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SUMMARY

BRIEF DESCRIPTION OF THE DRAWINGS

Fault tolerance is provided for a database of hyperlinks
distributed across multiple machines, such as a scalable

20 hyperlink store. The fault tolerance enables the distributed
database to continue operating (with brief interruptions) even
when some of the machines in the cluster have failed. A
primary database is provided for normal operation, and a
secondary database is provided for operation in the presence
of failures.

For example, a failure may be detected in at least one
machine in the cluster of machines. The surviving machines
may be notified about the failure. Primary store partitions are
then evicted from the memory of each of the surviving
machines, and secondary store partitions are loaded into the
memory of a subset of the surviving machines. Service may
then resume in degraded mode using the secondary store
partitions. Clients may be notified about the failure, and may
abort any unfinished transactions.

A spare machine may be provided to replace each failed
machine. Replicas ofthe primary store partitions that resided
on the failed machines are copied from the disk storage ofthe
surviving machines to the spare machines. The secondary
store partitions are then evicted from the memory of the
surviving machines, and the primary store partitions are
loaded into the memory ofthe surviving and spare machines.
Service may then resume in non-degraded mode.

This Summary is provided to introduce a selection of con­
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

FIG. 1 is a high level block diagram of an example distrib­
uted database system.

FIG. 2 is a more detailed block diagram of the example
55 system of FIG. 1.

FIG. 3 is a diagram of an example unique identifier (UID)
format.

FIG. 4 is a block diagram of another example distributed
database system.

FIG. 5 is a flow diagram of an example database creation
method.

FIG. 6 is a flow diagram of an example fault tolerance
method.

FIG. 7 is a diagram of another example UID format.
FIG. 8 is a block diagram of an example computing envi­

ronment in which example embodiments and aspects may be
implemented.

queries. The role and the layout of the stores as well as the
partitioning algorithm are described in more detail herein.

Computers may fail for a variety of reasons, such as the
failure of a hardware component (e.g., disk drives, power
supplies, processors, memory, etc). Distributed systems com­
posed ofmultiple computers are more vulnerable to failure: in
a distributed system of n computers, where each individual
computer fails with probability p during a given time interval,
the probability that at least one of the constituent computers

10 has failed is 1-(1-pr, which is greater than p and increases
with increasing n. Therefore, distributed systems should be
designed to be fault-tolerant; that is, they should continue to
function even if one or more of their constituent elements
have failed.

BACKGROUND

1
FAULT TOLERANCE SCHEME FOR

DISTRIBUTED HYPERLINK DATABASE

Web search services allow users to submit queries, and in
response, they return a set of links to web pages that satisfy
the query. Because a query may potentially produce a large
number ofresults, search engines typically display the results
in a ranked order. There are many ways to rank-order the links
resulting from a query, including content-based ranking,
usage-based ranking, and link-based ranking. Content-based
ranking techniques determine how relevant the content of a
document is to a particular query. Usage-based ranking tech­
niques monitor which result links users actually follow, and 15

boost the rank of these result links for subsequent queries.
Link-based ranking techniques examine how many other web
pages link to a particularweb page, and assign higher ranks to
pages with many incoming links. Examples of link-based
ranking algorithms include PageRank, HITS, and SALSA.

Link-based ranking algorithms view each page on the web
as a node in a graph, and each hyperlink from one page to the
other as a directed edge between the two corresponding nodes
in the graph. There are two variants of link-based ranking
algorithms: query-independent ones (such as PageRank) that 25

assign an importance score (independent of any particular
query) to all the web pages in the graph, and query-dependent
ones (such as HITS and SALSA) that assign a relevance score
with respect to a particular query to each web page returned in
the result set of a query. Query-independent scores can be 30

computed prior to the arrival of any query, while query­
dependent scores, by their very nature, can only be computed
once the query has been received.

Users expect to receive answers to a query within a few
seconds, and all major search engines strive to provide results 35

in less than one second. Therefore, any query-dependent
ranking algorithm desirably has to compute scores for all
pages in the result set in under one second, and ideally within
less than 100 milliseconds. However, the seek time ofmodern
hard disks is on the order of 10 milliseconds, making them too 40

slow to be used as a medium to store the web graph. In order
to meet the time constraints, the web graph (or at least the
most frequently used portions of it) has to be stored in
memory, such as RAM, as opposed to disk storage.

A graph induced by the web pages stored in the corpus of 45

a major search engine is extremely large. For example, the
MSN Search corpus contains 5 billion web pages, which in
turn contain on the order of100 billionhyperlinks; the Google
corpus is believed to contain about 20 billion web pages
containing on the order of 400 billion hyperlinks. A web 50

graph of this size cannot be stored in the memory of a single
machine, even if the most effective compression techniques
are applied. Therefore, the graph is distributed ("partitioned")
across multiple machines. Distributing the graph is orthogo­
nal to compressing it; in practice, one does both.

U.S. patent application Ser. No. 10/413,645, filed Apr. 15,
2003, entitled "System and method for maintaining a distrib­
uted database of hyperlinks", and incorporated herein by
reference in its entirety, describes a scheme for distributing a
database of hyperlinks across multiple machines, such as 60

database processors. An embodiment is referred to as the
Scalable Hyperlink Store, or SHS.

SHS represents a web graph as three databases or "stores":
a uniform resource locator (URL) store, a forward link store,
and a backward link store. Each store is partitioned across 65

multiple machines; each machine will hold corresponding
fractions ("partitions") ofeach store in main memory to serve
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ing URL. In the following, partition(u) is used to denote the
partition ID of UID u, and relative(u) is used to denote its
partition-relative ID.

The partition-relative ID is drawn from a densely packed
space, by sorting all URLs placed in a given URL store
partition in lexicographic order and using their position in that
ordering as the partition-relative identifier. So all UIDs refer­
ring to web pages on the same host desirably occupy a densely
populated numeric interval, with no UID referring to a web
page on a different host falling into that interval.

As described above, both the forward link store and the
backward link store implement mappings from UIDs to lists
ofUIDs. The forward link store maps aUlD u to the list of
UIDs linked to by u, and the backward link store maps a UID
u to the list of UIDs linking to u. Both stores are partitioned
according to the partition ID ofu (that is, the UID that is the
argument to the mapping). Given a UID u whose partition ID
is x, partition x ofthe forward link store contains the mapping
ofu to the pages u links to, and partition x ofthe backward link
store contains the mapping ofu to the pages linking to u.

Clients ofa distributed database system hash the host com­
ponent ofa URL or extract the machine ID ofa UID in order
to determine which machine in the cluster to contact, and then
send their UrIToUid, UidToUrl, or GetLinks requests to the
appropriate machine.

There is a possibility that one or more of the machines in
the cluster may fail in the course of operation. It is desirable
to continue service with a minimum of interruption.

A failure detector 12 is used to detect whether a machine in
the cluster has failed, and a fault-tolerant distributed state
machine 14 maintains a list of machines in the cluster and
which machines, if any, have failed. Failure detectors 12 and
distributed state machines 14 are well-known to those skilled
in the art. The failure detector 12 and distributed state
machine 14 may run on the same machines as the distributed
database system or on different machines.

The techniques described herein will tolerate up to f con-
current machine failures (where f may be chosen at database
creation time, and is smaller than n, and may be set to I, 2, or
3, for example). In addition to the hash function HI described
herein, a second hash function H2 is used that maps host
names to integers in the range [0 ... n-I-f]. At database
construction time, instead ofbuilding a single database com­
prising the three stores described above, two databases are
built, each comprising three stores and both containing the
same information, though likely not distributed among the
machines identically.

An example system 40 is shown in FIG. 4. A primary
database 42 is constructed using hash function HI to place
URLs onto machines in the cluster (step 47 in the flow dia­
gram ofFIG. 5); a secondary database 44 is constructed using
hash function H2 to place URLs onto a subset ofthe machines
in the cluster (namely, machines 0 through n-1-f, represented
with a "'" symbol) (step 49). Desirably, the data that is repli­
cated is stored on disk instead of memory (e.g., RAM).

A URL u will have differing UIDs v and v' in the primary
and the secondary stores 42, 44, respectively. Partition(v) and
partition(v') will typically differ because partition(v)=H1

(host(u)) and partition(v')=H2 (host(u)), and HI and H2 are
60 different hash functions. Relative(v) and relative(v') will typi­

cally differ as well because the primary URL store partition
numbered x will contain different URLs than the secondary
URL store partition numbered x, and the position ofa URL in
a URL store partition corresponds to its partition-relative ID.

Each primary and each secondary store partition is repli­
cated f+I times (one original and f replicas). Assuming the
original store resides on machine k, the f replicas reside on

3
DETAILED DESCRIPTION

In a distributed database for maintaining hyperlinks, web
pages are identified by uniform resource locators (URLs). A
typical URL is ofthe form http://xyz.com/a/b, where xyz.com 5

(the "host" of the URL) identifies the web server providing
this web page, and /a/b (the "path" ofthe URL) identifies the
page itself (relative to web server xyz.com). The pages in the
index of a typical major search engine are drawn from on the
order of 50 million hosts. As used herein, host(u) denotes the 10

host ofURL u.
URLs are on average about 80 characters long. In order to

compress the web graph efficiently, a distributed database for
maintaining hyperlinks stores hyperlinks not as URLs, but
rather as 64-bit integers called unique identifiers (UIDs). FIG. 15

1 is a high level block diagram of an example distributed
database system. There is a one-to-one mapping between
URLs and UIDs. This mapping is maintained by a URL store
5 in the distributed database system 10. The URL store 5
provides a method UrIToUid for mapping a URL to its cor- 20

responding UID, and a method UidToUrl for mapping a UID
back to its corresponding URL.

In addition to the URL store 5, a distributed database sys­
tem 10 for maintaining hyperlinks maintains a forward link
store 6 and a backward link store 7. The forward link store 6 25

provides a method, GetLinks, which, given a UID (represent­
ing a URL), returns a list of the UIDs (representing URLs)
that the given UID links to. Similarly, the backward link store
7 provides a method, GetLinks, which, given a UID, returns a
list ofUIDs that link to the given UID. A client 2 may interact 30

with the servers that are comprised within the database sys­
tem 10.

Describing the three stores in terms familiar to a mathema­
tician' the URL store contains the node set of the web graph,
the forward link store contains the adjacency matrix induced 35

by the edge set, and the backward link store contains the
transpose of the adjacency matrix.

FIG. 2 is a more detailed block diagram of the example
system ofFIG. 1.A distributed database system 10 running on
a cluster of machines, such as servers and/or database pro- 40

cessors, for example, connected by a high speed network, is
provided, and each ofthe three stores is partitioned across the
machines or servers in the clusters. Assume that the cluster
comprises n machines, numbered 0 to n-l. The URL, back­
ward link, and forward link store partitions are numbered 45

accordingly.
The distributed database system uses a hash function HI

mapping host names to the integer range [0 ... n-I] to place
URLs into URL store partitions. A URL u is placed in the
URL store partition numbered HI (host(u)). So all URLs 50

belonging to a particular host (web server) are placed in the
same URL store partition. Furthermore, a simple hash func­
tion application may be used to determine which URL store
partition contains a particular URL.

An example UID format is shown in FIG. 3. The most 55

significant few (e.g., 8) bits ofa UID 20 encode the identity of
the store partition containing the corresponding URL as a
partition ID in portion 22. The remaining bits encode a num­
ber that is unique relative to that machine as a partition­
relative ID in portion 26.

For example, given a URL http://xyz.com/a/b and assum­
ing that HI (xyz.com) is 17, this URL is placed in URL store
partition 17 on machine 17 ofthe cluster ofmachines, and the
highest few bits, corresponding to portion 22 in FIG. 3, ofthe
corresponding UID encode the number 17. So given a UID, it 65

is straightforward to determine the URL store partition that
maintains the mapping between this UID and its correspond-



US 7,627,777 B2
6

At step 58, k new machines are commissioned from a pool
of available hot-spare machines. Desirably, hot-spare
machines are standing by, on line, and can be quickly provi­
sioned.

More particularly, at step 60, surviving replicas of the
partitions that were stored on the disk (as opposed to memory)
of each of the k failed machines are copied from surviving
machines in the cluster to the just commissioned hot-spares,
where they are stored on disk. This is possible because there

10 are f+l instances of each partition, so there is a surviving
instance as long as no more than f machines fail at the same
time. The new machines effectively take the place of the
failed machines. The distributed state machine is updated to
bind Xl' x2' ... , xk to the names or IP addresses of the new

15 machines.
Once the hot-spares have been configured to contain the

same state as the failed machines did, at step 62, the machines
in the cluster and the clients are notified of this fact. Clients
abort (and later restart) any pending transactions. Each

20 machine that currently has any secondary store partitions
loaded into memory evicts them. The machines load their
primary store partitions into memory. Service is unavailable
during this step.

Service resumes in non-degraded mode at step 64. Clients
25 restart any aborted transactions and then continue issuing new

requests.
The need to abort and restart any transactions, and thus the

need for clients to incorporate any transactional logic, may be
avoided. Mappings may be supported from primary UID

30 space to secondary UID space and vice versa. To this end, the
format ofUIDs may be modified as shown in FIG. 7.

The top few bits (portion 72) of each UID 70 encode the
primary URL store partition ID containing the corresponding
URL, and the next few bits (portion 74) encode the secondary

35 URL store partition ID containing the corresponding URL.
The remaining bits (portion 76) contain the partition-relative
ID of the URL in either the primary or the secondary store
(depending on the store where this UID came from). Herein,
primary_partition(u) denotes the primary partition ID ofUID

40 u, secondary_partition(u) denotes its secondary partition ID,
andrelative(u) denotes its partition-relative ID. Moreover, the
triple (p,s,r) may be used to denote a UID with primary
partition ID p, secondary partition ID s, and partition-relative
ID r.

The UIDs in a primary store 42 will have primary-parti-
tion-relative IDs, and the UIDs in a secondary store 44 will
have secondary-partition-relative IDs. However, UIDs
exchanged between a client and a server have primary-parti­
tion-relative IDs because they are in primary store UID space.

50 This convention allows the client to not have to discard any
UIDs that have been received prior to a failure, and to con­
tinue using these UIDs. It also means that from the client's
point of view, there is exactly one UID per URL.

In order to achieve this, it is desirable to translate primary-
55 partition-relative IDs to secondary-partition-relative IDs (to

translate UIDs sent by a client to a secondary store partition)
and vice versa (to translate UIDs sent back to the client). The
hash functions HI and H2 ensure that all the URLs from a
given host end up in the same primary and secondary store

60 partitions. Furthermore, the URL store partitions contain
URLs in lexicographically sorted order, and the partition­
relative IDs reflect that sort order.

As a result, primary store UIDs may be translated into
secondary store UIDs, by maintaining a primary-to-second­

65 ary translation table. The table is constructed as follows. For
each host (web server) h, determine the lexicographically
smallest URL u such that host(u)=h, then determine the cor-

5
machine (k+1) mod n, (k+2) mod n, ... , (k+f) mod n. Because
each store partition resides on f+l distinct machines, there
will be at least one surviving copy ofeach store partition even
if f machines have failed.

During normal operation, the distributed database system
operates as before. A client wishing to invoke the UrlToUid
method on a URL u computes HI (host(u)) to determine which
machine in the distributed database system cluster maintains
the URL store containing u, and sends a UrlToUid request to
that machine. Similarly, a client wishing to invoke the Uid­
ToUrl or the GetLinks method on aUlD u extracts the parti­
tion ID from u to determine which machine in the cluster
maintains the store containing u, and sends the appropriate
request to that machine.

In order to describe the distributed database system opera­
tion in the event offailures, it is convenient to first make a few
auxiliary definitions. Assume that k machines Xl' x2 , ... , Xk

(with k~f) have failed. The set {xu x2 , ... , xk } is referred to
as the failed-set F. Define a function f(x) that indicates how
many machines with an ID less than x have failed:

j(x)~I{yEF:y<x}I.

Using this definition, define a function P that maps some
machines onto the secondary partitions they are supposed to
serve given the failed-set F:

P(x)~(x-j(x» ifxVEx-j(x)<n; undefined otherwise.

Additionally, introduce a function M that maps a secondary
store partition ID to the machine currently serving that parti­
tion. M is the inverse of P, and can be defined as:

M(x)~y such that l{z:z:"'yEZV}I~x.

The operation in the event of one or more failures is as
follows, described with respect to FIG. 6. At step 50, the
failure detector detects that k machines Xl' x2, ... , X k (with
k~f) have failed, and notifies the surviving machines in the
cluster and the clients. Each surviving machine, or each
machine in a subset n-f ofmachines, evicts its three primary
store partitions from memory (e.g., RAM), at step 52, and
each client aborts (and later restarts) any unfinished transac­
tions. This is desirable because the primary and the secondary
stores use a different mapping from URLs to UIDs (both the
partition ID and the partition-relative offset differ).

At step 54, n-f of the surviving machines load secondary
store partitions into memory. Machine X determines which, if
any, secondary store partition it should load according to the 45

following rule: If P(x) is defined, machine X evicts the pri­
mary store partitions from memory and then loads partitions
P(x) of the secondary URL store, forward link store, and
backward link store into memory; otherwise, it does nothing
and will not be involved in serving requests until the system
returns back to normal operation. Service is unavailable dur­
ing this step.

At this point, at step 56, the system resumes service in
"degraded mode", meaning that performance is only (n-f)/n
of non-degraded performance. Clients restart any aborted
transactions and then issue new requests. Clients consult the
secondary, not the primary store. More particularly, for
example, a client wishing to invoke the UrIToUid method on
a URL u sends the request to machine M(H2 (host(u)), where
it can be serviced from the loaded secondary URL store
partition. A client wishing to invoke the UidToUrl method on
a UID u sends the request to machine M(partition(u)), where
it can be serviced from the loaded secondary URL store
partition. A client wishing to invoke the GetLinks method on
a UID u sends the request to machine M(partition(u)), where
it can be serviced from the loaded secondary forward/back­
ward link store partition.
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Exemplary Computing Arrangement
FIG. 8 shows an exemplary computing enviroument in

which example embodiments and aspects may be imple­
mented. The computing system environment 100 is only one
example of a suitable computing environment and is not
intended to suggest any limitation as to the scope of use or
functionality. Neither should the computing environment 100
be interpreted as having any dependency or requirement reIat­
ing to anyone or combination ofcomponents illustrated in the
exemplary operating environment 100.

Numerous other general purpose or special purpose com­
puting system environments or configurations may be used.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use include, but
are not limited to, personal computers, server computers,
hand-held or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, progranlillable con­
sumer electronics, network PCs, minicomputers, mainframe
computers, embedded systems, distributed computing envi­
ronments that include any of the above systems or devices,
and the like.

Computer-executable instructions, such as program mod­
ules, being executed by a computer may be used. Generally,
program modules include routines, programs, objects, com­
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Distributed comput­
ing environments may be used where tasks are performed by
remote processing devices that are linked through a commu-
nications network or other data transmission medium. In a
distributed computing environment, program modules and
other data may be located in both local and remote computer
storage media including memory storage devices.

With reference to FIG. 8, an exemplary system includes a
general purpose computing device in the form of a computer
110. Components of computer 110 may include, but are not
limited to, a processing unit 120, a system memory 130, and
a system bus 121 that couples various system components
including the system memory to the processing unit 120. The
processing unit 120 may represent multiple logical process­
ing units such as those supported on a multi-threaded proces­
sor. The system bus 121 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA

60 (EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus). The system bus
121 may also be implemented as a point-to-point connection,
switching fabric, or the like, among the communicating
devices.

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-

secondary store-space, is converted to a primary store-space
UID ui by calling SecToPrim(v,), and the UIDs uI' ... , Uz are
sent back to the client.

According to another aspect, the convention that clients
and servers can only exchange primary store UIDs is aban­
doned. In this variant, clients and servers can exchange both
primary store and secondary store UIDs. One of the bits of
each UID is designated to indicate whether the partition­
relative ID ofthat UID is in primary store space or secondary

10 store space. Thus, servers do not have to map secondary store
UIDs back to primary store UIDs before transmitting them to
the client.

responding primary store UID v=(p,s,r) and secondary store
UID v'=(p',s',r'), and add the tuple ((p,s,r),r') to the table.
Keeping the table in sorted order (using the first element of
each tuple as the sort key and standard numerical comparison
as the sort relation) allows for searching the table using binary
search.

In order to translate a primary store UID u to a secondary
store UID, the system locates the largest UID in the primary­
to-secondary translation table that is smaller or equal to u, and
uses the tuple in that row of the table to adjust u to be in
secondary store space, i.e., suitable to look up URLs, forward
links and backward links in the secondary stores. The func­
tion PrimToSec(u) denotes the following algorithm. Given a
primary store UID u=(p,s,r), find the largest UID v=(p,s,r') in
the primary-to-secondary translation table that is smaller or 15

equal tou (for example by performing binary search). Assum­
ing v is in row (v,r"), return secondary store UID u'=(p,s,r­
r'+r").

As mentioned above, a typical search corpus may contain
web pages drawn from about 50 million distinct hosts, so the 20

complete table will have about 50 million rows. However,
each machine in the cluster desirably needs only those rows in
the primary-to-secondary translation table where the second­
ary partition ID of the UID refers to the partition maintained
by that machine. In other words, the table maintained by each 25

machine will contain l/(n-f) of the full table on average.
Mapping secondary store UIDs to primary store UIDs is

done in a similar fashion. Each machine in the cluster main­
tains a secondary-to-primary translation table, but each
machine stores the full table ofabout 50 million rows, not just 30

a small fraction ofit. Each row comprises a UID and partition­
relative ID, like in the primary-to-secondary translation table,
but the sort order of the table is changed. The sort keys are:
secondary partition ID, then secondary-partition-relative ID,
and then primary partition ID, for example. The "smaller or 35

equal" relation is defined accordingly.
A function SecToPrim(u) denotes the following example

process. Given a secondary store UID u=(p,s,r), find the larg-
est UID v=(p,s,r') in the secondary-to-primary translation 40

table that is smaller or equal to u (for example by performing
binary search). Assuming v is in row (v,r"), return secondary
store UID u'=(p,s,r-r'+r").

Step 56 ofthe degraded-mode operationmay thus be modi­
fied as follows. A client wishing to invoke the UrlToUid 45

method on a URL u sends the request to machine M(H2 (host
(u))). On that server machine, URL u is located in the loaded
secondary URL store partition numbered s=H2 (host(u)), pro­
ducing a secondary-partition-relative ID r (namely, the posi­
tion of the URL in the secondary URL store partition). A 50

primary store UID is determined by assembling a secondary
store UID v=(HI(host(u),H2 (host(u)),r) and calling Sec­
ToPrim(v), and the UID is returned to the client.

Additionally, a client wishing to invoke the UidToUrl
method on aUlD u sends the request to machine M(second- 55

ary_partition(u)). On that server machine, u, which is in pri­
mary store-space, is converted to a secondary store-space
UID v by calling PrimToSec(u). The URL corresponding to v
is located in the loaded secondary URL store partition and
returned to the client.

Furthermore, a client wishing to invoke the GetLinks
method on aUlD u sends the request to machine M(second­
ary_partition(u)). On that server machine, u, which is in pri­
mary store-space, is converted to a secondary store-space
UID v by calling PrimToSec(u). The UIDs VI" .. , Vz of the 65

links associated with v are looked up in the loaded secondary
forward/backward link store partition. Each Vi' which is in
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What is claimed:
1. A fault tolerance method for a distributed database sys­

tem comprising a cluster of machines, each machine com­
prising a memory and a disk storage, the method comprising:

detecting a failure of at least one machine in the cluster of
machines;

notifYing surviving machines in the cluster of machines
about the failure of the at least one machine;

evicting a plurality of primary store partitions from the
memory of a subset of the surviving machines;

134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data
147 are given different numbers here to illustrate that, at a
minimnm, they are different copies. A user may enter com­
mands and information into the computer 20 through input
devices such as a keyboard 162 and pointing device 161,
commonly referred to as a mouse, trackball or touch pad.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scarmer, or the like. These
and other input devices are often connected to the processing
unit 120 through a user input interface 160 that is coupled to
the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 191 or other type of display
device is also connected to the system bus 121 via an inter-
face, such as a video interface 190. In addition to the monitor,
computers may also include other peripheral output devices
such as speakers 197 and printer 196, which may be con­
nected through an output peripheral interface 195.

The computer 110 may operate in a networked environ­
ment using logical connections to one or more remote com­
puters, such as a remote computer 180. The remote computer
180 may be a personal computer, a server, a router, a network
PC, a peer device or other common network node, and typi­
cally includes many or all of the elements described above
relative to the computer 110, although only a memory storage
device 181 has been illustrated in FIG. 8. The logical connec­
tions depicted in FIG. 8 include a local area network (LAN)
171 and a wide area network (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

When used in a LAN networking environment, the com­
puter 110 is connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may

40 be internal or external, may be connected to the system bus
121 via the user input interface 160, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 8 illustrates remote
application programs 185 as residing on memory device 181.
Hwill be appreciated that the network connections shown are
exemplary and other means ofestablishing a communications
link between the computers may be used.

Although the subject matter has been described in lan­
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

able media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-re­
movable media. By way ofexample, and not limitation, com­
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, 10

flash memory or other memory technology, CDROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag­
netic storage devices, or any other medium which can be used
to store the desired infonnation and which can accessed by 15

computer 110. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term "modulated data sig- 20

nal" means a signal that has one or more of its characteristics
set or changed in such a marmer as to encode infonnation in
the signal. By way of example, and not limitation, communi­
cationmedia includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic, 25

RF, infrared and other wireless media. Combinations of any
of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media
in the fonn ofvolatile and/or nonvolatile memory such as read 30

only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con­
taining the basic routines that help to transfer infonnation
between elements within computer 110, such as during start­
up, is typically stored in ROM 131. RAM 132 typically con- 35

tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process­
ing unit 120. By way of example, and not limitation, FIG. 8
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non­
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 8 illustrates a hard disk drive 140
that reads from or writes to non-removable, nonvolatile mag­
netic media, a magnetic disk drive 151 that reads from or 45

writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov­
able, nonvolatile optical disk 156, such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the 50

exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver­
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 is typically
connected to the system bus 121 through a non-removable 55

memory interface such as interface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media 60

discussed above and illustrated in FIG. 8, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 8, for
example, hard disk drive 141 is illustrated as storing operating
system 144, application programs 145, other program mod- 65

ules 146, and program data 147. Note that these components
can either be the same as or different from operating system



US 7,627,777 B2
11 12

*****

loaded into memory ofone or more surviving machines
for use when one or more machines have failed.

10. The system of claim 9, wherein the primary database
comprises a uniform resource locator CURL) store, a forward
link store, and a backward link store, and the secondary
database across the portion of the plurality ofmachines com­
prises a URL store, a forward link store, and a backward link
store.

11. The system of claim 10, wherein the primary database
10 places URLs using a first hash function and the secondary

database places URLs using a second hash function different
from the first hash function.

12. The system of claim 9, wherein the portion of the
machines is determined based on what number of failed

15 machines will be tolerated.
13. The system ofclaim 9, wherein when a failure ofat least

one machine is detected, then a plurality of primary store
partitions from the memory of a subset of the surviving
machines is evicted, and at least one secondary store partition

20 is loaded into the memory of the subset of the surviving
machines.

14. The system of claim 13, wherein when a failure of at
least one machine is detected, the system operates in a
degraded mode using the secondary store partitions.

15. The system of claim 9, further comprising at least one
spare machine to replace each failed machine, each spare
machine comprising a plurality ofthe replicas ofprimary and
secondary store partitions that resided on the at least one
failed machine and is copied from the disk storage of the

30 surviving machines.
16. The system of claim 9, wherein the primary database

and the secondary database maintain a plurality ofhyperlinks
as unique identifiers (UIDs).

17. The system ofclaim 16, wherein each UID comprises a
35 primary uniform resource locator (URL) store partition ID, a

secondary URL store partition ID, and a partition-relative ID.
18. A fault tolerance system, comprising:
a plurality of machines, each machine comprising a

memory and a disk storage; and
a distributed database comprising a primary database and a

secondary database;
wherein the primary database is stored across the plurality

of machines; and
wherein the secondary database is stored across a portion

of the plurality of machines, and
wherein the primary database and secondary database each

comprise a uniform resource locator CURL) store, a for­
ward link store, and a backward link store.

19. The system of claim 18, wherein the primary database
50 is stored both in the memory and on the disk storage, and the

secondary database is stored in the disk storage.
20. The system of claim 19, further comprising a fault

detector for detecting a failure of a machine, and a spare
machine to replace the failed machine, the spare machine

55 comprising a replica of primary store partitions that resided
on the failed machine and copied from the disk storage ofthe
surviving machines.

loading at least one secondary store partition into the
memory of the subset of the surviving machines from
which the primary store partitions were evicted; and

resuming service in a degraded mode using the at least one
secondary store partition stored in the memory of the
subset of the surviving machines.

2. The method ofclaim 1, wherein each ofthe primary store
partitions and the secondary store partitions correspond to a
uniform resource locator (URL) store, a forward link store, or
a backward link store.

3. The method of claim 1, further comprising determining
the subset of the surviving machines into which to load the at
least one secondary store partition using a rule set.

4. The method of claim 1, further comprising:
notifYing at least one client in communication with the

cluster ofmachines about the at least one machine fail­
ure;and

aborting each unfinished client transaction before resum­
ing service in the degraded mode.

5. The method of claim 1, further comprising:
providing a spare machine to replace each of the failed

machines; and
copying a plurality of the replicas of the primary store

partitions that resided on the at least one failed machine
from the disk storage of the surviving machines to the 25

spare machines.
6. The method of claim 5, further comprising:
evicting the secondary store partitions from the memory of

the surviving machines;
loading the primary store partitions into the memory of

surviving machines; and
resuming service in non-degraded mode.
7. The method of claim 1, further comprising:
constructing a primary database across the cluster of

machines, the primary database comprising a uniform
resource locator CURL) store, a forward link store, and a
backward link store;

using a first hash function to place URLs into the stores on
the cluster of machines;

constructing a secondary database across a portion of the 40

cluster ofmachines, the secondary database comprising
a URL store, a forward link store, and a backward link
store; and

using a second hash function, different from the first hash
function, to place URLs into the stores on the portion of 45

the cluster of machines.
8. The method of claim 7, wherein placing the URLs into

the stores on the portion of the cluster ofmachines using the
second hash function comprises storing the hashed data in the
disk storage.

9. A fault tolerance system, comprising:
a plurality of machines, each machine comprising a

memory and a disk storage;
a fault detector for detecting a failure of at least one

machine;
a primary database stored across the plurality ofmachines

in the memory of the machines; and
a secondary database stored across a portion of the plural­

ity ofmachines in the disk storage of the machines and


