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PROCESSING LARGE-SCALE TEXTUAL
INPUTS USING NEURAL NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of the filing date
of U.S. Application No. 63/032,996, filed on Jun. 1, 2020.
The disclosure of the prior application is considered part of
and is incorporated by reference in the disclosure of this
application.

BACKGROUND

[0002] This specification relates to performing a machine
learning task on a tuple of input sequences using neural
networks.

[0003] Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks include
one or more hidden layers in addition to an output layer. The
output of each hidden layer is used as input to the next layer
in the network, i.e., the next hidden layer or the output layer.
Each layer of the network generates an output from a
received input in accordance with current values of a respec-
tive set of parameters.

SUMMARY

[0004] This specification describes a system implemented
as computer programs on one or more computers in one or
more locations that implements and trains a neural network
to perform a machine learning task on a received tuple of
input sequences. Each input sequence in turn has a respec-
tive network input at each of a plurality of input positions in
an input order. Different input sequences can have different
numbers of network inputs. Depending on the specifics of
different machine learning tasks, the neural network can be
configured to generate any kind of score, classification, or
regression output based on the input.

[0005] For example, the neural network can be configured
to perform a text processing task, e.g., to receive an input
that includes multiple text sequences that are from one or
more text documents and to process the input to generate an
output for the text processing task. For example, the text
processing task can be a semantic text matching task, a
machine reading comprehension task, a question answering
task, a passage ranking task, or a key phrase extraction task.
[0006] For example, each input to the neural network can
be a tuple of two input sequences, where a first input
sequence specifies Internet resources (e.g., web pages),
documents, or portions of documents and a second input
sequence specifies a set of one or more words or phrases
(e.g., key words, key terms, or concepts), and the output
generated by the neural network for a given input tuple may
be a score for the set of the one or more words or phrases,
with the score representing an estimated relevance of the set
of word or phrase with respect to the Internet resource,
document, or document portion.

[0007] As another example, each input to the neural net-
work can be a tuple of two input sequences, where a first
input sequence specifies a question (e.g., a question query
issued to a search engine) and a second input sequence
specifies a set of one or more text segments (e.g., Internet
resources (e.g., web pages), documents, or portions of
documents), and the output generated by the neural network
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for a given input may be a score for the set of the one or more
text segments, with the score representing an estimated
likelihood that the set of one or more text segments includes
content that provides an answer to the question.

[0008] According to an aspect, there is provided a com-
puter-implemented method comprising receiving, at each of
a plurality of encoder neural networks, a respective input
sequence from a tuple of respective input sequences; pro-
cessing, using one or more encoder network layers of each
of the plurality of encoder neural networks, the respective
input sequence to generate an encoded representation of the
respective input sequence, the encoded representation com-
prising a sequence of tokens; processing, using a projection
layer of each of the plurality of encoder neural networks,
each of some or all of the tokens in the sequence of tokens
to generate a lower-dimensional representation of the token;
receiving, at a head neural network and from each of the
plurality of encoder neural networks, lower-dimensional
representations of a respective proper subset of the sequence
of tokens generated by the encoder neural network; and
processing, using the head neural network, the lower-dimen-
sional representations to generate an output.

[0009] The head neural network may be further configured
to access the lower-dimensional representations of the
respective proper subsets of the sequences of tokens gener-
ated by the encoder neural networks from a memory.
[0010] The lower-dimensional representations of the
tokens generated by different projection layers may have
different dimensions from each other.

[0011] FEach input sequence may have a respective net-
work input at each of a plurality of input positions in an input
order.

[0012] The sequence of tokens generated by the encoder
neural network may comprise a corresponding token for
each network input in the input sequence.

[0013] The method may further comprise, for each
sequence of tokens generated by the one or more encoder
network layers of the encoder neural network from the input
sequence: determining the respective proper subset of the
sequence of tokens based on respective positions of the
tokens in the sequence and on a length of the input sequence.
[0014] The respective proper subset of the sequence of
tokens may comprise first N tokens in the sequence of
tokens, and wherein N is a predetermined positive integer.
[0015] The one or more encoder network layers may
comprise an attention layer that is configured to: receive an
input sequence for the layer comprising a respective layer
input at each of one or more positions; and generate an
attended input sequence at least in part by applying an
attention mechanism to the input sequence for the layer, the
attended input sequence comprising a respective attended
layer input at each of the one or more positions.

[0016] The machine learning task may be a semantic text
matching task.
[0017] The method may further comprise training the

plurality of encoder neural networks and the head neural
network including initializing parameter values of the one or
more encoder network layers of each encoder neural net-
work with a predetermined set of parameter values.

[0018] The training may further comprise: receiving a
training tuple; processing the training tuple using a trained
neural network to generate a teacher network output; and
training the neural network using the teacher network output
generated by the trained neural network, wherein the train-
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ing comprises adjusting only parameter values of the pro-
jection layers of the encoder neural networks and parameter
values of the head neural network.

[0019] The training may further comprise: receiving
another training tuple; processing the training tuple using the
trained neural network to generate another teacher network
output; and training the neural network using the other
teacher network output generated by the trained neural
network, including adjusting parameter values of the one or
more encoder network layers of the encoder neural net-
works.

[0020] According to another aspect, there is provided a
system comprising one or more computers and one or more
storage devices storing instructions that are operable, when
executed by the one or more computers, to cause the one or
more computers to perform the operations of the above
method aspect.

[0021] According to a further aspect, there is provided a
computer storage medium encoded with instructions that,
when executed by one or more computers, cause the one or
more computers to perform the operations of the method
aspect.

[0022] It will be appreciated that features described in the
context of one aspect may be combined with features
described in the context of another aspect.

[0023] Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages.

[0024] The described techniques allow for a system to
implement a neural network with a flexible and adaptive
architecture that is scalable for processing long-range input
sequences. In particular, by implementing different numbers
of encoder neural networks that are each configured to
process a respective input sequence in parallel with each
other, the system can use the neural network to process an
arbitrary number of input sequences each of an arbitrary
length and thereby endow the neural network with the
capability of effectively performing any of a variety of
appropriate machine learning tasks that involve operating on
large-scale textual inputs, data derived from large-scale
textual inputs, or both.

[0025] The described techniques also allow for the system
to process the inputs in a data efficient, and, therefore,
computing resource efficient manner. Specifically, by iden-
tifying proper subsets of respective sequences of output
tokens generated by the encoder neural networks and by
making use of encoder-specific projection layers, the system
can generate compact representations of the inputs to pro-
vide to a head neural network for generating high-quality
network outputs with minimum loss of representational
capacity of the information contained within the original
inputs.

[0026] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 shows an example neural network system.

[0028] FIG. 2 is a flow diagram of an example process for
processing a tuple of input sequences to generate an output.
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[0029] FIG. 3 is an illustration of selecting tokens from
encoded representations of input sequences.

[0030] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0031] This specification describes a system implemented
as computer programs on one or more computers in one or
more locations that implements and trains a neural network
to perform a machine learning task on a tuple of input
sequences. Each input sequence in turn has a respective
network input at each of a plurality of input positions in an
input order. Different input sequences can have different
numbers of network inputs. Depending on the specifics of
different machine learning tasks, the neural network can be
configured to generate any kind of score, classification, or
regression output based on the tuple of input sequences.
[0032] For example, the neural network can be configured
to perform a text processing task, e.g., to receive an input
that includes multiple text sequences that are from one or
more text documents and to process the input to generate an
output for the text processing task. For example, the text
processing task can be a semantic text matching task, a
machine reading comprehension task, a question answering
task, a passage ranking task, or a key phrase extraction task.
[0033] For example, each input to the neural network can
be a tuple of two input sequences, where a first input
sequence specifies Internet resources (e.g., web pages),
documents, or portions of documents and a second input
sequence specifies a set of one or more words or phrases
(e.g., key words, key terms, or concepts), and the output
generated by the neural network for a given input tuple may
be a score for the set of the one or more words or phrases,
with the score representing an estimated relevance of the set
of word or phrase with respect to the Internet resource,
document, or document portion.

[0034] As another example, each input to the neural net-
work be a tuple of two input sequences, where a first input
sequence specifies a question (e.g., a question query issued
to a search engine) and a second input sequence specifies a
set of one or more text segments (e.g., Internet resources
(e.g., web pages), documents, or portions of documents),
and the output generated by the neural network for a given
input may be a score for the set of the one or more text
segments, with the score representing an estimated likeli-
hood that the set of one or more text segments includes
content that provides an answer to the question.

[0035] FIG. 1 shows an example neural network system
100. The neural network system 100 is an example of a
system implemented as computer programs on one or more
computers in one or more locations, in which the systems,
components, and techniques described below can be imple-
mented.

[0036] The neural network system 100 can receive a tuple
of input sequences 102 and perform a machine learning task
on the tuple of input sequences 102 to generate an output
152 for the machine learning task.

[0037] As used herein, a tuple refers to a data structure
having an ordered set of two or more data elements, e.g., two
or more input sequences. An n-tuple refers to a tuple having
n ordered elements. For example, a 3-tuple would include 3
elements (e.g., input sequence A, input sequence B, input
sequence C) in an order<input sequence A, input sequence
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B, input sequence C>that is different than a 3-tuple consist-
ing of <input sequence C, input sequence A, input sequence
B>.

[0038] The neural network system 100 includes a plurality
of'encoder neural networks 120A-N that are each configured
to process an input sequence from the tuple 102, e.g., input
sequence A 104A, to generate a lower-dimensional repre-
sentation, e.g., lower-dimensional representation 122A, of
the input sequence and a head neural network 130 that is
configured to generate the output 152 from the lower-
dimensional representations 122A-N.

[0039] As used herein, a lower-dimensional representation
can be an encoded representation of an input sequence, i.e.,
in the form of an ordered collection of data values such as
numerical values, that has a lower dimensionality than that
of the data structure used to represent the input sequence.
For example, the lower-dimensional representation can be a
vector or a matrix of fixed size.

[0040] To generate the lower-dimensional representation
of the input sequence, each encoder neural network 120A-N
can include multiple encoder layers followed by a projection
layer. For example, the encoder neural network A 120A can
include a stack of multiple encoder layers 110A arranged in
a predetermined order, followed by a projection layer 114A
arranged atop the stack of the multiple encoder layers 110A.
[0041] Example configurations of the encoder layers will
be described in more detail below, but typically, each of
some or all of the encoder layers included in the encoder
neural network can operate on a respective input sequence
that includes a respective network input (e.g., in the form of
a vector) at each of one or more positions in an input order.
[0042] At a high level, at each encoder neural network,
e.g., encoder neural network A 120A, the neural network
system 100 uses the encoder layers included in the encoder
neural network, e.g., encoder layers 110A, to process an
input sequence, e.g., input sequence A 104A, data derived
from the input sequence, or both to generate an encoded
representation of the input sequence. The encoded represen-
tation has a sequence of multiple tokens, e.g., tokens 112A.
For example, the neural network system 100 can use the
encoder network layers 110A to generate a corresponding
token for each network input in the input sequence 104A.
Typically, the encoded representation is the output of the last
encoder layer prior to the projection layer or a combination
of the outputs of multiple encoder layers.

[0043] As used herein, a token refers to a portion of the
encoded representation which, as described above, can be in
the form of an ordered collection of numerical values. For
example, each token can include one or more numerical
values. Each token can be of substantially similar length to
one another.

[0044] The neural network system 100 then uses the
projection layer, e.g., projection layer 114A, to project the
sequence of tokens into a lower-dimensional space, i.e., to
generate the lower-dimensional representation, e.g., lower-
dimensional representation 122 A, of the sequence of tokens,
e.g., tokens 112A, e.g., by applying a predetermined linear
transformation.

[0045] In some implementations, the neural network sys-
tem 100 uses a truncation technique to generate the lower-
dimensional representations. That is, instead of projecting
the entire sequences of tokens into the lower-dimensional
space, the system 100 first determines a selected portion of
each encoded representation generated by corresponding
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stacks of encoder layers 110A-N, and then provides only the
selected tokens from the encoded representations to the
projection layers 114A-N. Correspondingly, the neural net-
work system 100 projects, i.e., by using the projection layers
114A-N, the selected smaller subsets of tokens into the
lower-dimensional space. This can decrease runtime latency
of the neural network system 100 for performing the given
machine learning task, because the amount of information
(i.e., in terms of input sequence length) to be consumed and
processed by the head neural network 130 is reduced and
thus the time complexity of the head neural network 130 is
reduced.

[0046] When represented in the form of a data structure of
fixed size, e.g., a vector, the selected portion of each encoded
representation can include the N first (or last) tokens of the
sequence of tokens generated by the encoder layers, where
N is a configurable parameter of the neural network system
100. N can be a positive integer the exact value of which
may vary between different encoder neural networks 120A-
N. For example, the parameter can be a tunable parameter
that can be specified, e.g., from a user of the system, e.g.,
using an application programming interface (API) made
available by the system 100. As another example, the
parameter can be a dynamic parameter the value of which is
determined by the system from the lengths of the input
sequences while performing the given machine learning
task.

[0047] In some implementations, each encoder neural
network 120A-N includes one or more attention layers. That
is, the multiple encoder network layers, e.g., encoder layers
110A, include at least one attention layer that is configured
to receive an input sequence for the layer comprising a
respective layer input at each of one or more positions, and
thereafter generate an attended input sequence at least in part
by applying an attention mechanism to the input sequence
for the layer. The attended input sequence includes a respec-
tive attended layer input at each of the one or more positions.
[0048] In some such implementations, each encoder neu-
ral network 120A-N also includes other layers, e.g., fully-
connected layers, embedding layers, and activation layers,
either in place of or in addition to the attention layers.
[0049] In some such implementations, the encoder net-
work layers are the layers of a self-attention neural network.
Examples of configurations of self-attention neural networks
and the specifics of the other components of self-attention
neural networks, e.g., embedding layers that embed inputs to
the encoder and the decoder, the feed-forward layers within
the layers of the attention network, and the output layers of
the attention neural network that generate the network
outputs, are described in more detail in Vaswani, et al,
Attention Is All You Need, arXiv:1706.03762, Raffel, et al,
and Devlin et al, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, arXiv:1810.
04805, the entire contents of which are hereby incorporated
by reference herein in their entirety.

[0050] In the example of FIG. 1, the neural network
system 100 includes a plurality of encoder neural networks,
e.g., encoder neural networks 120A-N, each configured to
process a respective input sequence, e.g., input sequence
104A-N. However, the encoder neural networks need not
have a one-to-one correspondence with the input sequences
and there may be a different number of encoder neural
networks. For example, the system 100 may use the same
encoder neural network to process different input sequences
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from the same received tuple 102 to generate different
lower-dimensional representations, and thus there may be a
smaller number of encoder neural networks than that of
input sequences included in the tuple. In addition, each
encoder neural network may have a different network archi-
tecture than one another. For example, the encoder neural
networks may include different numbers of encoder layers,
encoder layers with different configurations, or both.
[0051] By generating lower-dimensional representations
122A-N as described above, the neural network system 100
allows the head neural network 130 to generate the output
152 for the given machine learning task by processing a
much more compact (and therefore, more data-efficient)
representation of the tuple of input sequences 102 with
minimum loss of representational capacity of the informa-
tion contained within the original tuple 102. The neural
network system 100 can thus operate in a scalable manner to
determine an output 152 from a tuple 102 of a substantially
large number of input sequences 104A-N. For example, the
tuple can include multiple input sequences representing
billions and, possibly, trillions of documents, web pages, or
other structured text content, and the output can be an
answer string to a user-specified question that is determined
by the system from the context of the documents or web
pages.

[0052] The neural network system 100 then uses the head
neural network 130 to generate the output 152 from the
lower-dimensional representations 122A-N generated by the
encoder neural networks 120A-N. For example, the head
neural network 130 can be configured to receive as input a
combination, e.g., a vector concatenation, of the lower-
dimensional representations 122A-N and to process the
combined input using the head neural network 130 to
generate the output 152.

[0053] As similarly described above, the head neural net-
work 130 can include any of a variety of types of neural
network layers that are suitable for the given machine
learning task, including, for example, one or more fully-
connected layers, one or more attention layers, and/or one or
more embedding layers. In the case of multiple layers, they
may be stacked, so as to pass data successively between
them in a certain layer order. The head neural network 130
also includes an output layer that is configured to receive the
data generated by one or more preceding layers and to
generate the output 152, e.g., by applying a transformation
to the received data to generate a regression or classification
output that includes a respective score for each of some or
all of the input sequences in the tuple, e.g., with each score
for an input sequence representing a relevance measure or a
likelihood of being relevant with respect to another input
sequence in the tuple.

[0054] FIG. 2 is a flow diagram of an example process 200
for processing a tuple of input sequences to generate an
output. For convenience, the process 200 will be described
as being performed by a system of one or more computers
located in one or more locations. For example, a neural
network system, e.g., neural network system 100 of FIG. 1,
appropriately programmed in accordance with this specifi-
cation, can perform the process 200.

[0055] The system receives, at each of a plurality of
encoder neural networks, a respective input sequence from
a tuple of respective input sequences (202). Each input
sequence includes a respective network input at each of
multiple positions in an input order. The lengths, i.e., num-
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bers of network inputs, of different input sequences within
a same tuple may vary from one another.

[0056] The system processes, using one or more encoder
layers of each of the plurality of encoder neural networks,
the respective input sequence to generate an encoded rep-
resentation of the respective input sequence (204). Gener-
ally, the encoded representation can be a sequence of the
multiple tokens that is represented, for example, as a vector
or other ordered collection of multiple numeric values,
where each token can include one or more numerical values.
[0057] In the case of the encoder neural network including
multiple encoder layers, they may be stacked, so as to
perform successive operations on the respective input
sequence to generate the encoded representation, i.e., in
accordance with the configurations and associated parameter
values of the encoder layers.

[0058] In some implementations, the plurality of encoder
neural networks can have the same architecture. That is, the
configurations of and connections between the encoder
layers within each encoder neural network are the same
across all encoder neural networks. In other implementa-
tions, different encoder neural networks can have encoder
layers that are of different configurations, different connec-
tions, or both. In addition, different encoder neural networks
can have different numbers of encoder layers. In either
implementation, the values of the parameters associated
with the encoder layers, which may be learned by the system
during training, are typically different across different
encoder neural networks.

[0059] In some implementations, the encoder layers of
encoder neural networks include at least one attention layer
and, optionally, one feed-forward layer. The attention layer
is configured to receive an input sequence for the layer
comprising a respective layer input at each of one or more
positions, and thereafter generate an attended input sequence
at least in part by applying an attention mechanism, e.g., a
self-attention mechanism, e.g., a multi-head self-attention
mechanism, to the input sequence for the layer. The attended
input sequence includes a respective attended layer input at
each of the one or more positions. The feed-forward layer,
when included, then operates on the attended input sequence
to generate an output sequence for the layer, from which the
encoded representation may be determined or otherwise
derived.

[0060] The system processes, using a projection layer of
each of the plurality of encoder neural networks, each of
some or all of the tokens in the sequence of tokens to
generate a lower-dimensional representation of the token
(206). For example, the projection layer can apply a prede-
termined linear transformation to a token in order to project
the token into a lower-dimensional space.

[0061] In some implementations, the system can generate
the lower-dimensional representations of the input
sequences by using the projection layer of each encoder
neural network to project all of the tokens included in the
encoded representations of the input sequences into the
lower-dimensional space.

[0062] In other implementations, especially those that
involve operating on long-length input sequences, the sys-
tem can instead select a proper subset of tokens included in
each encoded representation and thereafter use the projec-
tion layers to project the selected proper subsets of the
tokens to generate the lower-dimensional representations of
the input sequences. In other words, the system makes a
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respective determination of which proper subset to select for
each of the tokens in the encoded representation and some-
times selects proper subsets of the tokens that are of different
sizes from different encoded representations. Correspond-
ingly, the lower-dimensional representations of the subset of
tokens generated by different projection layers across dif-
ferent encoder neural networks can have different dimen-
sions from one another.

[0063] In these implementations, the proper subsets of
tokens may be selected in any of a variety of ways.

[0064] FIG. 3 is an illustration of selecting tokens from
encoded representations of input sequences. In the example
of FIG. 3, for each sequence of tokens generated by the one
or more encoder network layers of the encoder neural
network from the input sequence, the system can determine
a respective proper subset of the sequence of tokens based
on respective positions of the tokens in the sequence, for
example selecting the first few tokens or the last few tokens
from a sequence of tokens. The system can also determine
a respective proper subset of the sequence of tokens based
on a length of the input sequence, for example selecting
more tokens from encoded representations generated from
longer input sequences. As a particular example, the system
can select the first N or last N tokens, where N is a fixed
fraction of the total number of tokens in the sequence.
[0065] As depicted in FIG. 3, for encoder neural network
A, the system selects N=2 leftmost tokens in the sequence of
tokens generated by the encoder neural network A from
processing input sequence A. For encoder neural network B,
the system selects M=3 leftmost tokens in the sequence of
tokens generated by the encoder neural network B from
processing input sequence B.

[0066] The system receives, at a head neural network and
from each of the plurality of encoder neural networks,
lower-dimensional representations of a respective proper
subset of the sequence of tokens generated by the encoder
neural network (208).

[0067] In some implementations, the encoder neural net-
works and the head neural network share access to the same
memory or a data storage that is accessible to the system. In
these implementations, the system can store the lower-
dimensional representations of the respective proper subsets
of the sequences of tokens generated by the encoder neural
networks in memory or data storage accessible to the head
neural network, e.g., in addition to or instead of directly
providing these representations to the head neural network,
e.g., through a wired or wireless network. The system can
then retrieve these representations whenever an output needs
to be generated by using the head neural network based on
processing some or all of these stored, i.e., pre-computed,
representations.

[0068] In various cases, this can allow for the system to
perform a given machine learning task with reduced infer-
ence time. In addition, this can be further advantageous in
cases where there are more possible combinations than the
number of distinct input sequences, because a lower-dimen-
sional representation for the same input sequence need not
be regenerated as the system processes different tuples of
input sequences. As a concrete example, the given task is to
predict the relevance between a query and a document. The
system can generate and store, e.g., prior to receiving a user
input to begin performing the task, respective lower-dimen-
sional representations for all available input sequences to the
system which may include millions of queries and millions
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of documents and, when at inference time, use the light-
weight head neural network to efficiently process different
pairs of pre-stored lower-dimensional representations to
generate as output a relevance score for each different
query-document pair.

[0069] The system processes, using the head neural net-
work, the lower-dimensional representations to generate an
output (210). Specifically, the system can generate a com-
bined, e.g., concatenated, input for the head neural network
from the lower-dimensional representations of the respective
small proper subsets of tokens that have been generated as
a result of processing the input sequences using the encoder
neural networks. The system then uses the head neural
network to process the combined input to generate the
network output. Depending on the specifics of the given
machine learning task, the output can be any kind of score,
classification, or regression output based on the tuple of
input sequences.

[0070] In general, the process 200 can be performed as
part of predicting an output for a tuple of multiple input
sequences for which the desired output, i.e., the output that
should be generated by the system for the tuple of multiple
input sequences, is not known.

[0071] The process 200 can also be performed as part of
processing tuples of input sequences derived from a set of
training data, i.e., tuples of input sequences derived from a
set of inputs for which the output that should be generated
by the system is known, in order to train the encoder neural
networks and the head neural network to determine trained
values for the parameters of the neural networks, so that the
system can summarize the information of the entire input
sequence to selected tokens of the encoded representations
of the input sequence and generate accurate output scores.
Specifically, the system can do this by optimizing an objec-
tive function that is specific to the given machine learning
task. The exact forms of the objective function may vary
across different tasks, but typically, the objective function
measures a difference between the predicted output and the
known, desired output or another target output that is
derived from the known, desired output. A cross-entropy
loss function, e.g., in the case of classification tasks, and a
mean squared error (MSE) loss function, e.g., in the case of
regression tasks, are examples of suitable objective func-
tions that can be used by the system during the training.
[0072] The system can repeatedly perform the process 200
on inputs selected from a set of training data as part of a
conventional machine learning training technique to train
the initial neural network layers, e.g., a gradient descent with
backpropagation training technique that uses a conventional
optimizer, e.g., stochastic gradient descent, RMSprop, or
Adam optimizer, including Adam with weight decay (“Ad-
amW?”) optimizer. During training, the system can incorpo-
rate any number of techniques to improve the speed, the
effectiveness, or both of the training process. For example,
the system can use dropout, label smoothing, or both to
reduce overfitting. As another example, the system can
perform the training using a distributed architecture that
trains multiple instances of the encoder neural networks in
parallel.

[0073] In some implementations, prior to the commence-
ment of the training, the system can initialize a portion of the
parameters of the encoder neural networks in accordance
with a predetermined set of parameter values, rather than
randomly initialized values. This can improve the overall
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training effectiveness in terms of required computational
resources. For example, the system can initialize parameter
values of the one or more encoder network layers of each
encoder neural network with trained values of parameters of
another, pre-trained neural network. For example, the other
neural network can be a self-attention neural network that
has already been trained to attain at least a threshold level of
performance (e.g., accuracy) on a relevant machine learning
task, e.g., a natural language processing or understanding
task that involves operating on textual data, information
derived from textual data, or both.

[0074] That is, the system can obtain an instance of the
neural network by first instantiating the encoder neural
networks according to the architecture and trained parameter
values of (a portion of) the other self-attention neural
network, and then attaching the projection layers and the
head neural network to the encoder network layers included
in the encoder neural networks that have been instantiated in
this way. The system can then proceed to train the obtained
neural network on the given machine learning task as
described above.

[0075] In some implementations, the system makes use of
a teacher neural network during the training. For example,
the teacher neural network can be a specialist neural network
with a cumbersome architecture (e.g., with more layers,
more parameters, or both) that has already been trained to
attain at least a threshold level of performance on the same
given machine learning task as the system is configured to
perform. Specifically, for each training input (i.e., a training
tuple of input sequences), the system first processes the
training input using a trained neural network to generate a
teacher network output, and then trains the encoder and head
neural networks using the teacher network output generated
by the teacher neural network, i.e., trains the head neural
network to generate a training output for the training input
that match the teacher network output.

[0076] For example, the system can do this by optimizing
a cross-entropy loss function:

=" (yilogpi + (1 = yplog(l - p),

where y, is the training output generated by the neural
network and p, may be computed by applying a sigmoid
function on the teacher network output which is in the form
of logits.

[0077] This can further improve the effectiveness of train-
ing by allowing for the system to make use of unlabeled
training data, which is typically much more readily available
in large amounts, compared with labeled (e.g., human-
annotated) training data. In addition, once trained using the
cumbersome teacher neural network, the neural networks
can generate outputs that are not significantly less accurate
than outputs generated by the cumbersome neural network
despite being easier to deploy or using fewer computational
resources than the cumbersome neural network. In some
implementations, the system trains the neural networks
using a two-stage process. During the first (“pre-training”)
stage, the system adjusts only parameter values of the
projection layers of the encoder neural networks and param-
eter values of the head neural network, while keeping the
parameter values of the one or more encoder network layers
fixed to their values that have been randomly initialized or
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otherwise predetermined. After the pre-training, that is,
during the second (“fine-tuning”) stage, the system adjusts
values of all of the network parameters, including parameter
values of the one or more encoder network layers of the
encoder neural networks.

[0078] This specification uses the term “configured” in
connection with systems and computer program compo-
nents. For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software, firmware,
hardware, or a combination of them that in operation cause
the system to perform the operations or actions. For one or
more computer programs to be configured to perform par-
ticular operations or actions means that the one or more
programs include instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
operations or actions.

[0079] Embodiments of the subject matter and the func-
tional operations described in this specification can be
implemented in digital electronic circuitry, in tangibly-
embodied computer software or firmware, in computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus.

[0080] The term “data processing apparatus” refers to data
processing hardware and encompasses all kinds of appara-
tus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can also be,
or further include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

[0081] A computer program, which may also be referred
to or described as a program, software, a software applica-
tion, an app, a module, a software module, a script, or code,
can be written in any form of programming language,
including compiled or interpreted languages, or declarative
or procedural languages; and it can be deployed in any form,
including as a stand alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of
a file that holds other programs or data, e.g., one or more
scripts stored in a markup language document, in a single
file dedicated to the program in question, or in multiple
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coordinated files, e.g., files that store one or more modules,
sub programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

[0082] In this specification, the term “database” is used
broadly to refer to any collection of data: the data does not
need to be structured in any particular way, or structured at
all, and it can be stored on storage devices in one or more
locations. Thus, for example, the index database can include
multiple collections of data, each of which may be organized
and accessed differently.

[0083] Similarly, in this specification the term “engine” is
used broadly to refer to a software-based system, subsystem,
or process that is programmed to perform one or more
specific functions. Generally, an engine will be implemented
as one or more software modules or components, installed
on one or more computers in one or more locations. In some
cases, one or more computers will be dedicated to a par-
ticular engine; in other cases, multiple engines can be
installed and running on the same computer or computers.
[0084] The processes and logic flows described in this
specification can be performed by one or more program-
mable computers executing one or more computer programs
to perform functions by operating on input data and gener-
ating output. The processes and logic flows can also be
performed by special purpose logic circuitry, e.g., an FPGA
or an ASIC, or by a combination of special purpose logic
circuitry and one or more programmed computers.

[0085] Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive
instructions and data from a read only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing instructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

[0086] Computer readable media suitable for storing com-
puter program instructions and data include all forms of non
volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks.

[0087] To provide for interaction with a user, embodi-
ments of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and
a keyboard and a pointing device, e.g., a mouse or a
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trackball, by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user; for example, by sending web pages to a web browser
on a user’s device in response to requests received from the
web browser. Also, a computer can interact with a user by
sending text messages or other forms of message to a
personal device, e.g., a smartphone that is running a mes-
saging application, and receiving responsive messages from
the user in return.

[0088] Data processing apparatus for implementing
machine learning models can also include, for example,
special-purpose hardware accelerator units for processing
common and compute-intensive parts of machine learning
training or production, i.e., inference, workloads.

[0089] Machine learning models can be implemented and
deployed using a machine learning framework, e.g., a Ten-
sorFlow framework, a Microsoft Cognitive Toolkit frame-
work, an Apache Singa framework, or an Apache MXNet
framework.

[0090] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an imple-
mentation of the subject matter described in this specifica-
tion, or any combination of one or more such back end,
middleware, or front end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

[0091] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In some
embodiments, a server transmits data, e.g., an HTML page,
to a user device, e.g., for purposes of displaying data to and
receiving user input from a user interacting with the device,
which acts as a client. Data generated at the user device, e.g.,
a result of the user interaction, can be received at the server
from the device.

[0092] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any invention or on the scope of
what may be claimed, but rather as descriptions of features
that may be specific to particular embodiments of particular
inventions. Certain features that are described in this speci-
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination.
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Moreover, although features may be described above as
acting in certain combinations and even initially be claimed
as such, one or more features from a claimed combination
can in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

[0093] Similarly, while operations are depicted in the
drawings and recited in the claims in a particular order, this
should not be understood as requiring that such operations
be performed in the particular order shown or in sequential
order, or that all illustrated operations be performed, to
achieve desirable results. In certain circumstances, multi-
tasking and parallel processing may be advantageous. More-
over, the separation of various system modules and compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program
components and systems can generally be integrated
together in a single software product or packaged into
multiple software products.

[0094] Particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous.

What is claimed is:
1. A system for performing a machine learning task on a
tuple of respective input sequences to generate an output, the
system comprising one or more computers and one or more
storage devices storing instructions that, when executed by
the one or more computers, cause the one or more computers
to perform one or more operations to implement:
a neural network configured to perform the machine
learning task, the neural network comprising (i) a
plurality of encoder neural networks each comprising
one or more encoder network layers and a projection
layer and (ii) a head neural network, each encoder
neural network configured to:
receive a respective input sequence from the tuple;
process the respective input sequence using the one or
more encoder network layers to generate an encoded
representation of the respective input sequence, the
encoded representation comprising a sequence of
tokens; and

process each of some or all of the tokens in the
sequence of tokens using the projection layer to
generate a lower-dimensional representation of the
token, and the head neural network configured to:

receive, from each of the plurality of encoder neural
networks, lower-dimensional representations of a
respective proper subset of the sequence of tokens
generated by the encoder neural network; and

process the lower-dimensional representations to gen-
erate the output.

2. The system of claim 1, wherein the head neural network
is further configured to access the lower-dimensional rep-
resentations of the respective proper subsets of the
sequences of tokens generated by the encoder neural net-
works from a memory.
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3. The system of claim 1, wherein the lower-dimensional
representations of the tokens generated by different projec-
tion layers have different dimensions from each other.

4. The system of claim 1, wherein each input sequence has
a respective network input at each of a plurality of input
positions in an input order.

5. The system of claim 4, wherein the sequence of tokens
generated by the encoder neural network comprises a cor-
responding token for each network input in the input
sequence.

6. The system of claim 4, wherein the operations further
comprise:

for each sequence of tokens generated by the one or more

encoder network layers of the encoder neural network

from the input sequence:

determining the respective proper subset of the
sequence of tokens based on respective positions of
the tokens in the sequence and on a length of the
input sequence.

7. The system of claim 1, wherein the respective proper
subset of the sequence of tokens comprises first N tokens in
the sequence of tokens, and wherein N is a predetermined
positive integer.

8. The system of claim 1, wherein the machine learning
task is a semantic text matching task.

9. The system of claim 1, wherein the one or more encoder
network layers comprise an attention layer that is configured
to:

receive an input sequence for the layer comprising a

respective layer input at each of one or more positions;
and

generate an attended input sequence at least in part by

applying an attention mechanism to the input sequence
for the layer, the attended input sequence comprising a
respective attended layer input at each of the one or
more positions.

10. A computer-implemented method comprising:

receiving, at each of a plurality of encoder neural net-

works, a respective input sequence from a tuple of
respective input sequences;
processing, using one or more encoder network layers of
each of the plurality of encoder neural networks, the
respective input sequence to generate an encoded rep-
resentation of the respective input sequence, the
encoded representation comprising a sequence of
tokens;
processing, using a projection layer of each of the plu-
rality of encoder neural networks, each of some or all
of the tokens in the sequence of tokens to generate a
lower-dimensional representation of the token;

receiving, at a head neural network and from each of the
plurality of encoder neural networks, lower-dimen-
sional representations of a respective proper subset of
the sequence of tokens generated by the encoder neural
network; and

processing, using the head neural network, the lower-

dimensional representations to generate an output.

11. The method of claim 10, wherein the head neural
network is further configured to access the lower-dimen-
sional representations of the respective proper subsets of the
sequences of tokens generated by the encoder neural net-
works from a memory.
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12. The method of claim 10, wherein the lower-dimen-
sional representations of the tokens generated by different
projection layers have different dimensions from each other.

13. The method of claim 10, wherein each input sequence
has a respective network input at each of a plurality of input
positions in an input order.

14. The method of claim 13, wherein the sequence of
tokens generated by the encoder neural network comprises
a corresponding token for each network input in the input
sequence.

15. The method of claim 13, wherein the operations
further comprise:

for each sequence of tokens generated by the one or more

encoder network layers of the encoder neural network

from the input sequence:

determining the respective proper subset of the
sequence of tokens based on respective positions of
the tokens in the sequence and on a length of the
input sequence.

16. The method of claim 10, wherein the respective proper
subset of the sequence of tokens comprises first N tokens in
the sequence of tokens, and wherein N is a predetermined
positive integer.

17. The method of claim 10, wherein the one or more
encoder network layers comprise an attention layer that is
configured to:

receive an input sequence for the layer comprising a

respective layer input at each of one or more positions;
and

generate an attended input sequence at least in part by

applying an attention mechanism to the input sequence
for the layer, the attended input sequence comprising a
respective attended layer input at each of the one or
more positions.

18. The method of claim 10, further comprising training
the plurality of encoder neural networks and the head neural
network including initializing parameter values of the one or
more encoder network layers of each encoder neural net-
work with a predetermined set of parameter values.

19. The method of claim 18, wherein the training further
comprises:

receiving a training tuple;

processing the training tuple using a trained neural net-

work to generate a teacher network output; and
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training the neural network using the teacher network
output generated by the trained neural network,
wherein the training comprises adjusting only param-
eter values of the projection layers of the encoder
neural networks and parameter values of the head
neural network.

20. The method of claim 19, wherein the training further

comprises:

receiving another training tuple;

processing the training tuple using the trained neural
network to generate another teacher network output;
and

training the neural network using the other teacher net-
work output generated by the trained neural network,
including adjusting parameter values of the one or more
encoder network layers of the encoder neural networks.

21. One or more computer storage media storing instruc-

tions that when executed by one or more computers cause
the one or more computers to implement:
a neural network configured to perform a machine learn-
ing task on a tuple of respective input sequences to
generate a network output, the neural network com-
prising (i) a plurality of encoder neural networks each
comprising one or more encoder network layers and a
projection layer and (ii) a head neural network, each
encoder neural network configured to:
receive a respective input sequence from the tuple;
process the respective input sequence using the one or
more encoder network layers to generate an encoded
representation of the respective input sequence, the
encoded representation comprising a sequence of
tokens; and

process each of some or all of the tokens in the
sequence of tokens using the projection layer to
generate a lower-dimensional representation of the
token, and the head neural network configured to:

receive, from each of the plurality of encoder neural
networks, lower-dimensional representations of a
respective proper subset of the sequence of tokens
generated by the encoder neural network; and

process the lower-dimensional representations to gen-
erate the network output.
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