a9 United States

Isard et al.

US 20110246439A1

a2y Patent Application Publication o) Pub. No.: US 2011/0246439 A1

43) Pub. Date: Oct. 6, 2011

(54)
(735)

(73)

@
(22)

(1)

AUGMENTED QUERY SEARCH

Inventors:

Assignee:

Appl. No.:

Filed:

Michael A. Isard, San Francisco,
CA (US); Marc A. Najork, Palo
Alto, CA (US); Sean A. Suchter,
Los Altos Hills, CA (US); Eric R.
Scheel, Sunnyvale, CA (US)

Microsoft Corporation, Redmond,

WA (US)
12/754,614

Apr. 6,2010

Publication Classification

Int. Cl1.
GO6F 17/30
GO6F 21/00

(2006.01)
(2006.01)

100

108b K

1091

(52) US.CL ... 707/706; 707/723; 726/3; 707/E17.002;
707/E17.014; 707/E17.008

(57) ABSTRACT

A query is annotated with a small sketch (e.g. a Bloom filter)
that approximates a set of interest that is related to the query.
The query and sketch may be forwarded to index servers that
each stores a portion of a search engine corpus. Each of the
index servers may filter documents using the sketch before
returning results for aggregation. The sketch is designed so
there may be false positives (results returned by authors not in
the set), but no false negatives (all relevant results are
returned). The final aggregated results set may be checked
against the full set to remove false positives before returning
the final results to the user.

108a

User
Device

Search Engine

FrontEnd 114

Query
Augmentation
Module
116

Filtering Module
118

User
Page Device
Content
Request
111
Page )_
Content
)— 112
Index Server
120a
D
Index
121a
User Database
Index Server 122
120b
3
Index
121b




Patent Application Publication Oct. 6,2011 Sheet 1 of 4 US 2011/0246439 A1

FiIG. 1
100 108a
108b 109 1 1
K User
User Page Device
Device Content

Request
A//' 111
Page )_

Content

Search Engine )_ "2

Front End 114 Index Server
120a
Q —
uery Index
Augmentation
121a
Module — User Datab
116 ser Database
Index Server 122
Filtering Modul 1200
iltering Module
118 <>
Index
121b




Patent Application Publication Oct. 6,2011 Sheet 2 of 4 US 2011/0246439 A1

202
200 2‘ Authenticate User

204
Receive Query 5
FIG. 2

206
Look up Complete Set (e.g., Social Group) 5

208
Construct Data Structure to Augment Query 5

Y

Forward Data Structure with Query to Index 5210
Server(s)

!

5212
Apply Data Structure and Query to Index

!

5214
Receive Results from Index Servers

——

Return Search Results

216



Patent Application Publication Oct. 6,2011 Sheet 3 of 4 US 2011/0246439 A1

300 Z‘

FIG. 3

Authenticate User

Receive Query

Look up Complete Set (e.g., Social Group)

Construct per-Index Server Data Structure

Y

Forward Data Structure and Query to
Partition of Index Server Associated with an
Author

Apply Data Structure and Query to Index

Receive Results from Index Servers

Return Search Results

302

304

306

308

310

312

314

316



Oct. 6,2011 Sheet 4 of 4 US 2011/0246439 A1

Patent Application Publication

ZL¥ (s)uonosuuo)
uoESIUNWILIOD

v1¥ (s)eoineq indu

alYy
(s)ao1raq INdINO

Ol obeioys
9|geAoWay-UoN

807
abe.l01g a|geAoway

3[BJOA-UON

cov nun
buissasold

S|lIEJOA

AoWwa WalsAg




US 2011/0246439 Al

AUGMENTED QUERY SEARCH

BACKGROUND

[0001] Search engines typically are the starting point from
which users begin their browsing for information. In the case
of social networks, a user may want to search for documents
generated by a particular author or authors within a group
having a social relationship. The user may desire that the
search engine restrict query results to documents generated
by those within the social network. However, the group may
be an ever-evolving set of individuals participating on many
social networking sites.

[0002] Providing a restricted set of search results can be
challenging for search engines. Typically, a search index is
too large of a corpus to be stored on a single index server and
is split up on several index servers. When users issue a search
query against the corpus, a front end of the search engine
receives the query and sends it to each of the index servers on
which the portions of the search index are hosted. Each index
server returns documents that are responsive to the query. The
front end then aggregates and ranks the responses from each
of'the index servers to return a predetermined number of the
results to the user. This process can be computationally
expensive and difficult for queries against information that is
not pre-indexed by the search engine, such as a user’s social
network.

SUMMARY

[0003] In general, one aspect of the subject matter can be
implemented in a method for annotating a query with a small
sketch (e.g. a Bloom filter) that approximates a set of interest
that is related to the query. The query and sketch may be
forwarded to index servers that each stores a portion of a
search engine corpus. Each of the index servers may filter
documents using the sketch before returning results for
aggregation. The sketch is designed so there may be false
positives (results returned by authors not in the set), but no
false negatives (all relevant results are returned). The final
aggregated results set may be checked against the full set to
remove false positives before returning a final set of search
results to the user.

[0004] In accordance with some implementations, there is
provided a method that may include receiving a query asso-
ciated with a set of interest at a search engine, determining a
filter representation of the set, and sending the filter and the
query to index servers that each store a portion of a search
engine corpus. Each of the index servers may apply the filter
to query results, which may then be aggregated by, e.g., a
front end server of the search engine.

[0005] In accordance with other implementations, a
method may include storing documents of a set of members in
respective databases of index servers of a search engine. A
per-index server filter of the set may be determined that
approximates the set of members having documents stored on
a respective index server. The per-index server filter and the
query may be sent to the respective index server and applied
to filter the query results determined by the respective index
server. The results of each of the index servers may then be
aggregated.

[0006] In accordance with some implementations, there is
provided a method that may include receiving a query at a
search engine that may be associated with a set of document
authors, and determining a representation of the set of docu-

Oct. 6, 2011

ment authors. The query may be augmented with the repre-
sentation to create a hybrid query that is communicated to
distributed index servers, and applied against a database of
each of the distributed index servers to determine per-index
server results. The per-index server results may be aggregated
to create aggregated results.

[0007] This summary is provided to introduce a selection of
concepts in a simplified form that are further described below
in the detailed description. This summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing summary, as well as the following
detailed description of illustrative embodiments, is better
understood when read in conjunction with the appended
drawings. For the purpose of illustrating the embodiments,
there are shown in the drawings example constructions of the
embodiments; however, the embodiments are not limited to
the specific methods and instrumentalities disclosed. In the
drawings:

[0009] FIG. 1 is a block diagram of an example online
environment;

[0010] FIG. 2 illustrates an operational flow of an imple-
mentation of a method for receiving a query, determining a
set, and returning results to the query;

[0011] FIG. 3 illustrates an operational flow of another
implementation of a method for receiving a query, determin-
ing a set, and returning results to the query; and

[0012] FIG. 4 shows an exemplary computing environ-
ment.

DETAILED DESCRIPTION
[0013] FIG. 1 is a block diagram of an example online

environment 100. The online environment 100 may facilitate
the identification and serving of content items, e.g., web
pages, advertisements, etc., to users. A computer network
110, such as a local area network (LAN), wide area network
(WAN), the Internet, or a combination thereof, connects user
devices 108a and 1085 and a search engine 112. The search
engine 112 may include a front end 114, a query augmenta-
tion module 116, a filtering module 118, index servers 120a
and 1205, indexes 121a and 1215, and a user database 122.
Although only two user devices (108a and 1085), two index
servers (120a and 1205), and two indexes 121a and 1215 are
shown, the online environment 100 may include many user
devices, index servers and indexes.

[0014] A userdevice, such as user device 108a, may submit
a page content request 109 to the search engine 112 using a
web browser application running on the user device 108a. In
some implementations, the page content 111 may be provided
to a web browser running on the user device 108a in response
to the request 109. The page content 111 may include search
results, advertisements, or other content placed on the page
content 111 by the search engine 112. Example user devices
include personal computers (PCs), mobile communication
devices, television set-top boxes, etc. An example user device
is described in more detail below with reference to FIG. 4.
[0015] In accordance with implementations herein, a user
of the user device 108a may authenticate with the search
engine 112 or other authentication source (e.g., a single sign-
on service) associated with the search engine 112. Authenti-



US 2011/0246439 Al

cation information may be stored in the user database 122.
Thus, upon authentication, the search engine 112 knows the
identity of the query-submitting user at the user device 108«
when the query is received by the search engine 112. With the
authenticated user’s information in the user database 122, the
search engine 112 may derive information about the user’s
relationships with others, and in particular, those who may be
associated with the user’s social network and may have
authored documents related to the submitted query.

[0016] The front end 114 may be a computing device, such
as that described with respect to FIG. 4 that receives queries
from the user devices 1084 or 1085. The front end 114 may
pre-process queries and/or post-process results from/to the
user devices 108a and 1084. For example, the front end 114
may package a query for transmission to the index servers
120a and 1205. The front end 114 may also aggregate and
rank results from the index servers 120a and 1205 to commu-
nicate search results to the user device 1084 or 1085.

[0017] The query augmentation module 116 may deter-
mine a sketch or data structure representation of a complete
set of interest that is used to augment a user query to filter the
results determined by the index servers 120a and 1205. For
example, a Bloom filter may be constructed as the data struc-
ture, where the Bloom filter approximates the complete set of
interest. A Bloom filter is a space efficient probabilistic data
structure that can be used to test the membership of an ele-
ment in a given set; the test may yield a false positive, but
never a false negative. A Bloom filter represents a set using an
array A of m bits (where A[i] denotes the ith bit), and uses k
hash functions h, to h, to manipulate the array, each h, map-
ping some element of the set to a value in [1,m]. To add an
element e to the set, A[h,(e)] is setto 1 for each 1 =i=k. To test
whether e is in the set, it is verified that A[h(e)] is 1 for all
1=i=k. Given a Bloom filter size m and a set size n, the
optimal (false-positive minimizing) number of hash func-
tions

m
k is —In2.
n

the probability of false positives is

[0018] Thus, if a user submits a query where the desired
results are to be those documents authored by friends within
a social network or group, the complete set may be authors or
friends of interest within the user’s social network. The
Bloom filter approximates the complete set by providing a
data structure that approximates the following relationship,
“if X is not my friend, then x is probably not part of the set,”
and if “x is my friend, then x is part of the set.” Alternatively
or additionally, the filter may be any probabilistic data struc-
ture (e.g., a hash-based technique or other compact represen-
tation of a complete set) that is used to determine set mem-
bership and that may allow for false positives in the set, but
not false negatives.

[0019] The query augmentation module 116 augments the
user query with the data structure and communicates the user
query and the data structure as a hybrid query to one or more

Oct. 6, 2011

index servers 120a and 1205. Thus, instead of issuing a strict
BOOLEAN query (e.g., including a disjunction listing the set
of authors that may be returned by the query), the hybrid
query is constructed where the set is represented as a
bounded-size approximation that may be efficiently checked
by the index servers 120a and 1204. This allows very large
sets to be checked efficiently without undue network traffic or
computational expense.

[0020] The index servers 120a and 1206 may contain a
distributed portion of the corpus of the search engine 112
within a respective index 121a or 1215, and each may identify
results to the user query from its portion of the corpus by
applying the data structure and the hybrid query to its portion
of the corpus. The indexes 121a and 1215 may be, e.g., a
database management system. The results the index servers
120a and 1205 may be returned to the front end 114 for
aggregation and/or ranking.

[0021] The filtering module 118 may eliminate false posi-
tives in the aggregated result set. As noted above, the data
structure may be defined such that false positives are present
in the results. The filtering module 118, however, may have
full knowledge of the complete set. Using the knowledge of
the complete set, the filtering module 118 may remove the
false positives from the results returned by the index servers
120a and 1205. The filtered aggregated set may be then
returned by the front end 114 to the user at the user device
108a or 1085.

[0022] In some implementations, a friendship graph may
be provided at each of the index servers 120a and 1205. The
friendship graph may be a mathematical structure to model
pairwise relations between the user and the user’s friends
from a viewpoint of the social network. The graph may be a
type of distributed graph and may comprise a collection of
vertices and a collection of edges that connect pairs of verti-
ces to show the associations. If each of the index servers 120a
and 1205 contains the friendship graph, the front end 114 may
augment the query with the user ID to form a hybrid query of
the structure “{query} AND user:u”, where u is the user ID.
The hybrid query may be communicated to the index servers
120a and 1205, which can then expand the user ID to the set
of friends using the friendship graph. This solution may be
predicated on the friendship graph being replicated across all
index servers 120a and 1205.

[0023] In some implementations, the corpus may be parti-
tioned across index servers computers 120a and 1205 such
that all documents authored by a particular “friend” reside
within the index (e.g., 121a) of the same index server (e.g.,
120a), and the friendship graph may be partitioned in a simi-
lar fashion, such that each of the index servers 120a and 1205
has a friendship graph particular for the documents stored
thereon. This reduces the amount of traffic on the down-link
from the front end 114 to the index servers 120a and 1205 and
the memory footprint of the friendship graph on each index
server.

[0024] FIG. 2 illustrates an operational flow of an imple-
mentation of a method 200 for receiving a query, determining
a set, and returning results to the query. At 202, a user is
authenticated. The user may be authenticated to the search
engine 112 through any authentication mechanism that
accesses the user database 122 to confirm the user’s identity.
At204, a query is received from the user. The user may submit
the query from user device 108a as the page content request
109 to the search engine 112 on, e.g., a webpage presented by
the search engine 112.



US 2011/0246439 Al

[0025] At 206, a look-up of the complete set of interest
associated with the user is performed. For example, the com-
plete set of interest may be a user’s social network or group of
friends, which may be ascertained from information in the
user database 122. One or more of the friends in the authen-
ticated user’s social network may be an author of documents
of interest, as specified by the query. At 208, a data structure
is formed to represent the group of friends that may be used to
augment the query. For example, the Bloom filter may be
constructed by the query augmentation module 116 to repre-
sent the user’s complete social network of friends.

[0026] At210, the data structure and query are forwarded to
the index servers. The Bloom filter may augment the user’s
query as a hybrid query to describe an additional criterion of
the group of friends to the index servers 120a and 1205. At
212, the data structure and query are applied to the indexes
1214 and 1215 on each of the index servers 120a and 1205.
Applying the Bloom filter to the index will filter the results
satisfying the query to the bounded set represented by the
Bloom filter.

[0027] At 214, the results are returned. The front end 114
may receive the results from each of the index servers 120a
and 1205. A post-processing stage may be applied by the
filtering module 118 at the front end 114 to remove any false
positives, since the filtering module 118 may have access to
the complete set (e.g., the complete group of friends/social
network) which is not transmitted along with the query to the
index servers 120a and 1204. The filtering module 118 may
compare the complete set to the results and filter out (i.e.,
discard) the false positives, as they would not satisfy the
complete set.

[0028] At216, the search results are returned to the user. As
such, the search results returned by the front end 114 are
targeted in that they satisty the query and are relevant to the
user’s social context.

[0029] In accordance with the above, Bloom filters of dif-
ferent sizes may be communicated to the index servers
depending on the size of the filter set. In some instances, the
exact (complete) set itself may be communicated for queries
where the set is relatively small.

[0030] FIG. 3 illustrates an operational flow of another
implementation of a method 300 for receiving a query, deter-
mining a set, and returning results to the query. In the opera-
tional flow of FIG. 3, the corpus may be partitioned across all
index serving computers such that all documents authored by
a particular author reside on a same index server.

[0031] In the flow of FIG. 3, the operations performed at
302-306 may be performed as described above with regard to
202-206 in FIG. 2. At 308, a data structure is formed from the
group of friends/social network that may be used to augment
the query on a per-index server basis. For example, the query
augmentation module 116 may construct a separate Bloom
filter for each index server 120a or 1204, containing only the
friends of the user whose postings/documents are stored in
the index 1214a or 1215. As such, the sum of the optimum sizes
of the per-index server Bloom filters is the same as the opti-
mum size of the global Bloom filter containing all friends of
the user, but may be smaller for any particular index server.
[0032] At310, the data structure and query are forwarded to
the index servers. A Bloom filter may augment the user’s
query as a hybrid query, as noted above. However, this imple-
mentation reduces network traffic along the down-link to the
index servers 120a and 1205, as the query may be directed to
fewer index servers and the Bloom filters may be smaller.

Oct. 6, 2011

[0033] At 312, the data structure and query are applied to
the index on each of the index servers 120a and 1205. Apply-
ing the Bloom filter to the index will filter the results satisfy-
ing the query to the bounded set represented by the Bloom
filter. At 314, the results are returned. The filtering module
118 may receive and post-process the results from each of the
index servers 120a and 1205, as described at 214. At 316, the
search results are returned to the user by, e.g., the front end
114.

[0034] In addition to the above, the implementations
described herein may be used to specify a query against a
large database for any large set using a closed form (i.e., the
Bloom filter), where the database is not pre-indexed. For
example, in a vehicle database, a user may submit a query to
determine a list of vehicles that are reported as stolen. The list
of stolen vehicles is likely not pre-indexed in the local
authority’s database before the query is issued. A compact
Bloom filter may be constructed to approximate the set of
stolen vehicles in order to return the relevant results from the
local authority database.

[0035] Additionally or alternatively, a user interface may
be provided to present an indication to the user that the par-
ticular results on, e.g., the page content 112 are from the
user’s social network. Documents authored by friends within
the user’s social network may be highlighted or grouped to
identify their origin.

[0036] FIG. 4 shows an exemplary computing environment
in which example embodiments and aspects may be imple-
mented. The computing system environment is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality.

[0037] Numerous other general purpose or special purpose
computing system environments or configurations may be
used. Examples of well known computing systems, environ-
ments, and/or configurations that may be suitable for use
include, but are not limited to, personal computers, server
computers, handheld or laptop devices, multiprocessor sys-
tems, microprocessor-based systems, network personal com-
puters, minicomputers, mainframe computers, embedded
systems, distributed computing environments that include
any of the above systems or devices, and the like.

[0038] Computer-executable instructions, such as program
modules, being executed by a computer may be used. Gener-
ally, program modules include routines, programs, objects,
components, data structures, etc. that perform particular tasks
or implement particular abstract data types. Distributed com-
puting environments may be used where tasks are performed
by remote processing devices that are linked through a com-
munications network or other data transmission medium. In a
distributed computing environment, program modules and
other data may be located in both local and remote computer
storage media including memory storage devices.

[0039] With reference to FIG. 4, an exemplary system for
implementing aspects described herein includes a computing
device, such as computing device 400. In its most basic con-
figuration, computing device 400 typically includes at least
one processing unit 402 and memory 404. Depending on the
exact configuration and type of computing device, memory
404 may be volatile (such as random access memory (RAM)),
non-volatile (such as read-only memory (ROM), flash
memory, etc.), or some combination of the two. This most
basic configuration is illustrated in F1G. 4 by dashed line 406.



US 2011/0246439 Al

[0040] Computing device 400 may have additional fea-
tures/functionality. For example, computing device 400 may
include additional storage (removable and/or non-removable)
including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in FIG. 4 by removable
storage 408 and non-removable storage 410.

[0041] Computing device 400 typically includes a variety
of computer readable media. Computer readable media can
be any available media that can be accessed by device 400 and
includes both volatile and non-volatile media, removable and
non-removable media.

[0042] Computer storage media include volatile and non-
volatile, and removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion such as computer readable instructions, data structures,
program modules or other data. Memory 404, removable
storage 408, and non-removable storage 410 are all examples
of computer storage media. Computer storage media include,
but are not limited to, RAM, ROM, electrically erasable pro-
gram read-only memory (EEPROM), flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computing device
400. Any such computer storage media may be part of com-
puting device 400.

[0043] Computing device 400 may contain communica-
tions connection(s) 412 that allow the device to communicate
with other devices. Computing device 400 may also have
input device(s) 414 such as a keyboard, mouse, pen, voice
input device, touch input device, etc. Output device(s) 416
such as a display, speakers, printer, etc. may also be included.
All these devices are well known in the art and need not be
discussed at length here.

[0044] It should be understood that the various techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combina-
tion of both. Thus, the methods and apparatus of the presently
disclosed subject matter, or certain aspects or portions
thereof, may take the form of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-
ROMs, hard drives, or any other machine-readable storage
medium where, when the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the presently disclosed
subject matter.

[0045] Although exemplary implementations may refer to
utilizing aspects of the presently disclosed subject matter in
the context of one or more stand-alone computer systems, the
subject matter is not so limited, but rather may be imple-
mented in connection with any computing environment, such
as a network or distributed computing environment. Still fur-
ther, aspects of the presently disclosed subject matter may be
implemented in or across a plurality of processing chips or
devices, and storage may similarly be effected across a plu-
rality of devices. Such devices might include personal com-
puters, network servers, and handheld devices, for example.
[0046] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe-
cific features or acts described above. Rather, the specific

Oct. 6, 2011

features and acts described above are disclosed as example
forms of implementing the claims.

What is claimed is:

1. A computer-implemented method, comprising:

receiving a query associated with a set of interest;

determining a data structure representation of the set at a

query augmentation module;

sending the data structure and the query to a plurality of

index servers that each store a portion of a corpus;
applying the data structure to a plurality of query results
determined by each index server; and

aggregating the results of the index servers.

2. The method of claim 1, further comprising:

post-processing the results to eliminate false positives by

comparing the set to the results; and

discarding results that do not satisty the set.

3. The method of claim 2, further comprising:

ranking the post-processed results; and

communicating the ranked results.

4. The method of claim 1, further comprising:

authenticating a user submitting the query; and

performing alook-up at a user database to determine the set
of interest.

5. The method of claim 4, wherein the set of interest is the
user’s social network.

6. The method of claim 4, further comprising communi-
cating the results to the user having an indication that the
results belong to the set of interest.

7. The method of claim 1, wherein the data structure is a
Bloom filter.

8. The method of claim 7, further comprising communi-
cating Bloom filters of a variable size to the index servers in
accordance with a size of the set of interest to be filtered.

9. The method of claim 1, further comprising ranking
aggregated results.

10. A computer-implemented method, comprising:

receiving a query associated with a set of interest at a search

engine;

storing a plurality of documents of a set of members in

respective indexes of index servers;

determining, at a query augmentation module, a per-index

server data structure of the set that approximates the set
of members having documents stored on a respective
index server;

sending the per-index server data structure and the query to

the respective index server;

applying the per-index server data structure to the query

results determined by the respective index server; and

aggregating the results for each of the index servers at a

front end of the search engine.

11. The method of claim 10, further comprising:

eliminating false positives by comparing the set of interest

to results; and

discarding results that do not satisty the set of interest.

12. The method of claim 10, further comprising:

authenticating a user; and

performing alook-up at a user database to determine the set

of interest.

13. The method of claim 12, wherein the set is the user’s
social network.

14. The method of claim 13, further comprising:

communicating the results to the user; and

providing an indication that the results are from the set of

interest.



US 2011/0246439 Al

15. The method of claim 10, wherein the per-index server
data structure comprises a Bloom filter.

16. A computer-implemented method, comprising:

receiving a query at a search engine, the query being asso-
ciated with a set of document authors;

determining a representation of the set of document
authors at a query augmentation module;

augmenting the query with the representation to create a
hybrid query that is communicated to a plurality of dis-
tributed index servers;

applying the hybrid query against an index of each of the
distributed index servers to determine a plurality of per-
index server results; and

aggregating the per-index server results to create a plurality
of aggregated results at a front end of the search engine.

Oct. 6, 2011

17. The method of claim 16, further comprising:

ranking the aggregated per-index server results; and

communicating the ranked results.

18. The method of claim 17, further comprising providing
an indication in the ranked results that a result is from the set
of document authors.

19. The method of claim 17, further comprising discarding
results within the aggregated results that do not satisfy the set
of document authors.

20. The method of claim 16, further comprising:

authenticating a user; and

performing alook-up at a user database to determine the set

of document authors.

sk sk sk sk sk



