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ABSTRACT
Knowledge distillation is a popular technique to transfer knowl-

edge from a large teacher model to a small student model. Typi-

cally, the student learns to imitate the teacher by minimizing the

KL divergence of its output distribution with the teacher’s output

distribution. In this work, we argue that such a learning objec-

tive is sub-optimal because there exists a discrepancy between the

teacher’s output distribution and the ground truth label distribu-

tion. Therefore, forcing the student to blindly imitate the unreliable

teacher output distribution leads to inferior performance. To this

end, we propose a novel knowledge distillation objective PTLoss by
first representing the vanilla KL-based distillation loss function via

a Maclaurin series and then perturbing the leading-order terms in

this series. This perturbed loss implicitly transforms the original

teacher into a proxy teacher with a distribution closer to the ground

truth distribution. We establish the theoretical connection between

this “distribution closeness” and the student model generalizability,

which enables us to select the PTLoss’s perturbation coefficients in

a principled way. Extensive experiments on six public benchmark

datasets demonstrate the effectiveness of PTLoss with teachers of

different scales.
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1 INTRODUCTION
Knowledge distillation (KD) is a widely-used technique to trans-

fer knowledge from a large teacher model into a much smaller

student model with minimum sacrifice of teacher model’s predic-

tive power [4, 11]. The vanilla training objective in KD such as

KL loss [11, 22, 28] encourages the student’s outputs to be close to

the teacher’s outputs as much as possible. This objective implicitly

assumes the teacher’s output distribution on the distillation data is

perfectly aligned with the ground truth distribution. However, in

many applications, this assumption does not hold and the teacher’s

output distributions can be biased from the ground truth due to var-

ious factors, such as the inductive bias encoded in the teacher model

architecture [34], miscalibration in the training procedure [22], or

the bias in the teacher model training set [20, 21]. Enforcing the stu-

dent to blindly imitate the teacher’s outputs can make the student

inherit such biases and produce suboptimal predictions.

To overcome this challenge, one common approach [11] suggests

scaling the teacher’s logits via a temperature parameter. A proper

temperature value can enhance the quality of the teacher model’s

output distribution by making it closer to the true label distribu-

tion [22]. However, the shifting space offered by temperature scaling

is limited, and the optimal temperature value relies on resource-

intensive grid search. Along a separate line, label smoothing [29]

is proposed to regularize the neural networks, and modulated loss

functions [18, 19] are designed to address various statistical issues

in model training such as overfitting and data imbalance. Despite

their potential, there is a lack of work that explores tailoring such

techniques for more robust knowledge distillation.

https://creativecommons.org/licenses/by/4.0/
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Figure 1: PTLoss implicitly transforms the original teacher into a proxy teacher with a distribution closer to the ground
truth distribution. This approach addresses the issue of sub-optimal student models resulting from discrepancies between the
teacher’s output distribution and the ground truth distribution. By introducing perturbation to standard KL loss represented
by its Maclaurin series, we obtain a better proxy teacher, which leads to a more effectively distilled student.

In this study, we propose PTLoss for knowledge distillation,

which generalizes the vanilla KL loss function and implicitly cre-

ates a debiased teacher distribution closer to the ground truth. As

shown in Figure 1, our approach does not merely mimic the original

teacher model’s output distribution, denoted as p𝑡 , but rather aims

to bring the distilled model closer to the ground truth distribution

p∗, by generating a proxy teacher distribution p𝑡𝑝𝑥 . This is achieved
by the proposed PTLoss, which implicitly transforms the original

teacher (the dashed blue curve in Figure 1) into a proxy teacher

(the dash-dot green curve in Figure 1). The resultant proxy teacher

distribution is closer to the ground truth than the original teacher’s

output distribution, thus enhancing the distillation process.

Compared to the standard KL loss, PTLoss refrains from forc-

ing an out-and-out imitation of the original teacher model. Instead,

PTLoss moderates the distillation objective by adding perturbations

to the standard KL loss. Specifically, we first decompose the standard

KL loss into its Maclaurin series and then perturb its leading-order

terms to construct a more flexible learning objective. This manipu-

lation enables consequential adjustments to the teacher’s output

distribution. The perturbations are not arbitrary but are meticu-

lously calculated. To determine the perturbation extent, we compute

the equivalent distribution of this implicitly shifted teacher’s out-

put distribution after perturbations (named “proxy teacher”) and
measure the empirical deviation between the proxy teacher and

the ground truth data. It leads to a systematic searching strategy

for the perturbation coefficients — the near-optimal perturbation

coefficients should minimize the deviation between the distillation

risk and the population risk on the validation set.

Theoretically, we justify the effectiveness of PTLoss by proving

that it can reduce the deviation from the distillation risk compared

to KL loss. We draw a connection between the PTLoss and other

perturbation methods (e.g., temperature scaling [11], label smooth-

ing [29], and focal loss [19]).We illustrate that the PTLoss can debias

the teacher to produce higher-fidelity outputs via a finer-grained

perturbation, while subsuming existing perturbation techniques as

special cases. Experiments on multiple datasets with different-sized

teacher models demonstrate the empirical advantages of PTLoss.

In summary, we make the following contributions:

(1) A new knowledge distillation loss function PTLoss, which

formulates the vanilla KD loss in the form ofMaclaurin series

and perturbs it to improve the fidelity of teacher models;

(2) A principled method to compute the proxy teacher for de-

termining the perturbation coefficients in PTLoss;

(3) Theoretical analysis onwhy PTLoss can lower the distillation

risk bound and how it subsumes other perturbation methods;

(4) Comprehensive experiments on multiple language under-

standing tasks with different-sized teacher models showing

the advantage of PTLoss.

2 PRELIMINARIES
Multi-class Classification. In a multi-class classification prob-

lem with 𝐶 classes, we are given a set of training examples D =

{(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 where input 𝑥𝑛 ∈ 𝑋 and output 𝑦𝑛 is a one-hot vec-

tor in 𝑌 = {𝑦 |𝑦 ∈ {0, 1}𝐶 , 1𝑇𝑦 = 1} indicating the target label of

example 𝑥𝑛 . The goal is to learn a probability predictor p : 𝑋 → R𝐶
by optimizing the below minimal risk:

𝑅(p) = E(𝑥,𝑦) [ℓ (𝑦, p(𝑥))] . (1)

where ℓ (𝑦, p(𝑥)) is the loss of predicting p(𝑥) when the true label

of example 𝑥 is 𝑦.
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A canonical loss function is the cross-entropy loss: ℓ𝐶𝐸 (𝑦, p(𝑥)) =
−𝑦 log(p(𝑥)) and we may further approximate the above risk via

the empirical risk on the training set D:

𝑅(p;D) � 1

𝑁

𝑁∑︁
𝑛=1

𝑦𝑛 (− log(p(𝑥𝑛))) (2)

Our Problem Formulation. In this work, we study the knowledge
distillation problem where the labeled training set D is inaccessi-

ble
1
. Specifically, we are only given an unlabeled distillation set

D𝑢 , a teacher model p𝑡 , and asked to learn a student model p𝑠 .

Standard Distillation Strategy. A standard KD strategy [11] is to

replace the ground truth one-hot label 𝑦𝑛 in Eq. 2 with the teacher

model’s output probabilistic label estimate p𝑡 (𝑥𝑛) and utilize the

KL divergence loss to learn the student model p𝑠 via the distillation
empirical risk:

�̃�𝐾𝐿 (p𝑠 ; p𝑡 ,D𝑢 ) �
1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

ℓ𝐾𝐿
(
p𝑡 (𝑥𝑛), p𝑠 (𝑥𝑛)

)
, (3)

where𝑁𝑢 = |D𝑢 | and ℓ𝐾𝐿 (p, q) = 𝐾𝐿(p| |q) = p𝑇 log(p)−p𝑇 log(q).

3 PERTURBED DISTILLATION LOSS
Using the KL divergence loss (in short “KL loss”) for distillation

essentially assumes the teacher model is perfect and forces the

student model to mimic the teacher’s output label distribution. In

reality, the teacher model can produce a biased estimate of label dis-

tribution and lead to a sub-optimal student model, as demonstrated

by both theoretical analysis [22] and empirical observations [23]

(as well as our experiments in Section 5.1).

In this work, we present a new distillation loss that generalizes

the standard KL loss to accommodate various degrees of distribu-

tion gaps between the biased teacher’s output distribution and the

underlying ground truth distribution. Inspired by the PolyLoss [18],

we propose to first replace the logarithmic terms in the standard

KL loss with their corresponding Maclaurin series and then perturb

the polynomial terms as follows:

log(𝑥) = −
∞∑︁
𝑚=1

(1 − 𝑥)𝑚
𝑚

Perturb polynomial

−−−−−−−−−−−−−−−−−→
term coefficients

(4)

log(𝑥) ≈ −
∞∑︁
𝑚=1

(
1

𝑚
+ 𝜖𝑚

)
(1 − 𝑥)𝑚 .

Here, we essentially replace the original coefficient
1

𝑚 of the

𝑚-th order polynomial term in the standard KL loss to ( 1𝑚 +𝜖𝑚). By
further replacing the logarithmic terms in standard KL loss (Eq. 3)

with the above Eq. 4, we will have:

ℓ𝐾𝐿
(
p𝑡 (𝑥𝑛 ), p𝑠 (𝑥𝑛 )

)
= −H

(
p𝑡 (𝑥𝑛 )

)
+

∑︁
𝑐∈ [𝐶 ]

p𝑡𝑐 (𝑥𝑛 ) [− log p𝑠𝑐 (𝑥𝑛 ) ]

≈ −H
(
p𝑡 (𝑥𝑛 )

)
+

∑︁
𝑐∈ [𝐶 ]

p𝑡𝑐 (𝑥𝑛 )
[
− log p𝑠𝑐 (𝑥𝑛 ) +

∞∑︁
𝑚=1

𝜖𝑐,𝑚 (1 − p𝑠𝑐 (𝑥𝑛 ) )𝑚
]
,

(5)

1
This setting reflects the real-world scenario where large teacher models (e.g., Chat-

GPT [24] and GPT4 [25]) only expose their outputs and/or APIs without original train-

ing data because of their large model sizes and cautions toward data leakage/misuse.

where p𝑡𝑐 (𝑥𝑛) and p𝑠𝑐 (𝑥𝑛) denote the probability that example 𝑥𝑛
belongs to the class 𝑐 according to the teacher (student) model, and

H
(
p𝑡 (𝑥𝑛)

)
is the entropy of the teacher output distribution.

We can further separate out the perturbation coefficients on the

right hand side of Eq. 5 and merge

∑
𝑐∈[𝐶 ] p𝑡𝑐 (𝑥𝑛)

[
− log p𝑠𝑐 (𝑥𝑛)

]
with H

(
p𝑡 (𝑥𝑛)

)
to obtain our perturbed distillation loss:

ℓ𝑃𝑇
(
p𝑡 (𝑥𝑛), p𝑠 (𝑥𝑛)

)
� ℓ𝐾𝐿

(
p𝑡 (𝑥𝑛), p𝑠 (𝑥𝑛)

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝑐 (𝑥𝑛)
∞∑︁
𝑚=1

𝜖𝑐,𝑚
(
1 − p𝑠𝑐 (𝑥𝑛)

)𝑚
.
(6)

The above equation presents our perturbed distillation loss in

its most general form. In practice, however, we cannot tune infi-

nite number of coefficients 𝜖𝑐,𝑚 and thus we propose to only tune

the first𝑀 leading polynomial coefficients while keeping the rest

unchanged as follows:

ℓ𝑃𝑇-𝑀
(
p𝑡 (𝑥𝑛), p𝑠 (𝑥𝑛)

)
� ℓ𝐾𝐿

(
p𝑡 (𝑥𝑛), p𝑠 (𝑥𝑛)

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝑐 (𝑥𝑛)
𝑀∑︁
𝑚=1

𝜖𝑐,𝑚
(
1 − p𝑠𝑐 (𝑥𝑛)

)𝑚
.

(7)

We can see that if we set all 𝜖𝑐,𝑚 to 0, the ℓ𝑃𝑇 falls back to the

ℓ𝐾𝐿 and thus the perturbed distillation loss can be considered as a

generalization of the standard KL loss.

Figure 2 presents how PTLoss adjusts biased teachers. For visual-

ization simplicity, we set the number of classes 𝐶 = 2. In Figure 2a,

we vary the teacher probability to show how the biased teacher

model will impact the distilled student model under either the stan-

dard KL loss or our proposed PTLoss. We observe that PTLoss can

guide the student’s predictions toward the ground truth and thus

effectively reduces the inherent bias in the teacher’s output proba-

bilities. In Figure 2b, we demonstrate PTLoss enables a diverse shift

space to the loss curve. By setting the perturbation coefficients,

PTLoss allows flexible adjustments to the loss curve. Combining

with our perturbation coefficients selection methods discussed in

Sec. 4.3, we can determine the perturbation to optimize the distilla-

tion process.

3.1 Connections to other perturbation methods
We establish the connections between PTLoss and other related

methods that transform the teacher output probabilities, such as

label smoothing [29], temperature scaling [11], and focal loss [19].

We show that the loss shift space produced by PTLoss encompasses

these techniques and thus PTLoss can offer additional adjustment

capabilities. We present the connections in this section and detail

the derivation in Appendix 8.3.

KL Loss. The connection between PTLoss and the standard KL

loss is quite direct. As we represent the standard KL loss in Maclau-

rin series and add perturbations, we can easily revert PTLoss to the

standard KL loss by setting all perturbation coefficients 𝜖𝑐,𝑚 to 0.

Focal Loss. Focal loss incorporates a factor (1 − 𝑝)𝛾 in the loss

function. We demonstrate PTLoss can subsume focal loss by ex-

pressing the perturbation coefficients as a function of the factor

(1 − 𝑝)𝛾 . For simplicity, we denote p𝑡 (𝑥𝑛) and p𝑠 (𝑥𝑛) as p𝑡 and p𝑠 .
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0

in
{1.0, 0.9, 0.8}. For PTLoss, we fix the perturbation order as 1 and
the perturbation coefficients 𝜖 = [1, 1]. Consider the case that
ground truth probability is [1, 0], PTLoss adjusts the student’s
predictions by nudging them towards the ground truth, effec-
tively mitigating the bias present in the teacher’s output proba-
bilities.

(b) PTLoss values with different perturbations.We fix the teacher
probability p𝑡

0
= [0.8, 0.2] and vary the perturbation coefficients 𝜖 ,

while the perturbation order is always fixed to 1. The black cross
denotes the best studentmodel output p𝑠

0
that achieves the lowest

loss value. This shows PTLoss can enable flexible adjustments
to the loss curve and effectively reduces the bias of the teacher’s
output.

Figure 2: Intuitive understanding of our PTLoss for the bi-
nary classification task.

By applying Focal loss to KD, we have:

ℓ𝑓 𝑜𝑐𝑎𝑙
(
p𝑡 , p𝑠

)
= −H

(
p𝑡

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝑐 (1 − p𝑠𝑐 )𝛾 [− log p𝑠𝑐 ], (8)

where (1 − p𝑠𝑐 )𝛾 is a factor and the parameter 𝛾 > 0 reduces the

relative loss for well-classified examples.

To bridge the connection between PTLoss and the focal loss, we

compare Eq. 8 to Eq. 5 and establish the following relationship:

∞∑︁
𝑚=1

( 1
𝑚
+ 𝜖𝑐,𝑚) (1 − p𝑠𝑐 )𝑚 =

∞∑︁
𝑚=1

(1 − p𝑠𝑐 )𝛾
𝑚

· (1 − p𝑠𝑐 )𝑚, (9)

which leads to the perturbation coefficients as follows:

𝜖𝑐,𝑚 =
(1 − p𝑠𝑐 )𝛾 − 1

𝑚
. (10)

By incorporating the derived perturbation coefficients 𝜖𝑐,𝑚 in our

proposed method, we demonstrate that PTLoss can effectively sub-

sume the focal loss. In other words, PTLoss generalizes the focal

loss and can adapt to more modulating factors (1 − 𝑝)𝛾 for han-

dling the class imbalance problem and improving the knowledge

distillation performance.

Temperature Scaling.We compare PTLoss with temperature scal-

ing and claim that PTLoss subsumes it with appropriate approxima-

tion. As described in Hinton et al. [11], the logits are adjusted by a

temperature to control sharpness or smoothness of the probability

distribution:

p𝜏,0 =
𝑒𝑥𝑝 (𝑧0/𝜏)

𝑒𝑥𝑝 (𝑧0/𝜏) + 𝑒𝑥𝑝 (𝑧1/𝜏)
, (11)

where 𝜏 is the temperature and 𝑧𝑐 is the logits. Here we use binary

classification (i.e., 𝑐 = 0, 1) for the derivation simplicity without loss

of generality.

We denote p𝑡𝜏,𝑐 , p𝑠𝜏,𝑐 as the teacher, student probability scaled by

temperature 𝜏 . Incorporating temperature scaling, the KL loss can

be formulated as:

ℓ
𝑡𝑒𝑚𝑝

𝐾𝐿

(
p𝑡𝜏 , p

𝑠
𝜏

)
= −H

(
p𝑡𝜏

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝜏,𝑐 · (− log p𝑠𝜏,𝑐 ) . (12)

Similarly, to bridge PTLoss with temperature scaling, we establish

equality between Eq. 12 and Eq. 5, this leads to

𝜖𝑐,𝑚 =
𝑎

𝑚
· (1 + ( 1 − 𝑏

1 − p𝑠𝑐
)𝑚) − 1

𝑚
, (13)

where𝑎 = 𝑒𝑥𝑝 (𝑧𝑡
1
− 𝑧𝑡

0
)/𝑒𝑥𝑝 ( 𝑧

𝑡
1
−𝑧𝑡

0

𝜏 ),𝑏 = 𝑒𝑥𝑝 (𝑧𝑠
1
− 𝑧𝑠

0
)/𝑒𝑥𝑝 ( 𝑧

𝑠
1
−𝑧𝑠

0

𝜏 ).
The derivation clearly shows how PTLoss, through the appropriate

selection of 𝜖𝑐,𝑚 , effectively subsumes temperature scaling. This

capability to encompass temperature scaling further underlines the

versatility of our approach.

Label Smoothing. We compare PTLoss with the label smoothing

method and claim that label smoothing proposed in [29] is a special

case of PTLoss. According to the implementation in Szegedy et al.

[29], we can smooth the teacher labels in KD by

p𝑡𝑙𝑠𝑐 = (1 − 𝛿)p𝑡𝑐 + 𝛿/2, (14)

with a smoothing parameter 𝛿 . Starting from Eq. 5, we can replace

the term p𝑡𝑐 by its smooth version p𝑡𝑙𝑠𝑐 . Then the original Eq. 5 with

label smoothing becomes:

ℓ𝑙𝑠𝐾𝐿

(
p𝑡 , p𝑠

)
= −H

(
p𝑡𝑙𝑠

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝑙𝑠𝑐 · (− log p𝑠𝑐 ) (15)

For the entropy of the teacher output, the smooth version H
(
p𝑡𝑙𝑠

)
is different from the original H

(
p𝑡

)
with only a constant 𝐶 , which

can be ignored when optimizing the loss function. Similarly, by

letting ℓ𝑙𝑠
𝐾𝐿

(
p𝑡 , p𝑠

)
= ℓ𝑃𝑇

(
p𝑡 , p𝑠

)
, we obtain

𝜖𝑐,𝑚 =
Δp𝑡𝑐
𝑚p𝑡𝑐

Δp𝑡𝑐=𝛿/2−𝛿p𝑡𝑐−−−−−−−−−−−−−→ 𝜖𝑐,𝑚 =
𝛿

𝑚
( 1

2p𝑡𝑐
− 1) . (16)

In shows the connection between the two losses can be expressed

through a specific 𝜖𝑐,𝑚 , which depends on the smoothing parame-

ter 𝛿 . This derivation highlights that PTLoss generalizes the label
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smoothing method and provides a more flexible framework that

encompasses the effects of label smoothing.

In summary, we establish that PTLoss can effectively serve as a

generalized framework that includes various techniques by manip-

ulating the perturbation coefficients 𝜖𝑐,𝑚 . It is important to note

that our goal is not to directly solve for the perturbation coeffi-

cients to make PTLoss equivalent to the alternative perturbation

methods. Instead, we aim to show that our approach covers the loss

shift space produced by them. To determine the real perturbation

coefficient, we establish a principled searching method via the best

proxy teacher, as demonstrated in the following section.

4 PROXY TEACHER AND THE PRINCIPLE OF
SELECTING POLYNOMIAL COEFFICIENTS

In this section, we first present a theorem to show how the teacher

model affects the gap of a student model’s distillation empirical

risk and its population risk (§ 4.1). Then, we demonstrate that

using PTLoss implicitly transforms the original teacher model to

a proxy teacher under the KL loss. Based on the above theorem,

we know when this proxy teacher distribution is closer to the true

distribution, we will have a better distilled student model (§ 4.2).
Finally, we establish our principle of selecting the perturbation

coefficients in PTLoss: searching the coefficients that lead to a

proxy teacher closest to the empirical estimate of true distribution

on a validation set (§ 4.3).

4.1 The Connection of the Teacher Model and
the Risks of Student Model

Theorem 4.1. Given a teacher model p𝑡 , an unlabeled distillation
dataset D𝑢 with an unknown true distribution p∗, we have for any
probability predictor p : X → R𝐶 :

E
[
(�̃�𝐾𝐿 (p; p𝑡 ,D𝑢 ) − 𝑅(p))2

]
≤ 2

𝑁𝑢
· V

[
p𝑡 (𝑥)𝑇 log(p(𝑥))

]
+

O
( (
E𝑥

[
∥p𝑡 (𝑥) − p∗ (𝑥)∥2

] )
2 +

E𝑥

[(
p𝑡 (𝑥)𝑇 log p𝑡 (𝑥)

)
2

] )
,

where V[·] denotes the variance of a random variable.

We defer the detailed proofs of above theorem to Appendix 8.4

and focus on its implications here.We can see that the gap between a

model p’s distillation empirical risk and its population risk depends

on three terms: (1) the variance of its KL distance to the teacher

model p𝑡 , (2) the 𝐿2 distance between the teacher model output

distribution p𝑡 and the true distribution p∗, and (3) the entropy of

the teacher distribution. In practice, obtaining a sizable unlabeled

distillation set D𝑢 is relatively straightforward, which leads to a

large value of 𝑁𝑢 . As a result, the first term (of order 𝑂 (1/𝑁𝑢 ))
will converge to 0 as 𝑁𝑢 keeps increasing and the latter two terms

(one quantifies the distance between teacher p𝑡 and true p∗, and
the other quantifies the teacher’s uncertainty) will dominate the

risk gap. This observation also resonates with our intuition that an

accurate and well-calibrated teacher yields better improved bounds

on the generalization error of the student.

4.2 The Equivalence of Proxy Teacher under KL
Loss and Original Teacher under PTLoss

The above theorem states that an ideal teacher model, when used in

KL loss for distillation, should output a distribution as close to the

true distribution as possible. In reality, however, the teacher model

is usually fixed. Here, we show that using PTLoss for distillation

can implicitly transform the original teacher to a proxy teacher
under the KL loss. Namely, given the original teacher model p𝑡 and
a set of perturbation coefficients {𝜖𝑐,𝑚} in PTLoss, we can obtain a

proxy teacher p𝑡𝑝𝑥 such that:

�̃�𝐾𝐿 (p𝑠 ; p𝑡𝑝𝑥 ,D𝑢 ) = �̃�𝑃𝑇-𝑀 (p𝑠 ; p𝑡 ,D𝑢 )

=
1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

ℓ𝑃𝑇-𝑀 (p𝑡 (𝑥𝑛), p𝑠 (𝑥𝑛)),
(17)

which establishes the equivalence of proxy teacher under KL loss

and original teacher under PTLoss. With the proxy teacher p𝑡𝑝𝑥 , we
aim to determine the best perturbation coefficients {𝜖𝑐,𝑚}. Note for
each {𝜖𝑐,𝑚}, we can obtain a proxy teacher. We illustrate how we

obtain the proxy teacher in the rest of this subsection, and discuss

how to select the best perturbation coefficients in § 4.3.
Intuitively, the proxy teacher is derived by solving the below

optimization problem:

minp𝑡𝑝𝑥 ∥�̃�𝑃𝑇-𝑀 (p𝑠 ; p𝑡 ,D𝑢 ) − �̃�𝐾𝐿 (p𝑠 ; p𝑡𝑝𝑥 ,D𝑢 )∥2 . (18)

In practice, however, we do not need the above risk equivalence

in Eq. 17 to hold for all possible student models p𝑠 . Instead, we
focus on the minimizer of the left-hand side of Eq. 17 because it is

practically close to the final learned student model. By substituting

this minimizer p𝑠 = p𝑡𝑝𝑥 into Eq. 18, the second term in the norm

of Eq. 18 becomes 0, and the first term could be expanded by its

definition in Eq. 17, we thus have the following objective:

minp𝑡𝑝𝑥

 1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

(
ℓ𝐾𝐿 (p𝑡 (𝑥𝑛), p𝑡𝑝𝑥 (𝑥𝑛)) (19)

+
∑︁
𝑐∈[𝐶 ]

p𝑡𝑐 (𝑥𝑛)
𝑀∑︁
𝑚=1

𝜖𝑐,𝑚 (1 − p
𝑡𝑝𝑥
𝑐 (𝑥𝑛))𝑚

)
2

.

This objective enables us to solve p𝑡𝑝𝑥 given p𝑡 and {𝜖𝑐,𝑚}, where
p𝑡 is the teacher’s output probability on the validation set, and

{𝜖𝑐,𝑚} is a given set of perturbation coefficients. However, this op-

timization problem is nonlinear and lacks a closed-form analytical

solution. Consequently, we compute the p𝑡𝑝𝑥 using the numeri-

cal approach
2
. Specifically, the optimization problem defined in

Eq. 19 is solved via the algorithm ‘scipy.optimize.fsolve’, which is a

hybrid method of the Newton-Raphson method and the Levenberg-

Marquardt algorithm. For better numerical stability, we actually

solve the equation in logit space (instead of the vanilla probability

space) and use softmax function to map it back to the final proba-

bility. Another advantage of this approach is that we remove the

probability constraint of p𝑡𝑝𝑥 . We also input the analytical form

2
We use a hybrid algorithm of the Newton-Raphson method and the Levenberg-

Marquardt algorithm as defined in ‘scipy.optimize.fsolve’ https://docs.scipy.org/doc/

scipy/reference/generated/scipy.optimize.fsolve.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html
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Algorithm 1 Automated Perturbation Coefficients Selection

Require: Validation set D𝑣 , Teacher model p𝑡 , Max perturbation order

𝑁𝑀 , Max search trails 𝑁𝑘 , Perturbation coefficient search space S.
Initialize {𝜖∗𝑐,𝑚 } ← {}, �̂�∗ ←∞.
for𝑀 = 1 to 𝑁𝑀 do

for 𝑘 = 1 to 𝑁𝑘 do
Randomly sample a perturbation coefficients set {𝜖𝑐,𝑚 } ∈ S.
Solve the proxy teacher p𝑡𝑝𝑥 given {𝜖𝑐,𝑚 } and p𝑡 via Eq. 19.
Compute the quality score of perturbation coefficients

�̂� ({𝜖𝑐,𝑚 }) via Eq. 20.
if �̂� ({𝜖𝑐,𝑚 }) < �̂�∗ then

�̂�∗ ← �̂� ({𝜖𝑐,𝑚 }), {𝜖∗𝑐,𝑚 } = {𝜖𝑐,𝑚 }.
end if

end for
end for
return {𝜖∗𝑐,𝑚 }.

of the Jacobian of our optimization objective into the solver (via

the ‘fprime’ parameter) and set the initial estimate of p𝑡𝑝𝑥 to be

the original teacher p𝑡 (via the ‘x0’ parameter). For all the other

parameters in ‘scipy.optimize.fsolve’, we use their default values.

We have also considered an alternative solution to this optimiza-

tion problem, which involves defining a parameterized function

𝑔𝜃 (·) : [0, 1]𝐶 → [0, 1]𝐶 that explicitly transforms the original

teacher to the proxy teacher, namely 𝑔𝜃 (p𝑡 ) = p𝑡𝑝𝑥 . We would

then find the best 𝜃 minimizing the above objective (possibly via

gradient-based methods). This approach leads to a smooth proxy

teacher but also introduces bias from the function class defined by

𝜃 . Therefore, we leave it to future work and resort to the numerical

approach in this study.

4.3 Selecting Perturbation Coefficients via the
Best Proxy Teacher

For each candidate set of perturbation coefficients {𝜖𝑐,𝑚} in PTLoss,
we can find a corresponding proxy teacher and compute its risk

deviation upper bound according to theorem 4.1. In practice, the

size of distillation set 𝑁𝑢 is typically large and thus we can omit

the 𝑂 (1/𝑁𝑢 ) variance term. Furthermore, since the ground truth

distribution p∗ is unknown, we use an unbiased estimator to replace

it. Finally, we replace the expectation by the samplemean and define

the empirical risk below:

�̂� ({𝜖𝑐,𝑚}) =
(
1

𝑁𝑣

𝑁𝑣∑︁
𝑛=1

[
∥p𝑡𝑝𝑥 (𝑥𝑛) − y𝑛 ∥2

] )2
+ 1

𝑁𝑣

𝑁𝑣∑︁
𝑛=1

[(
p𝑡𝑝𝑥 (𝑥𝑛)𝑇 log p𝑡𝑝𝑥 (𝑥𝑛)

)
2

]
,

(20)

where 𝑁𝑣 is the size of validation set and y𝑛 is a one-hot label

vector of 𝑥𝑛 , serving as the unbiased estimation of p∗ (𝑥𝑛). We use

�̂� ({𝜖𝑐,𝑚}) as a “quality score” for each candidate coefficients set.

Users can define a search space of {𝜖𝑐,𝑚} and we will pick the

optimal {𝜖∗𝑐,𝑚} that minimizes �̂� . We present the pseudo-code for

selecting perturbation coefficients in Algorithm 1, and the search

time for perturbation coefficients is detailed in Appendix 8.5.

5 EXPERIMENTS
In this section, we first conduct experiments on a synthetic dataset

to verify our assumption that the teacher outputting a distribution

closer to the ground truth distribution leads to a better student

(§5.1). Then, we present our main results on 6 real-world NLP

datasets (§5.2). Moreover, we show how the proxy teacher enhances

the distillation process(§5.3). In the appendix, we further evaluate

the performance of PTLoss on CIFAR-100 to show its potential in

computer vision tasks (§5.4).

5.1 Experiments on Synthetic Gaussian Dataset
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(a) OHT - one-hot training; LS - label smoothing; GT -
ground truth; KD - knowledge distillation; ESKD: early-
stopped KD [27]; PTLoss: here we use 3-order perturba-
tion.

0 5 10 15 20 25 30 35 40
L2-distance of pt (with different perturbation) and p *

0.832

0.833

0.834

0.835

0.836

0.837

Ac
cu

ra
cy

 o
n 

te
st

 s
et

(b) Correlation between the 𝐿2-distance (between the
teacher model p𝑡 with different levels of perturbations
and the ground truth p∗) and the test accuracy of the stu-
dent model.

Figure 3: Experiments on a synthetic Gaussian dataset.

We first conduct an illustrative experiment with a synthetic

dataset where the ground truth distribution p∗ (𝑥) is known. Specif-
ically, we follow [27] to generate 10

5
examples from a mixture of

Gaussian distribution and train an MLP with 3 hidden layers on

this synthetic dataset. This is a 3-class toy Gaussian dataset with
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10k data points, divided into training, validation, and test sets with

a split ratio [0.9, 0.05, 0.05]. The underlying model in this set of

experiments is a 2-layer MLP with ReLU activation, and the hidden

size is 128 for each layer. We set the learning rate as 5 × 10−4, the
batch size as 32, and the training epochs as 100.

The sampling process is implemented as follows: We first choose

the label𝑦 using a uniform distribution across all the 3 classes. Next,

we sample 𝑥 |𝑦=𝑘 ∼ N
(
𝜇𝑘 , 𝜎

2𝐼
)
as the input signal. Here 𝜎 = 2 and

𝜇𝑘 is a 30-dim vector with entries randomly selected from {−1, 0, 1}.
We compare PTLosswith 4 baselines: one-hot supervision (OHT),

label smoothing (LS), standard knowledge distillation (KD), and

early-stopped knowledge distillation (ESKD) (see details in below

§ 5.2). As illustrated in Fig. 3a, the quality of the distilled student

improves as the 𝐿2-distance between the teacher distribution and

the ground truth distribution decreases. On this synthetic Gaussian

dataset, PTLoss also outperforms the baselines after adding a 3-

order perturbation.

In Fig. 3b, we sample 10 proxy teachers in different stages of the

perturbation coefficient searching process (§4.3) and compare their

results. It is clear that a teacher model with a smaller 𝐿2-distance

to the ground truth distribution can lead to a better student model.

This observation verifies our hypothesis in Eq. 20 — searching a

proxy teacher closer to the ground truth distribution can reduce

the empirical deviation and improve the distilled student model.

5.2 Experiments on Natural Language Datasets
Tasks and Datasets.We conduct our main experiments on 6 natu-

ral language datasets, including:

(1) CoLA [32] for linguistic acceptability;

(2) MNLI [35] for multi-genre natural language inference;

(3) MRPC [8] for paraphrase similarity matching;

(4) RTE [31] for textual entailment inference;

(5) SST-2 [31] for sentiment analysis;

(6) BoolQ [6] for boolean question answering.

We list the detailed dataset statistics in the Appendix 8.1.

Model Architectures. For the teacher model, we choose the T5

architecture [26] and select two teacher models of different scales.

Specifically, we use T5-xxl with 11 billion parameters and T5-large

with 770 million parameters. For the student model, we use the

BERT-base model [7] with 110 million parameters.

Compared Methods. We compare our proposed PTLoss with the

following baselines:

(1) Standard KL loss [17]: adopts standard KL divergence loss for

knowledge distillation;

(2) Temperature scaling [11]: scales the teacher output logits via a

temperature hyper-parameter;

(3) Label smoothing [29]: smooths the teacher output class proba-

bilities by a small scalar;

(4) Focal loss [19]: modulates the cross-entropy loss to focus on

hard examples;

(5) Flooding [13]: a regularization method to intentionally prevent

further reduction of the training loss;

(6) CRD [30]: uses a contrastive objective in knowledge distillation;

(7) AnnealingKD [14]: feeds the rich information provided by the

teacher’s soft-targets incrementally;

(8) FilterKD [27]: trains the student from the smoothed predictions

of the teacher network;

(9) MetaDistill [40]: evolves the teacher network with the feedback

from the distilled student in a meta learning framework.

For all the baselines, we conduct an exhaustive hyper-parameter

search on the validation set. For our own PTLoss method, we set its

perturbation order𝑀 = 5 and use the proxy teacher-based method

to search its perturbation coefficients (§4.3). See Appendix 8.2 for
more details. We run each method with three different random

seeds and report its average performance.

Main Results. Table 1 shows the main results on 6 NLP datasets.

We have the following observations: (1) PTLoss outperforms on 11

out of the total 12 tasks, achieving the best average performance

across the board. The only exception is MetaDistill, which tops

the results on the MRPC when using the T5-xxl teacher and ties

with PTLoss on MNLI when using the T5-large teacher. (2) The

advantages offered by PTLoss are robust, regardless of the scale of

the teacher model. Notably, as the disparity in scale between the

teacher model and student model reduces, the performance gap

between them also narrows. (3) In comparison to vanilla KD, which

utilizes the standard KL, PTLoss showcases significant enhance-

ment. Specifically, it exceeds standard KL by an average of 2.8% and

2.9%, respectively. (4) Surveying the baseline methods, MetaDistill

stands out, securing the second-highest performance across most

tasks. On the whole, the cluster of KD methods generally outstrips

the simple regularization methods.

5.3 Proxy Teacher Analysis
Correlation between teacher’s distance to ground truth and
student’s performance. To explore where PTLoss’s performance

gains come from, we train multiple teacher models on the BoolQ

dataset and distill them into the student models. Fig. 4a shows the

student model performance on the test set is highly correlated with

the distance between the teacher model’s output distribution and

the ground truth distribution on the validation set. This result res-

onates with our findings from synthetic datasets(§ 5.1), confirming

that, on real-world datasets, a teacher model with a predictive dis-

tribution closer to the ground truth can produce a more effectively

distilled student.

Effectiveness of Perturbation Coefficients Search.We continue

to validate the effectiveness of the proxy teacher-based perturba-

tion coefficients selection method using MNLI as a representative

dataset. Specifically, we vary the perturbation order 𝑀 from 1 to

5 and report the performance of the student models distilled via

PTLoss with different perturbation coefficients. These coefficients

are obtained either by minimizing the empirical risk deviation of

proxy teacher (c.f. Eq. 19) or via random sampling from the space of

[−1, 10]𝑀 . As shown in Fig. 4b, the coefficients obtained from our

proxy teacher based method can achieve consistent improvements

over the random coefficients. If we just randomly set the perturba-

tion coefficients, the student performance can drop by up to 1.2%.

Also, by comparing different perturbation orders, we find that the

higher the perturbation order, the greater the performance differ-

ences. This is because in the higher-dimension space, it is harder for

random search to get a set of appropriate perturbation coefficients,



KDD ’24, August 25–29, 2024, Barcelona, Spain Rongzhi Zhang et al.

Table 1: Main results on natural language datasets. The student model (BERT-base) is distilled from teacher models of different
sizes (T5-xxl and T5-large). All results are averaged over three runs. The bolded numbers indicate the best results, while the
underscore “_” denotes the second-best results.

Method CoLA MNLI MRPC RTE SST-2 BoolQ Average

(Matt.) (Acc.) (F1) (Acc.) (Acc.) (Acc.)

Teacher T5-xxl 71.5 94.7 92.4 92.2 96.4 89.1 89.4

Standard KL 58.8 ± 0.3 90.3 ± 0.2 88.3 ± 0.4 78.1 ± 0.1 89.2 ± 0.3 69.5 ± 0.2 79.0

Temp. Scaling 59.4 ± 0.3 90.7 ± 0.1 88.9 ± 0.3 79.6 ± 0.3 89.4 ± 0.2 72.0 ± 0.3 80.0

Label Smoothing 59.3 ± 0.6 90.6 ± 0.4 89.2 ± 0.7 79.2 ± 0.4 89.9 ± 0.3 68.6 ± 0.4 79.6

Focal 59.2 ± 0.4 90.7 ± 0.3 88.7 ± 0.9 80.4 ± 0.4 89.3 ± 0.3 68.2 ± 1.5 79.6

Flooding 58.9 ± 0.5 90.6 ± 0.4 89.6 ± 0.6 80.2 ± 0.7 89.3 ± 0.4 69.3 ± 0.5 79.7

CRD 59.5 ± 0.5 90.5 ± 0.3 90.6 ± 0.4 81.1 ± 0.2 89.6 ± 0.3 71.8 ± 0.6 80.5

Annealing KD 59.8 ± 0.3 90.7 ± 0.3 90.0 ± 0.5 80.7 ± 0.2 89.3 ± 0.5 70.7 ± 0.5 80.2

FilterKD 59.2 ± 0.4 90.7 ± 0.2 89.5 ± 0.3 80.4 ± 0.3 89.3 ± 0.2 69.6 ± 0.9 79.8

MetaDistill 60.4 ± 0.2 90.8 ± 0.3 91.4 ± 0.4 81.3 ± 0.1 89.5 ± 0.2 71.9 ± 0.7 80.9

PTLoss(ours) 61.2 ± 0.3 91.1 ± 0.1 91.2 ± 0.3 83.5 ± 0.2 90.3 ± 0.1 73.1± 0.5 81.8

Teacher T5-large 61.4 93.6 92.1 87.2 95.5 77.9 84.6

Standard KL 54.8 ± 0.2 90.0 ± 0.1 87.8 ± 0.3 77.6 ± 0.2 88.8 ± 0.1 69.5 ± 0.2 78.1

Temp. Scaling 55.6 ± 0.3 90.4 ± 0.1 88.7 ± 0.2 79.4 ± 0.2 89.2 ± 0.5 70.4 ± 0.6 79.1

Label Smoothing 56.4 ± 0.4 90.6 ± 0.2 89.2 ± 0.6 79.2 ± 0.4 89.2 ± 0.4 69.1 ± 1.2 79.1

Focal 56.0 ± 0.2 90.3 ± 0.1 88.4 ± 0.5 79.9 ± 0.4 89.3 ± 0.5 68.9 ± 0.5 78.8

Flooding 57.8 ± 0.3 90.0 ± 0.6 89.5 ± 0.4 79.5 ± 0.4 89.0 ± 0.4 68.9 ± 0.6 79.3

CRD 58.2 ± 0.3 90.2 ± 0.4 89.8 ± 0.3 80.3 ± 0.2 89.4 ± 0.4 70.5 ± 0.5 79.7

Annealing KD 58.3 ± 0.2 90.4 ± 0.3 89.8 ± 0.5 79.9 ± 0.1 89.4 ± 0.4 69.7 ± 0.4 79.6

FilterKD 56.7 ± 0.3 90.2 ± 0.2 89.1 ± 0.4 78.8 ± 0.2 89.2 ± 0.3 69.2 ± 0.6 78.9

MetaDistill 58.6 ± 0.2 90.7 ± 0.3 89.6 ± 0.1 81.0 ± 0.1 89.3 ± 0.2 70.4 ± 0.2 80.1

PTLoss(ours) 60.5 ± 0.2 90.7 ± 0.1 91.1 ± 0.4 82.7 ± 0.1 90.0 ± 0.2 71.0 ± 0.3 81.0
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Figure 4: PTLoss analysis.
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Table 2: Results on CIFAR-100 dataset.

MobileNetV2 ShuffleNetV2 ResNet18 GoogleNet DenseNet121 ResNeXt29

Baseline 68.38 70.34 75.87 78.72 79.04 81.03

Tf-KD 70.14 ± 0.08 71.64± 0.17 76.60± 0.06 79.62± 0.43 79.54± 0.16 80.75± 0.13

PTLoss 70.62 ± 0.16 71.97± 0.10 77.55 ± 0.06 80.22 ± 0.11 80.22± 0.11 81.83 ± 0.21

which makes the random PTLoss even worse than the standard

KL loss. Conversely, equipped with the perturbation coefficients

obtained via proxy teacher, PTLoss can significantly outperform

the underlying KL loss.

5.4 Experiments on the CIFAR-100 dataset
To evaluate PTLoss on diverse tasks, we conduct this set of experi-

ments on the CIFAR-100 dataset. We follow [36] to get the baseline

results on the studied networks. Then we re-implement Tf-KD

in [36] as we don’t have access to the ground truth data during

the distillation stage. Specifically, The Tf-KD implementation is

modified from Tf-KD_self to be incorporated into our setting: we

modified Eq.(7) in [36] as 𝐿𝑠𝑒𝑙 𝑓 = 𝐷KL (𝑝𝑡𝜏 , 𝑝𝜏 ), where 𝑝𝜏 and 𝑝𝑡𝜏 are
the output probability of the student model and the pre-trained

student model, reshaped by a temperature 𝜏 . For our methods,

we simply add 1-order perturbation to 𝑝𝑡𝜏 , the 𝜖 is selected from

{0.1, 0.2, 0.5}. From Table 2, we observe that PTLoss can still outper-

form those baselines, which shows the applicability of PTLoss on

computer vision tasks.

6 RELATEDWORK
6.1 Knowledge Distillation
Knowledge distillation was first proposed in [4] to compress the

large models to smaller, faster models without a significant per-

formance drop. Hinton et al. [11] generalized this technique by

introducing a temperature parameter to smooth the teacher model

prediction. Tian et al. [30] employed contrastive learning to train

the student model. Later, Yuan et al. [36] explored the connection

between KD and label smoothing, Jafari et al. [14] and Chen et al.

[5] studied the feeding mechanism of the teacher’s knowledge.

Zhao et al. [38] decoupled the classical loss to target classes and

non-target classes for KD efficiency and flexibility. Ren et al. [27]

investigated supervisory signals and proposed to average teacher

outputs for KD stability, while Zhou et al. [40] evolves the teacher

model with the student feedback in a meta learning framework. Ad-

ditionally, there is also significant research on applying KD to text

generation tasks, as demonstrated by [1, 10, 16, 33, 37]. However,

the exploration of KD in text generation represents a distinct and

extensive area of study, it is beyond the scope of this paper because

our focus is on KD within language understanding tasks.

6.2 Distillation Theory
Concurrent with the empirical success of knowledge distillation, nu-

merous works aim to understand its mechanisms. Hinton et al. [11]

suggest that teacher’s soft labels offer “dark knowledge” through

weights on incorrect labels. Menon et al. [22] present a statistical

view, observing that a good teacher model should be Bayesian to

reduce the student objective variance. Stanton et al. [28] highlight

discrepancies between teacher and student output distributions

and emphasize the optimization challenge in distillation. While

more recent studies [2, 12, 15, 39] explore distillation from several

various angles, a gap remains between the theoretical analysis and

the improved distillation techniques.

6.3 Loss Function Design
Our work also relates to loss function design. Lin et al. [19] propose

a modification of the cross-entropy loss function, reshaping it to

focus more on hard examples and address issues of data imbalance.

Leng et al. [18] expand cross-entropy loss and focal loss into a linear

combination of polynomial functions, primarily studying Poly-1

formulation on computer vision tasks while avoiding issues with

high-order polynomial hyper-parameter searches. TaylorGLO [9]

utilizes CovarianceMatrix Adaptation Evolution Strategy (CMA-ES)

to optimize multivariate Taylor parameterization of a loss function

and learning rate schedule. However, it lacks a principled analysis

of the performance gains following perturbations. In contrast, our

work provides both theoretical and empirical evidence supporting

the necessity of incorporating perturbations into the Knowledge

Distillation (KD) learning objective, especially when employing a

high-fidelity teacher for effective student supervision.

7 CONCLUSIONS AND FUTUREWORK
In this study, we proposed a novel knowledge distillation loss

PTLoss which implicitly shifts the teacher model output distri-

bution to a high-fidelity one for student model training. We also

established connections between PTLoss and other loss functions

by demonstrating that PTLoss can subsume the others while provid-

ing more flexible adjustments to teacher models. We theoretically

showed how the teacher model affects the student model risks and

presented a principled method to systematically search perturba-

tion coefficients. Extensive experiments on multiple tasks verified

our proposed theory and validated the effectiveness of PTLoss.

While PTLoss enables better KD by creating a proxy teacher

closer to the ground truth distribution, we focus on the single-

teacher-single-student setting in this work. It is worth exploring

how this approach can be extended to ensemble KD involving

multiple teachers or students. Additionally, although the proposed

coefficients selection method provides a principal way to determine

the perturbation hyperparameters, it remains challenging to scale

up the number of classes and the perturbation order. Future work

could benefit from developing scalable methods for hyperparameter

search, enabling rapid determination of perturbation coefficients

even in high-dimensional spaces with numerous classes or high

perturbation orders.
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Table 3: Dataset Statistics

Dataset Task Train Distillation Dev Test

CoLA Linguistic Acceptability 8.5k 8.5k 3k 1k

MNLI Natural Language Inference 58.9k 314k 19.6k 9.8k

MRPC Paraphrase Similarity Matching 3.7k 3.7k 1k 1.7k

RTE Textual Entailment Inference 2.5k 2.5k 0.8k 3k

SST-2 Sentiment Analysis 6.7k 53.8k 6.7k 872

BoolQ Boolean Question Answering 2.5k 5.9k 1k 3.2k

Table 4: The search range of hyper-parameters.

Hyper-parameter Search Range

Learning Rate {2, 3, 5} × 10−5
Batch Size {8, 16, 32, 64, 128, 256}

Temperature 𝑇 {0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10}
Label Smoothing 𝛿 {0.02, 0.05, 0.1, 0.15, 0.2}

Focal Loss 𝜏 {0.1, 0.2, 0.5, 1, 2.0, 5.0}
Random PTLoss 𝜖𝑐,𝑚 [−1, 10]

8 APPENDIX
8.1 Dataset Statistics
We list the dataset statistics in Table 3.

8.2 Hyper-parameters
We list the search range of hyperparamters in Table 4. The search

for batch size and learning rate is applied to all the methods. And

for each baseline, we search for the best baseline-specific hyper-

parameters.

8.3 Connections between PTLoss and other
Perturbation Methods

In Section 4.1, we have presented the connection between PTLoss and

other perturbation methods. The connection between PTLoss and

the standard KL loss is direct, and it has been clearly presented how

PTLoss subsumes the focal loss. Now we detail the derivation of

the connection between PTLoss and temperature scaling and label

smoothing here.

Temperature Scaling.We compare PTLoss with temperature scal-

ing and claim that PTLoss subsumes it with appropriate approxima-

tion. As described in Hinton et al. [11], the logits are adjusted by a

temperature to control sharpness or smoothness of the probability

distribution.

p0,𝜏 =
𝑒𝑥𝑝 (𝑧0/𝜏)

𝑒𝑥𝑝 (𝑧0/𝜏) + 𝑒𝑥𝑝 (𝑧1/𝜏)
, (21)

where 𝜏 is the temperature and 𝑧𝑐 is the logits. Here we use binary

classification (i.e., 𝑐 = 0, 1) for the derivation simplicity without loss

of generality. Denote the probability without temperature scaling

as p0, we have
p0,𝜏
p0

=
𝑒𝑥𝑝 (𝑧0/𝜏)

𝑒𝑥𝑝 (𝑧0/𝜏) + 𝑒𝑥𝑝 (𝑧1/𝜏)
× 𝑒𝑥𝑝 (𝑧0) + 𝑒𝑥𝑝 (𝑧1)

𝑒𝑥𝑝 (𝑧0)

=
1 + 𝑒𝑥𝑝 (𝑧1 − 𝑧0)
1 + 𝑒𝑥𝑝 ( 𝑧1−𝑧0𝜏 )

.

(22)

In practice, we have

1 + 𝑒𝑥𝑝 (𝑧1 − 𝑧0)
1 + 𝑒𝑥𝑝 ( 𝑧1−𝑧0𝜏 )

≈ 1 or

𝑒𝑥𝑝 (𝑧1 − 𝑧0)
𝑒𝑥𝑝 ( 𝑧1−𝑧0𝜏 )

(23)

because |𝑧1 − 𝑧0 | ≫ 0. Then we have

p0,𝜏 ≈ p0 or

𝑒𝑥𝑝 (𝑧1 − 𝑧0)
𝑒𝑥𝑝 ( 𝑧1−𝑧0𝜏 )

p0 . (24)

For the first case where p0,𝜏 ≈ p0, we omit the discussion as it aligns

with the standard KL loss. For the second case, we proceed to draw

its connection with PTLoss as follows. We denote p𝑡𝜏,𝑐 , p𝑠𝜏,𝑐 as the
teacher, student probability scaled by temperature 𝜏 . Incorporating

temperature scaling, the KL loss can be formulated as:

ℓ
𝑡𝑒𝑚𝑝

𝐾𝐿

(
p𝑡𝜏 , p

𝑠
𝜏

)
= −H

(
p𝑡𝜏

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝜏,𝑐 · (− log p𝑠𝜏,𝑐 ), (25)

Substituting p𝑡𝜏,𝑐 and p𝑠𝜏,𝑐 in Eq. 25 using Eq. 24, we obtain

ℓ
𝑡𝑒𝑚𝑝

𝐾𝐿

(
p𝑡𝜏 , p

𝑠
𝜏

)
= −H

(
p𝑡𝜏

)
+

∑︁
𝑐∈[𝐶 ]

𝑎 · p𝑡𝑐 · [− log(𝑏 · p𝑠𝑐 )], (26)

where𝑎 = 𝑒𝑥𝑝 (𝑧𝑡
1
− 𝑧𝑡

0
)/𝑒𝑥𝑝 ( 𝑧

𝑡
1
−𝑧𝑡

0

𝜏 ), and𝑏 = 𝑒𝑥𝑝 (𝑧𝑠
1
− 𝑧𝑠

0
)/𝑒𝑥𝑝 ( 𝑧

𝑠
1
−𝑧𝑠

0

𝜏 ).

Comparing above Eq. 26 with Eq. 5, we can set

∞∑︁
𝑚=1

( 1
𝑚
+𝜖𝑐,𝑚) · (1−p𝑠𝑐 )𝑚 = 𝑎[

∞∑︁
𝑚=1

1

𝑚
· (1−p𝑠𝑐 )𝑚+

∞∑︁
𝑚=1

1

𝑚
· (1−𝑏)𝑚] .

(27)

It leads to

𝜖𝑐,𝑚 =
𝑎

𝑚
· (1 + ( 1 − 𝑏

1 − p𝑠𝑐
)𝑚) − 1

𝑚
, (28)

which indicates PTLoss can encompass the temperature-scaled dis-

tillation loss by setting a group of appropriate perturbation coeffi-

cients.
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Label Smoothing. We compare PTLoss with the label smoothing

method and claim that label smoothing proposed in [29] is a special

case of PTLoss. According to the implementation in Szegedy et al.

[29], we can smooth the teacher labels in KD by

p𝑡𝑙𝑠𝑐 = (1 − 𝛿)p𝑡𝑐 + 𝛿/2, (29)

with a smoothing parameter 𝛿 . Starting from Eq. 5, we can replace

the term p𝑡𝑐 by its smooth version p𝑡𝑙𝑠𝑐 . Then the original Eq. 5 with

label smoothing becomes:

ℓ𝑙𝑠𝐾𝐿

(
p𝑡 , p𝑠

)
= −H

(
p𝑡𝑙𝑠

)
+

∑︁
𝑐∈[𝐶 ]

p𝑡𝑙𝑠𝑐 · (− log p𝑠𝑐 ) (30)

For the entropy of the teacher output, the smooth version H
(
p𝑡𝑙𝑠

)
is different from the original H

(
p𝑡

)
with only a constant 𝐶 , which

can be ignored when optimizing the loss function. We introduce

Δp𝑡𝑐 = 𝛿/2−𝛿p𝑡𝑐 and replace all the p
𝑡𝑙𝑠
𝑐 in Eq. 30 by p𝑡𝑙𝑠𝑐 = p𝑡𝑐 +Δp𝑡𝑐 ,

then we get:

ℓ𝑙𝑠𝐾𝐿

(
p𝑡 , p𝑠

)
= −H

(
p𝑡𝑙𝑠

)
+

∑︁
𝑐∈[𝐶 ]

(p𝑡𝑐 + Δp𝑡𝑐 ) · (− log p𝑠𝑐 ) (31)

Similarly, we let ℓ𝑙𝑠
𝐾𝐿

(
p𝑡 , p𝑠

)
= ℓ𝑃𝑇

(
p𝑡 , p𝑠

)
, it yields∑︁

𝑐∈[𝐶 ]
(p𝑡𝑐+Δp𝑡𝑐 )

∞∑︁
𝑚=1

1

𝑚
·(1−p𝑠𝑐 )𝑚 =

∑︁
𝑐∈[𝐶 ]

p𝑡𝑐
∞∑︁
𝑚=1

( 1
𝑚
+𝜖𝑐,𝑚)·(1−p𝑠𝑐 )𝑚 .

(32)

We obtain

𝜖𝑐,𝑚 =
Δp𝑡𝑐
𝑚p𝑡𝑐

Δp𝑡𝑐=𝛿/2−𝛿p𝑡𝑐−−−−−−−−−−−−−→ 𝜖𝑐,𝑚 =
𝛿

𝑚
( 1

2p𝑡𝑐
− 1) . (33)

In summary, the connection between the two losses can be ex-

pressed through a specific 𝜖𝑐,𝑚 , which depends on the smoothing

parameter 𝛿 . This derivation highlights that PTLoss generalizes the

label smoothing method and provides a more flexible framework

that encompasses the effects of label smoothing.

8.4 Proof of Theorem 1
The theorem 1 states that given a teacher model p𝑡 , an unlabeled

distillation dataset D𝑢 with an unknown true distribution p∗, we
have for any probability predictor p : X → R𝐶 :

E
[
(�̃�𝐾𝐿 (p; p𝑡 ,D𝑢 ) − 𝑅 (p) )2

]
≤ 2

𝑁𝑢
· V

[
p𝑡 (𝑥 )𝑇 log(p(𝑥 ) )

]
+

O
( (
E𝑥

[
∥p𝑡 (𝑥 ) − p∗ (𝑥 ) ∥2

] )
2 +

E𝑥

[(
p𝑡 (𝑥 )𝑇 log p𝑡 (𝑥 )

)
2

] )
,

where V[·] denotes the variance of a random variable.

Proof. We first rewrite the population risk 𝑅(p) with cross-

entropy loss 𝑙𝐶𝐸 plugged in as follow:

𝑅(p) = E(𝑥,𝑦) [ℓ (𝑦, p(𝑥))]
= E𝑥 [E𝑦 |𝑥 [ℓ (𝑦, p(𝑥))]]

= E𝑥 [p∗ (𝑥)𝑇 (− log(p(𝑥)))] .
(34)

Then, we write out the distillation empirical distillation risk defined

in Eq. 3 and have:

�̃�𝐾𝐿 (p; p𝑡 ,D𝑢 ) − 𝑅 (p) =
1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

p𝑡 (𝑥𝑛 )𝑇 (− log(p(𝑥𝑛 ) ) )

+ 1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

p𝑡 (𝑥𝑛 )𝑇 log(p𝑡 (𝑥𝑛 ) ) − E𝑥 [p∗ (𝑥 )𝑇 (− log(p(𝑥 ) ) ) ] .

(35)

We let

Δ �
1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

p𝑡 (𝑥𝑛)𝑇 (− log(p(𝑥𝑛))) − E𝑥 [p∗ (𝑥)𝑇 (− log(p(𝑥)))],

and

𝐻 �
1

𝑁𝑢

𝑁𝑢∑︁
𝑛=1

p𝑡 (𝑥𝑛)𝑇 log(p𝑡 (𝑥𝑛)),

then

E
[
(�̃�𝐾𝐿 (p; p𝑡 ,D𝑢 ) − 𝑅(p))2

]
= E

[
(Δ + 𝐻 )2

]
≤ 2E

[
Δ2

]
+ 2E

[
𝐻2

]
= 2V [Δ] + 2E [Δ]2 + 2E

[
𝐻2

]
(36)

where the second line is by the inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2
and the linearity of expectation, and the third line is by E

[
Δ2

]
=

V [Δ] + E [Δ]2. Observe that

E [Δ] = E𝑥
[
(p𝑡 (𝑥) − p∗ (𝑥))𝑇 (− log(p𝑡 (𝑥𝑛)))

]
≤ E𝑥

[
∥p𝑡 (𝑥) − p∗ (𝑥)∥2 · ∥ log(p𝑡 (𝑥𝑛))∥2

]
≤ E𝑥

[
∥p𝑡 (𝑥) − p∗ (𝑥)∥2 · 𝑐1 · ∥ log(p𝑡 (𝑥𝑛))∥∞

]
≤ 𝑐2E𝑥

[
∥p𝑡 (𝑥) − p∗ (𝑥)∥2

]
,

(37)

where the second line is by the Cauchy-Schwartz inequality, the

third line is by the equivalence of norms with a constant 𝑐1, and

the last line is by the boundedness of the log loss term
3
.

Furthermore, we notice the𝑅(p) term in the aboveΔ is a constant

and thus have:

V [Δ] = V
[
�̃�𝐾𝐿 (p; p𝑡 ,D𝑢 )

]
=

1

𝑁𝑢
· V

[
p𝑡 (𝑥)𝑇 (− log(p(𝑥)))

]
=

1

𝑁𝑢
· V

[
p𝑡 (𝑥)𝑇 log(p(𝑥))

]
,

(38)

where the last equation comes from V[𝑎𝑋 + 𝑏] = 𝑎2V[𝑋 ].
Finally, we plug in Eqs (37)(38) and the definition of 𝐻 into

Eq. (36) and complete the proof. □

8.5 Search Time of Perturbation Coefficients
For each perturbation order, we randomly sample 100 coefficient

sets from [−1, 10] and find the best set that has the lowest risk

deviation gap according to Eq. 20 with 1000 validation examples.

The whole process takes less than two minutes on CPU with 64G

memory.

3
This is a common assumption defined in previous literature such as (Boucheron

et al. [3], Theorem 4.1; Menon et al. [22], Proposition 2) and can be achieved easily in

practice with regularization techniques.
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