language. The initial version of the language and the more complicated
translation scheme are described in [55].

Type definition cubes are translated into their textual representation by the following rules:

1. A type definition cube with type constructor icon , type ports labeled , ...,,

and variants translating to V'1,...,V,, translates to
type K{mi =ay, -, mp =an}=Vi+---+V,

where ay, ..., a;,, are new and distinct type variables. We say that w; is associated with

a; (1<i<m).

2. A type variant plane with constructor icon , and type cubes translating to 7q,...,7,

under port icons , ..., translates to

k {pl T1, 5 Py :Tn}
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Figure 5.6: Definition of a List Type

3. A type constructor application cube with type constructor name and type ports
, s , where the holder cubes of the ports translate to 74, ..., 7,, translates to

K {ﬂ-l :Tlv"'vﬂ-n:Tn}

4. A type port reference cube with type port icon , referring to the type parameter 7

associated with the type variable «a, translates to a.

5. A function type cube with argument type cubes translating to 74, ..., 7, in ports labeled
, ..., and a result type cube translating to 7, translates to
{pl Tl 9 Pt Tn} - T

At this point, we have a representation DT of the type definition cube. DT is of the form

type K{my =71, T =T} = Vi + ...+ V,.

Example 5.1.1 (Translation of the list type definition) The type definition cube shown
in Figure 5.6, which defines the list type, consists of a type definition cube with icon List, which
has one port, labeled List;, set into its top. Inside the type definition cube are two type variant
planes, the upper one carrying the type constructor icon nil and being empty, and the lower
one carrying the type constructor icon cons, and being filled with two type cubes below port

icons consy and consy. One of them is a type reference cube (call it 71) with icon List; on its
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Figure 5.7: Visual Syntax of Type Variables

top (thus referring to the port of the type definition cube). This type cube is below the port
icon consy. The other is a type constructor application cube (call it 73), consisting of an opaque
cube with icon List on its top, and a port labeled List; set into it. The port contains another
type reference cube (call it 73), also with icon List; on its top.

The type definition cube is translated as follows: We associate the type port icon Listg
with a type variable t; (by rule 1). The type reference cube 71 carries the icon List; and
thus translates to t; (by rule 4). The same rule applies for the type reference cube 73. The
type constructor application cube 73 then translates to List{List; = t7} (by rule 3). The lower
type variant plane now translates to cons{consy : tj,consy : List{List; = t7}} and the upper
plane simply to nil (by rule 2). The type definition cube finally translates (by rule 1) to the

representation DT

type List{List; = t;} = nil + cons{consy : t;,consy : List{List; = t;}}

Section 5.2 describes a type inference system which determines if an expression is well-typed,
and computes the type of each subexpression. Some of these types will be displayed right inside
the Cube program. In particular, the type of each empty holder cube (including empty ports)
is indicated by filling the holder cube with a type cube.

An inferred type can be a type variable, a type constructor application, or a function type.

The corresponding type cubes are constructed using the following three rules:

1. a type variable t; (where 7 indicates the position of t; in the sequence of type variables)

is represented by an opaque grey cube with a grey icon on its top, such that the number
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¢ in the top left corner of the (otherwise blank) icon. Figure 5.7 shows the representation

of the type variable t3.

2. A type constructor application K {mqy = 71,---, 7, =7,} (n > 0) is represented by a
type constructor application cube: an opaque grey cube with icon and ports named
by transparent grey icons , ..., set into the cube’s top, and filled with the repre-

sentations of 71, ..., Tp.

3. A function type {py : T1, -+, p, : Tu} — T (n > 0)is represented by a function type cube:
a type cube representing 7, with ports named , ..., set into its sides and filled with

the representations of 71,...,7,.

This concludes the translation schemes for types and type definitions. The remainder of
this section specifies schemes for translating value-denoting pictures into Lo expressions, and

vice versa. The first few definitions are aimed at resolving the pipes in a picture:

Definition 5.1.1 Let z be a variable and ¢ be a term. A constraint is an equation of the form

r = 1.

Definition 5.1.2 Each holder cube in a Cube program (including the ports of predicate defini-
tion cubes and of application cubes) is associated with a variable, such that there is an injective

(1-1) mapping from holder cubes to variables.

Definition 5.1.3 A holder cube is called a top-level holder cube if it is inside a conjunction (see

below), with no cube inside this conjunction surrounding it. Otherwise, it is called a lower-level

holder cube.

Icons are visible only within a certain scope, namely the box enclosing the naming cube by
which they are defined. In order to deal with the issue of scope, we need to establish some more

definitions, leading up to the notion of an icon environment.

Definition 5.1.4 An icon binding is an association — & between an icon and a variable

x.

Definition 5.1.5 An icon environment p = { — xl,..., — 2.} (n > 0)is a set of

icon bindings, i.e. a mapping from icons to variables. py denotes the initial icon environment,
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the icon environment which maps the icons of the predefined predicates and constructors to

variable names.

Definition 5.1.6 Let p be an icon environment and be an icon. Then p() is defined to
be z if there is a binding — 2 in p. Otherwise, p() is undefined.

Definition 5.1.7 Let p be an icon environment and — 2 be a binding. Then ,0[ — z],
the extension of p by — x, is defined as follows:

- a@ =1 L

p() otherwise

,0[ — 2, ..., — a,] is an abbreviation of ((p[ — xl]))[ — T

Definition 5.1.8 (Yielding of Bindings)

1. A type variant plane with icon , which translates to k{zy : 71, ...,2, : T}, vields the
bindings — k.
2. A type definition cube, whose n type variant planes yield the bindings — k1, ., —

k., yields the bindings — k1, ..., — k.

3. A predicate definition cube with predicate icon , which translates (as described below)
to pred P = e, yields the binding — P.

There are six kind of term cubes: reference cubes, integer cubes, floatingpoint cubes, holder

cubes, application cubes, and port renaming cubes.

o A reference cube is of the form shown in Figure 5.8.a. It consists of an opaque green cube

with icon on its top.

o An integer cube is of the form shown in Figure 5.8.b. It consists of an opaque green cube

with an integer icon on its top.

o An floatingpoint cube is of the form shown in Figure 5.8.c. It consists of an opaque green

cube with a floatingpoint icon on its top.
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Figure 5.8: Term Cubes
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o A holder cube is of the form shown in Figure 5.8.d. It consists of a transparent green
cube which can either be empty or filled with another term cube, and can be connected
to pipes. A port of a predicate definition cube (which is a special kind of holder) must

always be empty '.

e An application cube is a term cube with n ports (n > 1) set into its walls. The term
cube must be either a reference cube (see Figure 5.8.¢) or an empty holder cube (see
Figure 5.8.f)2. The icon of each port is on the wall touching the term cube, which is

transparent, the other walls are opaque.

e A port renaming cube is of the form shown in Figure 5.8.g. It consists of a term cube

with (at least) ports named , ..., (n > 1) in its walls (i.e. the term cube is an “ap-
plication” cube, where no values are supplied to the ports , s ), and a transparent

cube surrounding it, with port icons , ..., over , ...,.

A pipe is an opaque structure shaped like a spanning tree, having at least two ends, such
that each end is connected to a holder cube.

A conjunctive region is a region of space containing a set of k definition cubes (see below)
(k> 0), a set of m term cubes (m > 0), and a set of n pipes (n > 0).

A plane, as shown in Figure 5.9, is a conjunctive region surrounded by a transparent green
box. A pipe may go through the wall of a plane, if it connects some cubes outside the plane
with some cubes inside the plane.

A Cube program, as shown in Figure 5.10, is a conjunctive region.

A predicate definition cube has the form shown in Figure 5.11. It consists of a transparent
green cube with icon and ports labeled , ..., (k > 0), and m local definition cubes
(m > 0) and n planes (n > 0) inside the predicate definition cube. Pipes can be used to connect
the ports of the predicate definition cube to cubes inside the plane. However, pipes may not
pass through the walls of the predicate definition cube, and they may not connect ports directly.

A definition cube is either a predicate definition cube or a type definition cube.

1We make this restriction only to ease the translation.

2]t cannot be an integer or a floatingpoint cube, as these do not have a function type and thus cannot have
ports. A filled holder cube can be replaced by the term cube inside it. An application cube can be merged with
the outer application cube. A port renaming cube would be useless,; as values can be supplied to ports regardless
of their names.
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The translation method is as follows:

1. (Term cubes) Term cubes are translated with respect to an icon environment p, their
translation may modify a set (' of value constraints, and the result of the translation is a

term.

(a) (Reference cubes) A reference cube with icon translates to p()
(b) (Integer cubes) An integer cube with icon translates to 1.

¢) (Floatingpoint cubes) A floatingpoint cube with icon translates to f.

)
)
(c)
(d) (Holder cubes) Assume the holder cube is associated with the variable z. A top-
level holder cube translates to true (a predefined predicate which always succeeds),
a lower-level holder cube translates to x. If the holder cube is filled with a term cube

which translates with respect to p and C' to ¢, add the constraint = ¢ to C.

(e) (Application cubes) Assume the application cube consists of a term cube which

translates with respect to p and C' to ¢, and ports labeled , ...,, Pt b ...,
(0 < m < n,1 < n), such that the holder cubes making up the ports E, ...,

are either connected to a pipe, or filled with a term cube, that these holder cubes

translate with respect to p and C into terms ¢q,...,%,, and that the holder cubes

making up the ports|p,, 1 ,..., are neither connected to a pipe, nor filled with

a term cube®. Then the application cube translates to t(p; = t1)...(p,, = tm)-

(f) (Port renaming cubes) A port renaming cube consisting of a term cube which

translates with respect to p and C to t, ports labeled , ..., set into the term
cube, and icons , ..., superimposing them, translates to ¢ (p; — pi)---(p,, —
P)-

2. (Pipes) Pipes are resolved, this process may modify a constraint set C'. In order to resolve
a pipe connecting n holder cubes associated with variables z1, ..., z,, add the constraints

T1 = Xo,...,¥1 = T, to C.

*The translation scheme for application cubes reflects a design choice we had to make. In an alternative
setting, each port in the picture, regardless whether it is supplied a value or not, is considered to be a binding of
an actual to a formal parameter. In particular, a port which is empty, i.e. not supplied any value, is considered
to be the binding of a variable with only one occurrence (like “_” in Prolog) to a formal parameter. The problem
with this approach is that ports are visible in a Cube program only if and when they are used. This conflicts
with our ideas about interactive editing of Cube programs: Unused ports in occurrences of (previously defined)

predicates or constructors should be visible while editing, so that pipes can be connected to these ports.
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3. (Conjunctive regions) Conjunctive regions are translated with respect to an icon en-
vironment p, the result of the translation is a conjunction. Assume a conjunctive region
contains k definition cubes, m term cubes, and n pipes. Let bq,...,b, be the bindings
yielded by the & definition cubes (see Definition 5.1.8). Let p’ = p[by,...,b,]. Translate
the k definition cubes with respect to p’, obtaining definitions Dy, ..., Dg. Associate the
holder cubes in the conjunctive region which are not part of the local definition cubes
with new and distinct variables zq,...,z,. Let C' be an initially empty set of value con-
straints. Translate the m term cubes with respect to p’ and C, obtaining terms t1, ..., t,,,
and resolve the n pipes with respect to C'. Assume C is {a] = t},...,2 = 1.} afterwards.

Then the conjunctive region translates to
letrec Dy,..., D in Jaq, oy @gty A o Ay ATy = 8 Ao Aal = 11 A true

We drop all the true in the conjunction, as long as at least one conjunct remains.

4. (Planes) Planes are translated with respect to an icon environment p. The translation

of a plane is the same as the translation of its conjunctive region.

5. (Programs) Assume a program consists of a conjunctive region which translates with

respect to the initial icon environment pg to ¢. Then the program translates to < c.

6. (Definition cubes) Definition cubes are translated with respect to an icon environment

p, the result being a definition.

(a) (Type definition cubes) The translation method for a type definition cube is

described on page 79. This method actually ignores p.

(b) (Predicate definition cubes) Assume a predicate definition cube with icon , k
ports labeled , s , m local definition cubes, and » planes. Associate new and
distinct variables 21, ..., 2, with the ports. Let bq,...,0, be the bindings yielded by
the m local definition cubes. Let p’ = ,0[ = Ty, — 2, b1, ..., b,]. Translate
the m definition cubes with respect to p’, obtaining definitions D1, ..., D,,. Translate

the n planes with respect to p/, obtaining conjunctions ¢y, ..., ¢,. Then the predicate
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Figure 5.12: A Program Using the Factorial Predicate, and Details of It

definition cube translates to
pred P = Xp, = a1, -+, p, = xp}.etrec Dy,..., D, in ¢y V ... V ¢, V false

false is a primitive predicate which always fails. If n > 0, we can drop false.

Example 5.1.2 Consider the factorial program shown in Figure 5.12. In order to translate

it, we have (by rule 5) to translate the conjunctive region it is contained in with respect to

the initial icon environment py = { — minus, — greater, — times,...} *. This

conjunctive region contains one definition cube, which yields (by Definition 5.1.8) the binding

*For this example, no other parts of po matter.
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E — fact. We set p; to be po[m — fact] (by rule 3), and translate the definition cube
with respect to py. This definition cube is a predicate definition cube with predicate icon m,
ports labeled and , and two planes, so rule 6b applies. We associate the variables x;
and x9 with the ports. As the predicate definition cube contains no local definition cubes,
p2 = ,01[ — X7, — x9]. Now we have to translate the two planes with respect to py. In
order to translate the lower plane (see Figure 5.12), we translate (by rule 4) the conjunctive
region it encloses. The conjunctive region contains no local definition cubes, two term cubes t;
and 3, and two pipes. So (by rule 3) p; does not have to be extended. We associate the two
holder cubes t; and ¢t with variables x3 and x4, and initialize C' := (). Next we translate t;
with respect to py and C. t; is a top-level holder cube, so it translates (by rule 1d) to true.
It contains an integer cube with icon , which translates (by rule 1b) to 0, so we add (by
rule 1d) the constraint x3 = 0 to C'. Similarly, ¢3 translates to true, and x4 = 1 is added to
C. Now we have to resolve (by rule 3) the two pipes connected to #; and 3. The first pipe
connects to ¢; which is associated with x5, and to the left port of the predicate definition cube,
which is associated with x7, so we add (by rule 2) the constraint x; = x3 to C. Similarly, for
the second pipe we add x5 = x4 to C. Cis now {x3 =0,x4 = 1,x7 = x3,X9 = x4}. So the

conjunctive region translates (by rule 3) to
dx3,x4.x3=0Axy =1AX] =x3/NX9=Xy4

or ey for short. This is also (by rule 4) the translation of the lower plane of the predicate
definition cube.

In order to translate the upper plane (see Figure 5.12), we have (by rule 4) again to translate
with respect to ps the conjunctive region it encloses. The conjunctive region contains no local
definition cubes, 6 term cubes s, ...,fs, and 6 pipes. So (by rule 3) p, does not have to be
extended. There are a total of 12 holder cubes in the region (two of them top-level holder
cubes), and we associate the variables xj,...,x75 with them. We initialize C' := (. Then
we translate the term cubes i3, ...,1g with respect to py and C'. t3 is a top-level holder cube,
associated with xj, and filled with an integer cube with icon E, so it translates (by rules 1d
and 1b) to true, and x5 = 0 is added to C'. t4 is a top-level holder cube associated with xg
and filled with an integer cube with icon , so it translates to true, and x5 = 1 is added

90



to C'. t5 is an application cube, consisting of a reference cube with icon , which translates

(by rule la) with respect to pp and C to greater, and two ports labeled | —>| and | >« |

Ports are lower-level holder cubes. The first port translates (by rule 1d) to x7, the second
to xg. As both are empty, no constraints are added to C'. But each of them is connected
to a pipe, and thus really represents an application. So the application cube translates (by
rule le) to greater(greater; = x7)(greatery = xg) . Similarly, ¢¢ translates to minus(minus; =
xg )(minusy = xj0)(minus3 = x77), t7 translates to times(times; = x79)(timesy = x73)(timesg =
x14), and ts translates to fact(facty = xj5)(facty = xj5). Note that the icon E occurs
recursively within the predicate definition cube defining it.

Next we have to translate the 6 pipes within the conjunctive region. The first is a pipe with
four ends, connecting the holder cubes associated with the variables x; , x7 , x9 , and x79, so
we add the constraints x; = x7, x;7 = xg, and x; = x5 to C'. The 5 other pipes each have
only two ends, connecting the holder cubes associated with the variables x5 and xg, x5 and
X0, X717 and x5, x73 and x4, and x74 and x5, respectively. Hence we add the constraints
X5 = X8, Xg = X]0, X]] = X5, X13 = X6, and x4 = x9 to C. C'is now {x5 = 0,x5 = 1,x7 =
X7,X] = X9,X] = X]9,X5 = X§,X§ = X10,X]] = X]5.X]3 = X]6,X]4 = X2}. So (by rule 3) the

conjunctive region translates to

x5, ..., x16-
greater(greater; = x7)(greatery = xg)A
minus(minus] = Xg)(minusy = x7g)(minus3 = x77)A
times(times] = x79)(timesy = x3)(timesy = x74)A
fact(fact] = x75)(facty = x74)A
x5 =0Axg=1AXx; =Xx7AX] =X9gNX] = X9A

X5 = XgNXg=X19gNX11 = X15 NX13 =X16 N X14 = X2

or ey for short. This is also (by rule 4) the translation of the upper plane. So the entire predicate

definition cube translates (by rule 6b) to

pred fact = Mfact] = x7,facty = x9}.e1 V ey
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We are back to the translation of the overall conjunctive region. We associate (by rule 3)
the four holder cubes in the conjunctive region with variables xj7, ..., x99, and initialize C' := ().
Then we translate the term cubes tg, {19, and ¢1; with respect to p; and C. tg is a top-level
holder cube, associated with x;7, and filled with an integer cube with icon , which translates
(by rule 1b) to 3. Hence tg translates (by rule 1d) to true, and x;7 = 3 is added to C'. {1 is
an empty top-level holder cube, associated with x;g, and translates (by rule 1d) to true. 17 is
an application cube, consisting of a reference cube with icon m, which translates (by rule 1a)
to fact, and two ports labeled and . These ports, both lower-level holder cubes, are
associated with variables x79 and x99, and thus translate (by rule 1d) to x79 and x9p. So t11
translates to fact(fact; = xjg)(facty = x99).

Now we need (again by rule 3) to resolve the two pipes. One of them connects the holder
cube tg, associated with x77, to the left port of #11, associated with x79, so we add (by rule 2)
x17 = X9 to C. Similarly, for the other pipe, we add x;5 = x99 to C. C is now {x77 =

3,X17 = X19,X18 = X20}. So the outermost conjunctive region translates (by rule 3) to

letrec pred fact = A{fact; = xj,facty = x9}.e1 V ey
in dx77,...,x9¢.

fact(factl = Xlg)(factQ = XQO) NXy7 = 3 A Xj7 =X19 NX18 = X9
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x3 : Int X3t
Figure 5.13: Uninstantiated Variables

Hence the overall program translates (by rule 5) to

< letrec pred fact =
Mfact] = xq,facty = x9}.
(Ix3,x4.
x3=0Ax4=1Ax; =x3AXx9=xy4)V
(Ix5,...,X16-
greater(greater; = x7)(greatery = xg)A
minus(minusy = Xxg)(minusy = x7g)(minusg = x77)A
times(times] = x79)(timesy = x3)(timesy = x74)A
fact(fact] = xy5)(facty = x75) A x5 = 0 A x5 = 1A
X=Xy ANX] =XgANX] =X19NX5 =X8 NXg=X190NX1] = X150
X13 = X16 N X14 = X2)
in dx77,...,x9¢.

fact(factl = Xlg)(faCtQ = X20) NXj7 = I A X7 = X19 NX18 = X9

Section 5.3 describes an operational semantics which rewrites a textual program into a
normal form, if there is one, and which obtains as a side effect the terms certain variables of
the original program get replaced by when deriving this normal form. These terms can be
integer and floating point constants, variables, and “closures”. They shall then be displayed
right inside the original Cube program. So, we need to translate the textual terms back into

visual term cubes. This is done according to the following four rules:
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1. An integer constant 7 is visualized by an integer term cube with icon .
2. A floatingpoint constant f is visualized by a floatingpoint term cube with icon .

3. A variable x; of type 7 is visualized by a type cube representing 7 (see page 81), with
the number ¢ being in the lower right corner of the top side of the type cube. Figure 5.13

shows two such variable cubes.

4. A “closure” ® results from applying either a constructor or a predicate to some arguments.
The closure is represented by an application cube consisting of a reference cube referring

to the constructor or predicate, and empty ports representing the remaining arguments.

5.2 Type Inference

This section describes a type inference system for Cube. It does this by giving a set of type
inference rules for (a derivate of) Ly. The understanding is that a Cube program is well-typed
if and only if its translation into Lg by the translation method described in the previous section
is well-typed.

First we want to establish some terminology. It turns out to be convenient if we collapse
disjunctions, conjunctions, and terms of Lg into one single syntactic category, namely expres-
sions. Table 5.2 shows this simplified version of Lg, called L. Clearly, every word in Lg is also
a word in L (but not vice versa).

Associated with every expression e is a type scheme o; we denote this by e : ¢ and call it
a typing. A type scheme is of the form Va;. --- Va,,.7 (n > 0) and universally quantifies the
type variables aq,---,a, in 7. A type can be a type variable «, a type constructor application
K {my =71,-++,7, = Tp}, or a function type {p; : 71, -+, p,, : Tn} — 7. The “base types” Int,

Float, and Prop are treated as nullary type constructors.

®In the standard terminology, a closure is a value. However, in this context, we do not distinguish between
terms and values.

94



AN SR RT S Tg TR 0

-

MMMMMMMMMMMM MMM

Program

Fxpression

Definition

Variable

Constructor C Variable
Predicate C Variable
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?

f
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€1 = €2

e1(p = €2)

e(p—p)
Mpr=21,00,p, = 20 }e
letrec Dy, -+, D, in ¢
erV---Ve,
etN---Ney
dzq,---,x,.€

pred P = ¢

type K{mi =, -, =apt=Vi+---+V,

k {pl:Tlv"'vpn :Tn}
(87

{pl T1, 5Py :Tn} - T
KA{ny =71, 70 =Tn}
Va.o

-

Table 5.2: Syntax of Ly
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For example, the following typings hold:

1: Int
3.14159 : Float
fact : {facty : Int,facty : Int} — Prop

where fact refers to the factorial predicate translated in Example 5.1.2.

Now consider the expression A{port; = xj}.true. This predicate can be applied to one
argument, as in (A{port; = xj}.true)(port; = 5). But the type of the argument does not
matter, the application will always be “well-typed”. We call such a predicate polymorphic. The
type scheme of this predicate is Vtj.{port]; : t;} — Prop. The universal quantifier indicates
that t; can take on any type. The function type indicates that the predicate takes one argument
of type t; at “port” porty, and returns a truth-value.

Recall the list type definition from Example 5.1.1. It gives rise to two constructors, cons

and nil. Their typings are

cons : Vtj.{consy : tj,consy : List{Listy = t;}} — List{List; = t;}
nil : Vty.List{List; = t;}

These typings are derived directly from the definition of List, by universally quantifying the
free type variables occurring in the parameter list of the type definition.

The expression cons(consy = 5)(consy = nil) is well-typed: applying cons at “port” cons;
to b specializes ty in the type of cons to Int, and removes the consy argument from the function

type, so that the resulting expression has type

{consy : List{Listy = Int}} — List{List; = Int}

Applying this expression at port consy to nil works, as the type of nil can be specialized to be
the same as the type of consy, so the resulting expression has type {} — List{List; = Int} or
simply List{Listy = Int}. But

cons(cons; = 5)(consy = cons(cons; = 3.14159)(consy = nil))
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is not well-typed, because t; cannot be specialized to Int and to Float at the same time.
The above example demonstrates a technique known as currying: “functions” (including
predicates) which take multiple arguments can be applied to one argument at a time. This is

reflected by the following law:

Definition 5.2.1 (Equivalence of function types)

1. {} — 7 and 7 are equivalent

2. 4pr iy T — (0L Ty s ) — ) and

. . /. /.- .
{py 71y Py s TPy 2 Thy oo Pl 2 Th} — T are equivalent

Unfortunately, the Hindley-Milner type inference system is more conservative than one
would hope: it rules out some type-safe expressions, expressions which will not “go wrong” due
to a type error. One particular restriction is that the variables bound by a set of mutually
recursive definitions may occur only monomorphically in the bodies of the definitions. For

example, in the expression

letrec pred foo — e, pred bar — e; in e

all occurrences of foo and bar within e; and ey must have the same type. So

letrec pred alwaysTrue = A{port] = x }.true,
pred trueAsWell = alwaysTrue(port; = 5) A alwaysTrue(port; = 3.14159)
in trueAsWell

is rejected by our type system as ill-typed, because alwaysTrue is used in trueAsWell once as
a predicate over integers, and once as a predicate over floatingpoint numbers. The expression
is, however, perfectly type-safe.

In order to minimize the impact of this restrictiveness, it is customary to split up each

letrec, such that definitions which are not truly mutually recursive are not in the same letrec.
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The above example could for instance be transformed into

letrec pred alwaysTrue = A{port] = xy}.true in
letrec pred trueAsWell = alwaysTrue(porty = 5) A alwaysTrue(porty = 3.14159) in
trueAsWell

which is well-typed in our type-system.

This transformation is accomplished by building a dependency graph for each letrec, such
that each definition is represented by a vertex, and each use of a variable defined in the letrec
is represented by an arc from the definition it is used in to its own definition. The strongly
connected components of the graph are then identified and collapsed into single nodes. The
resulting graph is acyclic, so it can be sorted topologically. The resulting ordering of nodes
(each node now containing a set of definitions) is the desired ordering of letrecs, such that each
letrec contains only truly mutually recursive definitions. Further details on this technique can
be found in [64].

In the following, we assume that the expressions obtained from the picture-to-text transla-
tion have been transformed in such a way.

The type system we are describing now is formulated in form of type inference rules. This
technique goes back to Damas and Milner [17]. We use the same notation as [22].

An assumption is an association of a variable z with a type scheme o, denoted by z : ¢
as described above. A denotes a finite set of unique assumptions. A F e : ¢ means “from A
we can deduce that e has type scheme ¢”, and is called a sequent. A.x : o denotes the set
of assumptions formed by removing any assumption about z from A, and then adding z : o.
#n js read “from the sequents sy and ... and s, we can infer s”. Finally, [7/alo is the result
of substituting each free occurrence of the type variable o in the type scheme o by the type 7.

Table 5.3 shows the type inference rules for Lq.
Example 5.2.1 Consider the program

< letrec pred alwaysTrue = A{port]y = x; }.true in

alwaysTrue(porty = 5) A alwaysTrue(porty = 3.14159)
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[INT]

[FLOAT]

[VAR]

[UNIF]

[APP]

[DISJ]

[CONJ]

[EXIST]

[ABS]

[PROG]

[SPEC]

[TDEF]

[PDEF]

At v: Int

At f: Float

Az:obz:0o

Abe 7 Abteg:T

At (e1 =ey): Prop

Abe:{p:7}—=7 Abtey:r

At (er(p=e3)): 7’

At e : Prop --- At e, : Prop
AF(egV---Ve,): Prop

At e : Prop --- At e, : Prop
AF(eg A---ANey): Prop

A.xy:71 .+ .xy,:7y Fe:Prop

AF (J21,---,2,.€): Prop

A.xy:71 .+ .xp:Tpbe:T

AF(Mpy =21, -,p, =ant€) i {py 71, P T — T

Al e: Prop

AbF<e: Prop

AFe:Va.o

AbFe:[r/alo

Ak (Vag, - ap Ay T Py Ty = K AT =y, mp=ag}) . ket
Ar (letrec type I({ﬂ-l =Q1, 0, Tk = Oék} =k {pll STy Ping :T1n1}+ - in 6) - T

A.Pi:imy .- P er T
A.Pi:my .-+ Py be, Ty
A.Py: Yoy . - . P, NVa,. T, Fe:T

At (letrec pred P; =e,---,pred P, =¢,ine): 7
where Vo, = Vayp. - .aip; s.t. g1, -+, @y, are not free in A

Table 5.3: Type Inference Rules for Ly
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For brevity, we will abbreviate A{port; = xj}.true as ey, alwaysTrue(port; = 5) as eq, and
alwaysTrue(port] = 3.14159) as es.

Our initial set of assumptions Ay contains assumptions about the type schemes of the pre-
defined predicates and constructors. In particular, as true and false are viewed as variables
referring to predefined nullary predicates, Ag will contain assumptions about them. For sim-
plicity, in this example we assume that Ay = {true : Prop}.

The overall expression is a program, so the [PROG] rule applies:

letrec pred alwaysTrue — e in ey A e3

- [PROG]
{true : Prop} - (< letrec pred alwaysTrue = e in e3 A e3) : Prop

The next expression is a predicate definition, so the [PDEF] rule applies:

{true : Prop, alwaysTrue : 71} F ey : 7y {true : Prop, alwaysTrue :Va.r1} F (ez A e3) : Prop

. [PDEF]
{true : Prop} I~ (letrec pred alwaysTrue = e in ez A e3) : Prop

e1 is a A-abstraction, so the [ABS] rule applies:

{true : Prop,alwaysTrue : 71,xj : To} b true : 73

ABS
{true : Prop, alwaysTrue : 71} - (AM{port; = x7}.true) : {port; : 73} — 73 : ]

and 7y gets replaced by {port; : 79} — 73 throughout the proof. true is a variable, so the

[VAR] rule applies:

[VAR]
{true : Prop, alwaysTrue : 7y,x7 : 79} I true : Prop

and 73 gets replaced by Prop throughout the proof. Now we get back to the body of the
predicate definition. The set of assumptions {true : Prop,alwaysTrue : Yd.r1} is by now

{true : Prop, alwaysTrue : Va.{porty : T2} — Prop}. Setting 7o = t7, we get

Ay = {true : Prop, alwaysTrue : Vt;.{porty : t;} — Prop}

The body of the letrec is a conjunction, so the [CONJ] rule applies:

Ay F ey Prop Ay Fes: Prop
Ay F (e Aes): Prop

[CONJ]
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€9 is an application, so the [APP] rule applies:

Ay b alwaysTrue : {port] : 74} — Prop A1 EDH 1y

[APP]
Ay + (alwaysTrue(porty = 5)) : Prop
Next we apply the [SPEC] rule to the variable alwaysTrue:
Ay F alwaysTrue : Vtj.{porty : t;} — Prop
1 1-{porty : 17} SPEC]

Ay & alwaysTrue : {porty : Int} — Prop

and we replace 74 by Int throughout the proof. Now we can apply the [VAR] rule:

[VAR]

{true : Prop, alwaysTrue : Vt; {port; : t;} — Prop} F alwaysTrue : Vt;.{porty : t;} — Prop
For the argument 5 of the application, the [INT] rule applies:

——— [INT]
Ay F5:Int

The type derivation of es is similar, except that t; is specialized to floatingpoint numbers:

[VAR]

[SPEC] [FLOAT]
Ay F alwaysTrue : {port; : Float} — Prop Ay F 3.14159 : Float APP]

Ay F (alwaysTrue(porty = 3.14159)) : Prop

Ay F alwaysTrue : Vtj.{porty : t;} — Prop

Example 5.2.2 For an example involving type definitions, consider the program

< letrec type List{List; = t;} = nil 4+ cons{consy : t;,consy : List{List; = t;}} in

dx;.x7 = nil

This program will succeed when evaluated, and by doing so, will instantiate x; to be nil.
As this example does not involve any predefined predicates or constructors, we assume for
the sake of simplicity that the initial set of assumptions is empty.

If we use the following abbreviations:
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Ay ={ cons:Vtj.{consy : t;,consy : List{List; = t;}} — List{List; = t;},
nil : Vty.List{Listy = t;} }

Ay ={ cons:Vtj.{consy : tj,consy : List{List; = t7}} — List{List; = t1},
nil : Vtj.List{List; = t;},x; : List{List; = t;} }

then the type derivation tree of the program looks as follows:

, [VAR]
Ag b onil 1 Vty. List{List; = t; }
Ag F List{Li t1} [VAR] Ay & nil @ List{Li t;} ISPEC]
X7 : Lis Isty = nil : Lis Ist1 =
i L ik( '1)P2 L= N
X7 = nil): Prop
A :(3 : i) : P [EXIST]
X71.X7 = nil): rro
1 1-41 P [TDEF]

{} F (letrec --- in 3x;.x; = nil) : Prop

- [PROG]
{} F (< letrec --- in 3xj.x7 = nil) : Prop

5.3 Operational Semantics

This section formally describes the meaning the Cube programs, in form of an operational
semantics for (a derivate of) Ly. The understanding is that the result of evaluating a Cube
program can be determined by translating it into a textual form (by the rules provided in
Section 5.1), evaluating this textual form, and then translating the result back into a picture
(again as described in Section 5.1).

The operational semantics of Cube is given in form of a rewrite system with two rewrite
rules: A rule for reducing terms, and a rule for resolving formulas. This rewrite system loosely
orients itself on the operational semantics for Prolog given by Lloyd [46]. In Lloyd’s operational
semantics, whenever a variable gets “bound” to a term, all free occurrences of the variable are
replaced by this term. This works fine in Prolog, as the term is guaranteed (by the “occurs
check” built into unification) not to contain itself a free occurrence of the variable, and thus
will not become infinite. In Cube, however, a problem arises: predicates are treated as terms.
A predicate definition is viewed as a unification of a variable naming the predicate with the
A-abstraction defining it. So, defining a recursive predicate would be impossible, as it would

mean unifying a variable with a term containing a free occurrence of this variable.
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We resolve this problem by introducing a fixed-point operator into our textual language.
The operator fix z . e reduces to e with each free occurrence of z in e replaced by fix z . e, written

as e[fix z . e/x]. This operator allows us to transform a recursive predicate definition

foo=---foo---

into a non-recursive form

foo = fix foo' . (- - -foo’ - --)

This technique is sufficient for dealing with directly recursive predicates. In order to deal with

mutually recursive definitions of the form

letrec 21 —e1,...,2, — e, in e

we form a tuple out of eq,...,e,, fix this tuple against a new variable z, and replace each
occurrence of z; (1 <7< mn)ine; (1 <j < n)and e by sel-i z, the selector function for the
1th component of a tuple.

Recall that the introduction of the fixed-point operator was motivated by the idea that
we want to replace variables by their values once they receive one. But we view plus etc. as
variables referring to predefined predicates, i.e. bound variables. So, we need to replace them
by a A-abstraction, containing the predefined predicate itself. Similarly, we view a constructor
name like nil which occurs within the scope of a type definition defining it as a variable referring
to a A-abstraction which contains a “primitive” constructor.

These issues give rise to an even more simplified version of our textual language Lg, called
Lo. As in Ly, disjunctions, conjunction, and terms are collapsed into one syntactic category,
namely expressions. In addition, L, eliminates letrecs, types, and type definitions. On the
flip side, it introduces a fixed-point operator, tuple constructors and selectors, and primitive
predicates and constructors. Table 5.4 gives the syntax of L.

Programs are translated from Lg to Lo as follows:

Definition 5.3.1 (Translation from Lo to Ly) The left-associative constructor expansion operator

@ : Expression — Variant — Expression is defined as follows:
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Table 5.4: Syntax of Ly
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e D (k {pl STl Py :Tn}) = 6[/\{])1 =Ty, Py = xn}E Iy ... Tpy / k]

where k is a new primitive constructor and zq, ..., x, are new and distinct variables.
The left-associative type-definition expansion operator (- : Expression — Definition —

Expression is defined as follows:

e ® (type K{mi=a1,- -, tp=ant=Vi+---4V,) = eaVid..aV,

The letrec expansion function expand is defined as follows: given an expression eg, replace
each subexpression e of the form letrec Dir, s Dg, s Df, s Df in ¢, where D{, s Dﬁ are
type definitions, and Df, ...,Df are predicate definitions, such that each ij is of the form
pred P; = ¢;, by

(¢ @ DT o ..0 DL)[sel-1 F/Py,...,sel-n F/P,]

where F = fixz . (n-tuple ¢ ...e!), e =(e;0 DI @...0 DL)[sel-1 x /Py,...,sel-n z /P,]

n

(1 <i<n),and 2 is a new variable.

Given a program F € Ly of the form < ¢, let
d = [Mplusy = 2!, plusy = o)), plusg = a4 }.plus o 2% % / plus,...]

where 21, - - are new and distinct variables, then < expand(c’) is the translation of I to L.

Example 5.3.1 Example 5.1.2 showed the translation of the Cube program shown in Fig-

ure 5.12, and representing a definition of factorial and the query “factorial of 3” into a textual
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form, namely

< letrec pred fact =
Mfact] = xp,facty = x5}.
(Ix3,x4.x3=0Ax4 =1 AXx] =x3AX9=2x4)V
(3Ix5, ..., X16-
greater(greater; = x7)(greatery = xg)A
minus(minus] = Xg)(minusy = x7g)(minus3 = x77)A
times(times] = x79)(timesy = x;3)(timesg = x74)A
fact(facty = x75)(facty = x76)A
x5 =0Axg=1AXx] =Xx7ANX] =X9 ANX] = X9 ANX5 = XN
Xg = X190 A X171 = X15 A X13 = X176 N X14 = X2)
in dxj7,..., x9g.fact(facty = xj9)(facty = x9p) A x;7 =3 A X717 = X719 A X]8 = X920

Replacing the variables referring to predefined predicates by the appropriate A-abstractions
yields

< letrec pred fact =
AMfact] = xq,facty = x9}.
dxg,x4.x3=0Ax4 = 1AX] =x3AX9=2x4)V
3,24-43 4 1 3 2 4
(3Ix5, ..., X16-
A{greater{ = x;,greatery = xo }.greater xy x
g 1 1.8 2 25-8 1 %2

(greater; = x7)(greatery = xg)A

(A{minus; = x;, minusy = x9, minusg = x3 }.minus x| x9 x3)
(minus{ = xg)(minusy = x79)(minusg = x77)A

(Mtimes] = xy,timesy = xo, timesg = x3}.times x; X9 x3)
(times] = x79)(timesy = x;73)(timesg = x74)A

fact(facty = x75)(facty = x76)A

x5 =0Axg=1AXx] =X7AX] =X9 AX] = X139 N X5 = XgA

X = X190 NX11 = X15 A X3 = X]6 A X]4 = X2)

in 3xy7, ..., x9p.fact(facty = xyg)(facty = x99) Ax77 =3 A x17 = X179 A X718 = X290
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Removing recursive definitions then yields a program in Ls, namely

<~ E|X17,...,X20.
(sel-1 (fix xg . (1-tuple (A{fact; = xy,facty = x5}.
dxg,x4.x3=0Ax4 = 1AX] =x3AXx9=x4)V
3> %4-43 4 1 3 2 4
(Ix5,...,X16-
A{greater| = x;,greater, = x9}.greater xy x
g 1 1.8 2 25-8 1 X2

(greater; = x7)(greatery = xg)A

(A{minus; = x;, minusy = x9, minusg = x3}.minus x| x9 x3)
(minus{ = xg)(minusy = x7p)(minusg = x77)A

(Mtimes] = x,timesy = x9, timesg = x3}.times x; X9 x3)
(times] = xj9)(timesy = x73)(timesg = x74)A

(sel-1 xp)(fact] = x75)(facty = x74)A

x5 =0Axg=1AXx] =X7AX] =X9 AX] = X139 N X5 = XgA

X6 = X109 NX11 = X15 AX13 = X16 A X14 = X32)))))

(fact; = x79)(facty = x99)A

X7 =3AX17 =X19 AN X18 = X320

The next issue we have to deal with is the reduction of terms. In Prolog, this issue does not
arise, as terms are uninterpreted. In Cube, however, terms can be applications of A-abstractions
to arguments, so we need to reduce them to a normal form. This process is essentially what is
known as g-reduction in the A-calculus. The following three definitions formalize the reduction

concept:

Definition 5.3.2 The substitution of e for x in €', written €'[e/z], is defined as follows:
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(e1(p = e2))[e/z
(e" (p— )

(e1V...Vey,)le/a
(e1 Ao Ney)le/z

A{pl = X1y, Py = $n}-€

A{pl =1,y Pn = $n}.€/[€/$]

o ifa £
erle/z]) = (eale/z])

exle/a])(p = (ez[e/a]))

e'lefz]) (p — p')

(erfe/a]) V...V (eg[e/a]))
[e/2]) A o A (egle/2]))
(exe/a]).-.(eale/2]))

3

P (cle/a])...enle/al)

n-tuple (e1]e/2])...(en]e/]))

sel-i ¢'e/z])

cee P, = xn}‘e’

if 2 = z; forany 1< i<n

Do = 2yt et fan][ay fan]le/2])

if forall 1 <i<mn, 2z # x; and 2} is not free in e or €

Mpy = 24,
dzq, ..., 2,.€

ife=a;forany 1 <t<n

321, ot (L2 ]l Sl /o))

if forall 1 <i < n, 2 # 2; and 2! is not free in e or ¢’
fixz.¢

fixz” . (e[z"]/2"][e/x])

if © # 2’ and 2" is not free in € or ¢’

Definition 5.3.3 The reduction-rule & denotes a relation between two expressions, and is

defined as follows:

108



(pr =€) B Mpy = 22,000y = 2} el 1]

[APP] (A{pl =T1,Pr = T2, = $Z}€)
[CAST] (Mpy = 21,05 = 22,00 = 2i}€) (py — P)) S (M) = 21,05 = 22,011 = 2i)0)
[SEL]  (sel-i (n-tuple eq---€;---€,)) & e,
[FIX] (fixz.e) g elfixz . e/x]
We write e &2 ¢/ if a subexpression of e is reduced to create €. 2L denotes the compatible

red
closure of &= .

Definition 5.3.4 An expression e is said to be in normal form if none of its subexpressions is

an application or a parameter renaming.

Example 5.3.2 The following two expressions both reduce into normal forms:

1. (Marg = x;}.x; =5) (arg — newarg) A

(M newarg = x;}.x; = 5)

2. (Mconsy = x7,consy = x3}.70m5 x7 x9)(consy = 3)(consy =
(Mcons; = xj,consy = x5}.c0ms X7 x9)(consy = b)(consy = nil)) —
(A{consy = x9}.coms 3 x9)(consy =
(Mconsy = x;,consy) = x9}.coms x; x9)(cons; = 5)(consy = nil)) &l
(coms 3 (M cons; = x7,consy = x9}.C0n5 x; X9)(cons; = 5)(consy = nil)) iy
(coms 3 (M consy = x9}.0ms 5 x9)(consy = nil)) iy
(coms 3 (coms 5 nil))

The fix operator is used only to express recursive predicates nonrecursively. Such a predicate
is conceptually an infinite structure, but no real “computation” has to be performed to build
this structure.

Note that not every expression reduces to a normal form: xj(arg = 5) does not reduce to
a normal form, as it is an application which cannot be rewritten, because the [AP P] rule does
not apply. Once x; gets replaced by a value, reduction can continue, and the expression might
rewrite into a normal form.

Unification in Cube is slightly more complicated than unification in Prolog: two expressions

unify if they can be reduced to normal forms which unify in the conventional sense. For example,
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(Mconsy = xq,consy = x9}.c0m5 x; x9)(cons; = 5)(consy = nil) and (¢oms 5 nil) unify. But
as not every expression can be reduced into a normal form, it is not always possible to decide
whether two expressions unify. For instance, x3(cons; = 5) and x4(consy = nil) unify, if x3
gets bound to (M cons; = xj}.coms x; nil) and x4 gets bound to (A{consy = x5}.¢0m5 5 x9).
So, unifying two expressions might succeed, fail, or be simply undecidable for the time being.

This is made precise in the following definitions:

Definition 5.3.5 A substitution § = {xy — ey,...,x, — €,} is a mapping from variables to
expressions such that zq, ..., 2, are distinct and do not occur free in eq, ..., €,.
Definition 5.3.6 Let § = {xy — ey,...,2, — €,} be a substitution and e be an expression.

Then ef, the instance of € by 6, is the expression obtained from e by simultaneously replacing

each free occurrence of the variable z; in e by the expression ¢; (i = 1,...,n).

Definition 5.3.7 Let # and ¢’ be two substitutions, Then € o §’, the composition of § and ¢,

is defined such that for every expression e, e(6 0 6') = (ef')6.

Definition 5.3.8 (Unification) Consider two expressions e; and es:

e ¢; and ey unify with a most general unifier 6 if ey reduces to a normal form €}, e reduces
to a normal form €}, and there is a substitution # such that e}6 = €56, and for every ¢’

such that €} 8 = €6, there is a " such that = 6" 086.

e ¢; and ey potentially unify if there is a substitution # such that e(6 |<r_§>31> e and eyf @i» e.

e ¢; and ey fail to unify if they neither unify nor potentially unify.

Example 5.3.3

1. (Mcons; = xj}.eons x; nil)(cons; = x3) and (coms x4 xg5) unify, as

(
(Mconsy = xj}.cons x; nil)(cons; = x3) RN (coms x3 nil), which is in normal form,
cons x4 x5 ) is in normal form, and the two normal forms unify with most general unifier
4 X5 g

0 = {x3 — x4,X5 +— nil}.

2. x3(consy = 5) and x4 potentially unify, as under the substitution
8 = {x3 — (Mcons; = xy}.eoms xynil),xy — (@oms 5 nil)}, they both reduce to the

same normal form.
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3. x9(arg = 5) and x9(arg = 3) potentially unify, as under the substitution § = {x9 —

(Marg = x7 }.true)}, they both reduce to the same normal form.
4. (eoms 1 nil) and nil fail to unify.
5. (Mconsy = x9}.eoms 1 nil) and (A{consy = x9}.coms 2 nil) fail to unify.

The second rewrite rule used in Cube’s operational semantics is the resolution rule. This
rule is again loosely based on Lloyd [46]. Our formalism, however, differs in a number of
aspects. One of them is the way the “state” of a rewriting is represented. While Lloyd simply
uses a set of atomic formulas to represent the goals, we use a set of expressions to represent the
goals, together with a tuple of expressions, which reflects the bindings performed on variables
of the initial query. These bindings are needed for visualizing the outcome of a computation.

Formally, this “state” is defined as follows:

Definition 5.3.9 A goal ¢ is a truth-valued expression. A configuration C' is either a pair
({91, -y Gm}» (€1, ..., €,)) consisting of a set of goals and a sequence of expressions, or the failure-
configuration failure. failure denotes a failed proof., ({¢1, ..., gm}, (€1, ..., €,)) informally means
that the goals g1, ..., g,, still have to be resolved in order to complete the proof at hand, and
the free variables z1,...,x, in the formula to be proven have so far received values eq, ..., e,.
Given a program F € Ly of the form < Jzq,..., 2.1 A ... A€, (m > 0,n > 1) the initial

configuration C'p of E is of the form ({ey, ..., e}, (T1, .0, 7).
Before being able to formalize the resolution rule, we need a few more definitions:
Definition 5.3.10 An expression is said to be ground if it does not contain any free variables.

Definition 5.3.11 The many-step-resolution-rule &3 denotes a relation between two con-
figurations, and is defined in terms of the one-step-resolution-rule &> | which will be defined

later, as follows:
Co = C, & ACy,...,C,_1.Cy =2 C a8 Ch-1 &2 C, N 23C,41.0, =2 Chy1
Definition 5.3.12 The solution set Sol(C') of a configuration C' is defined as follows:

Sol(C) = {{er, ., e)|C B ({3, (e, .oy )}
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The deadlock set Dead(C') of a configuration C' is defined as follows:

Dead(C) = {({g1, -0 Gm}s (€15 e e )|C B2 ({015 s G}y (€15 cms€n)) A m > 0}

Definition 5.3.13 A configuration C' fails if Sol(C') = (, Dead(C') = ), and there is no infinite

sequence ' &> €' &> O &2 ... A configuration C' succeeds if Sol(C) # 0.
Finally, we can formulate the resolution rule:

Definition 5.3.14 The one-step-resolution-rule &> relates two configurations and is defined

as follows:

1. (Disjunction)
res ~ 6

({gl,"‘,gi,'“,Qa}7<é17“‘7éb>) K ({917"'7gi—17€jvgi+17'"7ga}7<élv"'7eb>)
if g; el e1V..VeV..Ve, (1<j<n)7

2. (Conjunction)

({917"'7gi7'”7ga}7<é17”'7éb>) Kggi ({glv'"7g’i—17€17"'76t7,gi-|—17'"7ga}7<élv"'7éb>)
if g; & e N A e

3. (Existential Quantification)
({glv BRI '79!1}7 <é17 o '7éb>) s ({glv o '7gi—lvelvgi+17 e '79!1}7 <é17 e '7éb>)
if g; el dxq, ..., x4.€

where e’ = e[z /21, ..., [z, ] and 2], ..., 2] are new and distinct variables.
4. (Unification)

(a‘) ({gl7 ERREE P '79(1}7 <€A17 S éb>) Kggi ({9107 o '7gi—107,gi-|—107 o '79(10}7 <€A107 T éb0>)

if g; Kr—%%% (e1 = e2) and e1 and ez unify with a most general unifier 6.

(b) ({glv IREE T '7ga}7 <€A17 R éb>) 'égi failure

red

if g; ¥ (€1 = e3) and €7 and ey fail to unify.

5. (Primitive Negation)

67 is chosen arbitrarily in all the — rules, leading to one degree of nondeterminism.
7§ is chosen arbitrarily in this rule, leading to a second degree of nondeterminism.
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(a‘) ({gl7 ERREE P '79(1}7 <€A17 o '7éb>) Kggi ({glv o '7gi—17,gi-l—17 o '79(1}7 <€A17 ot '7éb>)
if g, &% (not e) and e is ground and the configuration C’ = ({e},()) fails.

(b) ({glv IREE T '7ga}7 <€A17 R éb>) 'égi failure
if g; el (not e) and e is ground and the configuration C’ = ({e}, (}) succeeds.
6. (Primitive Addition)
(a‘) ({gl7 ERREE P '79(1}7 <€A17 o '7éb>) Kggi ({glv o '7gi—17,gi-l—17 o '79(1}7 <€A17 ot '7éb>)
if g; &% (plus iy iy 45) and i1 + i3 = i3

(b) ({glv IR PP '7ga}7 <€A17 ) éb>) 'égi failure
if g; S5 (plus iy iy 45) and i1 + iy # i3

(C) ({gl7 ERREE P '79(1}7 <€A17 S éb>) Kggi ({9107 o '7gi—107,gi-|—107 o '79(10}7 <€A107 T éb0>)

if g; el (plus 41 iz @) and i3 = i1 + i3, where 8 = {& — i3}

(d) ({gl7 ERREE P '79(1}7 <€A17 S éb>) Kggi ({9107 o '7gi—107,gi-|—107 o '79(10}7 <€A107 T éb0>)

if g; el (plus 41 z i3) and iz = i3 <y, where 8 = {2z — i3}

(e) ({gl7 ERREE P '79(1}7 <€A17 S éb>) Kggi ({9107 o '7gi—107,gi-|—107 o '79(10}7 <€A107 T éb0>)

if g; el (plus z i3 i3) and i1 = i3 < i, where 8 = {z — i1}

(f) ({gl7 ERREE P '79(1}7 <€A17 S éb>) Kggi ({9107 o '7gi—107,gi-|—107 o '79(10}7 <€A107 T éb0>)

if ¢; ed, (plus z1 0 x3), where § = {&1 — 23}

res

(g) ({gl7 ERREE P '79(1}7 <€A17 S éb>) K= ({9107 o '7gi—107,gi-|—107 o '79(10}7 <€A107 T éb0>)

if ¢; ed, (plus 0 23 x3), where § = {&3 — 23}

7. Other arithmetic and comparison primitives are handled similarly.

Given a Cube program F, we can obtain its meaning by translating it into Ly, and deter-

mining Sol(C'g). Each ({}, (e1,...,€,)) in Sol(Cf) represents one solution of the program, and

can be visualized by transforming each e; back into a term cube (as described on page 93), and

filling these term cubes into the appropriate holder cubes in the original program.

A Cube computation may deadlock. This can happen for instance if we attempt to resolve

an arithmetic predicate with an insufficient number of ground arguments. In the existing im-

plementations, we indicate that a deadlock occurred, but we do not visualize where it occurred.
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This could for instance be done by highlighting the predicate in the query in which the deadlock

occurred.

Example 5.3.4 Consider the program shown in Figure 5.14. This program consists of the List
type definition cube (also shown in Figure 5.6), a higher-order predicate filter (also shown in
Figure 4.53), a predicate even, which succeeds whenever its only argument is even, and a goal
filter applied to even, a list with elements 1 and 2, and an empty holder cube. Translating this

program into Lq yields:

< letrec
type List{List; = t;} = nil 4+ cons{consq : t,consy : List{List] = t;}},
pred filter = Mfilter; = x; filtery = x9 filtery = x3}.
(Ixy4,x5.x4 = nil AN x5 =nil Axq4 = x9 Nx5 = x3)V
(3xg, -, X14-
xg = cons(cons| = x7)(consy = xg)A
xg = cons(consy = x7p)(consy = x77) A xp(in = x12)A
filter(filter; = xp)(filterg = xy3)(filterg = x74)A
Xg =X13AX1] =Xy NX9 =XgANX3 =X9ANX7=X19AX7=X109)V
(3x15, -+ %21
X15 = cons(consy = x76)(consy = x77)A
filter(filter; = x7)(filterg = x;g)(filterg = x79)A
not(noty = x97)A
X15 = X2 AX19 = X3 AX]7 = X]8 AX16 = X0 A X271 = X1 (in = x3p)),
pred even = A{even] = x99}.
x93, X24, X25-
mod(mody = xp3)(mody = x4)(mod3 = x95) A x93 = X92 A X4 = 2N x95 =0
in dx9g, -, x34.
filter(filter; = x95)(filtery = x97)(filterg = x9g)A
X95 = even (even] — in) A X97 = X99 A X98 = X3/
X9 = cons(cons) = x37)(consy = x39) A x37 = 1A
x39 = cons(cons] = x33)(consy = x34) Ax33 =2Ax34 = nil
This program is quite inflated, as the translation algorithm presented in Section 5.1 is simple
and straightforward, but produces lengthy expressions. Therefore, we compact the program
— without changing its meaning — by resolving trivial unifications and eliminating unneeded

variables:
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Li st definitioncube  fil ter definition cube even definition cube
(Internals omitted) (Internals omitted) (inter nals omitted)

Vo
-

| | w0

Figure 5.14: A Program Using “filter”

< letrec
type List{List; = t;} = nil 4+ cons{consq : t,consy : List{List] = t;}},
pred filter = Mfilter; = x; filtery = x9 filtery = x3}.
(x9 = nil A x3 = nil)v
(Ixy, x5, x4
x9 = cons(cons] = x)(consy = x5)A
x3 = cons(cons| = x4)(consy = xg) A x(in = x4)A
filter(filter; = x7)(filtery = xj5)(filterg = x4))V
(Ix7, xg.
x9 = cons(cons] = x7)(consy = xg)A
filter(filter; = x7)(filtery = xg)(filterg = x3)A
not(noty = xj(in = x7))),
pred even = Aeven| = xg}.mod(mody = xg)(mody = 2)(mody = 0)
in dxyp filter(filtery = even (even] — in))(filterg = x7p)(filterg =

cons(cons] = 1)(consy = cons(cons] = 2)(consy = nil)))

Translating this program into Lo yields:
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< dxjp.(sel-1 F)(filter; = (sel-2 F) (eveny — in))(filterg = x)(filtery =
C(consy = 1)(consy = C(cons| = 2)(consyg = H)))

where C is (A{cons] = x79,consy = x;3}.Co05 x79 x73) and F is

fixxj; . (2-tuple
(Mfilter; = x7 filtery = x9, filterg = x3}.
(x9 :m/\x:)) = nil)Vv
(Ixy, x5, x4
Xg = C(consy = xg)(consy = x5)A
x3 = C(cons] = x4)(consy = xg) A x7(in = x4)A
(sel-1 xjq)(filter; = x7)(filtery = xj5)(filterg = x4))V
(Ix7, xg.
Xg = C(consy = x7)(consy = xg)A
(sel-1 xjq)(filter; = x7)(filtery = xg)(filterg = x3)A
(Mnoty = xj7}.not xj7)(not] = x(in = x7))))
(Meveny = xg}.
(M{mody = x4, mody = x5, mod3 = xj}.mod x14 X715 X14)
(mody = xg)(mody = 2)(mod3 = 0)))

So, the initial configuration is Cy = ({eo}, (x79)) with eg being

(sel-1 F)(filter; = (sel-2 F) (eveny — in))(filterg = x7p)(filtery =
C(consy = 1)(consy = C(cons| = 2)(consyg = H)))

One possible sequence of resolution steps leading to a configuration in Sol(C') is the following:

o Select the goal ey from the configuration Cy.
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eg = (sel-1 fixx;;.(2-tuple
(Mfilter; = x7,filtery = x9 filtery = x3}.
(x9 = nil A x3 = nil)V
(Ixy, x5, x4.
Xg = C(consy = xg)(consy = x5)A
xg = C(consy = x4)(consy = xg) A x7(in = x4)A
(sel-1 xj7)(filter; = x7)(filterg = xj5)(filterg = x4))V
(Ix7, xg.
X = C(consy = x7)(consy = xg)A
(sel-1 xj7)(filter] = x7)(filterg = xg)(filterg = x3)A
(Mnoty = xj7}.not xp7)(not] = x(in = x7))))
(Meveny = xg}.
(M{mody = x4, mody = x75, mod3 = xj4}.mod x74 x15 X]¢)
(mody = xg)(mody = 2)(mod3 = 0))))
(filter; = (sel-2 F) (eveny — in))(filterg = x¢)(filtery =
C(cons) = 1)(consy = C{consy = 2)(consy = 7T1))
red (rrx]  (sel-1 (2-tuple
(Mfilter; = x7 filtery = x9 filtery = x3}.
(x9 = nil A x3 = nil)V
(Ixy, x5, x4
xg = C(consy = x4)(consy = x5)A
xg = C(cons] = x4)(consy = xg) A xp(in = x4)A
(sel-1 F)(filter; = xp)(filterg = xj5)(filterg = x4))V
(Ix7, xg.
Xg = C(consy = x7)(consy = xg)A
(sel-1 F)(filter; = xp)(filterg = xg)(filterg = x3)A
(Mnoty = xj7}.not xj7)(noty = x4 (in = x7))))
(Meveny = xg}.
(M{mody = x4, mody = x5, mod3 = xj}.mod x14 x15 X1¢)
(mody = xg)(mody = 2)(mod3 = 0))))
(filter; = (sel-2 F) (eveny — in))(filterg = xq)(filtery =
C(cons) = 1)(consy = C(consy = 2)(consy = 7T1))
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red

— ser]  (AMfiltery = xp, filtery = x5, filterg = x3}.
x9 = nil A xq = nil)V
2 3
(Ix4,x5,x4-
x9 = C(cons| = x)(consy = x5)A
x3 = C(consy = x)(consy = x4) A x(in = x4)A
(sel-1 F)(filter; = x7)(filterg = xj5)(filterg = x4))V
(Ix7, xg.
x9 = C(cons| = x7)(consy = xg)A
sel-1 F)(filter1 = x7)(filtery = x¢)(filtera = x9)A
1 1 2 8 3 3
(/\{notl = X17}.@ X17)(not1 =X (in = X7))))
(filter; = (sel-2 F) (eveny — in))(filterg = x7p)(filtery =
C(consy = 1)(consy = C(cons| = 2)(consyg = H)))
Iﬂ [APP] (/\{filterQ = X2,ﬁ|ter3 = X3}.
(X2 = m/\x:g = m)\/
(Ix4, x5, x4
x9 = C(cons| = x4 )(consy = x5)A
x3 = C(consy = xy4)(consy = xg)A
(sel-2 F) (even] — in)(in = x4)A
(sel-1 F)(filter; = (sel-2 F) (even; — in))(filtery = x5)(filtery = x4))V
(Ix7, xg.
x9 = C(consy = x7)(consy = xg)A
(sel-1 F)(filter; = (sel-2 F) (eveny — in))(filtery = xg)(filterg = x3)A
(Mot = xy7}.not xy7)(noty = (sel-2 F) (even; — in)(in = x7))))
(filterg = x7¢)(filterg = C(consy = 1)(consy = C(consy = 2)(consy = H)))
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JLed, app]  (Mfilterg = x5},

(X2 = nil A X109 = m)\/
(Ix4, x5, x4
x9 = C(cons| = x4 )(consy = x5)A
x70 = C(consy = x4)(consy = x4)A
(sel-2 F) (even] — in)(in = x4)A
(sel-1 F)(filter; = (sel-2 F) (even; — in))(filtery = x5)(filtery = x4))V
(Ix7, xg.
x9 = C(cons| = x7)(consy = xg)A
(sel-1 F)(filter; = (sel-2 F) (even; — in))(filtery = xg)(filterg = x79)A
(AMnoty = x77}.not x77)(noty = (sel-2 F) (even; — in)(in = x7))))
filtern = C(cons1 = 1)(consy = C(consq = 2)(conss = nil
2 1 2 1 2
e, (app]  (C(consy = 1)(consy = C(consy = 2)(consy = E)) =nil A X190 = E)v
(Ix4, x5, x4
C(consy = 1)(consy = C(cons] = 2)(consy = E)) = C(consy = xy4)(consy = x5)A
x70 = C(consy = x4)(consy = xg)A
(sel-2 F
(sel-1 F

) (eveny —in)(in = x4)A

)(filter| = (sel-2 F) (eveny — in))(filtery = x5)(filterg = x4))V

(Ix7, xg.
C(consy = 1)(consy = Clconsy = 2)(consy = 17T)) = C(consy = x7)(consy = xg)
(sel-1 F)(filter; = (sel-2 F) (even; — in))(filtery = xg)(filterg = x79)A

(AMnoty = x77}.not x77)(noty = (sel-2 F) (even; — in)(in = x7)))

We nondeterministically choose the third part of the overall disjunction, so Cy &> iprss C1 =

({e1}, (x10)), where €7 is

dx7, xg.
C(consy = 1)(consy = Clconsy = 2)(consy = nil)) = Clconsy = x7)(consy = xg)
(sel-1 F)(filter; = (sel-2 F) (eveny — in))(filtery = xg)(filterg = x7)A
(Mnoty = xj7}.not xj7)(noty = (sel-2 F) (eveny — in)(in = x7))

res

o (1 &= mxr1sT) C2 = ({e2}, (x10)), where ey is
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C(consy = 1)(consy = C(cons| = 2)(consyg = E)) = C(consy = x;g)(consy = x79)A
(sel-1 F)(filter; = (sel-2 F) (even — in))(filtery = x79)(filtery = x79)A
(AMnoty = x77}.not x77)(noty = (sel-2 F) (even; — in)(in = x7g))

o O3 &> cong) Cs = ({e3, e, €5}, (x]p)), where

e3 = C(consy = 1)(consy = C(consy = 2)(consy = E)) = C(consy = x78)(consy = x79)
eq = (sel-1 F)(filter; = (sel-2 F) (even; — in))(filtery = x79)(filtery = x;¢)
es = (Mnot; = xj7}.not xj7)(noty = (sel-2 F) (eveny — in)(in = x7g))
e C(consy = 1)(consy = C(consy = 2)(consy = nil)) PR (coms 1 (eoms 2 nil)),
C(consy = xjg)(consy = x79) RN (coms x18 x19), and
(coms 1 (coms 2 nil)) and (cons x;g x;g) unify with mgu 6 = {x;g + 1,x;9 — (cons 2 nil)}.
So O3 &= ik Ca = ({€}, €5}, (x10)), where
e} = (sel-1 F)(filter; = (sel-2 F) (eveny — in))(filtery = (cons 2 nil))(filterg = x7¢)
t= (Mnot] = xj7}.not x77)(noty = (sel-2 F) (eveny — in)(in = 1))

o ¢ &L (10t (sel-2 F) (eveny — in)(in = 1))

(sel-2 F) (eveny — in)(in = 1) is ground. So, the negation resolution rule is applicable if

the configuration ({(sel-2 F) (even; — in)(in = 1)}, ()) either succeeds or fails:
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(sel-2
(ixxgg.
(2-tuple
(Meveny =xg}.
(M{mody = xj4,mody = x5, mod3 = xj}.mod x14 X15 X14)
(mod] = xg)(mody = 2)(mod3 = 0)))))
(eveny — in)(in = 1)
S prx] (sel-2
(2-tuple
(Meveny = xg}.
(Mmody = x74,mody = x5, mod3 = xj}.mod x4 x5 x;6)
(mody = xg)(mody = 2)(mod3 = 0))))
(eveny — in)(in = 1)
ed, [SEL] (/\{eVenl = X9}~
(M{mody = xp4, mody = x5, mod3 = x4}.mod x4 x5 x14)
(mod] = xg)(mody = 2)(mods3 = 0))
(eveny — in)(in = 1)
ed, [CAST] (AMin = X9}~
(AMmody = x74,mod) = x5, mod3 = xj5}.mod x14 x15 X6)
(mod] = xg)(mody = 2)(mod3 = 0))

(in=1)
Led, (app]  ((AM{mody = x74,mody = x5, mod3 = xj4}.mod x14 X715 X14)
(mody = 1)(mody = 2)(mody = 0))
eq, (app]  ((AM{mody = x75,mod3 = xj5}.mod 1 x15 x1g)(mody = 2)(mody = 0))

JLed, (app]  ((AM{modg = x74}.mod 12 x74)(modg = 0))

JLed, app] (mod120)

res

({(mod 1 2 0)},()) &> (pria failure. So Cy &> (vor Cs = ({€)}, (x10))-

At this point, each reduction and each resolution rule was used at least once. Therefore, we do

not show the rest of the resolution process in detail. The only resolution sequence from Cy to
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a success-configuration is

Co& o8 o &L &L Oppy = ({3, (coms 2 nil)))

All other sequences either lead to failure, or do not terminate. So Sol(Cy) = {Crn}.
Crin is visualized by filling the holder cube associated with xjp with the term cube repre-

senting (coms 2 nil).
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Chapter 6

Implementation

Currently, there are two implementations of a Cube environment. The first implementation,
called CUBE-I, served as a feasibility study and as a test-bed for trying out various language
design choices, concerning both the visual appearance of constructs and their semantic behavior.
In order to be able to explore out new ideas quickly, we chose to implement the bulk of the first
system in Lazy ML [2], which greatly sped up the development.

The two main limitations of the first system were low speed and the almost complete absence
of an interactive user interface. The second implementation of Cube, CUBE-II, improves on
both of these shortcomings.

The next two subsections contain more details about the capabilities and the general archi-

tecture of these two implementations.

6.1 The First Implementation

The CUBE-I system is able to read in a prefabricated program, infer its type and the types of
its subexpressions, evaluate it, and render the program, the inferred types, and the computed
values onto an X window. It allows the user to navigate through the program; however, it does
not support any editing actions. It also lacks interactive features such as an option to load
other programs, to change the colors of objects, etc.

The system consists of two programs: The Front-End, a C program responsible for rendering

and for mouse interaction, and the Back-End, a Lazy ML program responsible for everything
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Cube-l Front End Cube-l Back End
Command-Language

C graphics routines responsible for LML program, responsible for reading

projecting 3D description onto 2D, a Cube program, typechecking and

and for mouse interaction. executing it, and generating a 3D polygon
lex/yacc parser description at every stage.

Polygon-Language

xgks graphics library

X window system @ Cube program

Figure 6.1: Block Diagram of the Prototype System

else. The two programs run concurrently, and communicate over Unix streams. Figure 6.1
shows a block diagram of the different components of the system.

We implemented the system in such a way in an attempt to achieve fast rendering on
one hand, and easy and rapid system development on the other. The rendering step is the
performance bottleneck, so it was mandatory to implement it in a fast, low-level language, such
as C. On the other hand, the rendering routines comprise less than a quarter of the code, the
less time-critical parts could still be implemented in a high-level language such as Lazy ML,
whose advanced features greatly sped up development time.

The Front-End displays a Cube program either as a wireframe rendering (see Figure 6.2),
or it uses a more complex technique, which not only performs hidden-surface removal, but is
also able to deal with transparent surfaces (see Figure 6.3). The user can toggle between the
two rendering qualities with the button labeled “rrip”.

The high-quality rendering technique works as follows: The Front-End receives a set of
colored, and possibly transparent polygons in 3-space, which may contain holes. It performs
the appropriate translation, rotation, and scaling operations, and then computes which pixels
each polygon covers, using a scan conversion algorithm (see for instance [28]). For each covered
pixel, it records the color (denoted by a triple (7, g,b) representing the spectral components),
transparency (denoted by a coefficient a), and z-coordinate. As there may be several transpar-
ent polygons covering the same pixel, the renderer needs to retain a list of (r, ¢,b, z, ) values
for each pixel.

After the polygons have been rasterized, the list of (r, ¢,b, z, @) values of each pixel is first

sorted by z value and then blended together from back (high z) to front (low z). This results

124



HHHEEGSE=] 1§

FLIP

EXIT

Figure 6.2: CUBE-I wireframe rendering of ~ Figure 6.3: CUBE-I high-quality rendering
the factorial predicate of the factorial predicate

in a single (7, g,b) triple for each pixel. These (7, g,b) values are then drawn onto the rendering
area of the window.

The first implementation uses XGKs [70], the X windows implementation of the Graphics
Kernel System [33], to perform the actual drawing. Due to inefficiencies in the implementation
of XGKs, establishing a high-resolution picture covering 477 x 477 pixels takes about 30 seconds.

The Front-End can send three types of messages to the Back-End: “loadFile foo”, “type-
Check”, and “execute”. The Back-Fnd, in turn, replies to each request of the Front-End by
sending it a list of colored polygons in 3-space, describing the new scene, and then waits for
the next request. The system is thus driven by the Front-End.

Upon startup of the system, the Front-End parses the command-line arguments, expecting
the name of a file describing a Cube program, and then asks the Back-Iind to load this program.
Upon such a “loadFile foo” request, the Back-End reads in a structured picture description
(dubbed HLPD, or “High-Level Picture Description”) from the file foo, converts it into an
unstructured set of polygons, and hands those to the Front-End.

The Front-End also controls the “buttons” on the left of the drawing area. The top eight but-
tons (rotate left/right/up/down/counterclockwise/clockwise, move forward/backward, zoom

in/out) control the position of the “camera”; these requests are handled by the Front-End di-
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rectly. The “FrLIP” button toggles between wireframe and high-quality rendering, this request
can also be handled directly by the Front-End. The buttons labeled “Tc” and “EVAL” trigger
type inference and evaluation, the Front-End sends the appropriate message to the Back-End.

Upon a “typeCheck” request, the Back-End converts the structured picture description into a
more textual form (very similar to Lg ), performs type inference on this textual form, visualizes
the inferred types, translates the structured picture description and the visualized types into a
set of polygons, and transmits those back to the Front-End.

Upon an “execute” request, it converts the structured picture description into a textual form
similar to Lo, and then evaluates this textual program. Evaluation is conceptually performed in
parallel; we realized this by maintaining queues of “processes” and “threads”, performing one
resolution step on a thread, and then selecting a new thread in a new process. The result of the
computation — provided it terminates — is then mapped back into a visual form, translated
together with the initial program into a set of polygons, and transmitted to the Front-End.

The “QuiT” button terminates the program; the Front-FEnd closes the stream connecting it to
the Back-End, and then terminates. The Back-End, noticing that its incoming communication

channel has been closed, then terminates as well.

6.2 The Second Implementation

The second implementation of the Cube system consists of a single program, written entirely
in Modula-3 [60]. We chose this language, as it is almost as efficient as C, but at the same
time offers a rich set of features that make development much easier. Modula-3 is an offspring
of Modula-2. It offers modules, object-oriented features, generics (known as “templates” in
C++), exceptions, preemptive multitasking, and garbage collection'. It also comes with an
extensive library of existing modules and classes. In particular, it supplies a multi-threaded,
object-oriented windowing system, Trestle [48], which is implemented on top of X Windows.
Trestle is complemented by a hierarchy of window abstractions and a rich widget set containing

buttons, scrollers, filebrowsers, etc. [4, 5]. CuBE-II’s entire user interface is based on this widget

set.

! Modula-3 could be described as “C++ plus modules plus threads plus garbage collection minus multiple
inheritance”
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Figure 6.4: CuBEg-1II Evaluation Control Panel

Reimplementing the first Cube system in Modula-3 greatly increased the performance of
the system, in particular of the components which were located in the former Back-End. Aban-
doning the use of XGKs and instead using the X Window System [73] directly brought along
another dramatic increase in speed. Rendering a picture containing a few hundred polygons
onto an area of 640 x 512 pixels takes now around 10 seconds.

In the first system, the user had to press a button to switch from wireframe to high-quality
rendering, and was then unable to interact with the system for some 30 seconds, until the
rendering was complete. In the new system, a change in the scene or in the camera-position
causes the rendering area to be immediately updated by a wireframe representation of the new
scene. At the same time, a dedicated rendering thread starts to compute a high-quality picture
in the background. If the scene changes before the rendering thread has completed its task,
it is alerted by the thread which caused the change, and restarts its computation. Otherwise,
upon successful completion, it replaces the wireframe rendering by a high-quality picture.

The result of this approach is that the user never has to wait for a high-quality rendering
to complete, but can constantly interact with the system. If he remains idle long enough, the
high-quality rendering appears automatically.

Multi-threading is also used by the Cube interpreter to deal with infinite computations.
When the user presses the “EVAL” button, a separate thread is created to perform the evaluation.
At the same time, a control panel (see Figure 6.4) is popped up, which informs the user how
many solutions have been found so far, and allows him to interrupt the evaluation. In addition,
this control panel allows him to browse through the various solutions. Figure 6.5 shows a

program which will generate all the natural numbers. Figure 6.6 shows the user inspecting the
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Figure 6.5: A Program for Computing All
the Natural Numbers

Figure 6.6: Program From Figure 6.5 Dis- Figure 6.7: Program From Figure 6.5 Dis-
playing the First Solution playing the Second Solution
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Figure 6.8: CuBE-II Motion Control Panel
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Figure 6.9: CuBE-II Load File Menu Figure 6.10: CuBE-II Save File Menu

first solution, Figure 6.7 shows him inspecting the second one, having aborted the computation

after 52 solutions have been found.

6.2.1 The User Interface

The main window of the new system consists of a menu bar at the top and the rendering area
below. The menu bar offers nine different options: “LoAD”, “SAVE”, “COLOURS”, “MOTION”,
“ResET”, “TYPECHECK”, “EVvAL”, “EDIT”, and “QUIT”.

“TypECHECK”, “EvAL”, and “QUIT” do the obvious things. The “RESET” option removes
inferred types and computed values from the visualized program. The “MoTION” button pops
up a motion control panel, which provides controls for moving the “camera” through the scene

shown in the rendering area. Figure 6.8 shows the motion control panel.
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Figure 6.11: CuBE-1II Rendering Control Panel

“LoaD” and “SAVE” provide options to load existing programs, and to save new or modified
ones. A program description consists of two parts: The program itself (usually stored in a
file with the suffix .hlpd) and a description of the camera’s relevant parameters (location,
orientation, zoom factor, etc.), which is usually stored in a file with the suffix .view. The view
file contains a reference to the HLPD file, so in order to load a program, the user loads a view
file, which will then automatically load the corresponding HLPD file. Figure 6.9 shows the
menu used to select a view file. In order to save a program description, the user has to specify
both view file and HLPD file (see Figure 6.10).

The “CoLOURS” button pops up a menu (see Figure 6.11) which allows the user to ma-
nipulate the important parameters used by the high-quality renderer: transparency coeflicient,
direction and intensity of light sources, and color values of the different objects, such as types,
values, pipes, icons, etc. It also allows him to save his customizations of these rendering param-
eters to a file, and to load them back again. When the Cube system is started, it will look for
a file .cube-renderparams in the current working directory, and if it exists, interpret it as a
rendering parameter file. This mechanism is intended to allow users to customize some aspects
of Cube’s visual representation to their liking.

The “EDIT” option, finally, allows the user to edit existing programs, or to create new
ones. Due to time limitations, we were unable to build a full-fledged editor that supports every

syntactic construct; however, the crucial operations are supported.
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Figure 6.12: Selecting the Create Option  Figure 6.13: Selecting the Atomic Formula
Option

6.2.2 The Editor

Editing a three-dimensional program on a two-dimensional screen is an interesting and difficult
problem. A two-dimensional pointing device, such as a mouse, can only be used to specify a
point in 2-space, which translates to a line rather than a point in 3-space. This means that
either the user must perform two pointing operations to completely specify a point in 3-space,
or the system has to use information obtained from the user’s intent and the structure of the
existing picture to select one particular point on the line.

The following example shall illustrate how editing works in the new system. Assume that
we want to construct an expression that performs temperature conversions between Celsius and
Fahrenheit (see page 41).

First, we want to create a holder cube that shall contain the temperature value in Celsius.
A holder cube could be located anywhere; specifying a line as opposed to a point in 3-space
is not sufficient, the system would be unable to use any information based on the structure of
the existing picture to determine the right point on the line. Hence we have to supply more
location information than just a simple mouse-click. We press the “EDIT” button, select the
“CREATE” option from the Edit menu (Figure 6.12), the “ATomMICc FORMULA” option from
the Create submenu (Figure 6.13), and the “VALue HoLDpeEr CUBE” option from the Create

Atomic Formula submenu (Figure 6.14). Now we locate a point in the rendering area and press
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Figure 6.15: Selecting a Point on the Screen

Figure 6.16: Rotating the Scene
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Figure 6.18: Fixing the Size of the Cube  Figure 6.19: Selecting the Create Predicate
Reference Cube Option

down the left mouse button (Figure 6.15), thereby specifying a line in 3-space. We drag the
mouse to the left or to the right; the scene will rotate around a point on the line we just selected,
and the line — highlighted in red — will thus become visible (Figure 6.16). Once we release
the left mouse button, the rotation stops, and a vertical bar (highlighted in red) appears, which
slides along the line we just specified and tracks the « position of the mouse (Figure 6.17). The
point where bar and line cross describes a unique 3D location. We move the bar to the point
on the line that we want, and finish the selection process by clicking the left mouse button.

The selected point is taken to be the center of the holder cube that we want to construct.
Line and bar disappear, and get replaced by the holder cube. We move the mouse away from
the cube’s center to increase its size (Figure 6.18). Clicking the left mouse button fixes the size
and finishes the holder cube construction process.

Next we would like to create a reference cube referring to the floating-point multiplication
predicate. We work our way through various submenus to the “CREATE PREDICATE REF-
ERENCE CUBE” option and select it (Figure 6.19). Now we need to specify which predicate
we would like to refer to. This can be done by simply locating the predicate definition cube
defining the primitive floating-point multiplication predicate in the rendering area and clicking

on it. The 2D point translates into a 3D line, but the system can use structural information
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Figure 6.20: Specifying a 3D Point Figure 6.21: The Predicate Cube Appears
— the existing predicate definition cubes — and the user’s intent — selecting such a cube —

to determine which object on the line to select.

Having selected the predicate we would like to refer to, we need to position the reference
cube in 3-space. This operation is similar to positioning a holder cube; the reference cube could
be positioned anywhere. We have to go through the same motions as before: locate a point
in the rendering area, press down the left mouse button to specify a line going through this
point, move the mouse to rotate the scene, release the button to terminate rotation and make
the intersecting bar appear (Figure 6.20), position the bar on the desired point on the line, and
click the left mouse button to terminate the 3D point selection process. The specified point is
taken to be the center of the new reference cube, the cube appears around it (Figure 6.21), its
size is the same as that of the definition cube it refers to.

We perform similar actions to create a reference cube referring to the floating-point addition
predicate and three more holder cubes (Figure 6.22).

Next we would like to connect the various holder cubes and ports through pipes. There are
many techniques imaginable that Cube could use for pipe construction, from asking the user
to specify the end points and every single joint of a pipe through 3-space point selection (this
would be easy to implement, but would place a heavy burden on the user) to just asking the

user to specify the end-points (which can be done with a single mouse-click per end-point, as
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Figure 6.22: All the Holder and Predicate Figure 6.23: Selecting the Create Pipe Op-
Cubes Have Been Created tion

e

Figure 6.24: The Pipe Has Appeared Figure 6.25: All the Pipes Have Been Cre-
ated
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the system can use structural information) and then routing the pipe automatically, avoiding
obstacles while minimizing its length and the number of joints.

The current implementation represents a compromise: The user has to specify the end-points
of a pipe, simply by clicking on them; the system can use structural information to determine
which objects that could serve as pipe termini are located on the 3D line corresponding to the
2D point supplied by the user. The system then attempts to route a pipe between those two
termini. It will avoid routing the pipe through another “solid” object, but it will not try to
achieve a visually pleasing routing. Of course, in many of the simpler cases this is entirely
sufficient.

In our example, we select the “CREATE A PIpPE” option from the appropriate submenu
(Figure 6.23), then click on the leftmost holder cube, thereby specifying one terminus of the
pipe, and on the port representing the first argument to the addition cube, thereby specifying
the second terminus. The system now connects those two termini through a pipe (Figure 6.24).
We repeat the process, until all the ports are connected either to another port or to a holder
cube (Figure 6.25).

Finally, we want to place a floating-point constant (namely 1.8) into the holder cube
connected to the second argument of the multiplication predicate. We select the “CREATE

FroaTING-PoINT TERM CUBE” option (Figure 6.26), use the mouse to locate the holder cube
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Figure 6.28: The Floating-Point Term Figure 6.29: Creating the Term Cube Rep-
Cube Appeared resenting 32.0

Figure 6.30: Creating the Term Cube Rep- Figure 6.31: After Type Inference
resenting 20.0
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Figure 6.32: After Evaluation Figure 6.33: Selecting the Delete Term
Cube Option

in the rendering area, and click on it. The system knows that we are trying to select an empty
holder cube, and it determines which such cube lies on the 3D line corresponding to the 2D
point we clicked on. A floating-point keyboard pops up, and we type in the number 1.8 (Fig-
ure 6.27). Now a floating-point term cube referring to the constant 1.8 appears inside the holder
cube (Figure 6.28).

We use the same approach to place the constant 32.0 into the holder cube connected to
the second argument of the addition predicate (Figure 6.29). This leaves us with a complete
temperature conversion program.

To convert from Celsius to Fahrenheit, we place a floating-point value — say 20.0 — into
the left empty holder cube (Figure 6.30). Type inference tells us that the right holder cube will
receive a floating-point value (Figure 6.31), and pressing the “Evar” button fills it with the
right value, namely 68.0 (Figure 6.32).

In order to perform another computation, we have to “reset” the program, and delete the
value 20.0 from the leftmost holder cube. We do this by selecting the “DELETE TERM CUBE”
option (Figure 6.33), locating the floating-point term cube in the rendering area, and clicking
on it. The system knows that we want to delete an existing term; it determines which term lies

on the line we just specified, and removes it from the program (Figure 6.34).
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Figure 6.34: Having Deleted the Term Cube Figure 6.35: Creating the Term Cube 50.0
20.0

Figure 6.36: After Evaluation
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In order to convert from Fahrenheit to Celsius, we place a floating-point value — say 50.0
— into the right empty holder cube (Figure 6.35) and press “Evar”. This time, the leftmost
holder cube receives a result, namely 10.0 (Figure 6.36).

Creating this temperature conversion program takes a skilled user a few minutes — for
sure longer than it would take someone to specify the same program in a high-level textual
language. However, much of the tediousness of program construction can be attributed to the
fact that Cube currently uses a 2D window system and a 2D pointing device. A virtual-reality-
based programming environment will certainly speed up the editing process considerably. The
remaining editing overhead to textual languages will be made up (or so we hope) by the greater

intuitiveness and better debugging features of those future 3D visual languages.
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Chapter 7

Conclusion

Our work has been an exploratory foray into the use of three-dimensional graphics for visual
programming. We have developed Cube, a 3D visual language, and we have demonstrated the
feasibility of the underlying ideas by building two prototype implementations of the language.

Our contributions to the field of visual programming can be summarized as follows:

o Cube is the first full-fledged three-dimensional visual language. For the last 6 years, there
has been interest in the visual language community regarding 3D languages [24], and
speculations about their potential. But no such languages have been developed prior to
Cube. However, there have been subsequent designs of 3D visual languages, e.g. Lingua

Graphica [81] and CAEL-3D [68].

e The third dimension can be used to provide a syntactically richer language, much like
color, texture, distance, directions, and spatial enclosure have been used before. We use
3D to encode semantic information: We represent terms, atomic logic formulas, and types
by cubes; we express conjunction of atomic formulas and product of types by arranging
the corresponding cubes horizontally to each other (i.e. in the zy plane); and we express
disjunction of conjoint formulas and sum of tagged product types by arranging the corre-
sponding horizontal planes vertically, in the z dimension (i.e. by stacking them on top of
each other). The fact that we have two dimensions — « and y — to denote conjunctions
allows us to connect the various cubes which form the conjunction through pipes, i.e.
a data flow diagram. Data flow diagrams are inherently an (at least) two-dimensional

formalism, the fact that we have a third dimension at our disposal helps us in avoiding
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the problem of crossing lines — we can always route a pipe in 3-space so that it does not

collide with any other pipe.

A three-dimensional syntax opens up the possibility of utilizing a virtual-reality-based
programming environment. Programming in Virtual Reality is interesting in its own right,
due to the immersive and reactive nature of virtual realities. VR environments improve
the input component of graphical user interfaces by allowing for direct manipulation:
instead of using a mouse to interact with an object on the screen, the user can handle
a virtual object directly, by mediation of a data glove. Moreover, selecting the focus of
attention is simplified: in a 2D window system, the user is confronted with many windows;
he has to use the mouse to select a window. In a virtual reality environment, on the other
hand, all objects occupy the same virtual world; the user focuses on a particular object
simply by looking at it and manipulating it directly. Finally, in the 2D setting, if the
virtual canvas of a window is larger than the physical window, the user has to perform
panning operations to access hidden parts of the window. This is usually done either by
using scrollbars, or by “dragging” the canvas with the mouse. In a Virtual Reality setting,

however, panning is replaced by simple head movement.

Another situation in which a 3D language is useful is when the application domain of the
language deals with three-dimensional representations, such as 3D animations or virtual
reality applications. CAEL-3D [68] was developed to support the development of 3D
animations, and Lingua Graphica [81] is aimed at supporting the development of virtual-

reality applications.

Cube shows how to incorporate a static polymorphic type system into a visual language.
The benefits of static type systems are widely recognized: they help in detecting pro-
gramming errors statically, without the need to perform exhaustive run-time testing. We
use the Hindley-Milner algorithm to ensure the well-typedness of programs. The Hindley-
Milner algorithm does not rely on user-supplied type declarations, instead, it infers (or
reconstructs) the types of the expressions of a program. We provide additional feedback
to the user by visualizing the inferred types of variables. In this respect, Cube is superior
to most textual languages that use Hindley-Milner; these languages typically just indicate

whether or not the program is well-typed.
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Cube guarantees that a well-typed program is type-safe, i.e. that it will not fail at run-
time due to a type error. We were the first to propose the use of Hindley-Milner type
inference for visual languages and to make strong guarantees about type-safety [56]. Our

work has influenced several other visual languages [8, 65, 66].

Cube is based on Horn logic, a powerful, declarative formalism. Horn logic was first pro-
posed as a programming language by Robert Kowalski in the 1970’s [40]. Prolog [13],
jointly developed by him and Alain Colmerauer, is the most widespread logic program-
ming language to date. Logic programming is an attractive paradigm due to its declarative
nature, its inherent parallelism (in form of AND and OR nondeterminism), and its multi-
directional nature (predicates have no input/output patterns, and logic variables can be

viewed as multidirectional communication channels).

One problematic feature of logic languages such as Prolog is that programs are represented
by a flat set of clauses; there are no mechanisms to localize definitions. Cube solves this
problem by allowing for nested predicate definitions. It also eliminates Prolog’s unclean
features, such as the “cut” predicate (a mechanism to prune the search space, which
sacrifices completeness), its dependency on clause and subgoal orderings, or its depth-
first-search resolution strategy. Cube exploits the implicit parallelism of logic programs

by using a pseudo-concurrent interpreter; concurrency is simulated via time-slicing.

Cube is a higher-order programming language. It treats predicates (the “agents of com-
putation”) as first-class objects, and allows them to be passed as arguments to other
predicates. A predicate which takes another predicate as an argument is called higher-
order. In the functional programming community, higher-orderness has been identified as
one of the most powerful abstraction mechanisms, which can leads to a very high degree

of code reuse.

Cube’s notion of higher-orderness is simplistic (we use an intensional notion of equality for
predicates), but it is powerful enough to allow us to build the higher-order abstractions

common in functional programming; moreover, it is implemented very efficiently.

Cube applies the visual data flow metaphor to logic programming. Cube uses data flow

to denote “shared variables”. This idea would appear to be obvious; in fact, in the area
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of concurrent logic programming, logic variables are often referred to as “communication
channels”, a term which even more so evokes the mental image of a link connecting two
parties. However, we are not aware of any other visual programming language which is
based on logic and uses the data flow metaphor. Consequently, these other languages have
been rather weak in describing variable sharing: Some of them (like Senay and Lazzeri’s
system [74]) use textual symbols to identify variables, others (like VLP [41]) use “shared
patterns”, i.e. an iconic approach. Either way, no visual aid is provided to the user in

noticing interconnections.

¢ Iinally, Cube demonstrates that there is no inherent performance penalty to visual lan-
guages. We show this by defining an isomorphic textual language, translating visual
programs into their textual counterparts, and performing all computations on the textual
structure. The only price we pay for using a visual notation is the overhead of mapping
visual programs into a textual form, and mapping the results back into pictures. This

overhead is constant, that is, it does not depend on the length of the actual computation.

We see several possible directions for future work. The most obvious omission in this thesis
is a Cube environment that is virtual-reality-based. Such an environment would alleviate much
of the tediousness which is currently associated with the construction of Cube programs. It is a
definite requirement for constructing programs that are larger than the toy programs we have
shown here.

The second major omission of this thesis is an evaluation of the usefulness of Cube. Ulti-
mately, the usefulness of a programming language can be determined only through empirical
studies, either by conducting an experiment that compares how well a number of test subjects
can solve a problem or a set of problems in different languages, or by using the language to
complete a significant programming project, and then analyzing how fast the task could be
completed, and how correct, how maintainable, and possibly how reusable the resulting pro-
gram is. Both approaches would have required a more comfortable programming environment
than the one we were able to build with the technology available to us.

A second promising direction for future research lies in providing customizable visual rep-
resentations of values. For example, a two- or three-dimensional array should be visualized

as a two- or three-dimensional grid, not as a list of lists (or list of lists of lists), as it is now.
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Each visualization method should be associated with a type. Taken to the extreme, this means
embedding a complete 3D graphics package into our visual language.

If we view the constructs of our programming language as data themselves, then this might
lead to a user-customizable syntax (which would presumably also require either meta-interpreter
technology or reflective capabilities in the language).

Finally, we should strive to apply the lessons we have learned to other programming paradigms.
Cube’s computational model is based on higher-order Horn logic. We were attracted to this
model because of its expressiveness and its (relatively) clean semantics. However, there are also
problems associated with it, efficiency not being the least. We have learned that in the best
case, the performance penalty one pays for a visual syntax is negligible. It would be interesting

to devise a 3D notation for a language whose semantics is targeted towards run-time efficiency.
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