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ABSTRACT
Privacy preservation remains a key challenge in data mining and
Natural Language Understanding (NLU). Previous research shows
that the input text or even text embeddings can leak private infor-
mation. This concern motivates our research on effective privacy
preservation approaches for pretrained Language Models (LMs).
We investigate the privacy and utility implications of applying
𝑑𝜒-privacy, a variant of Local Differential Privacy, to BERT fine-
tuning in NLU applications. More importantly, we further propose
privacy-adaptive LM pretraining methods and show that our ap-
proach can boost the utility of BERT dramatically while retaining
the same level of privacy protection. We also quantify the level of
privacy preservation and provide guidance on privacy configura-
tion. Our experiments and findings lay the groundwork for future
explorations of privacy-preserving NLU with pretrained LMs.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computing
methodologies→ Natural language processing.
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1 INTRODUCTION
The recent development of Deep Learning (DL) has led to notable
success in Natural Language Understanding (NLU). Data-driven
neural models are being applied to a rich variety of NLU appli-
cations, such as sentiment analysis [28], question answering [26],
information retrieval [36], and text generation [6]. Many of these
technologies have been deployed on the cloud by industrial service
providers to process user data from personal customers, small busi-
nesses, and large enterprises. However, the rapid growth of NLU
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technologies also comes with a series of privacy challenges due to
the sensitive nature of user data. In NLU, the input text or even the
text vector representations can leak private information or even
identify specific authors [8, 16, 25, 29]. This lack of privacy guaran-
tees may impede privacy-conscious users from releasing their data
to service providers. Thus, service providers may suffer from the
deficiency of genuine and evolving user data to train and evaluate
NLU models. Besides, unintended data disclosure and other privacy
breaches may result in litigation, fines, and reputation damages
for service providers. These concerns necessitate our research on
privacy-preserving NLU.

Specifically, we identify two challenges for privacy-preserving
NLU. The first challenge is how to privatize users’ text data in a
Local Privacy setting, i.e., anonymize text to prevent leakage of
private information. Prior work has applied Differential Privacy
(DP) [10] and its variants to address similar privatization issues
– originally for statistical databases [10] and more recently for
DL [1, 27] and NLU [12, 18, 19]. However, in the context of NLU,
many previous works mostly focus on a Centralized Privacy setting,
which assumes a trusted centralized data aggregator to collect and
process users’ text data for training NLU models [23]. This solution,
however, might not be sufficient for many users who are concerned
with their sensitive or proprietary text data, when used for model
training and serving. Thus, text privatization without a trusted data
aggregator, also referred to as a Local Privacy setting, has become a
pressing problem that remains less explored.

To tackle this challenge, we consider Local Differential Privacy
(LDP) as the backbone of our privacy-preserving mechanism. In
this setting, users perturb each individual data entry to provide
plausible deniability [5] with respect to the original input before
releasing it to the service providers. LDP also has advantages over
federated learning [22] as discussed in Sec. 2. Specifically, we adopt
a text privatization mechanism recently proposed by Feyisetan et al.
[12]. This mechanism is based on 𝑑𝜒-privacy (Sec. 3.2.1). It relaxes
LDP to preserve more information from the input so that it is more
practical for NLU applications [12].

The second challenge, which is also the focus of this work, is
how to improve the utility of NLU models under Local Privacy
settings, where the text is already privatized before model training
and serving. Recent progress of pretrained Language Models (LMs)
has led to great success in NLU. However, to the best of our knowl-
edge, these research questions have not been well studied: (a) Can
pretrained LMs adapt to privatized text input? (b) What is the most
practical way to apply text privatization for pretrained LMs so that
we retain the most utility (Fig. 1)? (c) Can we improve pretrained
LMs to adapt to the privatized input via pretraining?

To answer these research questions, we first systematically dis-
cuss three privacy-constrained fine-tuning methods that apply text
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Figure 1: Illustrations of different privacy-constrained
methods for training a typical NLU model.

privatization at different stages of the NLU model: sequence repre-
sentations (Fig. 1.b), token representations (Fig. 1.c), and input text
(Fig. 1.d). Along with previous research [12, 18], our work is another
fundamental step to paint a more complete picture of text privatiza-
tion for NLU. Lyu et al. [18] only looked at sequence representation
privatization in BERT fine-tuning. This method does not address
training-time privacy issues and incurs heavy computational costs
for users (Sec. 2). In contrast, our work guarantees tunable privacy
protection (Sec. 5) at both training and inference time by focusing
on the token-level privatization (Fig. 1.c/d). Feyisetan et al. [12]
only considered text-to-text privatization while we also study token
representation privatization. Furthermore, we investigate how to
improve NLU performance on top of the privacy mechanisms.

More importantly, to the best of our knowledge, our work is the
first to study privacy-adaptive LM pretraining to improve the effec-
tiveness and robustness of pretrained LMs on privatized text. We
focus on BERT [9] since it is one of the most widely-used pretrained
LMs. Our privacy-adaptive pretraining approaches are based on
several variants of the Masked Language Model loss we designed,
to leverage large-scale public text corpora for self-supervised learn-
ing in a privacy-adaptive manner, and to address the deficiency of
labeled user data in privacy-constrained fine-tuning.

We conduct both privacy and utility experiments on two bench-
mark datasets. For the privacy experiments, we demonstrate and
interpret the level of privacy protection by analyzing the plausible
deniability statistics on the vocabulary level, as well as investigat-
ing the performance of token embedding inversion attack on actual
corpora. Based on these results, we discuss and compare two prin-
cipled approaches to guide the selection of the privacy parameter.
We also reveal the geometry properties of the BERT embedding
space to better understand the privatization process.

For the utility experiments, we investigate the performance of
token-level privacy-constrained fine-tuning and privacy-adaptive
pretraining methods. In the fine-tuning experiments, we discover
that the text-to-text privatization method can often improve over
token representation privatization thanks to the post-processing
step of nearest neighbor search. More importantly, in pretraining
experiments, we first show that BERT is able to adapt to priva-
tization to some extent by being pretrained on fully privatized
corpora. We further demonstrate that the integration of a denoising

heuristic can make BERT even more robust in handling privatized
representations. Another exciting finding is that token represen-
tation privatization outperforms text-to-text privatization when
noise is large with privacy-adaptive pretraining. In other words,
the adaption resulting from privacy-adaptive pretraining can work
better than nearest neighbor search in this scenario. These results
show that our privacy-adaptive pretraining approaches can make
BERT more effective and robust in handling privatized text input.

2 RELATEDWORK
Differential Privacy. Differential Privacy (DP) [10]was originated
from the field of statistical databases. It is one of the primary meth-
ods for defining privacy and preventing privacy breaches. At a
high level, a randomized algorithm is differentially private if its
output distribution is similar when the algorithm runs on two input
datasets that differ in at most one data entry. Therefore, an observer
seeing the output cannot tell if a particular data entry was used
in the computation. Two settings are typically considered for DP:
Centralized DP (CDP) and Local DP (LDP). CDP assumes a trusted
data collector who can collect and access the raw user data. The
randomized algorithm is applied on the collected dataset to produce
differentially private output for downstream use. LDP [13] does not
assume such a trusted data collector (e.g., users do not want service
providers to access and collect their raw text messages). Instead, a
randomized algorithm is applied on each individual data entry to
provide plausible deniability [5] before sending it to the untrusted
data collector (e.g., each user privatizes the text messages before
uploading them to the service providers).

Privacy-Preserving Deep Learning. Another line of research
aims to train privacy-preserving DL models [1, 23] by using dif-
ferentially private stochastic gradient descent. The goal of those
papers is to prevent the DL model from memorizing and leaking
sensitive information in the training data. In contrast, some other
work in this line aims to prevent an attacker from recovering infor-
mation about the input text at inference time. For example, Coavoux
et al. [8] and Li et al. [16] proposed to train deep models with ad-
versarial learning, so that the model does not memorize unintended
information. Both works provide only empirical improvements in
privacy, without mathematically-sound privacy guarantees. Differ-
ent from this work, PixelDP [14] applied DP to computer vision
models so that the models are robust to adversarial examples. An-
other important line of work studied federated learning [22] to
conduct decentralized training with the user data left on users’
local/mobile devices. However, such a learning schema is hindered
by low computational resources on users’ device, and it has been
argued to have privacy issues [20, 21]. Compared with federated
learning, our privacy-preserving NLU methods do not have the
bottleneck caused by the lack of computational resources on users’
local devices. Also, our approaches enjoy the flexibility of owning
a privatized version of user data and thus can exploit the data for
training new models for the same or new NLU tasks.

Anonymization for NLU. We categorize anonymization meth-
ods used in NLU as text-to-text privatization and text representation
privatization. Typical text-to-text privatization methods include
de-identification and 𝑘-anonymization [3, 15]. The former redacts
Personally Identifiable Information (PII) in the text while the latter



retains only words or n-grams used by a sufficiently large num-
ber (𝑘) of users, without word/n-gram sequence information. The
downside is that de-identification could easily leak other sensi-
tive information [2] and 𝑘-anonymization has the same flaw when
the adversary has background knowledge. Feyisetan et al. [12] re-
cently proposed a text-to-text privatization method based on DP
(𝑑𝜒-privacy [10] to be exact). This method replaces the words in the
original text with other words that are close in the embedding space
in a local differential private manner. We also adopt this strategy
since 𝑑𝜒-privacy provides mathematically provable privacy guar-
antees regardless of the background knowledge an adversary might
use. Different from that work, we study the impact of privatization
on BERT and propose privacy-adaptive pretraining methods to
improve its utility while maintaining the same privacy guarantees.

On the other hand, text representation privatization aims to
privatize the float-vector representations for text, including term-
frequency vectors, word2vec embeddings [24], and representations
from BERT [9]. Recently,Weggenmann and Kerschbaum [32] used a
similar DP-basedmethod as Feyisetan et al. [12], but with a different
goal, i.e., to anonymize the term frequency vector representation of
a document. Given the recent advance in representation learning
with pretrained LMs, how to privatize representations from these
models has become an increasingly important research problem. For
example, Lyu et al. [19] followed the idea of Unary Encoding [31],
and proposed a mechanism to anonymize text representation that
provides 𝜀-LDP. In addition, Bhowmick et al. [4] proposed a LDP
mechanism to privatize high dimensional vectors, which is applied
to the gradients for federated learning. This can be potentially ap-
plied to text representations. Also, Lyu et al. [18] looked at sequence
representation privatization in BERT fine-tuning. A major draw-
back of their approach is that they did not address privacy issues at
the training time since it requires service providers to have access
to the raw user data to fine-tune the user-side encoder. This access
violates the Local Privacy requirement at the training time. Their
method also incurs heavy computational costs for users because
the entire encoder is deployed on the user side. In comparison,
our approach guarantees privacy protection at both training and
inference time and incurs less computational cost for users.

3 OUR APPROACH
3.1 Overview
We present an overview of our approach for privacy-preserving
NLU in Fig. 2. It contains two major stages. The first stage is the
privacy-preserving mechanism (Sec. 3.2), where each user applies
this mechanism to transform raw text to either privatized text or
privatized text representations on their own local devices, and then
submits the output to the service provider. The second stage is the
privacy-adaptive NLU model training, where the service provider
can only access the privatized text data for building NLUmodels. To
improve the NLU performance on privatized text data, we consider
various privacy-constrained fine-tuning methods (Sec. 3.3) and
propose privacy-adaptive pretraining methods (Sec. 3.4). The latter
further improves model utility by leveraging large-scale public text
corpora that we privatized. We study the widely-used BERT to
exemplify how our approach applies to pretrained LMs.
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Figure 2: Overview. Users privatize input text locally. Then
service providers conduct privacy-adaptive model training.

3.2 Privacy-Preserving Mechanism
We describe the privacy mechanism following Feyisetan et al. [12]
and illustrate how it is applied to text privatization.

3.2.1 Preliminaries. We first briefly review two variants of DP
related to our work – Local Differential Privacy (LDP) and 𝑑𝜒-
privacy. Both variants are designed for the Local Privacy setting,
where users need to privatize each data instance before releasing it
to the untrusted data collector. Both variants employ a randomized
mechanism𝑀 : X → Y that takes in a single data instance 𝑥 ∈ X
and outputs a randomized output 𝑦 ∈ Y.

LDP [13] requires𝑀 to satisfy, for any two inputs 𝑥, 𝑥 ′ ∈ X,
Pr[𝑀 (𝑥) = 𝑦 ]
Pr[𝑀 (𝑥 ′) = 𝑦 ] ≤ 𝑒𝜀 , ∀𝑦 ∈ Y, (1)

where 𝜀 ≥ 0 is a privacy parameter. Intuitively, Eq. 1 suggests the
output of𝑀 (𝑥) and𝑀 (𝑥 ′) have very similar distributions such that
an adversary cannot tell whether the input is 𝑥 or 𝑥 ′. In other words,
𝑀 provides plausible deniability [5] with respect to the original
input. However, LDP is a very strong privacy standard. Regardless
of how unrelated 𝑥 and 𝑥 ′ are, LDP requires them to have similar
and indistinguishable output distributions. As a result, the output
may not preserve enough information from the original input and
thus may hurt the utility of downstream tasks.

𝒅𝝌 -privacy [7], a relaxation of LDP, was introduced to address
the problem mentioned above. More formally, 𝑑𝜒-privacy requires,
for any two inputs 𝑥, 𝑥 ′ ∈ X,

Pr[𝑀 (𝑥) = 𝑦 ]
Pr[𝑀 (𝑥 ′) = 𝑦 ] ≤ 𝑒𝜂𝑑 (𝑥,𝑥′) , ∀𝑦 ∈ Y, (2)

where 𝑑 (𝑥, 𝑥 ′) is a distance/metric function (e.g., Euclidean dis-
tance) and 𝜂 ≥ 0 is the privacy parameter.1 Compared with LDP,
𝑑𝜒-privacy allows the indistinguishability of the output distribu-
tions to be scaled by the distance between the respective inputs,
i.e., 𝜀 in Eq. 1 becomes 𝜂𝑑 (𝑥, 𝑥 ′) in Eq. 2. This allows𝑀 to produce
more similar output for similar 𝑥 and 𝑥 ′ measured by 𝑑 (𝑥, 𝑥 ′), and
thus could preserve more information from the input. That said,
we should highlight that the semantics of 𝜂 in 𝑑𝜒-privacy depends
on the choice of 𝑑 , and thus one needs to understand the structure
of the underlying metric 𝑑 in order to interpret the privacy conse-
quences. This necessitates our study to measure and calibrate the
level of privacy protection for our case in Sec. 5.3 and 5.4. Given

1 Different from the prior work [12], we use 𝜂 to denote the privacy parameter in
𝑑𝜒-privacy instead of 𝜀 , in order to avoid the confusion with 𝜀 used in LDP and DP.



the advantage of 𝑑𝜒-privacy and inspired by Feyisetan et al. [12],
we adopt 𝑑𝜒-privacy to perform token representation privatization
and text-to-text privatization in Sec. 3.2.3 and 3.2.4. We refer our
readers to Feyisetan et al. [12] for the complete privacy proof.

3.2.2 Threat Model. Following Feyisetan et al. [12], we consider
a threat model where each user submits a token to the service
provider to conduct various downstream tasks. A user’s token either
appears in its clear form or in the form of a token representation.
We expand users’ input from a token to a text sequence in Sec. 3.2.5.

3.2.3 Token Representation Privatization. It is the de facto
method for deep NLU models to represent input tokens with dis-
tributed dense vectors (e.g., word embeddings). Such token repre-
sentations are typically produced by an embedding model. Without
loss of generality, a token can be a character [38], a subword or
wordpiece [34], a word, or an n-gram [39].

To prevent the leakage of sensitive information, we adopt 𝑑𝜒-
privacy (Sec. 3.2.1) to privatize such token representations. In this
case, the input to the randomized mechanism𝑀 becomes a token
embedding 𝑥 ∈ R𝑛 and the output becomes 𝑦 ∈ R𝑛 . For simplicity,
we only consider the case where 𝑥,𝑦 are of the same dimension, 𝑛.
Then 𝑑𝜒-privacy can be achieved for the choice of Euclidean dis-
tance 𝑑 (𝑥, 𝑥 ′) = | |𝑥−𝑥 ′ | | by adding random noise 𝑁 drawn from an
𝑛-dimensional distribution with density 𝑝 (𝑁 ) ∝ exp(−𝜂 | |𝑁 | |) [10],

𝑀rep (𝑥) = 𝑥 + 𝑁, (3)

where we use𝑀rep to denote the privacy mechanism for token rep-
resentation privatization. This process is referred to as perturbation
or noise injection. To sample 𝑁 from the noise distribution, consider
𝑁 ∈ R𝑛 as a pair (𝑟, 𝑝), where 𝑟 is the distance from the origin and
𝑝 is a point in B𝑛 (the unit hypersphere in R𝑛). Then we sample
𝑁 ∈ R𝑛 by computing 𝑁 = 𝑟𝑝 , where 𝑟 is sampled from Gamma
distribution Γ(𝑛, 1𝜂 ) and 𝑝 is sampled uniformly over B𝑛 [11, 33].

Although we describe 𝑀rep from the token’s perspective, the
same procedure also applies to sequence representations (e.g., the
[CLS] representation produced by BERT for a sentence).

3.2.4 Text-to-Text Privatization. In addition to token represen-
tation privatization, we also study text-to-text privatization. We
consider a token-to-token case where each plain input token is
transformed to a privatized output token. More formally, both the
input and output of the randomized mechanism𝑀 become a token
𝑥,𝑦 ∈ V , whereV is a vocabulary set. The privacy proof in Feyise-
tan et al. [12] show that 𝑑𝜒-privacy can be achieved in this case by
adding a post-processing step for𝑀rep (Eq. 3) to map the output of
𝑀rep to another token via nearest neighbor search. More specifi-
cally, we first embed the input token 𝑥 using an embedding model
𝜙 : V → R𝑛 . We then pass 𝜙 (𝑥) to 𝑀rep to obtain the privatized
token representation𝑀rep (𝜙 (𝑥)). Lastly, we return the token that
is closest to𝑀rep (𝜙 (𝑥)) in the embedding space as the output,

𝑀txt (𝑥) = argmin
𝑤∈V

| |𝑀rep (𝜙 (𝑥)) − 𝜙 (𝑤) | |, (4)

where𝑀txt denotes the privacy-preserving mechanism for text-to-
text privatization. 𝑀rep and 𝑀txt offer equivalent privacy protec-
tion [12] since the post-processing strategy does not affect privacy
guarantees. This process of nearest neighbor search is usually fast
and scalable [12] since the vocabulary can often fit in-memory and
the operation can be optimized with ML accelerators.

Token representation privatization and text-to-text privatization
each have their own merits. The former produces perturbed embed-
dings that could aid the neural models in exploiting the underlying
semantics while the latter generates perturbed tokens that are easy
to interpret for humans. Also, text-to-text privatization is more
compatible with existing pipelines of text processing [12].

3.2.5 Sequence Input. Our discussion above considers the input
𝑥 as a single token (or representation for a single token). When the
input becomes a sequence of tokens, 𝑥 = (𝑥𝑖 )ℓ1 , we apply 𝑀rep or
𝑀txt on each token or token representation to privatize the sequence
𝑥 to 𝑦 = (𝑦𝑖 )ℓ1 . In this case, the mechanism still satisfies 𝑑𝜒-privacy,
but for the distance function𝑑 (𝑥, 𝑥 ′) = ∑ℓ

1 | |𝜙 (𝑥𝑖 )−𝜙 (𝑥 ′𝑖 ) | |. Further
details and proofs can be found in Feyisetan et al. [12].

3.3 Privacy-Constrained Fine-Tuning
Due to the Local Privacy constraints, we do not access users’ raw
input text. However, we assume we have access to ground-truth
labels of the NLU task since these labels can often be inferred from
user behaviors, such as clicks [37] and other implicit feedback.

A neural NLU model typically consists of an embedding layer,
an encoder, and task-specific layers (Fig. 1). The embedding layer
converts the text input to a sequence of token embeddings, which
will then go through the encoder to produce a sequence represen-
tation. Finally, task-specific layers make predictions based on the
sequence representation. We split the NLU model to user side and
service-provider side to comply with Local Privacy constraints and
discuss three privacy-constrained training/fine-tuning methods:

• Null privacy (Fig. 1.a). We do not apply any privacy constraints
and thus cannot provide any privacy protections. This is to pro-
vide an upper bound for model utility.

• Sequence representation privatization (Fig. 1.b). The embed-
ding layer and the encoder are deployed user-side. The user
perturbs the sequence representation locally.

• Token representation privatization (Fig. 1.c). Only the token
embedding layer is deployed at the user side. The user conducts
tokenization and embedding table look-up locally to map the
input text to token embeddings. They then privatize the token
embeddings (Sec. 3.2.3) and send them to the service provider.
Then service providers assemble the input sequence to the en-
coder by adding other necessary embeddings (e.g., positional
embeddings) and injecting special tokens (e.g., [CLS]).

• Text-to-text privatization (Fig. 1.d). The users conduct text-to-
text privatization (Sec. 3.2.4) locally and send the privatized text
to the service provider. Thus, service providers have a complete
NLU model stack to process the privatized text.

Our foremost requirement is that the service provider only works
with privatized input at both training and inference time, without
any access to the raw user data. Thus, the service provider is not
able to update the model parameters of user-side components. In
contrast, the sequence representation privatization approach in
Lyu et al. [18] requires the service provider to access the raw user
data during training, which violates the Local Privacy requirement
at the training time. This fundamental difference makes our re-
sults incomparable with theirs. Our pilot experiments indicate that
sequence representation privatization yields undesirable utility



(Sec. 6.2) when we make the user-side encoder untrainable to com-
ply with the Local Privacy requirement. Thus, we focus on the other
two privacy-constrained fine-tuning methods in this paper.

In addition, we investigate the performance of two encoders,
BERT and BiLSTM, to inspect the impact of different encoders
under Local Privacy constraints. We mainly experiment with BERT
since it is currently one of the most widely-used pretrained LMs.
We also consider BiLSTM as a baseline encoder, which was used by
Feyisetan et al. [12]. We use the same wordpiece embeddings for
both encoders for fair comparisons.

3.4 Privacy-Adaptive BERT Pretraining
Inspired by the pretrained nature of BERT, we further propose
privacy-adaptive pretrainingmethods to leverage a massive amount
of unstructured texts that are publicly available. We also enjoy the
flexibility of having access to the raw input in this case. These ad-
vantages of pretraining could make BERT more robust in handling
privatized text or text representations. The pretrained model can
also be used for different downstream tasks.

We initialize the model with the original BERT checkpoint and
conduct further pretraining with the Next Sentence Prediction
(NSP) loss [9] and several variants of the Masked LM (MLM) loss
we design. To simulate the scenario in privacy-constrained fine-
tuning, we now assume the role of the users to produce large-scale
privatized input for pretraining. We use the BooksCorpus [40] and
the English Wikipedia data following BERT [9].

As explained in Sec 3.3, user-side components cannot be updated
by the service provider during privacy-constrained fine-tuning to
comply with Local Privacy constraints. In the pretraining stage, we
have the option to update user-side components since we use public
dataset for pretraining. However, our pilot experiments indicate
that, if user-side components are trainable, these components tend
to generate representations that can be immune to perturbation.
For example, the updated token embedding layer tends to produce
token embeddings that are less prone to be perturbed to a different
token with the same 𝜂. Although this is good from the perspective
of utility, this tendency severely affects the level of privacy protec-
tion demonstrated in Sec. 5.3 and 5.4. This privacy-utility trade-off
motivates our decision that we must stop the gradient from being
back-propagated to user-side components during pretraining so
that we can maintain the same level of privacy protection while
working on improving model utility. This measure also forces the
model to adapt to perturbation with the model components on the
service-provider side, instead of that on the user side.

Since we have access to the raw input data during pretraining,
we can take advantage of the MLM objective to train the BERT
encoder to adapt to the perturbation process more effectively. We
propose different privacy-adaptive pretraining methods based on
different prediction targets of MLM as described below.

• Vanilla MLM: predicting the perturbed masked tokens. The
most straightforward idea is to pretrain BERT on fully privatized
corpora. This privatized LM could be more effective and robust
in handling privatized content than the original LM. Since the
privatization can be done on-the-fly during pretraining, the LM
pretraining process benefits from seeing a diverse collection of
perturbed text input. Formally, the vanilla MLM loss for a single

masked position is defined as follows:

𝐿VanillaMLM = −
∑

𝑤∗∈V
1{𝑤∗ = 𝑤̂ } log exp logit(𝑤∗)∑

𝑤′∈V exp logit(𝑤′) (5)

where𝑤∗ is a candidate prediction of the privatized token and
logit(𝑤∗) is the logit for making such a prediction. 𝑤̂ is the true
privatized token. 1{·} is an indicator function.

• Probability MLM (Prob MLM): predicting a set of perturbed
tokens for each masked position. d𝜒-privacy guarantees that,
for any finite 𝜂, the distribution of the perturbed tokens has a
full support on the whole vocabulary [12]. In other words, every
token in the vocabulary has a non-zero probability being selected
as the perturbed token for a given input token. Meanwhile, the
distribution of the perturbed tokens from d𝜒-privacy remembers
the semantics of the input token. Therefore, we perturb each
masked token multiple times to obtain a set of perturbed tokens.
The MLM losses coming from the perturbed tokens are weighted
by their empirical frequencies. These empirical distributions of
perturbed tokens could be beneficial for the LM to understand
the injected noise, and thus, adapt to privatized content in a more
efficient manner. Formally,

𝐿ProbMLM = −
∑

𝑤∗∈V

count(𝑤∗,𝑊̂ )
|𝑊̂ |

log
exp logit(𝑤∗)∑

𝑤′∈V exp logit(𝑤′) (6)

where𝑊̂ = {𝑤̂𝑖 } is a set of valid privatized tokens for this masked
position and |𝑊̂ | denotes its size. We use count(𝑤∗,𝑊̂ ) to denote
the number of occurrence of a candidate prediction𝑤∗ in 𝑊̂ .

• Denoising MLM: predicting the original tokens. Another idea
is to let the model predict the original masked tokens so that the
LM learns to recover the original semantics of the masked token
given privatized context. Formally,

𝐿
Denoising
MLM = −

∑
𝑤∗∈V

1{𝑤∗ = 𝑤 } log exp logit(𝑤∗)∑
𝑤′∈V exp logit(𝑤′) (7)

where𝑤 is the true original token for this masked position.
After further pretraining with our privacy-adaptive approaches,

we fine-tune the BERT model with privacy-constrained training on
task datasets (Sec. 3.3) to evaluate the final model performance.

4 DATASETS
As listed below, we use two datasets from the GLUE benchmark [30]
for our privacy and utility experiments. This benchmark was also
used to evaluate BERT [9] and other popular NLUmodels, including
XLNet [35], and RoBERTa [17].
• Stanford Sentiment Treebank (SST)2 [28] is a single sentence
classification task. The goal is to predict a sentiment label (pos-
itive or negative) for a sentence of movie review. This dataset
contains 67k training sentences and 872 validation sentences.

• Quora Question Pairs (QQP)3 is a sentence-pair classification
task. The goal is to determine whether a pair of questions are
paraphrases or not. This dataset is larger than SST and has 363k
sentence pairs for training and 40k sentence pairs for validation.
Our adoption of these public datasets contributes to the repro-

ducibility of our paper. Our selection also covers both the single
sentence classification task and sentence pair classification task.
2 https://nlp.stanford.edu/sentiment/index.html
3 https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

https://nlp.stanford.edu/sentiment/index.html
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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Figure 3: Geometry of the BERT embedding space. Dots are
average Euclidean distances of an original embedding and
its 𝑘 nearest neighbors. Vertical lines are average Euclidean
distances between original and perturbed embeddings.

Since the GLUE test sets are hidden, we train our models and base-
lines on the training set and report the results on the validation set.
We use accuracy as the metric for utility experiments in Sec. 6.

5 PRIVACY EXPERIMENTS
We present a series of privacy experiments to demonstrate the level
of privacy protection provided by the privacy mechanism on BERT,
which has not been studied before to the best of our knowledge.

5.1 Geometry of the BERT Embedding Space
As mentioned in Sec. 3.2.1, the level of privacy protection from 𝑑𝜒-
privacy also depends on the distance function 𝑑 , which is defined
as the Euclidean distance of tokens in the BERT embedding space
for our token privatization mechanisms (Sec. 3.2.3 and Sec. 3.2.4).
Thus, to understand the privacy protection and the noisy injection
of these mechanisms, we analyze the geometry properties of the
BERT embedding space in this section.

We first compute the Euclidean distance between an original
token embedding and its privatized/perturbed token embedding, i.e.,
| |𝑥−𝑀rep (𝑥) | | = | |𝑁 | | from Eq. 3. We average these distances for all
tokens in the BERT vocabulary, and compute this average distance
for a set of strategically chosen 𝜂 values. The results are shown
as the black vertical lines in Fig. 3 labeled by the corresponding
𝜂. As expected, we observe that the average Euclidean distance
corresponds to the mean of the Gamma distribution (Sec. 3.2.3), i.e.,
𝑛
𝜂 , where 𝑛 = 768 is the dimension size of BERT token embeddings.
As 𝜂 becomes smaller, the average distance grows progressively
larger, implying increasingly larger noise.

Next, we compute the Euclidean distances among the original
token embeddings for a calibrated comparison. Specifically, we com-
pute the distances between each token and its 𝑘-th nearest neighbor,
for all tokens in the BERT vocabulary V . We then compute the
average 𝑘-th nearest neighbor distance, for each 𝑘 in [1, 2, 3, 4, 5,
10, 20, 50, 100, 200, 500, 1000, 5000, 10000, |V|]. The results are
presented as blue dots in Fig. 3. As 𝑘 becomes larger, the average
Euclidean distance also grows larger, as expected.

Finally, we compare the distances computed in the previous steps.
Distances among the original token embeddings are smaller than 2
on average while even the smallest noise we used in experiments
(𝜂 = 175) perturbs tokens to positions that are as twice as far on
average. This gives us a sense of how large these perturbations
are. Sec. 5.4 justifies using such large noise by showing nearest
neighbor search in the embedding space (Sec. 3.2.4) can still map
the perturbed token embedding to its original token. Our choices

Table 1: Examples of perturbed sentences with different
choices of 𝜂. “Orig” denotes the original input sentence. The
red color denotes tokens that are modified.
𝜂 Sequence

Orig the emotions are raw and will strike a nerve

50 ##ori backward og wanda big disposal ##pose lou ##bular
75 410 truth go mole gone will strike y gifford
100 fine abused are primitive it will slaughter us nerve
125 measure emotions : shield and relation strike nearly nerve
150 the caleb are kill and will strike circle nerve
175 the emotions are raw and will strike a nerve

Table 2: Examples of perturbed tokens (𝜂 = 100, sampled in-
dependently and sorted by empirical frequencies).

the emotions are raw and will strike a nerve

Pe
rt
ur
be
d
to
ke
ns the emotions are raw and will strike a nerve

a emotion were smackdown or would strikes the rebels
its emotionally is matt but can attack an reason
and hormones being ##awa , may drop his cells
his organizations re unused - better ##gen its spirits
her emotional have division as must aim her bothering
some moods of protection " self stroke one communications

of 𝜂 are greater than the typically used 𝜖 in LDP. Given the rela-
tively high dimensionality of BERT embeddings (768) and the large
noise we require, we adopt higher 𝜂 to achieve the level of privacy
protection shown in the next sections. To bring down the level of 𝜂
to values resembling 𝜀 in LDP, one may reduce the dimensionality
of the BERT embeddings by random projection [33], which will be
investigated in our future work.

5.2 Examples of Perturbed Text
We present examples of text-to-text privatization (Sec. 3.2.4) in
Tab. 1 with different choices of 𝜂. As expected, we observe that
as 𝜂 becomes larger, the noise becomes smaller and more tokens
remain unmodified. Next, we focus on 𝜂 = 100 (as an example), and
perturb each token in the previous sentence 1,000 times. We sort the
top-10 perturbed tokens for each original token by their empirical
frequencies. The results are presented in Tab. 2. We observe that
a token has a certain probability to be preserved. For example,
“emotions” has 14% of the chances to remain unmodified under this
specific choice of 𝜂. A token can also be perturbed into a diverse
set of other tokens. For instance, “emotions” is perturbed to 825
distinct words with different empirical frequencies. Some of the
top words are “emotion”, “emotionally”, “hormones”, “emotional”,
and “moods”, which share similar semantics with the original word
“emotions”. Some perturbed tokens might not have obvious links to
the original token due to the randomness introduced by the privacy-
preserving mechanism. Intuitively, good privacy protection implies
a token has a relatively small chance of being preserved, and can be
modified to a relatively diverse set of perturbed tokens. We quantify
these measurements in the next section.

5.3 Plausible Deniability Statistics
We follow Feyisetan et al. [12] to use two statistics to characterize
the ability of an adversary to recover the original input text when
observing the perturbed text or text representations. This ability is



referred to as plausible deniability [5] and it varies under different
settings of 𝜂. The formal definitions of the statistics can be found in
Feyisetan et al. [12]. We provide intuitive explanations as follows:
• 𝑁𝑤 : the probability of an input token𝑤 not modified by𝑀txt (𝑤).
• 𝑆𝑤 : the effective support of the output distribution of perturba-
tion𝑀txt (𝑤) on the entire vocabulary for an input token𝑤 .
We run simulations to estimate the plausible deniability sta-

tistics. For each choice of privacy parameter 𝜂, we perturb each
regular token in the vocabulary for 1,000 times. Regular tokens
refer to the tokens other than [PAD], [CLS], [SEP], [MASK], [UNK],
or [unused...]. We estimate 𝑁𝑤 as the number of output tokens
that are identical to the input token, and 𝑆𝑤 as the number of
unique output tokens. Intuitively, good privacy guarantees should
be characterized by relatively small 𝑁𝑤 and relatively large 𝑆𝑤 .

We present the estimated plausible deniability statistics of the
BERT vocabulary in Fig. 4. For example, when 𝜂 = 75, the 𝑁𝑤

figure shows no token is ever returned more than 500 times in
the worst case and the 𝑆𝑤 figure shows no token produces fewer
than 500 distinct new tokens. As 𝜂 becomes greater (the noise
becomes smaller), a growing number of tokens tend to have larger
𝑁𝑤 , indicating that the tokens tend to have greater probability of
remaining unmodified. Meanwhile, more and more tokens tend to
produce only a small amount of distinct perturbed outputs (𝑆𝑤 ),
suggesting a limited support on the vocabulary.

These statistic figures serve as a visual guidance for selecting 𝜂
for different applications that require different privacy guarantees.
Feyisetan et al. [12] suggest selecting 𝜂 based on the desired worst
case guarantees. For example, we should select 𝜂 as 75 for an appli-
cation that requires all tokens to be modified for at least 500 times
out of 1,000 perturbations. In addition to the worst case guarantees,
we show another practical approach to conduct 𝜂 selection based
on the average case guarantees in the next section.

5.4 Token Embedding Inversion
The plausible deniability statistics characterize the privacy guar-
antees from the perspective of the vocabulary. In this section, we
show another interpretation of privacy protection level by mea-
suring the amount of tokens that are modified by perturbation in
actual datasets following Song and Raghunathan [29]. This analysis
accounts for the token frequencies in real datasets and could be
more practical in guiding the selection of the privacy parameter 𝜂.

We define an adversarial task, token embedding inversion, as
recovering the original tokens based on perturbed token embed-
dings. We leverage nearest neighbor search for this task. Given a
perturbed token embedding, we find the nearest neighbor of this
embedding in the embedding space as the predicted original token.
The performance is measured by accuracy. Although this attack
is not comprehensive, it’s performance can be considered as an
automatic metric to reveal the privacy-utility trade-off and to guide
the selection of the privacy parameter 𝜂. Besides, this approach is
shown to be highly effective on our low-level lexical input (tokens).
We will leave more advanced ML attacks to our future work.

The results of token embedding inversion on the validation data
of SST and QQP are presented in Tab. 3. We demonstrate that
privacy protection levels are consistent across datasets, indicating
that the privacy-preserving mechanism could be agnostic to specific

Table 3: Accuracy of token embedding inversion.

𝜂 50 75 100 125 150 175

SST 0.0154 0.1084 0.3402 0.6354 0.8500 0.9511
QQP 0.0165 0.1066 0.3420 0.6462 0.8620 0.9570

tasks and datasets. As 𝜂 becomes larger and the noise becomes
smaller, a growing amount of tokens in actual datasets can be
correctly recovered by nearest neighbor search. For example, at 𝜂 =

100, only 34% of tokens in the datasets can be recovered, indicating
that this choice of 𝜂 provides moderately strong privacy protection.

We also observe that the inversion scores roughly correspond
to the peak values of 𝑁𝑤 in plausible deniability statistics (Fig. 4).
This observation advocates for using average case guarantees for
𝜂 selection. 𝜂 selection with worst case guarantees always favors
stricter privacy choices since this approach is contingent on the
tokens that are least prone to be modified. 𝜂 selection based on
average case guarantees is an alternative approach that accounts
for the term frequencies in actual corpora. Our recommendation is
that, given the different linguistic properties in different languages,
domains, applications, and data, the decision on the choice of 𝜂 and
the approach to select an 𝜂 should be made on a case-by-case basis.

6 UTILITY EXPERIMENTS
6.1 Implementation Details
Privacy-Constrained Fine-Tuning.We freeze parameters for a
model component to simulate the user-side deployment for this
component. E.g., in token representation privatization, the embed-
ding layer is frozen since it is deployed at the user side (Fig. 1). For
both BERT and BiLSTM, we set the maximum sequence length to
128, the training batch size to 32, and the number of training epochs
to 3. On SST, we use the learning rate of 2e-5 to fine-tune BERT
and 1e-3 to train BiLSTM. On QQP, we use the learning rate of 4e-5
to fine-tune BERT and 1e-3 to train BiLSTM. The warm up por-
tion of the learning rate is 10% of the total steps. We use the same
wordpiece embeddings for both encoders for fair comparisons.

Privacy-Adaptive BERT Pretraining. We set the maximum
sequence length to 128, the training batch size to 256, the learning
rate to 2e-5, the maximum number of predictions per sequence to 20,
the mask rate to 0.15, the maximum training steps to 1,000,000, and
warm up steps to 10,000. We save checkpoints every 200,000 steps
and fine-tune the checkpoint with privacy-constrained training to
select the best checkpoint. The choices of 𝜂 for pretraining and
fine-tuning are identical in our experiments. For Prob MLM, we set
the number of perturbations per masked position to 10.

6.2 Results of Privacy-Constrained Fine-Tuning
Our experiments on sequence representation privatization indicates
even the smallest perturbation we used (𝜂=175) causes 30% absolute
performance decrease compared with Null Privacy. Given this ob-
servation, we focus on experiments for token-level privatization.4

The utility results for token-level privatization are reported in
Tab. 4 for SST and Tab. 5 for QQP. We use the same wordpiece em-
beddings for both BERT and BiLSTM encoders for fair comparisons.
4 We should note that the privacy semantics of 𝜂 for sequence-level privatization and
token-level privatization are different. We leave this to our future work.
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Figure 4: Plausible deniability statistics. Each token in the vocabulary is perturbed 1,000 times. 𝑁𝑤 refers to the number of
output tokens that are identical to the input token, and 𝑆𝑤 refers to the number of unique output tokens.

The privacy parameters 𝜂 for token-level privatization, including
those with privacy-adaptive pretraining, are directly comparable
since they use equivalent inputs and distance functions.

We first compare the two token-level privatization methods (col-
umn 1 vs. 2, column 3 vs. 4 in Tab. 4 and 5). We see text-to-text pri-
vatization produces considerable performance improvement com-
pared to token representation privatization. This improvement has
statistical significance and is observed for both encoders on a wide
range of 𝜂. The performance gain is larger when noise is smaller.
This verifies our finding in Sec. 5.4 that nearest neighbor search is
effective in mapping perturbed embeddings to its original token (al-
though this does not affect the privacy guarantees [12]). Feyisetan
et al. [12] take advantage of this technique to make the privatization
mechanism compatible with existing pipelines of text processing,
while we reveal the important role it plays to dramatically improve
the performance of NLU models in privacy-constrained fine-tuning.

We then look at the comparisons of the two encoders. BERT per-
forms better than BiLSTM if we do not apply privacy constraints, as
expected. We observe that BERT suffers from a larger performance
degradation than BiLSTM with token representation privatization.
This indicates that BERT is less robust than BiLSTM in handling
perturbation on representations. This unexpected result can be
explained by the mismatch of representations observed by BERT
during pretraining (on plain corpora) and fine-tuning (on priva-
tized corpora). Also, complex models are more likely to suffer from
inherently high variance. In the next section, we show our privacy-
adaptive pretraining methods can improve BERT’s performance
and help it outperform BiLSTM under the same privacy guaran-
tee. On the other hand, BERT performs better with text-to-text
privatization, compared with BiLSTM, in general. Thanks to the ad-
vantages brought by the LM pretraining and attention mechanisms,
BERT handles the perturbation better than BiLSTM with statistical
significance for a wide range of 𝜂 values. This shows BERT is more
robust than BiLSTM in handling text-to-text privatization.

Finally, we briefly look at the comparison of our approach with
Null Privacy. Perturbation on token representations results in se-
vere degradation inmodel performance compared with Null Privacy.
Even though the encoder is fine-tuned in token representation pri-
vatization, it is not able to adapt to the perturbed token embeddings.
This is within our expectation since we observe in Sec. 5.1 that the
noise applied to embeddings causes a significant shift of the original

Table 4: Accuracy of privacy-constrained fine-tuning on SST.
Scores in the header are obtained with Null Privacy. Bold-
face denotes better results with the same encoder. Under-
scores denote better results between different encoders with
the same privacy constraint. ▲𝑖 denotes the improvement
with respect to column 𝑖 has statistically significance with
𝑝 < 0.05 tested by the Student’s paired t-test.

𝜂
BERT (0.9289) BiLSTM (0.8406)

1. Token Rep 2. Text-to-Text 3. Token Rep 4. Text-to-Text

50 0.5126 0.4920 0.5092 0.5092
75 0.5310 0.5906▲1,4 0.5447 0.5356
100 0.5298 0.7030▲1,4 0.5608 0.6697▲3

125 0.5608 0.8360▲1,4 0.5608 0.7420▲3

150 0.5665 0.8968▲1,4 0.5917 0.8119▲3

175 0.5975 0.9151▲1,4 0.6216 0.8211▲3

Table 5: Accuracy of privacy-constrained fine-tuning on
QQP. Refer to Tab. 4 to interpret the notations.

𝜂
BERT (0.9106) BiLSTM (0.8261)

1. Token Rep 2. Text-to-Text 3. Token Rep 4. Text-to-Text

50 0.6370▲2 0.6318 0.6409▲1 0.6423▲2

75 0.6318 0.6485▲1 0.6318 0.6631▲2,3

100 0.6318 0.7238▲1,4 0.6318 0.7108▲3

125 0.6318 0.8274▲1,4 0.6318 0.7534▲3

150 0.6447 0.8759▲1,4 0.6811▲1 0.7854▲3

175 0.6354 0.8976▲1,4 0.6987▲1 0.8066▲3

embedding in the embedding space. Text-to-text privatization, on
the other hand, shows less degradation.

6.3 Results of Privacy-Adaptive Pretraining
Privacy-adaptive pretraining results are shown in Tab. 6 for token
representation privatization and Tab. 7 for text-to-text privatization.

We first analyze the general effect of privacy-adaptive pretrain-
ing. For token representation privatization, consistent results on
two datasets demonstrate that all three privacy-adaptive pretraining
methods have significant performance improvement with statistical
significance. This suggests that the BERT pretrained with privacy-
adaptive methods are much more effective and robust than the
original BERT model in handling privatized token representations.
For text-to-text privatization, although it has inherently advan-
tages due to nearest neighbor search, privacy-adaptive pretraining
still manages to outperform the original BERT checkpoint on both



Table 6: Accuracy of privacy-adaptive pretraining with token representation privatization. Italic denotes better results than
the original BERT. Underscores denote better results than the pretraining baseline of Vanilla MLM. Boldface denotes the best
results. ▲𝑖 denotes the gain with respect to column 𝑖 has statistically significance (𝑝 < 0.05 tested by the Student’s paired t-test).

𝜂
SST QQP

1. Orig BERT 2. Vanilla MLM 3. Prob MLM 4. Denoising MLM 1. Orig BERT 2. Vanilla MLM 3. Prob MLM 4. Denoising MLM

50 0.5126 0.5390▲1 0.5424▲1 0.5356 0.6370 0.6434▲1,3 0.6364 0.6444▲1,3

75 0.5310 0.5791▲1 0.5757▲1 0.6089▲1 0.6318 0.6645▲1 0.6821▲1,2 0.7119▲1,2,3

100 0.5298 0.6709▲1 0.6766▲1 0.7041▲1,2 0.6318 0.7668▲1 0.7686▲1 0.7788▲1,2,3

125 0.5608 0.7706▲1 0.7718▲1 0.7810▲1 0.6318 0.8200▲1 0.8219▲1 0.8249▲1,2,3

150 0.5665 0.8188▲1 0.8188▲1 0.8395▲1,2,3 0.6447 0.8520▲1 0.8520▲1 0.8523▲1

175 0.5975 0.8658▲1 0.8693▲1 0.8693▲1 0.6354 0.8698▲1 0.8688▲1 0.8691▲1

Table 7: Accuracy of privacy-adaptive pretraining with token-to-token privatization. Refer to Tab. 6 to interpret the notations.

𝜂
SST QQP

1. Orig BERT 2. Vanilla MLM 3. Prob MLM 4. Denoising MLM 1. Orig BERT 2. Vanilla MLM 3. Prob MLM 4. Denoising MLM

50 0.4920 0.5218 0.5310 0.5092 0.6318 0.6375▲1 0.6419▲1,2 0.6469▲1,2,3

75 0.5906 0.5963 0.5734 0.5906 0.6485 0.6643▲1 0.6616▲1 0.6693▲1,2,3

100 0.7030 0.7190 0.7259 0.7225 0.7238 0.7628▲1 0.7610▲1 0.7603▲1

125 0.8360 0.8429 0.8429 0.8406 0.8274 0.8346▲1 0.8362▲1 0.8351▲1

150 0.8968 0.9048 0.9071 0.9025 0.8759 0.8790▲1 0.8801▲1 0.8791▲1

175 0.9151 0.9209 0.9209 0.9220 0.8976 0.8997 0.8994 0.8990

datasets, and with statistical significance on QQP. These results
demonstrate the effectiveness of our privacy-adaptive pretraining.

We then compare the performance of the three privacy-adaptive
pretraining approaches. For token representation privatization, the
Vanilla MLM is already highly effective, despite its simplicity. It only
brings a marginal improvement if we enable the model to predict a
set of perturbed tokens for each masked position with Prob MLM.
This indicates that the augmentation effect in Vanilla MLM could be
sufficient for the model to observe enough variations of the noise in-
jection process. Predicting the original tokens with Denoising MLM
shows visible gains compared with predicting perturbed tokens in
Vanilla and Prob MLM. These improvements are particularly com-
pelling and have statistical significance when we have moderately
large noise (𝜂 = 75, 100), where more than half of the tokens in the
datasets are modified. These results indicate Denoising MLM has
more practical values in real-world applications.

For text-to-text privatization, Denoising MLM remains a com-
petitive privacy-adaptive pretraining methods. In contrast to token
representation privatization, predicting (a set of) perturbed tokens
here shows marginal improvement over predicting the original to-
ken in some cases. Since text-to-text privatization sometimes lands
on the original token as the perturbed token due to nearest neigh-
bor search, Denoising MLM is less beneficial than the case with
token representation privatization. In particular, privacy-adaptive
pretraining with text-to-text privatization demonstrates consider-
able improvement when 𝜂 = 100, where the noise is sufficiently
large and more than half of the tokens in the datasets are modified.
This improvement expands to a wider range of 𝜂 values (𝜂 = 50, 75,
100, 125) on QQP. Privacy-adaptive pretraining has a pronounced
effect on QQP, probably because the sentence pair prediction task
is more difficult, and thus, is more dependent on the adaptation
of perturbation in our privacy-adaptive pretraining process. This
demonstrates the value of our methods in practical applications.

Finally, we compare the performance of privacy-adaptive pre-
training between the two different token-level privatization. It is

worth noting that token representation privatization generally out-
performs text-to-text privatization when noise is large (𝜂 = 50, 75,
and 100 in some cases). This exciting observation indicates that the
noise adaptation effect resulting from privacy-adaptive pretraining
has advantages over nearest neighbor search when noise is large.

To sum up, we recommend adopting Denoising MLM as the pri-
mary method for privacy-adaptive pretraining for both token-level
privatization approaches. When a relatively strong level of privacy
protection (e.g., 𝜂 < 100) is required, token representation privati-
zation should be adopted to preserve more utility. Otherwise, text-
to-text privatization is preferred. In both cases, privacy-adaptive
pretraining is essential to improve model performance.

7 CONCLUSIONS AND FUTUREWORK
In this work, we study how to improve NLU model performance
on privatized text in the Local Privacy setting. We first take a deep
analytical view to illustrate the privacy guarantees of 𝑑𝜒 privacy.
We then investigate the behavior of BERT when it meets privatized
text input with privacy-constrained fine-tuning methods. We show
BERT is less robust than BiLSTM in handling privatized token rep-
resentations. We further show text-to-text privatization can often
improve upon token representation privatization, revealing the im-
portant role played by nearest neighbor search to improve utility
in privacy-constrained fine-tuning. More importantly, we propose
privacy-adaptive LM pretraining methods and demonstrate that a
BERT pretrained with our Denoising MLM objective is more robust
in handling privatized content compared with the original BERT.
For future work, we would like to study privatization on contextual-
ized token representations and more advanced ML attacks. We will
also look at reducing the dimensionality of the BERT embeddings
by random projection [33] to bring down the level of 𝜂.
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