
Informarion .Systems Vol. 15, No. 2, pp. 173-186, 1990 0306-4379/90 $3.00 + 0.00

Printed in Great Britain. All rights reserved Copyright 0 1990 Pergamon Press plc

ROLES AND THEIR ROLE IN POSING
RECURSIVE QUERIES?

SHARON KucK,‘$ ROLAND JOHN: ARND LEWE~ and MARC NAJORK~$

‘Access to Wisdom, 405 Yankee Ridge Lane, Urbana, IL 61801, U.S.A.
2Karolinenstr. 6, 8000 Munich 22, F.R.G.

3Spitzwegstr. 30, 6070 Langen, F.R.G.
41304 W. Springfield Ave., Urbana, IL 61801, U.S.A.

(Received 25 January 1989; in revised form 24 August 1989; received for publication 16 November 1989)

Abstract-We show how to use the entity-relationship diagram as a vehicle for specifying the semantics
of attributes. A main contribution of this work is a strategy for creating entity-relationship diagrams that
make explicit the role of attributes that are over the same domain. Recursive queries can be posed over
the universal relation when attributes are over the same domain and play distinct roles. We show how
to extend a query language, that poses queries over the universal relation, to include the ability to express
recursive queries.

1. INTRODUCTION

We have a vision that has driven this research,
namely, that combining into one integerated system
the best features of a universal relation interface and
a visual display, such as entity-relationship diagrams
(abbrev. ER diagrams)---our vehicle for database
scheme design-will lead to a user-friendly database
management system (abbrev. DBMS). A real-world
data model with a visual display is essential for
user-friendly database scheme design. A graphical
query language can then be applied to the graphical
database scheme thereby increasing the ability of a
naive user to express queries over the database
scheme. However, ER diagrams have certain short-
comings that can be overcome by adding a universal
relation interface to the diagrams. Universal relation
interfaces also fall short in that the unique role
assumption is too restrictive. In this paper we
give solutions to these problems and explicitly
show how recursive queries can be posed over the
universal relation (also extended ER diagrams) which
is one of the benefits gleaned from the research on
roles.

tJohn and Lewe were supported in part by exchange
scholarships between the University of Illinois and the
Technische Hochschule Darmstadt, F.R.G.

fThis work was completed while the author was on the
faculty of the University of Illinois at Urbana-Cham-
paign; supported in part by IBM Faculty Development
Award I-5-37325.

@upported in part by the German Academic Exchange
Service.

?An example of a weak entity set is DEPARTURES which
has a single attribute DATE. DEPARTURES depends
on the many-to-one relationship INSTANCE-OF from
DEPARTURES to FLIGHTS for its definition (21. The
key of FLIGHTS, namely, FLIGHTNUM, together with
DATE is the key of DEPARTURES.

A constraint placed on a database in order for a
universal relation interface to translate a query is the
unique role assumption which requires an attribute to
play a single role within the universal relation scheme.
If, for example, attribute NAME plays the role of
employee name, then it cannot also play the role of
the department name in the same universal relation
scheme. Doing so would mean that a tuple in the
universal relation would either have the employee’s
name or the department’s name in the column for
NAME, but not both. When we want to represent
information about an employee and his department,
we must use two distinct attribute names.

ER diagrams have the opposite problem. Every
attribute that appears in the diagram is assumed to
be playing a distinct role, even when the spelling of
two attributes (in two distinct entity sets) is the same.
Thus, if STATE appears as an attribute in two entity
sets, one for products, and one for customers, we
would assume that STATE will have two distinct
values in a tuple that relates products and customers.
The database scheme is lacking an important con-
straint if a customer must buy a product in the state
in which the customer lives. In this case, we expect
STATE to have only one value as the unique role
assumption requires. (We elaborate more on this in
Example 2.) Moreover, in ER diagrams we cannot
even assume that the attributes are over the same
domain. For example, two occurrences of STATE

could mean “states in the United States” and
“states of employees’ health”. ER diagrams would
benefit from the unique role assumption in the ability
to capture the semantics of the attributes as these
examples show.

With the universal relation scheme assumption (i.e.
the unique role assumption more precisely) there is no
need for weak entity sets7 [l] whose appearance arises
since a distinct attribute may appear in only one

173

174 SHARON KUCK et al.

entity set or relationship. The relationship on which
a weak entity set depends, is not explicitly stated
within the ER diagram-it must be gleaned from
the written description of the database scheme.
Thus, the key of the weak entity set is not apparent
in a diagram. With a universal relation interface an
attribute could appear repeatedly in a diagram. We
have built upon the work of Azar and Pichat [3] who
added inclusion dependencies to the ER model. Since
they do not address roles directly, they do not discuss
the benefits we achieve through the results of this
paper.

Furthermore, most query languages do not make
the universal relation scheme assumption [4-131.
Invariably, within a query, the joins must be specified;
this distinguishes the languages from a universal
relation interface query language. A dot notation is
used in [1 I] and [131. An explicit join operator is used
in [4, 5, 10, 131. In [7-91, a join is specified by naming
a path through the ER diagram. Recursive queries, a
subject of this paper, can be expressed in [8] and [1 11.

While the unique role assumption does a fine job
of capturing the semantics of attributes that appear
in more than one place and play the same role, it does
nothing for attributes that are over the same domain
and play distinct roles. A criticism of traditional
database design, which we see with ER diagrams and
universal relation interfaces, is that certain queries are
unexpressed since the connection (namely that they
are over the same domain) between attributes is lost.
An example of such attributes can be seen with the
seIling agent and the buying agent in a real estate
database. Both are real estate agents (i.e. they are
over the same domain) and yet they can be distinct
people. One has a contract with the home owner (i.e.
the seller), the other with a person looking for a new
home (i.e. the buyer). When the attributes are named
distinctly, an end-user may miss the fact that selling
agent and buying agent are over the same domain.

A contribution we make is to show how to relax the
unique role assumption in a universal relation inter-
face. We allow an attribute to play more than one
role. By using an ISA hierarchy we can name dis-
tinctly each role played by an attribute. As in the ER
model, specialization entity sets inherit the attributes
of the generalization entity set. We provide a means
of distinctly naming these attributes in U, the univer-
sal relation, for each role. Moreover, attributes of

DEPARTMENT MANAGERS

Fig. 1. A sample ER diagram.

entity sets that are determined by the attribute that
plays multiple roles are also named distinctly in U for
each role. Such attributes have distinct values, and so
should have separate columns in U. This makes
the entire database scheme visible for each role an
attribute is playing within U, and yet, there is an
economy of expression since the attribute which plays
more than one role and all entity sets determined by
it, needs to occur only once in the ER diagram.

Maier et al. [14] have solved another aspect of the
problem of relaxing the unique role assumption. They
use the notion of objects to design a database scheme
[IS]. An object represents a unit of retrieval. Consider
attribute A which is playing a role of attribute B. If
there is no object containing both A and B, they could
not pose a query about both A and B. In [14] they
show how to use role relationships to make this
connection. The solution of [14] can be seen as
information hiding. Either A or B is seen connected
to the rest of the database scheme, but not both.
Information about A is visible and information about
B is hidden or vice versa. This poses certain problems
in their approach as they point out. Certain queries
are computable, but not recognized as such by their
algorithm for translating queries. An example of such
a query is “find all managers and their salary” posed
over a database scheme as given in Fig. 1. Salary is
always seen as a property of employee which over-
rides the fact that managers have salaries too. In our
approach, we diagrammatically show that employee
and manager are over the same domain. We give a
method for naming manager-name and manager-
salary distinctly from employee-name and employee-
salary so that one or the other can explicitly appear
in a query. Finally, we retain the notion of functional
dependencies which are not explicitly used in their
approach.

One advantage we glean from correctly represent-
ing roles is the ability to express recursive queries over
the universal relation. When two or more attributes
are over the same domain and play distinct roles, a
query may be interpreted as being recursive by a
universal relation interface. As a basic yardstick for
measuring the power of relational query languages,
Codd introduced the relational algebra and relational
calculus [16, 171. These languages were augmented
with aggregate operators [18], a transitive closure
operator [19], and a least fixed point operator [20].

Roles and their role in posing recursive queries I75

Agrawal [21] introduced an alpha operator which
allowed, in addition to the power of relational alge-
bra, the expression of recursive queries. Recursive
queries are more general than transitive closure since
aggregations, selections, and other operations can be
performed on the transitive closure.

The query language we give is useful for universal
relation interfaces such as 13, 15,22-283 as welt as for
such a system as Scrabble 1291 which is an entity-
relationship oriented microcomputer DBMS. Even
though Scrabbie is based on the functional depen-
dency model 1301, it also makes the universal relation
scheme assumption [25]. The common trait among
these systems is that they allow the user to specify
what data is to be retrieved without needing to specify
how to retrieve the data. Queries are formulated
using only attribute names (and not relation names)
in the target-list and in the selection (no range
formuia appears).

The query language we give is a relational calculus
for a database that consists of a single relation. It is
a universal relation version of the relationat algebra,
R~&J, given in]2I]. Qur language is not as powerful
as Alpha. A recursive query can compute flight plans
from New York to Los Angeles using a relation of
direct flights, even when there are no direct flights
between the two cities. In Alpha, once a particufar
Aight plan is obtained, any relational expression can
be applied to that flight plan. In our language, we
restrict the operations that can be applied to the flight
pian to select, project, and join (the attributes in the
flight plan range over the universal relation implicitly,
so the join operation is implicit). An example of a
query requiring a more expressive relational expres-
sion is one that asks for Right plans such that every
city that exists in the database, occurs in the flight
pian.

Our language makes use of the inherent ordering
among the tuples in the flight plan. This feature
makes certain queries easier to express. We show how
to express queries that take advantage of that order-
ing, for example a query that puts constraints on the
layover time between flights.

In this paper we tackk a subset of the research that
could lead to accomplishing alI our goals as men-
tioned at the start of this paper. Below, we enumerate
the topics of this paper. The first three topics are
covered in Section 2.2, the fourth topic in Section 2.5,
and the fifth topic in Section 3.

iFor instance, unless it is understood that an attribute plays
more than one role, recursive queries posed over the
universal relation are not possible.

$lf it appeared to the universal relation interface that
department name and employee name were over the
same domain but playing distinct roles, meaningless
recursive queries could be formulated. The number of
@pies in each A, as described in Section 3, would be one.

CjWe have jrn~~ernent~ this strategy in ER-Easy, a graphical
interface for the design of EER diagrams [31,32].

(I) We show how to modify the ER diagram so
that every occurrence of the same attribute has the
same meaning-this is the unique role assumption, a
fundamental assumption of a universal relation inter-
face. Once this modification is made, the diagrams are
referred to as Extended ER diagrams (abbrev. EER
diagrams),

(2) We show how to relax the pique rote assump-
tion of the universal relation interface so that an
attribute can pIay more than one role.

(3) We show how to represent and distinguish
between one role and more than one role of an
attribute in an UX diagram.

(4) We give an algorithm for transforming EER
diagrams that erraneously convey the impression that
two attributes are over distinct domains, to EER
diagrams that show the two attributes over the same
domain playing distinct roles.

(5) With our relaxing of the unique role assump
tion, recursive queries can now be expressed in a
query language that poses queries over the universal
relation. We give such a query language. It is a
small matter to develop a graphical query language
for recursive queries that can be posed over EER
diagrams that we develop in Section 2.2. We do not
give a graphical query language.

2. MORAINE AND ROLES OF ATTRIBUTES

It is extremely important that the domains and
roles of attributes are properiy specified. Improper
specification of domains and roles can severety limit
the allowable queries? or allow meaningless queries
to be formulated over the universal refation.: We
begin by giving an introduction to the ER model in
Section 2. I. fn Section 2.2 we show how to expficitly
represent roles of attributes in an EER diagram. In
Sections 2.3 and 2.4 we show how to determine,
through an interactive process with an end-user,
whether two attributes are over the same domain and
play distinct roles, respectively. The strategies we give
are only useful for domains whose elements are
character data.$ A more sophisticated strategy is
required for numeric data and is outside of the scope
of this work. Finally, in Section 2.5, we show how to
transform an EER diagram 17 with respect to two
attributes A, and A, which appear to be over distinct
domains. The algorithm transforms D into a diagram
6 indicating that A I and A2 are over the same domain
and play distinct roles.

in the ER model we can represent entities and
relationships [33]. An entity is a real-worid object
which is distinguishable. A group of similar entities
forms an entity set. Entities have attributes. Associ-
ated with an attribute is a datat_~~e (e.g. integer, real)
and a d~~~~~ which is a se~nt~c desc~ption in a
natural language, like English. For example, the

176 SHARON KUCK et al.

domain of an attribute for employee name could be
“all names of persons” and the datatype could be
“character of length 20”.

We can represent a database scheme using an ER
diagram where entity sets are represented by rectan-
gles and attributes are represented by ovals. A key is
a set of attributes that distinguish entities of an entity
set. In the algorithms of this section, when two (or
more) attributes are over the same domain, we deter-
mine whether one attribute is a generalization of the
other attribute. More precisely, we must consider the
entity set of the most general attribute, and not
the attribute itself. This question only makes sense if
the attribute is a key of the entity set and the value
of the attribute is synonymous with the entity being
represented. So, we introduce a new term called a
descriptive key which is reserved for those keys which
describe the entity set. Ordinarily, we need not (and
do not) distinguish between a descriptive and non-
descriptive key. We use the convention of underlining
descriptive keys with a solid bar and non-descriptive
keys with a dashed bar in ER diagrams.

Example 1. In Fig. 2 we see the entity set
DEPARTMENTS with attributes DNAME,
MANAGER, and BUDGET. There are two keys
DNAME and MANAGER, but only DNAME is a
descriptive key. “Computer Science” easily identifies
the department of the authors to the man on the
street, whereas “C. W. Gear” would not. n

A relationship is an ordered list of entity sets
expressing a real-world correspondence among the
entity sets participating in the relationship. In an ER
diagram the participation of an entity set E in a
relationship R is expressed by an edge or an arc from
R to E. An arc is directed toward E when a distinct
entity, of another entity set participating in R, can
be mapped to exactly one entity of E. Three classes
of relationships, one-to-one, many-to-one, and
many-to-many we represent as illustrated by the
“PRESIDENT”, “WORKS-IN”, and “TAKES”
relationships, respectively, of Fig. 3.

The ISA relationship [34-361 from El to E2 is a
built-in relationship that is a special case of a one-
to-one relationship. However, unlike one-to-one
relationships, we only direct the arc to the more
general entity set. An ISA relationship expresses a
hierarchy between two entity sets E, and E2. Ez is a
generalization of E, and also, El is a specialization of
Ez . E, inherits all attributes of Ez . The keys of E, are

Fig. 2. MANAGER as an attribute of the entity set
DEPARTMENTS.

PoLxTmANs

EbfPLOyEES

Fig. 3. Relationships.

the keys of El. When discussing ISA relationships, we
use attribute and entity set interchangeably. In Fig. 4
“PERSONS” is a generalization of “PILOTS” (i.e.
every pilot is a person). We label the arc with a
role-name which is defined in the next section.

Entity sets E, , . . ., E,, form a (directed) path in the
database scheme if for all i (1 < i -Z n), there is a
many-to-one or one-to-one relationship from Ei to

E/+1. If there is a path from Ei to Ei then E, is an
ancestor of E,.

2.2. Explicitly representing roles

We use ISA relationships to explicitly represent
each role of an attribute. We distinguish three differ-
ent semantic relationships that any two attributes can
have with respect to each other and will then show
how each is represented in the EER diagram:
(1) Attributes can be over different domains and
hence will play different roles. (2) Attributes can
have the same domain and play the same role.
(3) Attributes can be over the same domain but play
distinct roles.

When two attributes have distinct domains then
they are required to be named distinctly. For exam-
ple, attributes for employee name and department
name should be distinct.

When two or more attributes are over the same
domain and play the same role, the meaning is that,
in the universal relation r, a single column for those
attributes is sufficient since we expect a tuple of r to
agree on all these attributes. We really only have
a single attribute, and all the occurrences of the
attribute should have the same name in the EER
diagram. By adding the semantics of the unique role
assumption to ER diagrams, we are transforming
them into EER diagrams.

Example 2. For example, consider the EER dia-
gram of Fig. 5. STATE is an attribute of the entity
sets CUSTOMERS and PRODUCTS. The following
semantics can be inferred from the syntax of the
diagram. A customer lives in a particular state and a
product is priced for sale distinctly in each state. Both
occurrences of STATE are playing the same role. A
customer must buy a product at the price for the state

Fig. 4. An ISA relationship.

Roles and their role in posing recursive queries 1’77

Fig. 5. STATE plays the same role in both entity sets.

in which he resides. If customer Jones buys a com-
puter in the state of Illinois for $2000, we know that
Jones lives in Illinois, and the computer is priced for
sale in Illinois for $2000. n

When two or more attributes A, . . A, are over the
same domain and play distinct roles either the roles
are explicitly seen as distinctly named attributes or
the roles are implicitly defined by distinct paths from
an entity set E, to E,.? In the former case, either one
attribute is a generalization of the other attributes or
we can introduce another attribute A,, I which would
be a generalization of A, . A,.$ We expect ISA
relationships to represent this hierarchy. To create a
hierarchy, each A, (1 < i < n), must be a key of an
entity set E,. Such an E, can be created if it does not
already exist. (The algorithm for transforming the
EER diagram is the topic of Section 2.5.) We call the
more general entity set the multi-role entity set and
the specialization entity sets, role entity sets.

Example 3. In the diagram of Fig. 6 it appears as
if FROMCITY and TOCITY are over distinct do-
mains. However, they are over the same domain and
play distinct roles. FROMCITY could not be a
generalization of TOCITY, nor vice versa. We can
introduce another attribute CITY which is a general-
ization of FROMCITY and TOCITY. The diagram
of Fig. 7 represents the hierarchy with role entity sets
FROMCITIES and TOCITIES, and multi-role entity
set CITIES. n

When the roles are implicitly defined by distinct
paths from an entity set E, to E,, E, is the multi-role
entity set. Two role entity sets are added to the
diagram to take the place of E, on the paths from E,
to E,. The role entity sets are specializations of the
general entity set E, represented by ISA relationships
as we saw before.

Example 4. Consider the EER diagram of Fig. 8.
There is a path from FLIGHTS to CITIES through
the relationship FC and another through the relation-
ship TC. This diagram should also be transformed
into the diagram of Fig. 7. n

The attributes of the multi-role entity set M
are called multi-role attributes. For each role that

?A combination of the two may occur. For simplicity, we
treat the two cases separately.

$Each A, (1 < i f n) may occur in several entity sets and
play the same role in each entity set. For simplicity, we
assume each A, occurs only once.

Fig. 6. A FLIGHTS entity set with attributes.

M plays, we expect a distinct occurrence of multi-
role attributes in the universal relation. (The multi-
role attributes themselves occur in the universal
relation.) To distinctly name each such attribute,
for purposes of this paper, we choose a role-name
for the role entity set and prefix each multi-
role attribute seen in the diagram with the role-
name. The result is a set of role attributes for
each role entity set. Role-names label the arcs
emanating from ISA relationships and directed
toward the multi-role entity set within the EER

diagrams.
Example 5. Consider the diagram of Figure 9.

CITY and POP are multi-role attributes. FROM
and TO are role-names labeling the arcs from
entity sets FROMCITIES and TOCITIES, respec-
tively, to the multi-role entity set CITIES. Role
attributes that we expect in the universal relation
scheme are FROMCITY, FROMPOP, TOCITY, and
TOPOP. n

Attributes of entity sets that are ancestors of a
multi-role entity set are also multi-role attributes and
hence, role attributes are created from them for each
role entity set.

Example 6. Consider Fig. 9. Given a specific entity
Urbana of role entity set FROMCITIES, there is
exactly one entity Illinois of entity set STATES

related to Urbana. The reason is because of the
many-to-one relationship from multi-role entity
set CITIES to STATES and the ISA-relationship
between FROMCITIES and TOCITIES. Similarly,
entity Los Angeles of role entity set TOCITIES is
related to only entity California of STATES.

The EER diagram of Fig. 9 would also have role
attributes FROMTAXRATE, TOTAXRATE,
FROMSTATE, and TOSTATE. H

Fig. 7. FLIGHTS database scheme augmented with role-
defining entity sets.

178 SHARON KUCK et al.

09 FC TC

Fig. 8. The two paths from FLIGHTS to CITIES implies
CITIES plays two roles.

2.3. Determining same domains

When a user adds an attribute A to the database
scheme, he should begin by specifying a datatype t.
Then, the user should consider a domain list contain-
ing those domains already specified for attributes of
datatype t. If the domain of A is in the domain list,
the user should choose that domain for the new
attribute and not enter a second name for the same
domain. Otherwise, a new domain d is associated
with A and d is added to the domain list for the
datatype t.

Suppose that the user chooses an existing domain
d, which was already associated with an attribute B.
To verify whether or not A and B have the same
domain, we can ask for sample values a and b for
attributes A and B, respectively. Next, we ask the user
the questions7 (1) Is a an acceptable value for B?
(2) Is b an acceptable value for A? When the answer
to both questions is “yes”, then the two attributes
indeed have the same domain. When the answer to
both questions is “no”, then the domain specification
was too broad. In this case, two specifications are
needed and each one will describe a smaller set of
values than the original.

Example 7. If the user started out by specifying the
domain for employee names as “all possible names”
and then specified department names as being over
the same domain, the original domain specification
was too broad. The questions$ (1) Is Peter Smith
an acceptable value for department name? (2) Is
Computer Science an acceptable value for employee
name? are both answered with a “no”. The domain
for employee names should be “all possible names of
people” and the domain for department names
should be “names of academic disciplines”. n

When one answer is “yes” and the other answer is
“no”, we assume that the domains are the same and
then carry out additional inferencing to see if the
roles are distinct as discussed in Section 2.4. One is
tempted to go beyond establishing the domains as
being the same and interpret this response as saying

tone question should be sufficient to determine whether the
attributes are over the same domain. For completeness,
we give both possibilities.

fPeter Smith and Computer Science are sample values given
by the user for the attributes for employee name and
department name, respectively.

Fig. 9. FLIGHTS database scheme augmented with infor-
mation about STATES.

that one attribute, for instance A, is a generalization
of the other attribute B. However, the answer we
receive is dependent on the sample data and hence it
would be possible to obtain a different answer based
on a different set of data. For example, if our two
attributes are employee names and manager names,
the user may choose person names from their own
work environment. The two names may be those of
a manager and an employee. The answers to our
questions could differ, depending on the sample data.
This is an instance of attributes playing distinct roles,
but to determine this, we need a different type of
question which we describe in Section 2.4.

2.4. Determining distinct roles

Only when two attributes A and B are over the
same domain does it make sense to ask whether or
not A and B play the same role. Suppose that A is an
attribute of E, and B is an attribute of E,. E, and E,
are not necessarily distinct. The question is whether
or not A and B always are expected to have the same
value in a tuple of the universal relation. Worded
another way, consider entities e, and ez of entity sets
E, and E2, respectively, such that there is some
relationship between e, and e, in the database. Do we
expect A and B to have the same value in e, and e,?
If so, then A and B are playing the same role.
Otherwise, A and B are playing distinct roles.

Example 8. Consider the FLIGHTS entity set of
Fig. 6, and the question, “Must a flight have the same
value for FROMCITY and TOCITY?” The answer is
“no”, so we can assume that FROMCZTY and
TOCITY are playing distinct roles. l

2.5. Transforming a diagram to indicate distinct roles

In this section we start with an EER diagram D in
which the roles an attribute plays are not visually

Roles and their role in posing recursive queries 179

communicated by the EER diagram. There are two
cases to consider. Either the roles are implicitly
defined by distinct paths from an entity set E, to an
entity set E,, or there are two attributes, A and B,
which appear to be over distinct domains, but are
actually over the same domain and play distinct roles.
We discuss these two cases separately in Sections
25.1 and 2.5.2. In practice, the algorithms given in
both sections need to be applied since the two cases
can occur in a single diagram.

2.5. I. Implicit multiple occurrences of attributes.

When there are two distinct paths from entity set E,
to entity set E,, then the attributes K of the descriptive
key of E, could either be playing one role in the
universal relation or two roles. Should K be playing
one role, both paths must lead to the same entity of
E,. If K is playing two distinct roles, then each path
can lead to distinct entities of E,. In the latter case,
we transform the diagram to make the roles explicit.
E, is the multi-role entity set. We create two role
entity sets, R, and R,, each of which takes the place
of E, on one of the original paths originating with E,.

We also create an ISA relationship from R, to E, and
from R2 to E,.

Example 9. In the EER diagram of Fig. 8, there is
a path from FLIGHTS to CITIES through the
relationship FC and another path through the
relationship TC. CITIES is seen as a multi-role
entity set. Two role entity sets are introduced,
FROMCITZES and TOCITZES which take the
place of CITIES in the relationships FC and TC,

respectively, as seen in the diagram of Fig. 7.
ISA relationships are introduced to connect
FROMCZTIES and TOCITZES to CITIES to com-
plete the transformation. n

As a last note, the two paths cannot have a
relationship in common. Otherwise, we would be
creating an ISA hierarchy for the true multi-role
entity set, and additional ISA hierarchies for all
ancestors of the multi-role entity set.

Example 10. Consider the diagram of Fig. 9. Since
CZTfES is already playing two distinct roles, the
attributes of STATES are multi-role attributes since
STATES is an ancestor of CITIES. We should not
create an ISA hierarchy from FLIGHTS to STATES,

even though there are two paths between the entity
sets. IN is a relationship shared between the two
paths and the above rule prevents us from incorrectly
transforming the diagram. n

2.52. Explicit attributes over the same domain

playing distinct roles. In this section we start with an
EER diagram D in which A and B appear to be over
distinct domains, that is, the attributes are named

-
tSample values, like b, for the attributes would be given by

the user.
$If E, is a role entity set, A should eventually be removed

from E, since a role entity set obtains its descriptive key
from the multi-role entity set as in all ISA relationships.

§Hence, the concept of a weak entiry set is not needed.

distinctly. However, A and B should appear to be
over the same domain and play distinct roles. A and
B belong to the entity sets E, and E2, respectively, in
E. E, and E2 are not necessarily distinct. We give an
algorithm to transform D into B as described in
Section 2.2 for attributes that play more than one
role.

We begin by considering the descriptive key of
E,. If A is a descriptive key of E,, then E, could
be the multi-role entity set. To determine whether or
not E, is a generalization of B we could ask the
user, “Could B b be an entity of E,” where b is a
value for Bt (e.g. considering Fig. 2, we ask,
“Could MANAGER ‘Jones’ be an entity of
EMPLOYEES” as in Example 12). If the answer is
yes, then E, is the multi-role entity set for b, other-
wise, E, is a role entity set.f The same process should
be carried out for E2 although only E, or E2 can be
the multi-role entity set. If neither E, nor E, are
multi-role entity sets, then we create a multi-role
entity set having a multi-role attribute C as a descrip-
tive key. For the rest of this section we will refer to
the multi-role entity set as M. If E, and/or E, are
already role entity sets, we will refer to them as R,
and/or R,, respectively.

The rest of the algorithm is carried out for both A

and B. Without loss of generality, we will use A in our
discussion and assume that E, was neither a multi-
role entity set nor a role entity set. The step for
creating the role entity set would be omitted other-
wise.

We will create a role entity set R, and add a
relationship E, R, between E, and R,. If A is a key
(but not a descriptive key), then E, R, is one-to-one.
If A is not prime (i.e. A does not belong to a key) then
E, R, is many-to-one from E, to R,. A should be
removed from E, in both of these cases.

If A is part of a key of E, then there are two
possible transformations which will accurately repre-
sent the constraints represented by the relationships
of the original EER diagram. One transformation is
to make E, R, a many-to-many relationship from E,

to R,. In this case, all the non-key attributes of E,
become attributes of the relationship E, R,. A is
removed from E,. Additionally, R, must participate
in certain relationships in which E, participates. The
key of E, in the original diagram is split between E,
and R, in the new diagram. R, must participate in
those relationships, R, in which the key of E, is also
a key of R (i.e. those in which E, participates in R in
the “many” sense, that is, there is no incoming arc
from R to E,). This transformation can only be
applied if E, has one key only. A second possible
transformation is to merely make E, R, be a many-to-
one relationship from E, to R, . A is not removed from
E, in this instance. Since every attribute, and the roles
they play, are named uniquely this simple transfor-
mation does not cause ambiguity.3

Finally, an ISA relationship should be created
from R, to M, the multi-role entity set.

180 SHARON KUCK et al.

Fig. 10. Attributes CSTATE and PSTATE play distinct
roles.

Example 11. Consider the EER diagram of Fig. 10
where the attributes CSTATE and PSTATE are over
the same domain and play distinct roles. (Note, in
contrast to Example 2, a customer who lives in
Illinois can also buy a product within the state of
Michigan.) For this diagram, there are two possible
transformations since PSTATE is part of the key of
PRODUCTS. CSTATE does not belong to the key of
CUSTOMERS in Fig. 10 and so, the relationship
between CUSTOMERS and CSTATES is many-to-
one after both transformations. After one transfor-
mation, as seen in Fig. 11 the relationship
PRICEDIN between PRODUCTS and PSTATES is
many-to-many. Since PRODUCTS participates in
relationship PURCHASE, PSTATES must also
participate in PURCHASE.? Finally, PRICE is
transferred from PRODUCTS to PRICEDIN. The
results of the alternative transformation are seen in
Fig. 12. Here the transformations are more simple.
PSTATE and PRICE remain in PRODUCTS and
the relationship PRICEDIN is many-to-one from
PRODUCTS to PSTATES. n

Example 12. Consider the EER diagram of Fig. 2.
The attributes MANAGER and ENAME are over the
same domain and play distinct roles although the
EER diagram does not reflect this. Since ENAME is
a descriptive key of entity set EMPLOYEES,
EMPLOYEES could be a generalization of
MANAGER. We ask the user “Could MANAGER
‘Jones’ be an entity of EMPLOYEES”. The answer
is “yes”, so we create only one role entity set,
MANAGERS, which is connected to the multi-role
entity set EMPLOYEES by an ISA relationship, as
shown in Fig. 1. Since MANAGER is a key, the HAS
relationship between DEPARTMENTS and
MANAGERS is one-to-one. n

In summary, we give the algorithm for transform-
ing the EER diagram.

Input An EER diagram D that indicates A, . . . A, are
over distinct domains.

Output An EER diagram b that indicates A, . . . A,
are over the same domain and play distinct roles.

tThe key of PURCHASE remains {CNO, PNAME,
PSTATE} as it was in Fig. 10.

Algorithm

Create a multi-role entity set if none exists. Ej is
a multi-role entity set if Aj is a descriptive key
of E, and Ej is generalization of A, for all i,
l<iCn, i#j.
Create a role entity set Ri for entity set Ei unless
Ei is a role entity set (i.e. A, is the descriptive key
of Ei).
Connect role entity set Ri to the multi-role entity
set via an ISA relationship for all i, 1 < i d n,
except when Ri is the multi-role entity set.
Create a relationship EiRi from Ei to Ri unless
Ei is a multi-role or role entity set. E,R, should
be one-to-one if Ai is a key, but not a descriptive
key, of E,. EiRi should be many-to-one from Ei
to Ri if Ai is not prime. In both cases, remove
Ai from entity set E,. When Ai is a proper subset
of the sole key of Ei, then either of the following
two transformations may be applied. Should Ei
have more than one key, then only Transform-
ation 2 should be applied.
Transformation 1:
(a) E,R, is a many-to-many relationship.
(b) The non-key attributes of Ei should be

transferred from Ei to E, Ri.
(c) For every relationship R in which Ei partic-

ipates in the “many” sense, add an edge
from Ri to R.

(d) Remove Ai from entity set E,.
Transformation 2:
(a) EiRi becomes a many-to-one relationship

from E, to Ri.
(b) Ai is not removed from entity set Ei.

3. THE QUERY LANGUAGE

One benefit of the research of Section 2 is the
ability to pose recursive queries over the universal
relation. In the language we give in Section 3.3 we
utilize role names which were introduced in Section
2. Queries are posed over a single universal relation
that contains all the attributes in the database
scheme. We present the basic query language, with-
out recursion, in Section 3.2. We then present the
contribution of this paper in Section 3.3 which is an
extension to the basic language to allow the expres-
sion of recursive queries.

3.1. Definitions

A domain is a set of values. The Cartesian product
of domains D,, . . . , Dk is the set of all k-tuples

(v,, . . . , ok) such that v, is in D,, v2 is in D,, and so
on. A universal relation is a subset of the Cartesian
product of the domains. A row of the universal
relation is a tuple and a column is an attribute. We
give names to the universal relation and to attributes.
We will refer to the universal relation by itself as U
and also to the universal relation and its attributes
a, b, c, as U(a, b, c).

Roles and their role in posing recursive queries 181

Fig. 1 I. CSTATES and PSTATES are added as role entity sets.

Consider a universal relation U(. . . , A, . . . ,
B, .) where the attributes A and B are over the
same domain and play distinct roles. The sequences

are place holders for zero or more attributes in U
that are not of interest in this discussion. We let
(. . , a,, . . . , bi, . .) represent a tuple in II. A deri-
vation of (a,, b,) with respect to U is a path

<(. , a, > . . , b,, . . .), . . . , (. . , a,,, . . , b,, . . .))

where bi = a, + , for i=l,...,n-I and the a, are
distinct. We call a, and b, the endpoints of the
derivation and A and B the endpoints of the recursion.
We also regard a derivation as an ordered relation 6
consisting of the tuples in the path. For all i, j, if i < j
then the tuple (. . ., a,, . , bi, . . .) precedes the tuple
(. .) a,, . . . , b,, . . .) in 6. The tuples do not need to
be retrieved in this order. The order is an inherent
part of the data.

3.2. The basic query language

To express SPJ-queries (i.e. select, project, join), we
specify an optional list of definitions, a target-list, and
a selection [27]. Note that this basic query language
does not have a concept of roles. These components
of a query are begun with the key words with, retrieve,

and where, respectively. The definitions declare new
attributes, called derived-attributes, which can be
calculated from attributes in the database or previ-
ously declared derived-attributes. The target-list
specifies which attributes, arithmetic function results,
and aggregate function results are to be. printed. The
aggregate functions include min, max, avg, count,
sum. The aggregate functions are always parameter-
ized and produce a single value as a result for each
attribute that is used as a parameter.

Example 13. Consider the EER diagram of Fig. 6
which has the corresponding universal relation
FLIGHTS (E, FROMCITY, TOCITY, COST).

The query retrieve avg(COST) computes the average
cost of all flights stored in the database. n

The selection is an arbitrary logical expression as
in FORTRAN or Pascal. The expression can be
written in conjvnctive normal form which is one or
more conjuncts. Each conjunct cj consists of a disjunc-
tion of atoms or negated atoms. An atom is built
from attributes, derived-attributes, constants, arith-
metic operators, and arithmetic comparison oper-
ators (e.g. less than, greater than, equal to). When a
selection appears in a query, a tuple must satisfy the
selection in order to appear in the query result.

r

Fig. 12. CSTATES and PSTATES are added as role entity sets.

182 SHARON KUCK et al.

Implicit in the query is a blank tuple variable that
ranges over all the attributes in the universal relation

r371.

FNO FROMCITY TOCITY COST 1

Example 14. Consider the relation of Example 13.
To find the cost, including the tax computed at a rate
of 6%, of all flights originating in Urbana, we write

102 Urbana

103 Urbana

with TOTALCOST:=COST f (COST * .06)

retrieve TOCITY FROMCITY TOTALCOST

where FROMCITY = “Urbana”.

cbicago 50

Dayton 60

St. Louis 76

LA 200

New York 150

cbieago 75

LA 225

400 Dayton New York 125

3.3. Expressing recursive queries Fig. 13. A relation containing direct flights.

Consider a universal relation U and attributes A
and B that are over the same domain and play distinct
roles. A recursive query posed over U with respect to
A and B is going to produce a set of derivations,
s I,..., 6,. The derivations have a column for every
attribute in the universal relation and we name this
relation A. The query specifies a projection of A onto
the attributes in a target-list. We refer to this relation
as A. In addition, associated with each derivation,
there are values z,, . . . , zk obtained by evaluating
recursive aggregate functions Z1, . . . , Z, . (We define
the syntax and semantics of recursive aggregate func-
tions in Section 3.3.1.) Aggregate function values

aI,. . . , aj obtained by evaluating aggregate functions

A,,..., A, also appear in the result. In summary, the
result of the query is a relation, R(i\, Z, , . . . , Z,) and
a set of values for A,, . . , A,.

Example 15. Consider the relation given in Fig. 13.
The query, “find all flight plans for trips originating
in Urbana and terminating in New York” is ex-
pressed as

retrieve FNO, FROMCITY, TOCITY, COST

where tin, .FROMCITY = “Urbana” and tend. TO -
CITY = “New York”.

The result of the query is shown in Fig. 14. The result
contains three tuples, a,, 6,) and 6,. We will use the
termflightplan to describe a tuple in a recursive query
result for the flight database throughout the paper.
Each tuple in bi (1 < i d 3), is a flight. n

Example 16. Consider the relation of Example 13.

The syntax of a recursive query posed over U with
respect to A and B requires that we specify the
endpoints of the recursion. To specify the endpoints
for A and B of the recursion we introduce tuple
variables tinil and ffinal, respectively. We specify an
endpoint for A by equating tinit .A either to a constant
value or to the symbol “*“. The symbol ‘&*” means
to attempt use of all possibilities in the column for A
within U as endpoints of derivations. Similarly, to
specify an endpoint for B we equate tGna,.B either to
a constant value or to “*“. The expressions for A and
B are included as conjuncts in the selection as shown
in Example 15.

To express the query, “find all flight plans originating
in Urbana such that the cost of each flight is less than
$100.00” we write

retrieve FNO, FROMCITY, TOCITY, COST

where tinit .FROMCITY = “Urbana” and tfind .TO-
CITY = “e” and COST < 100.

Since the blank tuple variable is bound to A, FNO,
FROMCITY, TOCITY, COST are the columns of b
and COST is a column of A. n

Example 17. The EER diagram of Fig. 15

We use four kinds of tuple variables which are
implicitly bound in the following way during a recur-
sive query. Unlike in non-recursive queries, the blank
tuple variable is bound to A. Attributes do not appear
in the result except as a column in A. Hence, it makes
sense to change the binding of the blank tuple
variable to the most commonly used purpose, which
is to describe attributes of A. Floating tuple variables,
fi, . . ,J;, which are introduced in Section 3.3.2 are
bound to A. Recursive aggregate function tuple vari-
ables, rl , . . . , ri, which are introduced in Section 3.3.1
are bound to A. No other tuple variables can be
bound to A. Tuple variables t,, . . . , t, are bound to
U and are restricted from occurring in the target-list.
The tuple variables tinit and t,, must occur in a
recursive query and they are bound to U. Once again,
they specify the endpoints of the recursion.

describes a database that stores distances between
two cities, even when there are no direct flights
between the cities. The corresponding universal
relation is U(FN0, TIME, CITY, REGION,
FROMTIME, TOTIME, COST, FROMCITY,

r A

FNO FROMCITY TOCITY COST

101 Urbana cbicago 50

201 cbieago

102 Urbana

New York 150

Dayton 60

New York

Fig. 14. A relation showing all flight plans from Urbana to
New York.

TO
_i CITIES I--=-&) the average cost of all flight plans, or to find the

I , , Y minimum cost flight plan.
Example 18. Consider the relation of Example 13

and the query, “find all fhght plans that originate in
Urbana and terminate in New York, the average cost
of flights in a flight plan, and the minimum total cost
of all flight plans.” The query is

The average cost of flights in a flight plan is found by
computing the recursive aggregate function ravg
(COST) and the minimum cost of all flight plans
is computed by applying the aggregate function
min(COST). The invocation min(COST) causes the
function rsum(COST) to be computed. a

Fig. 15. FLIGHTS database scheme including distance
Example 19. Consider the database scheme of

between CITIES.
Fig. 15 and the query, “Find all flight plans from
Urbana to New York such that the distance flown is

FROMREGION, TOCITY, TOREGION,
no more than twice the actual distance between

DISTANCE). Consider the query, “find all flight
Urbana and New York.” The query is

plans from Urbana to New York, but only if the retrieve FNO FROMCITY TOCITY COST
distance between the two cities is less than 700 miles.”
The query is where tinit .FROMCITY = “Urbana” and tfinsl~

TOCITY = “New York” and t, .FROMCITY =

retrieve FNO FROMCITY TOCITY COST ti,,.FROMCITY and t, .TOCITY = tfina,. TOCITY

and 2 * t, .DISTANCE 2 rsum (DISTANCE). n
where tInit .FROMCITY = “Urbana” and 4inal~
TOCITY = “New York” and t, .DISTANCE < 700 We have extended the syntax to include a selection

and t, .FROMCITY = t,,,,.FROMCITY and t,, TO- specifically for those tuples to be included in the

CITY = tfina, .TOCITY. aggregation. Following a parameter of the aggregate
function invocation is a “where” clause. This exten-

There can be a tuple in U that contains Urbana, New sion is useful for aggregate functions as well as for

York, and the distance even when there is no direct recursive aggregate functions.

flight between the two cities (in this case, there will be Example 20. Consider the relation of Example 17

null values for the attributes describing FLIGHTS). and the query, “find all flight plans from Los Angeles

The tuple variable f, is bound to U. n to New York such that there are at least two stops

3.3.1. Recursive aggregate operators. We define in the midwest”. This query appears in [21]. The

recursive aggregate functions, including, rmax, rmin, query is

ravg, rsum, rcount, to be those that aggregate values
within each 6, (1 < i < m). If a recursive aggregate

retrieve FNO FROMCITY TOCITY

function were to appear in the target-list, we would
expect one value for each tuple in the result. The

where c, .FROMCITY = “Los Angeles” and tena,.

recursive aggregate functions can also appear in the
TOCITY = “New York” and 2 < rcount (FNO where

selection.
TOREGION = “MW”). n

The aggregate functions introduced in Section 3 are
still allowed to appear in the query and they aggre-

A recursive aggregate function tuple variable, r,

gate data from the relation R(6, Z,, . . . , 2,). The
can occur within the recursive aggregate function

function count gives us m, that is, the number of rows
expression, either within the target-list or selection.

in the column for Ai\. The other aggregate function
The tuple variable r ranges over the tuples in each 6,

invocations, max(C), min(C), avg(C), sum(C) implic-
as does the recursive aggregate function.

itly cause the recursive aggregate function invocation
Example 21. Consider the relation of Example 17

rsum(C) to be computed in order to produce a single
and the query, “find all flights from Urbana to New

value for each tuple in i\. Then, using these values,
York such that the layover time is at least 45 min but

the value of the aggregate function invocation is
no more than 90 min.” The query is

computed. This allows us to compute such values as retrieve FNO FROMCITY TOCITY COST

Roles and their role in posing recursive queries 183

retrieve FNO FROMCITY TOCITY COST ravg
(COST) min(COST)

where tinit .FROMCITY = “Urbana” and tfina,.
TOCITY = “New York”.

184 SHARON KIJCK et al.

where fiti, .FROMCITY = “Urbana” and Ginal.
TOCITY = “New York” and
rcount (T, . TOCITY) - 1 =
rcount (r, .TOCITY where r2 .FROMTIME -

r, .TOTIME > 45 and r2 .FROMTIME - r, .TO-
TIME < 90 and r, .TOCITY = rz .FROMCITY). n

3.3.2. Floating tuple variables. Some queries
can be more conveniently expressed when we
make use of the inherent ordering among tuples
within each ai for all i (1 < i < m). For example,
we can more easily express the layover time between
each pair of flights. We introduce floating tuple
variables that allow us to compare two or more
consecutive tuples within a derivation 6,. We reserve
the symbol x with subscripts, to represent floating
tuple variables. If a query contains floating tuple
variables fi, . . ,fk then, during the computation of
&, the floating tuple variables range over consecutive
tuples such that tuplef; immediately precedes tuplef,
in ai forj, (1 <j -C k)t and tuplef, is the newest tuple
to be added to 6,.

In the data definition language (i.e. as part of
the database scheme) a relationship among the
attributes that are over the same domain and play
distinct roles needs to be specified with respect

to fi>...,fk. A relationship between attributes
(A, B) would be defined as one or more expressions
of the form -f;.B=f;+,.A for all j (1 <j <k)
where A and B are endpoints of the recursion. For
example, in a genealogical database scheme with
attributes (CHILD, MOTHER, FATHER) over
the same domain and playing distinct roles, we may
have the relationship specification (f,.CHILD =
fi .MOTHER) or cf .CHILD =f2 .FATHER). This
would allow a recursive query asking about the
hierarchical relationship of all people in the database
or only males or only females. For our airline data-
base example we would specify fi .TOCZTY =f2.
FROMCITY. All such possibilities are used in the
evaluation.

Example 22. The query of Example 21 can be
more conveniently expressed by using floating tuple
variables. The query becomes

retrieve FNO FROMCITY TOCITY COST

where tini, .FROMCITY = “Urbana” and tfmal~
TOCITY = “New York” and not (fi.FROM-
TIME - f,.TOTIME > 90 or f>.FROMTlME -

fi .TOTIME < 45). W
3.3.3. Recursively derived-attributes. We allow the

creation of recursively derived-attributes of which
values are not stored in the database, but are com-
puted from other attributes in the database. Recur-
sively derived-attributes contain expressions that
range over A.

tThat is,l;.B =A+, .A where A and B are the endpoints of
the recursion.

In the implementation of Ask-easy [27] we allow
derived-attributes to be specified at database scheme
design time as well as within a query. In the same
way, we extend the language to allow recursively
derived-attributes to be specified at scheme design
time and used as if they were attributes in the
database scheme. Two advantages are gained by
using recursively derived-attributes. First, the expres-
sion of a query is less verbose and secondly an
end-user can more readily understand the meaning of
a recursively derived-attribute over the expression
that computes the value of the recursively derived-
attribute.

Recursively derived-attributes are only meaningful
in a recursive query. The end points of the recursion
are expected to be found within a query and so, they
need not be specified within a recursively derived-
attribute definition. A recursively derived-attribute
can be computed by using floating tuple variables.

Example 23. Some useful recursively derived-
attributes for the FLIGHTS database scheme of Fig.
15 are NUMBER-FLIGHTS, TOTAL-DISTANCE,
TOTAL-COST, MID WESTSTOPS, and LAY-
OVER, LAYOVER is the only recursively derived-
attribute that requires the use of floating tuple
variables. The definitions for these recursively
derived-attributes are:

with NUMBER-FLIGHTS:=rcount(FNO)

We expect an end-user, such as a travel agent, to

TOTAL-DISTANCE=rsmn (DISTANCE)

TOTAL-COST:=rsum (COST)

MID WESTSTOPS:=rcount(FNO where
TOREGION = “MW”)

LAYOVER:=f,.FROMTIME --fi .TOTIME

either query the EER diagram of Fig. 16 or the
universal relation scheme

U (FNO, TIME, FROMTIME, TOTIME, COST,

CITY, REGION, FROMCITY, FROMREGION,

TOCITY, TOREGION, DISTANCE, NUMBER-

FLIGHTS, TOTAL-DISTANCE, TOTAL-COST,

LA YO VER, MID WESTSTOPS).

The query of Example 22 can be written as

retrieve FNO FROMCITY TOCITY COST

where tlni, .FROMCITY = “Urbana” and fm .
TOCITY = “New York” and LA YOVER < 90 and
LA YO VER > 45.

The query of Example 19 can be rewritten as

retrieve FNO FROMCITY TOCITY COST

where tini, .FROMCITY = “Urbana” and Ginal ’
TOCITY = “New York” and t, .FROMCITY = tinit.
FROMCITY and t, .TOCITY = thnal .TOCITY and 2*
t, .DISTANCE 2 TOTAL-DISTANCE.

The query of Example 20 can be rewritten as

retrieve FNO FROMCITY TOCITY

Roles and their role in posing recursive queries 1x5

NUMBER-FLIGHTS

TOTAL-DISTANCE

TOTAL-COST

LAYOVER

MIDWESTSTOPS

Fig. 16. FLIGHTS database scheme with recursively
derived-attributes.

where tlnit .FROMCITY = “Los Angeles” and tfina,.
TOCITY = “New York” and 2 < MIDWEST-
ST0 PS. n

4. CONCLUSION

We have shown how an EER diagram can be used
to explicitly indicate the attributes that are over the
same domain and play distinct roles versus those that
play the same role. We have given a strategy for
creating such a diagram from a simpler diagram that
did not represent the attributes as being over the same
domain. Finally, we have given a recursive query
language for a universal relation interface.

We have shown that attributes of entity sets that
are ancestors of a multi-role entity set are also
multi-role attributes and hence, role attributes are
created from them for each role entity set. We have
omitted discussing many-to-many relationships in
which the multi-role entity set participates. For in-
stance, consider the EER diagram of Fig. 9. We could
add an entity set CONCERTS, and a many-to-many
relationship between CITIES and CONCERTS. The
question is, are the attributes X of CONCERTS
multi-role attributes or not? (That is, should there be
distinct copies of X for each role entity set in the
universal relation or not?) If CONCERTS is not a
multi-role entity set then must the city in which a
concert is playing be the same as the city to (or from)
which a flight flys? We believe that the latter situation
is the case. However, we must rely on relational

design theory to make this point convincing and that
is outside the scope of this paper.

Future work includes specifying an algorithm to
translate a database with multi-role attributes into a
network database scheme, and developing query
translation and optimization algorithms for the re-
cursive queries posed over a network database. Also,
there are other semantic-packed operators that could
be added to the universal relation query language to
further achieve the goals as mentioned at the start
of this paper. For instance, an ALL operator that
would allow the expression of such queries as “Find
suppliers who supply all parts”.

Furthermore, other semantic aid can be provided
for the user during database scheme design, such as
specifying the functional dependencies. We think the
EER diagram is a very important interface between
the user and a universal relation. The visual display
of the entity sets and relationships can aid the user in
correctly defining the database scheme.

Interestingly, the language we give for recursive
queries is a tuple calculus language for database
schemes that have only one relation. In [38], a tuple
calculus language is given that suffices for database
schemes with many relations.

We have implemented a prototype of ER-Easy, a
user-friendly database scheme design program on a
SUN workstation that includes the ideas of Section
2 [31,32]. ER-Easy allows the user to specify a
database scheme by means of EER diagrams and
converts this scheme into a network database scheme
or a relational database scheme that reflects the
structure of the underlying universal relation. ER-
Easy employs the inference techniques of Sections 2.3
and 2.4 to prevent scheme layouts that misrepresent
roles.

Acknowledgements-We thank Steve Pax for many helpful
discussions and Youhm Pang and Rakesh Agrawal for
helpful comments.

PI

PI

131

[41

[51

Fl

171

REFERENCES

P.P.-S Chen. The entity-relationship model: toward a
unified view of data ACM Trans. Database Systems
l(l), 9-36 (1976).
J. D. Ullman. Principles of Database Systems 2nd edn.
Commuter Science Press. Rockville, Maryland (19821.
N. &ar and E. Pichat: Translation of-an Eitendhd
Entity-Relationship Model into the Universal Relation
with Inclusions Formalism, DD. 253-268. Elsevier,
Amsterdam (1987).

-_

P. P.-S. Chen. An algebra for a directional binary
entity-relationship model. Proc. Inc. Conf. Data Engng,
IEEE, pp. 3740 (1984).
B. Czejdo and D. W. Embley. An Algebra jar an
Entity-Relationship Model and its Application to
Graphical Query Processing, pp. 367-374. Plenum
Press, New York (1987).
A. Dogac, F. Eyupoglu and E. Arkun. Vers-A Vector
Based Entity Relationship Database Management
System, pp. 323-343. Elsevier, Amsterdam (1987).
A. Sernadas, J. Bubenko Jr and A. Olive (Editors).
An Entity-relationship Query Language, pp. 19-32.
Elsevier, Amsterdam (1985).

186

]81

]91

r101

(111

1121

[I31

[I41

r151

WI

[171

1181

1191

PO1

WI

WI

[231

SIURON Ki xx et al.

R. Elmasri, J. Weeldreyer and A. Hevner. The category
concept: an extension to the entity-relationship model.
Database Knowledge Engng 1, 75-l 16 (1985).
V. Markowitz and Y. Raz. An entity-relationship
algebra and its semantic description capabilities.
J. Systems Software 4, 147-162 (1984).
C. Parent and S. Spaccapietra. An entity-relationship
algebra. Proc. Int. Conf Data Engng, IEEE,
pp. 500-507 (1984).
K. Subieta and M. Missala. Semantics of query
languages for the entity-relationship model. In Entity-
Relationship Approach to Software Engineering,
pp. 197-216 (1987).
P. Ursprung and C. A. Zehnder. HIQUEL: An Inter-
active Query Language to Define and Use Hierarchies,
pp. 299-314. Elsevier, Amsterdam (1983).
C. Zaniolo. The database language gem. Proc. ACM-
SIGMOD Int. Conf Management of Data, pp. 207-217
(1983).
D. Maier, D. Rozenshtein and J. Stein. Representing
roles in universal scheme interfaces. IEEE Trans. Soft -
ware Engng 11(7), 644652 (1985).
D. Maier and D. S. Warren. Specifying connections for
a universal relation scheme database. In Proc. ACM-
SIGMOD Int. Con& Management of Data, pp. l-7
(1982).
E. F. Codd. A relational model of data for large shared
data banks. Communications of the ACM 13(6),
377-387 (1970).
E. F. Codd. Data Base Systems, pp. 65-98. Prentice-
Hall, Englewood Cliffs, N. J. (1972).
A. Klug. Equivalence of relational algebra and
relational calculus query language having aggregate
functions. J. ACM 29(3), 699-717 (1982).

[24] E. Babb. Joined normal form: a storage encoding for
relational databases. ACM Trans. Database Systems
7(3), 588-614 (1982).

[25] J. Biskup and H. Bruggeman. Universal relation views:
a pragmatic approach. In Proc. 9th Int. Conf Very
Large Databases, pp. 172-185 (1983).

[26] H. F. Korth, G. Kuper, J. Feigenbaum, A. van Gelder
and J. D. Ullman. System/u: a database system based
on the universal relation assumption. ACM TODS
9(3), 331-347 (1984).

[27] H. H. Chen, S. M. Kuck, J. Peterson and Y. Sagiv. A
user’s manual for AURICAL: a universal relation
implementation via CODASYL. Technical Report
UIUCDCS-R-82-1114, University of Illinois at
Urbana-Champaign, Urbana, Ill. (1982).

[28] Z. Q. Zhang and A. 0. Mendelzon. A Graphical
Query Language for Entity-Relationship Databases,
pp. 441448. Elsevier, Amsterdam (1983).

[29] A. Flory and S. T. March. SCRABBLE: A Local
Database Management System, pp. 271-286. Elsevier,
Amsterdam (1987).

[30] A. Flory and S. T. March. The functional dependency
model: a unified approach to information systems
development. University of Minnesota Working Paper
MISRC-WP-86-05 (1985).

[31] R. John and A. Lewe. ER-Easy: a user-friendly graphic
ER-diagram editor for interactive database scheme
design. Technical Report UIUCDCS-R-87-1338,
University of Illinois at Urbana-Champaign, Urbana,
Ill. (1987).

1321 M. Najork. Enhanced ER-Easy. Technical Report
UIUCDCS-R-88-1464, University of Illinois at
Urbana-Champaign (1988).

[33] P. P.-S. Chen. The entity-relationship model: toward a
M. M. Zloof. Query-by-example: operations on the unified view of data. ACM Trans. Database Systems
transitive closure. Technical Reoort RC 5526. IBM. l(l), 9-36 (1976).
Yorktown Hts., New York (1975). [34] C: Batini, M. Lenzerini and S. B. Navathe. A com-
A. V. Aho and J. D. Ullman. Universality of data parative analysis of methodologies for database
retrieval languages. In Proc. 6th ACM Symp. Principles schema integration. ACM Computing Surveys 18(4),
of Programming Languages, pp. 110-120 (1979). 323-364 (1986).
R. Agrawal. Alpha: an extension of relational algebra [35] J. M. Smith and D. Smith. Database abstractions:
to express a class of recursive queries. In 3rd Inter-
national Conference on Data Engineering, pp. 58&590
(1987). [361
H. F. Korth and J. D. Ullman. System/u: a database
system based on the universal relation assumption.
XPI Workshop on Relational Database Theory (1980).
D. Maier, D. Rozenshtein, S. C. Salveter, J. Stein and [371
D. S. Warren. Toward logical data independence: a
relational query language without relations. In Proc.
ACM-SIGMOD Int. Conf Management of Data, [381
pp. 514 (1983).

aggregation and generalization. ACM Trans. Database
Systems 2(2), 105-133 (1977).
T. J. Teorey, D. Yang and J. P. Fry. A logical design
methodology for relational databases using the ex-
tended entity-relationship model. ACM Computing
Surveys 18(2), 197-222 (1986).
J. D. Ullman. Principles of Database Systems, 2nd
Edn. Computer Science Press, Rockville, Maryland
(1982).
S. M. Kuck and S. Pax. A relational calculus with
transitive closure. Manuscript in preparation.

