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ABSTRACT
How to optimize ranking metrics such as Normalized Discounted

Cumulative Gain (NDCG) is an important but challenging problem,

because rankingmetrics are either flat or discontinuous everywhere,

which makes them hard to be optimized directly. Among existing

approaches, LambdaRank is a novel algorithm that incorporates

ranking metrics into its learning procedure. Though empirically ef-

fective, it still lacks theoretical justification. For example, the under-

lying loss that LambdaRank optimizes for remains unknown until

now. Due to this, there is no principled way to advance the Lamb-

daRank algorithm further. In this paper, we present LambdaLoss, a

probabilistic framework for ranking metric optimization. We show

that LambdaRank is a special configuration with a well-defined loss

in the LambdaLoss framework, and thus provide theoretical justifi-

cation for it. More importantly, the LambdaLoss framework allows

us to define metric-driven loss functions that have clear connection

to different ranking metrics. We show a few cases in this paper and

evaluate them on three publicly available data sets. Experimental

results show that our metric-driven loss functions can significantly

improve the state-of-the-art learning-to-rank algorithms.
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1 INTRODUCTION
Information Retrieval (IR) system performance is measured by

ranking metrics such as Normalized Discounted Cumulative Gain

(NDCG) [16], Mean Average Precision (MAP) [1], Mean Reciprocal

Rank (MRR) [37], etc. These metrics are defined on the retrieved

list of documents, and are intended to capture its utility for the end

users. Since users, when presented with a ranked list of documents,

are more likely to scan documents downwards starting at the top,
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most ranking metrics are rank-dependent and reward relevance of

top-ranked documents more.

Learning-to-rank is an interdisciplinary research area that em-

ploys machine learning techniques to solve ranking problems in IR

systems. While traditional machine learning algorithms are mainly

designed for classification or regression, they have been adopted

for ranking problems in the learning-to-rank setting [23]. The well-

known pairwise approaches define loss functions to optimize for

preferences among document pairs [3–5, 17, 22], and the listwise

approaches define loss functions over the entire document lists

to optimize the agreement between predictions and ground truth

rankings [6, 39]. The loss functions in these approaches are smooth

and convex, and thus efficiently optimized. Also, they are shown to

be bounds of ranking metrics [22, 23] and work reasonably well in

practice. However, the bounds of these loss functions are usually

coarse because they are not designed in a metric-driven manner.

How to directly optimize ranking metrics is an important but

challenging problem. The main difficulty lies in the fact that rank-

ing metrics depend on ranks that are usually obtained by sort-

ing documents by their scores. As a result, ranking metrics are

either flat or discontinuous everywhere; they are neither smooth

nor convex. Direct non-gradient optimization techniques like grid

search [24, 31, 34] can be used, but they do not scale well. Thus, prior

work has explored three lines of research to tackle the optimization

problem in a scalable way.

The first line uses approximation. A common strategy is to ap-

proximate ranks in ranking metrics by scores that are output from

ranking models [8, 27, 33, 36]. For example, SoftRank [33] first de-

fines a distribution over all possible ranked lists after introducing

uncertainty to scores. It then defines SoftNDCG as the expected

NDCG over this distribution and uses it as the optimization objec-

tive. However, the main drawback of this type of approach is that

the objectives are not convex (though smooth), which makes them

easily stuck at local optima [23].

The second line casts learning-to-rank as a structured learning

problem [21, 25, 41] in which a ranked list is treated as a unit and a

loss is defined as its distance to the ideal ranked list that is sorted by

relevance labels. The distance metric between ranked lists depends

on the ranking metric under consideration [21]. Because there is

an exponential number of possible ranked lists, training efficiency

is the main bottleneck for this line of work.

The third line uses ranking metrics to dynamically re-weight

instances during iterative training procedures [3–5, 29, 40]. For ex-

ample, AdaRank [40] adapts the AdaBoost idea [12] to ranking prob-

lems, and uses the NDCG value of each query to compute a weight

for it in the next training iteration. LambdaRank algorithms [4, 5]

creatively define a weight ∆NDCG, which is the NDCG difference

when a pair of documents is swapped in the current ranked list,

and use it to re-weight the pair in the next training iteration. These

https://doi.org/10.1145/3269206.3271784
https://doi.org/10.1145/3269206.3271784


methods take metrics into account and are also efficient since a

convex optimization problem is solved in each iteration. Different

from AdaRank, which has a similar exponential loss as AdaBoost,

the underlying loss of LambdaRank remains unknown, despite its

empirical success [4, 7].

Our paper is motivated by the desire to understand the theo-

retical aspects of LambdaRank. What is the underlying loss that

LambdaRank optimizes for? Without such knowledge, there are no

theoretical guarantees that the LambdaRank iterations will even-

tually converge. To the best of our knowledge, the best effort so

far justifies the convergence through empirical hypothesis testing

to show its local optimality [4, 11]. Also, concerns were raised on

whether LambdaRank directly optimizes NDCG or not [23]. More

importantly, the lack of theoretical justification prevents us from

advancing its success by creating new LambdaRank-like learning-

to-rank algorithms.

In this paper, we fill this theoretical gap by proposing Lamb-

daLoss, a probabilistic framework for ranking metric optimization.

We show that LambdaRank becomes a special configuration in

the LambdaLoss framework and a well-defined loss is thus pre-

sented for LambdaRank in this paper. The LambdaRank algorithms

use a Expectation-Maximization procedure to optimize the loss.

More interestingly, our LambdaLoss framework allows us to define

metric-driven loss functions conditioning on both ranks and scores

and can optimize them efficiently. We show a few cases on how

to define LambdaLoss in a metric-driven manner. Along this line,

we discover a ranking metric that is bounded by the underlying

loss of LambdaRank and show it is more coarse than the one de-

veloped in this paper. We validate the LambdaLoss framework on

three benchmark LETOR data sets [26]. Our experimental results

show that our metric-driven loss functions defined in the Lamb-

daLoss framework can significantly improve the state-of-the-art

learning-to-rank algorithms.

The rest of this paper is organized as follows: In Section 2, we

review previous related work. We formulate our problem in Sec-

tion 3. The probabilistic framework is presented in Section 4 and

our metric-driven loss functions are described in Section 5. We

present our experiments in Section 6 & 7 and conclude in Section 8.

2 RELATEDWORK
Learning-to-rank is an extensively studied research field, and mul-

tiple optimization algorithms for ranking problems were proposed

in prior art (see Liu [23] for a comprehensive survey of the field). In

general, learning-to-rank methods fall into three main categories:

pointwise, pairwise and listwise methods. Pointwise were the earli-

est proposed learning-to-rank methods. These methods define loss

using regression [14], classification [15] or ordinal regression [9]

methods, and were generally found less effective for information re-

trieval applications [23]. Pairwise learning-to-rank methods [3, 17]

model pairwise preferences among documents in the ranked list,

and while being more effective than the pointwise methods, they

are still less effective compared to the listwise methods [6, 39] that

define their loss over the entire document list. All these methods

work reasonably well in practice but their connection to ranking

metrics are loose.

To optimize ranking metrics, the most straightforward way is

through non-gradient techniques like grid search, coordinate search

or other exhaustive search techniques [24, 31, 34]. However, since

IR metrics are neither smooth nor convex, these methods provide

no guarantees regarding reaching true global maxima. In addition,

since these methods require search over the entire parameter space

and evaluation over the entire data set for each search, they do

not scale very well as the number of features or training instances

increases. Approximation-based methods such as SoftRank [33],

SmoothRank [8] and ApproxNDCG [27], instead focus on optimiz-

ing a continuous and differentiable approximation of the target

metric, but suffer from being easily stuck at local optima. Structural

learning algorithms [21, 25, 41] optimize ranking metrics based

on structural SVM algorithms [35] but are computationally costly

due to the exponential number of constraints in their formulations.

AdaRank [40] and LambdaRank [5] are two iterative methods and

use ranking metrics to dynamically re-weight training examples

after each iteration.

Our work is motivated by LambdaRank [5]. The initial version of

LambdaRank was based on neural network models. A later version

using the same procedure, but based on gradient boosting decision

tree models is known as LambdaMART [4]. LambdaMART was

empirically shown to be a state-of-the-art model (e.g., it was the

winning submission at the Yahoo! learning-to-rank challenge [7]),

however there are no theoretical guarantees that it indeed optimizes

NDCG over the training data. This paper attempts to address this

gap and extends it to a framework that can define and optimize

metric-driven loss functions.

3 PROBLEM FORMULATION
We formulate our problem in the learning-to-rank framework in

this section.

3.1 Learning-to-Rank
In the learning-to-rank setting, the training data T contains a set

of queries Q with each having a list of result documents. For each

document, we have a feature vector as well as a relevance label;

and thus each query has a list xq of document feature vectors and

a list yq of document relevance labels. Thus the training data is

represented as

T = {(xq , yq )|q ∈ Q}.

In the following discussion, we drop the subscript q and use x and

y for conciseness.

A learning-to-rank algorithm is to find a ranking model Φ that

can predict the relevance scores s for all documents in a query:

s = Φ(x)

We take a generic form of the ranking model Φ in our paper. In

practice, Φ can be implemented in different forms. For example,

RankingSVM [17] uses a linear model; LambdaMART [4] uses a tree-

based model; RankNet [3] uses a neural network model. Though the

implementation can be different, all the learning-to-rank algorithms

learn Φ using loss functions as their objectives. A loss function is

in general defined based on relevance labels y and predicted scores



s = Φ(x):

L(Φ) =
1

|T |

∑
(x,y)∈T

l(y,Φ(x)) (1)

where l is the loss function for a single query that takes the labels

and scores as input and output a real value as the loss.

l : (y, s) → R (2)

A learning-to-rank algorithm is to find the optimalΦ that minimizes

the overall loss:

Φ̂ = argmin

R(Φ)
L(Φ)

in the space of ranking models R(Φ).

3.2 Simple Loss Functions
How to define the loss l in Eq 2 is an important factor for learning-

to-rank algorithms. Suppose we have n documents and we use yi
and si to represent the label and score for the i-th document. The

loss l can be defined in a pointwise manner, like a mean square

error

l(y, s) =
n∑
i=1

(yi − si )
2

Such a loss function is commonly used in regression problems and

it is not specific for ranking problems. The introduction of pairwise

and listwise loss functions incubates the learning-to-rank research

area [3, 6, 17], where the loss is defined to measure the correctness

of relative document orders, instead of error in absolute relevance

prediction. A commonly used pairwise loss function is the logistic

loss

l(y, s) =
n∑
i=1

n∑
j=1
Iyi>yj log2(1 + e

−σ (si−sj )) (3)

=
∑

yi>yj

log
2
(1 + e−σ (si−sj ))

where I is the indicator function and σ is a hyper-parameter. This

loss is based on cross entropy and used in the RankNet algorithms [3–

5]. The intuition is to apply a penalty on the out-of-order pair (i, j)
that has yi > yj but si < sj . Note that we use log2 instead of log

purposely to facilitate the discussion in Section 5.

3.3 Ranking Metrics
There are many existing ranking metrics such as NDCG and MAP

used in IR problems. A common property of these metrics is that

they are rank-dependent and place more emphasis on performance

of the top ranked documents. For example, the commonly adopted

NDCG metric for a single query over the document list ranked by

decreasing scores s is defined as

NDCG =
1

maxDCG

n∑
i=1

2
yi − 1

log
2
(1 + i)

=

n∑
i=1

Gi
Di

(4)

where

Gi =
2
yi − 1

maxDCG

, Di = log
2
(1 + i)

are gain and discount functions respectively and maxDCG is a

normalization factor per query and computed as the DCG for the

list ranked by decreasing relevance labels y of the query. Please

note that maxDCG is a constant factor per query in NDCG.

Ideally, learning-to-rank algorithms should use ranking metrics

as learning objectives. However, it is easy to see that sorting by

scores is needed to obtain ranks. This makes ranking metrics ei-

ther flat or discontinuous everywhere, so they cannot be directly

optimized efficiently.

3.4 LambdaRank
Bridging the gap between evaluation metrics and loss functions has

been studied actively in the past [23]. Among them, LambdaRank

or its tree-based variant LambdaMART has been one of the most

effective algorithms to incorporate ranking metrics in the learning

procedure. The basic idea is to dynamically adjust the loss during

the training based on ranking metrics. Using NDCG as an example,

∆NDCG is defined as the absolute difference between the NDCG

values when two documents i and j are swapped

∆NDCG(i, j) = |Gi −G j | |
1

Di
−

1

D j
| (5)

LambdaRank uses the logistic loss in Eq 3 and adapts it by re-

weighing each document pair by ∆NDCG in each iteration

l(y, s) =
∑

yi>yj

∆NDCG(i, j) log
2
(1 + e−σ (si−sj )) (6)

3.5 Research Problems
LambdaRank has been shown empirically to improve ranking qual-

ity and looks very related to the NDCG metric. However, there

are a few outstanding questions about it: (1) From the theoretical

perspective, does the iterative procedure employed by LambdaRank

converge? (2) Is there an underlying global loss function in Eq 1

for LambdaRank and how is it related to the NDCG metric? These

questions, especially the second one, have puzzled researchers for

a while. For example, in Chapter 3.3.7 of Liu’s book [23], the author

raised the concern on claiming that LambdaRank directly optimizes

NDCG. Broadly, we are more interested in closing the gap between

learning loss functions and ranking metrics.

4 THE LAMBDALOSS FRAMEWORK
In this section, we present the LambdaLoss framework and provide

an underlying loss for LambdaRank by formulating it as a special

configuration in the LambdaLoss framework.

4.1 Loss Function
We formulate the loss function in a probabilistic manner. Similar to

previous work [33], we assume that scores of documents s deter-
mine a distribution over all possible ranked lists or permutations.

Let π denote a ranked list and we use {P(π |s) : π ∈ Π} to denote

the distribution. In our framework, we treat the ranked list π as

a hidden variable and define the loss based on the likelihood of

observing relevance y given s (or equivalently Φ and x) using a

mixture model over Π:

P(y|s) =
∑
π ∈Π

P(y|s,π )P(π |s)

where s = Φ(x) and we use them interchangeably. Given a set of

training instances T = {(x, y)}, we define the loss l(y, s) in Eq 2
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Figure 1: Generalized logistic distributions with different ex-
ponents.

as the negative log likelihood based on the maximum likelihood

principle

l(y, s) = − log
2
P(y|s) = − log

2

∑
π ∈Π

P(y|s,π )P(π |s) (7)

There are two main terms in the loss function: likelihood P(y|s,π )
and ranked list distribution P(π |s). Clearly, different formulations

of these two terms give different loss functions. We show a few

ones in the following.

4.1.1 Likelihood P(y|s,π ). We start with the basic Bradley-Terry

model [2] as our formulation for likelihood. In the basic Bradley-

Terry model, the probability that document i is more relevant than

j, i.e., yi > yj , is only based on their scores si and sj , regardless of
π :

P(yi > yj |si , sj ) =
1

1 + e−σ (si−sj )

Such a model makes intuitive sense: P(yi > yj |si , sj ) > 0.5 when

si > sj and vice versa. By treating the relevance labels y as a set of

pairwise preference observations, the log likelihood in Eq 7 becomes

l(y, s) = − log
2
P(y|s) =

∑
yi>yj

log
2
(1 + e−σ (si−sj ))

because of the independency of π , i.e., P(y|s,π ) = P(y|s). Thus our
loss function boils down to the logistic loss used in RankNet which

was also shown in [30].

Our loss in Eq 7 can be more sophisticated because it allows

the dependence on π in the likelihood term P(y|s,π ). For example,

assuming that πi and πj are ranks in π for document i and j, we
define

P(yi > yj |si , sj ,πi ,πj ) = [
1

1 + e−σ (si−sj )
]
|Gi−G j | |

1

D(πi )
− 1

D(πj )
|

where D(πi ) and D(πj ) are the position discount functions and

Gi and G j are the gain functions used in NDCG in Eq 4. Such a

definition is very similar to the basic Bradley-Terrymodel but is now

rank-sensitive [30]. Intuitively, the chance of observing document i
is more relevant than j depends on both their difference in relevance
labels and their positions in a ranked list. Mathematically, it belongs

to the family of generalized logistic distributions [19] and a few

examples with different exponents are shown in Figure 1. When

the exponent becomes larger, the curve is more sharp and the loss

is thus more sensitive to the score difference. Thus, we have the

loss

l(y, s) = −
∑

yi>yj

log
2

∑
π

P(yi > yj |si , sj ,πi ,πj )P(π |s) (8)

Such a loss function cannot be optimized directly by a conventional

learning-to-rank algorithm like RankNet. We will present how to

optimize this type of loss function in Section 4.2.

4.1.2 Ranked List Distribution P(π |s). The term P(π |s) can take

different forms. We discuss two and compare their approach with

ours in this section.

In SoftRank [33], uncertainty was introduced to each score si
using a normal distributionN(si , ϵ) with Gaussian noise ϵ . Ranked
lists π are still determined by sorting scores but now becomes

uncertain due to Gaussian noise. Thus a distribution N(π |s) with
soft assignment over Π is formed. Such a distribution is not easy to

write analytically, but easy to draw a sample by randomly sampling

a score from the normal distribution of each score and then sorting

to form a ranked list. The objective used in SoftRank is the expected

NDCG over N(π |s):

SoftNDCG =
∑
π

NDCG(π , y)N(π |s)

where the NDCG is computed based on ranking π and labels y. The
SoftNDCG can be thought as the negative of a loss function l(y, s).
It is smooth with respect to the scores s but not convex. Gradient
descent was used and it is easy to get stuck at a local optimum.

In the ListNet approach [6], P(π |s) is formed as the Plackett-Luce

model PL(π |s). It also defines a distribution PL(π |y) by treating y
as scores in the Plackett-Luce model. The cross entropy between

these two distributions is used as the loss

l(y, s) = CrossEntropy(PL(π |y), PL(π |s))

Though theoretically interesting, such a loss is hard to use in prac-

tice due to the huge size of Π. The ListNet approach reduces the

problem by using the marginal distribution of the first position and

the cross entropy then becomes

l(y, s) = −
∑
i

eyi∑
j e

yj log2
esi∑
j e

sj

Gradient descent was also used in the ListNet optimization.

The loss in our LambdaLoss framework is different from these

two and we discuss our optimization method next.

4.2 Optimization by EM Algorithm
The loss l in Eq 7 is not convex in general. Fortunately, such a loss

can be minimized by the well-known Expectation-Maximization

(EM) algorithm [10]. EM is an iterative procedure and can be proven

to converge to a local minimum. It starts from a random guess

of model Φ(0)
and iterates over E-step and M-step to update the

model. At iteration t , in the E-step, the distribution of hidden vari-

able π is estimated based on the current ranking model Φ(t )
. Af-

ter the distribution of hidden variable P (t )(π |s) is estimated, the

M-step is to re-estimate the ranking model Φ(t+1)
to minimize

the negative likelihood, i.e., likelihood loss, using complete data



C = {(y, x,π )|π ∼ P (t )(π |s)} where π follows the distribution

P (t )(π |s).

Φ(t+1) = argminLC (Φ) = argmin

1

|T |

∑
(y,x)∈T

lC (y,Φ(x))

where

lC (y, s) = −
∑
π

P (t )(π |s) log
2
P(y|s,π )

≈
1

K

K∑
k=1

log
2
P(y|s,πk ) (9)

where πk is the k-th sample of ranked list from P (t )(π |s) andLC (Φ)

is the likelihood loss over the complete data. Since P (t )(π |s) is
known, computing Φ(t+1)

is efficient when log
2
P(y|s,π ) is convex.

However, the M-step is still computationally prohibitive because

the P (t )(π |s) for all π ∈ Π are needed in theory. In practice, A

few samples of ranked lists are good enough to give a good esti-

mation of Φ(t+1)
and this is a common practice of Monte Carlo

integration [28].

In particular, we can use a hard assignment distribution H (π |s)
to reduce the computational cost. That is,

H (π̂ |s) = 1 and H (π |s) = 0 for all π , π̂

where π̂ is the one in which all documents are sorted by decreasing

scores s. In fact, such a distribution is the limit distribution when

ϵ → 0 in the normal distribution. The EM algorithm is similar to

the one used in the k-means clustering algorithm.

4.3 LambdaRank in the Framework
In this section, we use the hard assignment distribution H (π |s) in
the loss in Eq 8 and show that LambdaRank is an EM procedure to

optimize this loss

l(y, s) = −
∑

yi>yj

log
2

∑
π

P(yi > yj |si , sj ,πi ,πj )H (π |s) (10)

In the E-step, we compute scores for documents to obtain s and
then rank all documents per query to obtain π̂ . In the M-step, the

loss over complete data becomes

lC (y, s) = −
∑
π

P (t )(π |s) log
2
P(y|s,π )

= −
∑
π

H (t )(π |s) log
2
P(y|s,π )

= − log
2
P(y|s, π̂ )

Then

lC (y, s) = −
∑

yi>yj

log
2
([

1

1 + e−σ (si−sj )
]
|Gi−G j | |

1

D(π̂i )
− 1

D(π̂j )
|
)

=
∑

yi>yj

|Gi −G j | |
1

D(π̂i )
−

1

D(π̂j )
| log

2
(1 + e−σ (si−sj ))

=
∑

yi>yj

∆NDCG log
2
(1 + e−σ (si−sj )) (11)

Thus, ∆NDCG can be computed for every pair of documents and

used as weights for each pair in the M-step to compute Φ(t+1)
in

LambdaRank.
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Figure 2: Zero-one loss is bounded by logistic loss.

Such an EM procedure can be implemented differently depending

on the underlinemodel structure. For example, in LambdaMART [4],

the model Φ is implemented as gradient boosting decision trees

and Φ(t+1)
is built upon Φ(t )

by adding a new boosting tree that

regresses to the gradient of the loss in Eq 11. From the EM perspec-

tive, such a technique is viewed as a heuristic in practice because

Φ(t+1)
can be built from scratch, without necessarily relying on

Φ(t )
. The heuristic of basing Φ(t+1)

on Φ(t )
, however, can make the

convergence faster and a similar strategy was also used in [38].

Next, we turn to the problem of how to define likelihood P(y|s,π )
or equivalently log

2
P(y|s,π ).

5 METRIC-DRIVEN LOSS FUNCTIONS
One appealing property of the LambdaLoss framework is that

P(y|s,π ) allows us to take both ranks and scores into our loss

definitions. This provides a natural bridge between ranking metrics

that purely rely on ranks and the traditional loss functions that

purely rely on scores. Thus our approach is different from previous

work on ranking metrc optimization where they replace ranks fully

by scores [8, 27, 33].

In this section, we show a few cases to define loss functions in a

metric-driven manner. The main upper bound function we use is

Isi<sj ≤ log
2
(1 + e−σ (si−sj )) (12)

where Isi<sj is the zero-one loss and it is bounded by the logistic

loss. The relationship is depicted in Figure 2 with σ = 1.

In the following, we assume to use the hard assignment distribu-

tion H (π |s) and discuss how to handle the soft assignment at the

end of this section. We use π̂ to denote the mode of H (π |s) and i
and j to denote the ranks in π̂ that is sorted by scores s.

5.1 Average Relevance Position
The first metric is the Average Relevance Position (ARP) proposed

in [18]. The ARP was originally proposed for binary relevance and

we extend it to graded relevance here. For a single query,

ARP =

n∑
i=1

yi · i (13)

where i is the rank and yi is the graded relevance for the document

at rank i in π̂ . Let si be the score, then i =
∑n
j=1 Isi<sj + 1 and we



have

ARP =

n∑
i=1

yi (
n∑
j=1
Isi<sj + 1)

=

n∑
i=1

n∑
j=1

yi Isi<sj +C1

≤

n∑
i=1

n∑
j=1

yi log2(1 + e
−σ (si−sj )) +C1

whereC1 =
∑n
i=1 yi is a constant and the last step is based on Eq 12.

The corresponding LambdaLoss is

l(y, s) = −

n∑
i=1

n∑
j=1

log
2

∑
π
(

1

1 + e−σ (si−sj )
)yiH (π |s)

and we denote this as ARP-Loss1. Such a formulation does not

depend on ranks, but only on scores. It is an upper-bound for

the ARP metric and can be minimized by standard pairwise loss

algorithms where yi is the weight for pair (si , sj ) and yj is the
weight for pair (sj , si ). For ARP, we can actually have an alternative

formulation

ARP −C1 =
1

2

(

n∑
i=1

n∑
j=1

(yi Isi<sj + yj Isj<si ))

=

n∑
i=1

(
∑

j :yj<yi

yi Isi<sj + yj Isj<si ) +
1

2

n∑
i=1

∑
j :yj=yi

yj

=

n∑
i=1

(
∑

j :yj<yi

yi Isi<sj + yj Isj<si ) +C2

=

n∑
i=1

∑
j :yj<yi

|yi − yj |Isi<sj +C3 +C2

≤

n∑
i=1

∑
j :yj<yi

|yi − yj | log2(1 + e
−σ (si−sj )) +C3 +C2

=
∑

yi>yj

|yi − yj | log2(1 + e
−σ (si−sj )) +C3 +C2

where C2 =
1

2

∑n
i=1

∑
j :yj=yi yj and C3 =

∑n
i=1

∑
j :yj<yi yj are

constant. We denote this as ARP-Loss2. This loss is closely related
to the RankNet loss in Eq 3, where |yi−yj | is replaced by Iyi>yj . The
ARP-Loss2 gives a theoretical justification of using the difference

between relevance labels for pairwise loss.

5.2 NDCG
Different from ARP that is a cost-based function, NDCG in Eq 4 is

a gain-based function. To derive its loss function, we define:

NDCGcost =

n∑
i=1

Gi −

n∑
i=1

Gi
Di
=

n∑
i=1

Gi (1 −
1

Di
) (14)

Based on Di − 1 = log
2
(1 + i) − 1 ≤ i − 1, we have

NDCGcost =

n∑
i=1

Gi
Di

(Di − 1) ≤

n∑
i=1

Gi
Di

(i − 1)

=

n∑
i=1

Gi
Di

n∑
j=1
Isi<sj ≤

n∑
i=1

n∑
j=1

Gi
Di

log
2
(1 + e−σ (si−sj ))

The bound is a combination of scores and ranks and can be opti-

mized by our EM algorithm with LambdaLoss

l(y, s) = −

n∑
i=1

n∑
j=1

log
2

∑
π
(

1

1 + e−σ (si−sj )
)
Gi
Di H (π |s)

We name it NDCG-Loss1. In the M-step, the weight for a pair

(si , sj ) is set to be
Gi
Di

.

The bound used in NDCG-Loss1 may be too loose when i become

larger. We define the second loss for NDCG based on the chain rule:

1 −
1

Di
=

i−1∑
j=1

|
1

D |i−j |
−

1

D |i−j |+1
| =

i−1∑
j=1

δi j

where

δi j = |
1

D |i−j |
−

1

D |i−j |+1
| (15)

It is easy to show δi j = δji and we also define δii = 0. Thus,

NDCGcost =

n∑
i=1

Gi

i−1∑
j=1

δi j =
n∑
i=1

Gi

n∑
j=1

δi j Isi<sj

=

n∑
i=1

∑
j :yj<yi

δi j [Gi Isi<sj +G j Isj<si ] +C2

=

n∑
i=1

∑
j :yj<yi

δi j |Gi −G j |Isi<sj +C3 +C2 (16)

whereC2 =
1

2

∑n
i=1

∑
j :G j=Gi δi jG j andC3 =

∑n
i=1

∑
j :G j<Gi δi jG j .

Both C2 and C3 depend on the current ranking π̂ only. They are

constant in the M-step since the ranked lists or their distribution

are determined. The corresponding LambdaLoss of Eq 16 is

l(y, s) = −
∑

yi>yj

log
2

∑
π
(

1

1 + e−σ (si−sj )
)δi j |Gi−G j |H (π |s)

We denote this as NDCG-Loss2.
NDCG-Loss2 is a potentially tighter bound than NDCG-Loss1

and can be extended to all NDCG-like metrics by redefining Gi ,

Di , and subsequently δi j . For example, using Gi = yi and Di =
1

i ,

NDCG-Loss2 can be used to optimize the MRR-like metrics for

binary cases.

5.3 Metric for LambdaRank
We have derived loss functions for metrics and thus connect metrics

with different loss functions. It is intriguing to ask the question from

the opposite direction: What is the metric that LambdaRank loss

function optimizes for? In fact, we have the following proposition.



Proposition 5.1. The LambdaRank loss is a bound for the follow-
ing metric:

Metric
LambdaRank

=

n∑
i=1

Gi

i−1∑
j=1

|
1

Di
−

1

D j
|. (17)

Proof. Let ρi j = | 1

Di
− 1

D j
|. Then ρi j = ρ ji and we have

Metric
LambdaRank

=

n∑
i=1

Gi

n∑
j=1
Isi<sj ρi j

=

n∑
i=1

∑
j :yj<yi

ρi j [Gi Isi<sj +G j Isj<si ] +C2

=

n∑
i=1

∑
j :yj<yi

ρi j |Gi −G j |Isi<sj +C3 +C2

whereC2 andC3 can be defined similarly as NDCG-Loss2. It can be

seen that ρi j |Gi −G j | is the ∆NDCG and we get the LambdaRank

loss in Eq 6 using Eq 12. □

Interestingly, NDCGCost ≤ Metric
LambdaRank

since

∑i−1
j=1 δi j =

ρi1 ≤
∑i−1
j=1 ρi j . Thus LambdaRank optimizes a coarse upper bound

of NDCG. Also it is interesting to notice the structural similarity

between NDCG-Loss2 and LambdaRank loss and a hybrid loss can

be obtained by a linear combination of ρi j and δi j , as shown in our

experiments.

5.4 Remarks
We primarily worked with the hard assignment π̂ in this section.

In the soft assignment setting, we have π , π̂ and the document

at rank i in π̂ can have a different rank i ′ in π . In this case, i ′ ,
i = 1 +

∑n
j=1 Isi<sj . To reuse our above derivation, we can apply a

scale trick. For example, the NDCGcost for π becomes

n∑
i=1

Gi (1 −
1

Di′
) =

n∑
i=1

Gi
1 − 1

Di′

1 − 1

Di

(1 −
1

Di
) =

n∑
i=1

G ′
i (1 −

1

Di
)

where G ′
i = Gi

1− 1

Di′

1− 1

Di

. We can thus define a LambdaLoss that is an

upper-bound of NDCGcost in the soft assignment setting based on

G ′
i . Due to space limit, we leave this study as our future work.

6 EXPERIMENT SETUP
Our evaluation uses a standard supervised learning-to-rank frame-

work [23]. This section describes our evaluation data sets, evalua-

tion metrics, and competing methods used in our experiments.

6.1 Data Sets
The three data sets we used in our experiments come from a YAHOO

LTRC data set and the benchmark LETOR data sets [26]. These

data sets are publicly available for the research community. All of

them are data sets for web search and the largest data sets publicly

available for learning-to-rank algorithms. The relevance labels of

documents for each query are rated by human in the form of multi-

level graded relevance.

The first dataset is YAHOO LTRC that is from YAHOO! Learning

to Rank Challenge [7]. It contains two sets with each being divided

into three partitions for training, validation, and testing. We use the

Set1 of this data set. The other two datasets, WEB10K and WEB30K,

were released by Microsoft [26]. Each one of them contains five

folds with every fold being divided into three partitions for training,

validation, and testing. We use the Fold1 in these two data sets

respectively. The statistics for these three data sets are displayed in

Table 1.

6.2 Evaluation Metrics
We evaluate different methods using NDCG of the top k ranked doc-

uments (i.e., NDCG@k). They are standard metrics for evaluating

the quality of ranked lists with multi-level graded relevance [32].

The difference between NDCG@k and the NDCG in Eq 4 is that

only the top k documents are used: The top k documents ranked

by scores s are used to compute DCG and the top k documents

ranked by labels y are used to compute maxDCG in Eq 4. In our

experiments, we use NDCG@5 as our primary metric to compare

different models and study different k values separately.

For ourmetric-driven loss functions, we adapt them for NDCG@k

by truncating the loss. For example, we have NDCG-Loss2 variant

for NDCG@k as

n∑
i=1

∑
j :yj<yi

Ii≤k or j≤kδi j |Gi −G j | log2(1 + e
−σ (si−sj )) (18)

for the formulation in Eq 16. Other loss functions are adapted

similarly.

In our experiments, when NDCG@k is used as the evaluation

metric, we use the corresponding truncated LambdaLoss.

6.3 Competing Methods
Our methods are implemented based on both the RankLib library

1

and the LightGBM library [20] to allow for reproducibility. RankLib

implemented a list of the most popular and representative algo-

rithms such as RankNet [3], Multiple Additive Regression Trees

(MART) [13], and LambdaMART [4]. We compared all of these base-

lines and found that LambdaMART performs the best. So we only

report our comparison with the LambdaMART implementation in

RankLib. The LightGBM library [20] is a more recently released

package that focuses on Gradient Boosting methods. It provides a

new implementation of LambdaMART based on more sophisticated

boosting techniques and achieves the state-of-the-art performance

on multiple public benchmark datasets. We compare our methods

with the LambdaMART implementation in LightGBM.

For our LambdaLoss methods, we implemented them in both

RankLib and LightGBM. The loss functions we proposed are general,

and can work with any ranking models (e.g., neural networks or

tree-based models). In this paper, we focus our study on tree-based

methods. In addition to ARP-Loss1, ARP-Loss2, NDCG-Loss1, and

NDCG-Loss2, we also study a hybrid model that linearly combines

ρi j in LambdaRank and δi j in NDCG-Loss2:

ρi j + µδi j . (19)

where µ is the the weight coefficient on NDCG-Loss2 and we name

such a loss NDCG-Loss2++.

1
https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/


Table 1: Statistics of the three data sets used in our experiments.

Data sets YAHOO WEB10K WEB30K

Train Valid. Test Train Valid. Test Train Valid. Test

Queries 19,944 2,994 6,983 6,000 2,000 2,000 18,919 6,306 6,306

Docs 473,134 71,083 165,660 723,412 235,259 241,521 2,270,296 747,218 753,611

Features 700 136 136

Table 2: Hyper-parameter settings of representative meth-
ods in LightGBM based on validation where leaves is num-
leaves, hessian is themin-sum-hessian-in-leaf, andmindata
is min-data-in-leaf respectively.

Methods leaves hessian mindata

LambdaMART 200 10 100

YAHOO NDCG-Loss2 100 50 5

NDCG-Loss2++ 255 10 5

LambdaMART 255 50 50

WEB10K NDCG-Loss2 20 100 20

NDCG-Loss2++ 100 1 5

LambdaMART 200 50 50

WEB30K NDCG-Loss2 50 100 50

NDCG-Loss2++ 255 50 20

7 EXPERIMENTAL RESULTS
We compare different learning-to-rank methods and report our

experimental results in this section.

7.1 Overall Comparison
Table 3 shows the results of comparing our methods against Lamb-

daMART in RankLib. We tune the number of trees on the validation

set while using the default settings for other hyper-parameters (we

will show the results with tuned hyper-parameters in LightGBM). In

this table, our proposed methods NDCG-Loss2 and NDCG-Loss2++

achieve the best results. Compared with LambdaMART, both meth-

ods achieve significant improvement over all the Train, Validation

and Test data sets. For example, NDCG-Loss2 and NDCG-Loss2++

achieve 1.86% and 1.58% over LambdaMART on the WEB30K Test

data set. Furthermore, NDCG-Loss2 is better than NDCG-Loss1

across all the data sets, confirming that NDCG-Loss2 is a better

bound than NDCG-Loss1 for the NDCG metric. NDCG-Loss2 is

also better than ARP-Loss1 and ARP-Loss2, but NDCG-Loss1 is

not. This shows it is beneficial to have NDCG-driven loss functions

but the benefit can be realized only with a proper bound. Though

ARP-Loss1 is derived from ARP, it is very competitive and this

shows that there is a good correlation between the ARP and NDCG

metrics.

Table 4 shows the comparison in LightGBM. In this comparison,

the hyper-parameters specific to each learning-to-rank algorithm

are tuned to optimal on the validation sets using NDCG@5 as

the metric. The most important hyper-parameters used are shown

in Table 2. The default early stopping is applied when there is

no improvement on validation set for consecutive 30 iterations.

Our results in Table 4 are comparable with results reported in

early work [20]. For NDCG-Loss2++, we set the weight µ to 5.

From this table, we can see that NDCG-Loss2++ is significantly

better than the LambdaMART in LightGBM, the state-of-the-art

implementation, on both YAHOO and WEB30K data sets. This

shows that our LambdaLoss can improve over the state-of-the-art

learning-to-rank algorithms.

However, we also observe that the NDCG-Loss2 tuned using

validation data set does not perform well in LightGBM. This is

because NDCG-Loss2 can easily overfit the training data in the

LightGBM setting. As shown in Table 2, the number of leaves per

tree for NDCG-Loss2 is much smaller than that of the LambdaMART

baseline (e.g., 50 vs 200 on WEB30K). We verify the overfitting by

using the optimal hyper-parameter of LambdaMART on NDCG-

Loss2. The results on the Train data sets are shown in Table 5

and we can see severe overfitting of NDCG-Loss2. On one hand,

this could mean that NDCG-Loss2 is a tighter bound for NDCG

than LambdaMART. On the other hand, similar to the observation

in [33], a tighter bound can easily lead to overfitting without proper

regularization. Our proposed NDCG-Loss2++ regularize NDCG-

Loss2 using LambdaMART formulation and achieve the best results.

This result is inspiring in designing regularization techniques when

directly optimizing ranking metrics.

The results for LightGBM is much better than the results in

RankLib, part of the reason is that LightGBM uses much complex

trees with a large number of leaves per tree. When we limit the

number of leaves to 10, the default value of RankLib, in LightGBM,

we observe sightly better results for LightGBM but the comparison

among methods is similar to RankLib: NDCG-Loss2 outperforms

LambdaMART. We omit such results due to space limitation.

7.2 Parameter Study
7.2.1 Parameter µ. We study the sensitivity of parameter µ in

Eq. 19 by varying it between [0.1, 10], which controls the impor-

tance of NDCG-Loss2 in the hybrid model NDCG-Loss2++. Due to

space limitation, we show the results only on theWEB30K Test data

set, as similar trends are observed on other data sets. Figure 3 shows

the NDCG@5 metric in both the RankLib and LightGBM imple-

mentations of NDCG-Loss2++. Results from both implementations

are relatively stable, meaning that the hybrid model is not very

sensitive to the change of µ. On the other hand, NDCG-Loss2++ per-

forms better when µ is larger, suggesting that NDCG-Loss2 plays a

more important role than LambdaRank.

7.2.2 Parameter k in NDCG@k. Figure 4 shows the results of

NDCG@k with k selected from {1, 3, 5, 10} on the WEB30K test

data set in RankLib. Our proposed methods can outperform Lamb-

daMART on all the k values and this shows the flexibility of design-

ing LambdaLoss to optimize different metrics.

7.2.3 Convergence. Figure 5 shows the NDCG@5 values of NDCG-

Loss2, NDCG-Loss2++, and LambdaMART methods along the EM



Table 3: Overall comparison in RankLib based onNDCG@5 in percentage. * indicates that amethod is statistically significantly
better than LambdaMART, according to t-test at level of 0.05. Boldface is the best column wise.

Data sets YAHOO WEB10K WEB30K

Train Valid. Test Train Valid. Test Train Valid. Test

LambdaMART 72.21 69.07 70.36 44.99 43.40 42.19 45.28 43.81 44.12

ARP-Loss1 74.11∗ 69.70∗ 70.58 47.24∗ 44.01∗ 42.88∗ 47.02∗ 44.59∗ 44.69∗

ARP-Loss2 71.74 69.24 70.38 46.06∗ 43.69 42.70 45.25 43.86 44.13

NDCG-Loss1 71.45 68.95 70.26 45.49∗ 43.80 42.56 45.03 43.60 44.04

NDCG-Loss2 73.07∗ 69.57∗ 70.63∗ 47.33∗ 43.98∗ 43.19∗ 47.35∗ 44.71∗ 44.94∗

NDCG-Loss2++ 73.65∗ 69.41∗ 70.72∗ 48.58∗ 44.03∗ 42.99∗ 46.89∗ 44.48∗ 44.82∗

Table 4: Overall comparison in LightGBM based on NDCG@5 in percentage. * indicates that a method is statistically signifi-
cantly better than LambdaMART, according to t-test at level of 0.05. Boldface is the best column wise.

Data sets YAHOO WEB10K WEB30K

Train Valid. Test Train Valid. Test Train Valid. Test

LambdaMART 91.84 74.93 75.40 70.24 49.05 49.00 64.23 50.23 50.74

NDCG-Loss2 77.96 73.77 74.78 54.75 49.40 49.22 52.60 49.82 50.08

NDCG-Loss2++ 92.82∗ 75.00∗ 75.70∗ 62.75 49.03 49.25 66.78∗ 50.97∗ 51.21∗
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Figure 3: Impact of µ on WEB30K.

Table 5: Overfitting on Training data in LightGBM.

Data sets YAHOO WEB10K WEB30K

LambdaMART 91.84 70.24 64.23

NDCG-Loss2 92.62 88.09 98.74

iterations. They all show convergence as the number of trees in-

creases and this empirically verifies the correctness of our EM

algorithm in optimizing LambdaLoss.

8 CONCLUSIONS
In this paper, we presented the LambdaLoss framework for ranking

metric optimization. Our framework is motivated by the Lamb-

daRank algorithms that incorporate ranking metrics in their learn-

ing procedures. We showed that LambdaRank can be formulated

as a special configuration in our LambdaLoss framework, and can

be theoretically justified by a novel loss function. Furthermore, we

1 3 5 10
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Figure 4: NDCG@k along with k on WEB30K.

introduced several other metric-driven loss functions in our frame-

work that depend on both ranks and scores. We empirically vali-

dated the proposed framework on three publicly available learning-

to-rank data sets, and demonstrated that our framework can signif-

icantly improve the state-of-the-art learning-to-rank algorithms.
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Figure 5: Convergence of the EM procedure in LambdaLoss.

Our work opens up several interesting research directions for

future work. (1) While we mainly focus on NDCG in this paper, it

would be interesting to extend it to other popular ranking metrics

such as MAP. (2) We mainly worked with the hard assignment of

H (π |s) in this paper; the effect of the soft assignment setting in

LambdaLoss can be explored. (3) We implemented our framework

on tree-based models; other models such as deep neural networks

can be studied in the future. (4) Our results show that tighter bound

for metrics may lead to overfitting and thus developing regulariza-

tion techniques in LambdaLoss is another interesting direction.
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