
111
US007139747Bl

(12) United States Patent
Najork

(10) Patent No.:
(45) Date of Patent:

US 7,139,747 Bl
Nov. 21, 2006

OTHER PUBLICATIONS

(54) SYSTEM AND METHOD FOR DISTRIBUTED
WEB CRAWLING

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

(75) Inventor: Marc Alexander Najork, Palo Alto,
CA (US)

ABSTRACT(57)

The present invention provides for the efficient downloading
of data set addresses from among a plurality of host com­
puters, using a plurality of web crawlers. Each web crawler
identifies URL's in data sets downloaded by that web
crawler, and identifies the host computer identifier within
each such URL. The host computer identifier for each URL
is mapped to the web crawler identifier of one of the web
crawlers. If the URL is mapped to the web crawler identifier
of a different web crawler, the URL is sent to that web
crawler for processing, and otherwise the URL is processed
by the web crawler that identified the URL. Each web
crawler sends URL's to the other web crawlers for process­
ing, and each web crawler receives URL's from the other
web crawlers for processing. In a preferred embodiment,
each web crawler processes only the URL's assigned to it,
which are the URL's whose host identifier is mapped to the
web crawler identifier for that web crawler. Each web
crawler filters the URL's assigned to it by comparing them
against a database of URL's already known by the web
crawler and removing the already known URL's. If a URL
is not already known to the web crawler, the data set
corresponding to the URL is scheduled for downloading.

Brin and Page, The Anatomy of a Large-Scale Hypertextual Web
Search Engine, In Proceedings of the Seventh International World
Wide Web Conference, (Apr. 1998) 107-117.
Burner, Crawling Towards Eternity: Building an Archive of the
World Wide Web, Web Techniques Magazine, (May 1997) 2(5),
Available website: http://www.webtechniques.comlarchives/1997/
05/burner.

* cited by examiner

Primary Examiner-Jeffrey Gaffin
Assistant Examiner-Mark Andrew X Radtke

10/1999 Monier 709/223
112001 Eichstaedt et al. 707/104.1
3/2001 Meyerzon et al. 715/513
7/2001 Najork et al 709/217

11/2001 Najork et al 709/224
2/2002 Najork et al 715/501.1
4/2002 Najork et al 709/217

Nov. 3, 2000

5,974,455 A *
6,182,085 Bl *
6,199,081 Bl *
6,263,364 Bl *
6,321,265 Bl *
6,351,755 Bl *
6,377,984 Bl *

(*) Notice:

(22) Filed:

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) U.S. Cl. 707/3; 707/102; 709/219
(58) Field of Classification Search 707/3,

707/1-2, 10, 104.1; 709/201-202
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 1353 days.

(21) Appl. No.: 091706,198

Heydon and Najork, Mercator: A Scalable, Extensible Web Crawler,
World Wide Web 2, (Dec. 1999) 219-229. 17 Claims, 9 Drawing Sheets

Main Procedure, performed by each thread
109-----...

u.s. Patent Nov. 21,2006 Sheet 1 of 9 US 7,139,747 Bl

Compaq/DEC 9772-0298-999

100 "

120

118

v-121 122 ..,.,..123

Web Servers: Domain Web Page

All Web Pages Name Indexing ~

System System

~
~

J

, , ,
Network Interconnection (Switches, Routers, Etc.) 119

~ ~ ~

, (116 1 (116 1 (116
~

Web Crawler 1 Web Crawler 2 ... Web Crawler n

FIG. I

u.s. Patent Nov. 21, 2006 Sheet 2 of 9 US 7,139,747 Bl

172

174

176

105

106

140

108

109

110

111

112

113

Web Crawler
116
~

Network v102

(101
Connection

Memory

I CPU 1 104 ""\

Operating SystemI
Internet Access Procedure -----

f103 Frontier -----
User Interface Threads -----

D Main Web Crawl Procedure f-

Address Distribution Procedure v
~DODODOr?'DOOlODO,o,Q,

Web Crawler Lookup Table I---D&tOfODODOD

Address Filter Procedure v

Data Structures Storing I-----

Known Addresses

Buffer -----

Cache ~

Fingerprint Disk File l.-

• • •

...

FIG. 2

u.s. Patent Nov. 21, 2006 Sheet 3 of 9 US 7,139,747 Bl

Main Procedure, performed by each thread
109~

(150

Select next URL from Frontier ,....--1------,

l

Download web page
corresponding to URL

•
(152

(155

Next URL ~ No
from page

Identify URL's in downloaded
page

• (153

Pass URL to Distribution
Procedure (FIG. 4)

,
154

All URL's
passed to Distribution

Procedure?

Yes

FIG. 3

u.s. Patent Nov. 21, 2006 Sheet 4 of 9 US 7,139,747 Bl

Address Distribution Procedure,
Step 153

~

Convert host computer identifier of URL U into 160
a numerical representation H

Determine the Web Crawler identifer W 163
corresponding to H

No

Send the URL U to the destination Web
Crawler corresponding to the Web

Crawler identifer W

FIG. 4

166

Pass URL to
Address Filter

Procedure

165

u.s. Patent Nov. 21, 2006 Sheet 5 of 9 US 7,139,747 Bl

Address Filter Procedure
112
~ 167

Receive URL from Address
Distribution Procedure or from

another Web Crawler

Add to the Frontier
and the list of known

addresses

Discard
URL

170

FIG. 5

u.s. Patent Nov. 21,2006 Sheet 6 of 9 US 7,139,747 Bl

140

FRONTIER

BUFFER B

142

New URL's

172

141

URL's and fingerprints
from Address Distribution
Procedure and from other
web crawlers

MERGE

176

FINGERPRINT
DISK
FILE

FIG. 6

Merged new
and old
Fingerprints

u.s. Patent Nov. 21,2006 Sheet 7 of 9 US 7,139,747 Bl

36 •

'\
10

12

19

24

25

29

31

32

36

38

39

43

45

49

51

53

62

Merged Fingerprint Disk File
176

10

32

53

39

29

31

25

45

43

49

62

Fingerprint Disk
File
176

38

29

51

Buffer
172

FIG. 7

u.s. Patent Nov. 21, 2006 Sheet 8 of 9 US 7,139,747 Bl

140

FRONTIER

URL's and fingerprints
from Address Distribution
Procedure and from other
web crawlers

141

New URL's

Filtered
Fingerprints and
URL's

Sorted
Fingerprints and
URL's

MERGE

Stored "old"
Fingerprints

172

142

176

CACHE C

BUFFER B

FINGERPRINT
DISK
FILE Merged new

and old
Fingerprints

FIG. 8

u.s. Patent Nov. 21,2006 Sheet 9 of 9 US 7,139,747 Bl

140

FRONTIER

URL's and fingerprints
from Address Distribution
Procedure and from other 141
web crawlers

New URL's

Fingerprints for
new URL's

172

142

FINGERPRINT
DISK
FILE

176

MERGE

Stored "old"
Fingerprints

BUFFER B'

BUFFER B -- -..... Fingerprints
L- -----l .•••••.• and URL's

'.

\\\

FIG. 9

US 7,139,747 Bl
2

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

BRIEF DESCRIPTION OF THE DRAWINGS

Referring to FIG. 1, there is shown an embodiment of a
distributed computer system 100. The distributed computer
system 100 includes a web crawler system 118 connected to
a network 120 through a network interconnection 119. The
network 120 may be a global communication network, such
as the Internet, or a private network, sometimes called an
Intranet. Examples of network interconnection 119 include
switches, routers, etc.

The network 120 includes web servers 121 and may
optionally include a service known as a domain name
system 122. It may also optionally include a web page

55 indexing system 123. The web servers 121 store web pages.
The domain name system 122 provides the mapping
between Internet Protocol (IP) addresses and host names.
Each site participating in the domain name system 122
maintains its own database of information and runs a server

60 program that other systems across the Intranet or Internet
can query. The domain name system provides the protocol
that allows clients and servers to communicate with each
other. Any application may look up the IP address (or
addresses) corresponding to a given host name or the host

65 name corresponding to a given IP address in the domain
name system 122. An application accesses the domain name
system 122 through a resolver. The resolver contacts one or

web crawler for processing, and otherwise the URL is
processed by the web crawler that identified the URL.

Each web crawler sends URL's to the other web crawlers
for processing, and each web crawler receives URL's from
the other web crawlers for processing. Each web crawler
processes only the URL's assigned to it, which are the
URL's whose host identifier is mapped to the web crawler
identifier for that web crawler. Each web crawler filters the
URL's assigned to it by comparing them against a database

10 ofURL's already known by the web crawler. If a URL is not
already known to the web crawler, the data set correspond­
ing to the URL is scheduled for downloading; otherwise, the
URL is ignored.

Additional objects and features of the invention will be
more readily apparent from the following detailed descrip­
tion and appended claims when taken in conjnnction with
the drawings, in which:

FIG. 1 is a block diagram of a web crawler system in
accordance with an embodiment of the invention.

FIG. 2 is a block diagram of a web crawler in accordance
with an embodiment of the present invention.

FIG. 3 is a flow chart of a main web crawling procedure
executed by each of a plurality of threads in an exemplary
embodiment of the invention.

FIG. 4 is a flow chart of an address distribution procedure
used in an exemplary embodiment of the invention.

FIG. 5 is a flow chart of an address filter procedure used
in an exemplary embodiment of the invention.

FIG. 6 is a block diagram of the data flow of an embodi­
ment of the address filter procedure.

FIG. 7 is a block diagram of the data structures used to
35 store the addresses known to the web crawler.

FIG. 8 is a block diagram of the data flow of an alternate
embodiment of the address filter procedure.

FIG. 9 is a block diagram of the data flow of an alternate
embodiment of the address filter procedure.

SUMMARY OF THE INVENTION

BACKGROUND OF THE INVENTION

1
SYSTEM AND METHOD FOR DISTRIBUTED

WEB CRAWLING

The present invention provides for the efficient down­
loading of data set addresses from among a plurality of host
computers, using a plurality of web crawlers. Each web
crawler identifies URL's in data sets downloaded by that
web crawler, and identifies the host computer identifier
within each such URL. The host computer identifier for each
URL is mapped to the web crawler identifier of one of the
web crawlers. If the URL is mapped to the web crawler
identifier of a different web crawler, the URL is sent to that

Documents on interconnected computer networks are
typically stored on numerous host computers that are con­
nected over the networks. For example, so-called "web
pages" may be stored on the global computer network 15

known as the Internet, which includes the world wide web.
Web pages can also be stored on Intranets, which are
typically private networks maintained by corporations, gov­
emment entities, and other groups. Each web page, whether
on the world wide web or an Intranet, has a distinct address 20

called its uniform resource locator CURL), which at least in
part identifies the location or host computer of the web page.
Many of the documents on Intranets and the world wide web
are written in standard document description languages
(e.g., HTML, XML). These languages allow an author of a 25

document to create hypertext links to other documents.
Hypertext links allow a reader of a web page to access other
web pages by clicking on links to the other pages. These
links are typically highlighted in the original web page. A
web page containing hypertext links to other web pages 30

generally refers to those pages by their URL's. A URL may
be referred to more generally as a data set address, which
corresponds to a web page, or data set. Links in a web page
may refer to web pages that are stored in the same or
different host computers.

A web crawler is a program that automatically finds and
downloads documents from host computers in an Intranet or
the world wide web. A computer with a web crawler
installed on it may also be referred to as a web crawler.
When a web crawler is given a set of starting URL's, the 40

web crawler downloads the corresponding documents. The
web crawler then extracts any URL's contained in those
downloaded documents. Before the web crawler downloads
the documents associated with the newly discovered URL's,
the web crawler needs to find out whether these documents 45

have already been downloaded. If the documents associated
with the newly discovered URL's have not been down­
loaded, the web crawler downloads the documents and
extracts any URL's contained in them. This process repeats
indefinitely or until a predetermined stop condition occurs. 50

This process is demanding for a single web crawler due to
the large number of URL's to download and process. As of
1999 there were approximately 800 million web pages on
the world wide web and the number is continuously grow­
ing. Even Intranets can store millions of web pages.

The present invention relates to a system and method for
distributed web crawling and, more particularly, to a web
crawling system that uses multiple web crawlers to effi­
ciently process addresses to be downloaded.

US 7,139,747 Bl

40

3
more name servers to perfonn a mapping of a host name to
the corresponding IP address, or vice versa. A given host
name may be associated with more than one IP address
because an Intranet or Internet host may have multiple
interfaces, with each interface of the host having a unique IP
address.

The web page indexing system 123 includes an index of
words used on the world wide web, or the Intranet, and
addresses of the web pages that use each word. Such
indexing systems are maintained by various search engines, 10

such as the AltaVista search engine. The domain name
system 122 and the web page indexing system 123 may be
accessed by the web crawlers 116 in the process of down­
loading web pages from the world wide web.

The web crawler system 118 is made up of n web 15

crawlers, where n is an integer larger than one. A typical web
crawler system 118 may contain, for example, four web
crawlers. The web crawlers 116 in the web crawler system
118 communicate via a communications network such as a
local area network, or the Internet. In addition, there may be 20

a separate computer (not shown) for controlling the com­
munication between the web crawlers in the web crawler
system 118.

An exemplary embodiment ofa web crawler 116 is shown
in FIG. 2. The web crawler 116 includes one or more CPUs 25

101, a communications interface or network connection 102,
memory 104. The web crawler may optionally include a user
interface 103, or the web crawler may be accessed by a user
interface or other facility remotely located on another com­
puter. In some implementations two network connections or 30

communication interfaces may be needed, one for down­
loading web documents, and another for communicating
with the other web crawlers. The memory 104 includes:

an operating system 105;
35

an Intranet/Internet access procedure 106 for fetching web
pages as well as communicating with the domain name
system 122 (FIG. 1);

a frontier 140 for storing URL's or representations of
URL's that will be downloaded by the web crawler 116;

threads 108 for downloading web pages from the servers
121, and processing the downloaded web pages;

a main web crawler procedure 109 executed by each of
the threads 108;

a URL address distribution procedure 110 executed by 45

each of the threads 108 to identify the URL's in a down­
loaded web page, and to determine which web crawler is
associated with each URL;

a web crawler lookup table 111 for storing the addresses
corresponding to the web crawler identifiers ofthe other web 50

crawlers in the system;
a URL address filter procedure 112 executed by each of

the threads 108 to filter the URL's assigned to this web
crawler for processing, and to determine which URL's are
new and therefore should be scheduled for downloading; 55

and
data structures 113 for storing all of the known addresses

associated with the web crawler.

4
a disk file (or set of disk files) 176 for storing addresses

(and/or fingerprints of addresses) known to the web crawler.

While these are the data structures used in a preferred
embodiment to store known data set addresses, and/or the
fingerprints of those addresses, other data structures may be
used to store this infonnation in other embodiments.

Main Web Crawler Procedure

In the exemplary embodiment, each web crawler uses
multiple threads to download and process documents. The
web crawler 116 is given a set of initial URL's and begins
downloading documents using those URL's. Various data
structures may be used to keep track of which documents
(web pages) the threads should download and process, but
those particular data structures are not the subject of the
present invention. Rather, the present invention concerns the
methodology and data structures used to determine the
URL's to be processed by each web crawler in the web
crawler system.

Each thread executes a main web crawler procedure 109,
which will be now described with reference to the flow chart
shown in FIG. 3 and the block diagram of FIG. 2. The web
crawler thread detennines the data set address of the next
document, or data set, to be downloaded, typically by
retrieving the data set address from the frontier 140 (step
150). The frontier 140 is a queue that stores the data set
addresses (URL's) to be downloaded. The thread then
downloads the document corresponding to the URL (step
151), and processes the document. The processing may
include indexing the words in the document so as to make
the document accessible via a search engine. However, the
only processing of the document that is relevant to the
present discussion is that the main procedure identifies
URL's in the downloaded document (step 152) that are
candidates for downloading and processing. Typically, these
URL's are found in hypertext links in the document being
processed.

Each identified URL is passed to the address distribution
procedure in step 153 to determine which web crawler in the
web crawler system should process the URL. If the address
distribution procedure determines that the identified URL
should not be processed by the web crawler running the
procedure, the URL is sent to the appropriate web crawler
for processing. In the meantime, the main procedure con­
tinues to identifY URL's and pass URL's to the address
distribution procedure until all URL's from the downloaded
page have been processed (steps 154 and 155). When all
URL's have been passed to the address distribution proce­
dure, the next address is retrieved from the frontier 140 (step
150), and then the procedure described above repeats. The
main web crawler procedure continues to run as long as
there are URL's in the frontier for it to process, or until a
predetermined stop condition occurs.

Address Distribution Procedure

The data structures 113 for storing the known data set
addresses may include:

a buffer 172 for storing the addresses (and/or fingerprints
of addresses) identified as potentially being addresses
unknown to the web crawler;

an optional cache 174, for storing frequently encountered
addresses (used in an embodiment described with reference
to FIG. 8); and

An exemplary embodiment of the address distribution
60 procedure invoked by the main web crawler procedure is

described next with reference to the flow chart shown in
FIG. 4 and the block diagram in FIG. 2. It is preferable to
assign URL's to each web crawler by host name. Each web
crawler is then responsible for processing only the addresses

65 associated with its assigned set of hosts. Assigning all the
URL's from each host to one particular web crawler makes
it more practical to enforce "politeness" policies, which

US 7,139,747 Bl
5 6

Address Filter Procedure

tation H is equal to its corresponding web crawler identifier
W. Other embodiments may include a procedure to map the
host computer representation H to the web crawler identifier
W to ensure an even distribution of URL's across the
plurality of web crawlers. If the web crawler identifier W is
assigned to the current web crawler (i.e., the web crawler
running the address distribution procedure), then the URL U
is passed to the address filter procedure, which is described
below (step 166). If the web crawler identifier W is not
assigned to the current web crawler, the URL U is sent to the
destination web crawler corresponding to the web crawler
identifier W (step 167).

Other methods of generating a host computer represen­
tation and mapping it to the web crawler identifier such that
there is an even spreading of host names (host computer
identifiers) over the web crawlers in the web crawler system
may be apparent to those skilled in the art.

In order to send the URL U to the destination web crawler,
the sending web crawler transmits the URL U to the desti­
nation web crawler at an address specified by the web
crawler lookup table 111. The web crawler lookup table 111
may be part of a configuration file used to detennine the
configuration of the web crawler during initialization of the
system. In a preferred embodiment, during initialization of
the web crawler system each web crawler opens a connec­
tion to every other web crawler in the system, and thereafter
transmits URL's to the other web crawlers over the open
connections. The "open connections" are operating system
or other software constructs that generate message packets
that are sent to the destination web crawlers via the network
connection 102. Each such message packet contains the
information (e.g., a URL) being sent and has a destination
address equal to the IP address of the web crawler to which
the URL is being sent.

The address filter procedure is described with reference to
the flow diagram in FIG. 5 and the block diagram in FIG. 2.
The address filter procedure receives URL's sent from other
web crawlers and from the address distribution procedure as
described above (step 167). The address filter procedure
determines if the URL U is a duplicate URL that has already
been downloaded by the web crawler or has already been
scheduled for downloading (step 168). This is preferably
done by comparing the URL to a list ofall stored URL's that
are known to the web crawler. The list of known URL's is
stored in a set ofdata structures 113, described in more detail
below, designed to facilitate efficient lookup. If the URL is
a duplicate (168-Yes), it is discarded (step 170). If the URL
is not a duplicate (168-No), it is added to the frontier 140 for
downloading by the web crawler and to the list of the
addresses known to the web crawler (step 169). The data
structures for the frontier and for the list of addresses known

55 to the web crawler are described below.
The diagram in FIG. 6 shows an exemplary embodiment

of the data structures used to determine whether the speci­
fied URL is a duplicate. Preferably, a fingerprint N is
generated to represent the entire specified URL, not just the

60 host computer identifier. Next, a lookup is perfonned to see
if N is already stored in a buffer B (172), which stores the
fingerprints of recently added URL's, as well as the corre­
sponding URL's. IfN is already stored in buffer B 172, it has
already been scheduled for downloading, and therefore no

65 further processing of the URL U is needed (i.e., the new
copy of the URL U is discarded). IfN is not stored in buffer
B 172, it may be new (although it may already be stored in

dictate restrictions on how often the web crawler system will
download pages from anyone host, and it avoids having to
replicate per-host information across multiple web crawlers.

The first step of the URL distribution procedure is to
convert the part of the specified URL U that identifies the
web page's host computer, called the host computer identi­
fier, into a numeric representation H (step 160). In one
embodiment, the "host computer identifier" is a symbolic
name, such as ..www.compaq.com... while in another
embodiment, the "host computer identifier" is an IP address, 10

such as 161.114.19.252. Which of these two embodiments is
used detennines the interpretation of "politeness." For
instance, if the system distributes URL's based on symbolic
host names, then it is possible that the web crawler system
will distribute two different host names that happen to 15

resolve to the same IP address to two different web crawlers,
in which case those two web crawlers may send requests in
parallel to the machine at that IP address. If the system
distributes URL's based on the host IP address, only one
web crawler will send requests to the host computer at that 20

IP address.
In the preferred embodiment, an intennediate value V is

first produced by converting the host computer identifier into
a fixed length numeric representation, or "hash value." The
hash value, also herein called the fingerprint, may be gen- 25

erated by applying a predefined hash function to the speci­
fied URL U's host computer identifier. The only requirement
for the hash function is that it should spread the URL's
evenly over the available hash buckets. Many suitable hash
functions are known to those skilled in the art, including 30

checksum functions and fingerprint functions, and thus are
not described here.

After the host identifier of the specified URL U has been
converted into the intennediate value V, the web crawler
generates the representation of the host computer identifier 35

by computing a function of the host computer identifier
whose result is an integer value that is a member of a set of
n predefined distinct values, where n is the number of web
crawlers in the web crawler system. For instance, the
representation of the host computer identifier may be gen- 40

erated by computing V modulo n. The host computer rep­
resentation H which is the result of computing V modulo n
will be an integer between 0 and n-l. In alternate embodi­
ments, other methods may be used to map the host identifier
into a numerical representation H. One such alternative 45

method is to divide the numeric range of all possible
intermediate values V into n sub-ranges, where the range of
values is preferably divided so as to evenly spread the
possible values of V over the n sub-ranges. Each value V is
then mapped to an integer between 0 and n-I by determin- 50

ing which of the n sub-ranges it falls in. For instance, if the
hash function used to generate V returns a value between 0
and X-I, the web crawler identifier may be computed as
follows:

if O~V«l/n)X then return 0
if (l/n)X~V«2/n)X then return I
if (2/n)X~V«3/n)X then return 2

if ((n-I)/n)X~V<Xthen return n-I
After the host computer representation H has been gen­

erated, the address distribution procedure detennines the
web crawler identifier corresponding to H. In the preferred
embodiment, each web crawler in the web crawler system is
assigned a web crawler identifier W. The web crawler
identifier may be an integer between zero and n-I, where n
is the number of web crawlers in the web crawler system.
Therefore, in this embodiment, the host computer represen-

US 7,139,747 Bl
7

the fingerprint disk file 176), and therefore N and the
corresponding URL U are added to buffer B 172. Other
URL's are processed until buffer B 172 is full.

When the buffer B 172 becomes full, it must be merged
with the fingerprint disk file 176. The fingerprints in buffer 5

B 172 are first sorted so that the fingerprints are in order.
After ordering, the buffer B 172 is then merged with the
fingerprint disk file 176, where only fingerprints correspond­
ing to new URL' s are added to the disk file 176. During the
merge, the fingerprint disk file 176 is searched to determine 10

whether each fingerprint from buffer B is located in the disk
file. Each fingerprint located in the disk file is discarded.
Each fingerprint not located in the disk file is added to the
disk file 176, and the corresponding URL is added to the
frontier for downloading of the corresponding web page 15

document. When the merge process is completed, the con­
tents of buffer B 172 are deleted. The process of merging
buffer B 172 into the disk file 176 is a relatively time­
consuming operation. Therefore buffer B 172 is typically
made fairly large so as to minimize the frequency of such 20

merge operations. In this embodiment, buffer B 172 and the
disk file 176 are the data structures 113 (FIG. 2) used to store
known addresses.

During the merge process, which is an ordered merge,
each fingerprint from buffer B not found in the disk file must 25

be inserted in the fingerprint disk file 176 in the proper
location, as illustrated in FIG. 7, so that the disk file 176
remains ordered. This requires the disk file to be completely
re-written. To avoid this lengthy rewrite process, in a pre­
ferred embodiment, the fingerprint disk file may be sparsely- 30

filled, using open addressing. For this embodiment, the
fingerprint disk file represents a hash table, with a substantial
proportion of the table, for example 50% or 75%, being
empty entries or "holes."

In this embodiment, in order to determine whether a 35

fingerprint from buffer B is in the disk file, the hash of the
fingerprint is computed. In one embodiment, a prefix of the
fingerprint is used for the hash value. The hash value is the
starting position for searching through the fingerprint disk
file. The disk file is searched sequentially, starting at the 40

starting position, for either a match or a hole. If a hole is
found, the fingerprint from buffer B is stored in that hole; if
a match is found, it is discarded. Thus, there is only one
write to the disk file for each fingerprint not already present
in the disk file, and the size of the disk file is not a factor in 45

the merge time. When the disk file becomes too full-for
example, when only 25% of the slots in the disk file are
holes-the file must be completely rewritten into a new,
larger file. For example, the new file may be doubled in size,
in which case the amortized cost of maintaining the file is 50

constant per fingerprint in the hash table. It will be appre­
ciated that the use of a sparsely-filled disk file drastically
reduces the disk re-writing required during a merge.

In one embodiment, the disk file may be divided into
sparse sub-files, with open-addressing used for each sub-file. 55

An index may be used to identify the range of fingerprint
hash values located in each sub-file, or an additional hash
table may be used to map fingerprints to the various sub­
files. When a sub-file becomes too full, it may be re-written
into a new, larger file, but the entire disk file need not be 60

re-written.
The disk file (or each sub-file) is ordered, so that all

fingerprints from the same host will be likely stored in either
the same sub-file, or at contiguous memory locations within
the disk file. Because URL's located on a given web page 65

often have the same host, this efficient addressing scheme
can significantly improve the speed of the merge process.

8
When a new fingerprint is to be added to the disk file during
the merge, often the buffer used for the merge operation will
already contain the disk page on which that fingerprint will
be stored. This will occur when the previous fingerprint
added to the disk file was from the same host as the new
fingerprint, and consequently would likely have been stored
on the same disk page as the new fingerprint.

In an alternative embodiment, illustrated in FIG. 8, in
addition to buffer B 172, a cache C 174 of "popular" URL' s
is included. Cache C, in this embodiment, is one of the data
structures 113 (FIG. 2) for storing known addresses. The
fingerprint for each URL from the address distribution
procedure or from another web crawler 141 is first compared
to fingerprints in cache C 174, to see whether the URL is a
"popular" URL that has already been downloaded (or sched­
uled for downloading) and therefore need not be processed
any further. If the fingerprint is not in cache C 174, the
address filter then goes on to compare the fingerprint to the
fingerprints in buffer B 172, as discussed previously. Use of
the cache C 174 significantly reduces the rate at which the
buffer B 172 is filled with fingerprints, which reduces the
frequency ofmerges with the disk file and thus improves the
efficiency of the address filter.

The cache C is updated according to an update policy.
When, according to the update policy, a new fingerprint must
be added to cache C, and cache C 174 is full, a fingerprint
is evicted from cache C 174. The fingerprint to be evicted at
anyone time is determined using an appropriate eviction
policy, such as a least recently used eviction policy, a round
robin eviction policy or a clock replacement eviction policy.

A new fingerprint is added to cache C 174 according to an
update policy. The following are examples of update poli­
cies. A fingerprint corresponding to a URL may be added to
cache C 174, following the comparison of the fingerprint to
the contents of cache C 174, whenever that fingerprint is not
already contained in cache C 174. Thus, under this update
policy, cache C 174 is simply a cache of fingerprints for
recently-identified URL's. Alternatively, a fingerprint may
be added to cache C 174 following the comparison of a
fingerprint to the contents of buffer B 172 whenever that
fingerprint is not contained in cache C 174, but is contained
in buffer B 172. In this case, cache C 174 is a cache of
fingerprints for URL's which have been identified more than
once recently. Or, a fingerprint may be added to cache C
whenever that fingerprint is not contained in cache C 174
and is not contained in buffer B 172. Cache C 174 in this
case is a cache of fingerprints for URL's which have been
identified only once recently. Finally, a fingerprint may be
added to cache C 174 during the merge when the fingerprint
is found to have been previously stored in the fingerprint
disk file 176. For this policy, cache C 174 is a cache of
fingerprints for URL's which have been identified more than
once during the entire web crawl.

Another alternative embodiment is illustrated in FIG. 9.
When buffer B 172 is full, it must be merged 142 with the
fingerprint disk file 176, and cannot accept any newly­
identified URL's. Hence, when using the embodiment
shown in FIG. 7 or FIG. 8, no new addresses can be accepted
for filtering while the time-consuming merge process is in
progress. To avoid delaying the address filtering procedure
during the merge process, in the embodiment shown in FIG.
9 the address filter uses a second buffer B' 180 in addition to
the buffer B 172. In this embodiment, buffer B' 180 is one
of the data structures 113 (FIG. 2) used to store known
addresses. While buffer B 172 is being merged with the disk
file 176, buffer B' 180 takes over the role of buffer B 172.
Fingerprints for newly-identified URL's are compared with

US 7,139,747 Bl
9 10

45

40

3. The method of claim 1, wherein
the plurality of web crawlers consists of n web crawlers;

and
generating the representation includes computing a hash

function of the host computer identifier to generate an
intennediate value V, and computing V modulo n.

4. The method of claim 1, wherein the sending step
includes:

detennining a web crawler address for the web crawler to
which the determined web crawler identifier is
assigned;

transmitting the identified data set address to the destina­
tion web crawler at the detennined web crawler
address.

5. The method of claim 1, wherein each respective web
crawler includes multiple threads to download and process
documents from a plurality of host computers.

6. A computer program product for use in conjunction
with a web crawler system wherein each web crawler is

20 assigned a web crawler identifier, the computer program
product comprising a computer readable storage medium
and a computer program mechanism embedded therein, the
computer program mechanism comprising:

a main web crawler module for downloading and pro­
cessing data sets stored on a plurality of host comput­
ers, the main web crawler module identifYing addresses
of the one or more referred data sets in the downloaded
data sets, wherein each identified address includes a
host computer identifier; and

an address distribution module for processing the identi­
fied addresses, the address distribution module includ­
ing instructions for:
generating a representation of the host computer iden­

tifier, wherein the representation corresponds to one
of the web crawler identifiers;

determining a web crawler identifier to which the
representation corresponds; and

when the detennined web crawler identifier is not
assigned to the respective web crawler, sending the
identified address to a destination web crawler com­
prising the web crawler to which the detennined web
crawler identifier is assigned.

7. The computer program product of claim 6, wherein:
the web crawler system consists of n web crawlers; and
the address distribution module's instructions for gener­

ating the representation includes instructions for com­
puting a function of the host computer identifier to
generate an integer value that is a member of a set of
n predefined distinct values.

8. The computer program product of claim 6, wherein:
the web crawler system consists of n web crawlers; and
the address distribution module's instructions for gener-

ating the representation includes instructions for com­
puting a hash function of the host computer identifier to
generate an intennediate value V, and computing V
modulo n.

9. The computer program product of claim 6, further
comprising:

a web crawler interface for transmitting the identified
address to the destination web crawler and for receiving
identified addresses from each of the plurality of web
crawlers other than the respective web crawler.

10. The computer program product of claim 6, further
comprising:

a lookup table storing for each of the plurality of web
crawler identifiers a corresponding web crawler
address, said lookup table for use by the address

the contents ofbuffer B' 180 and then stored in buffer B' 180
if it is detennined that the fingerprints are not already stored
in buffer B' 180. When buffer B' is full, the two buffers
change roles again.

The cache C 174 of the embodiment in FIG. 8 can also be
used in the embodiment shown in FIG. 9. The addition of
cache C makes use of the buffer B 172/180 more efficient,
while the use of two buffer B's 172, 180 greatly reduces the
"cost" of the buffer merge operations in terms of the web
crawler's ability to process discovered URL's that mayor 10

may not be new URL's.
In yet another alternate embodiment, the list of known

addresses is maintained in a hash table in main memory (i.e.,
not on disk). This embodiment is useful primarily in systems
used to crawl Intranets, but can also be used in web crawler 15

systems where the cost ofhaving a very large main memory
(e.g., several gigabytes of random access memory) is eco­
nomically worthwhile. The advantage of keeping the list of
known addresses entirely in main memory is speed of
operation, while the disadvantage is cost.

The present invention can be implemented as a computer
program product that includes a computer program mecha­
nism embedded in a computer readable storage medium. For
instance, the computer program product could contain the
program modules shown in FIG. 2. These program modules 25

may be stored on a CD-ROM, magnetic disk storage prod­
uct, or any other computer readable data or program storage
product. The software modules in the computer program
product may also be distributed electronically, via the Inter­
net or otherwise, by transmission of a computer data signal 30

(in which the software modules are embedded) on a carrier
wave.

While the present invention has been described with
reference to a few specific embodiments, the description is
illustrative of the invention and is not to be construed as 35

limiting the invention. Various modifications may occur to
those skilled in the art without departing from the true spirit
and scope of the invention as defined by the appended
claims.

What is claimed is:
1. A method of downloading data sets by a plurality of

web crawlers from among a plurality of host computers,
comprising the steps of:

assigning a web crawler identifier to each one of the
plurality of web crawlers;

for each respective web crawler:
downloading at least one data set that includes

addresses of one of more referred data sets;
identifying the addresses of the one or more referred

data sets, wherein each identified address includes a 50

host computer identifier;
for each identified address:

generating a representation of the host computer
identifier;

detennining a web crawler identifier to which the 55

representation corresponds; and
when the determined web crawler identifier is not

assigned to the respective web crawler, sending
the identified address to the web crawler to which
the determined web crawler identifier is assigned. 60

2. The method of claim 1, wherein
the plurality of web crawlers consists of n web crawlers;

and
generating the representation includes computing a hash

function of the host computer identifier to generate an 65

integer value that is a member of a set of n predefined
distinct values.

11
US 7,139,747 Bl

12
distribution module in detennining a web crawler
address to which to send the identified data set address.

11. The computer program product of claim 6 wherein
each web crawler includes multiple threads.

12. The computer program product of claim 11 wherein
each thread executes a main web crawler module.

13. A web crawler system for downloading data set
addresses from among a plurality of host computers, com­
prising:

a plurality ofweb crawlers, wherein each web crawler has 10

been assigned a web crawler identifier;
for each respective web crawler:

a main web crawler module for downloading and
processing data sets stored on a plurality of host
computers, the main web crawler module identifying 15

addresses of the one or more referred data sets in the
downloaded data sets, wherein each identified
address includes a host computer identifier; and

an address distribution module for processing the iden­
tified addresses, the address distribution module 20

including instructions for:
generating a representation of the host computer

identifier, wherein the representation corresponds
to one of the web crawler identifiers;

detennining a web crawler identifier to which the 25

representation corresponds; and
when the determined web crawler identifier is not

assigned to the respective web crawler, sending
the identified address to a destination web crawler
comprising the web crawler to which the deter- 30

mined web crawler identifier is assigned.

14. The web crawler system of claim 13 wherein

the plurality of web crawlers consists of n web crawlers;
and

the address distribution module's instructions for gener­
ating the representation includes instructions for com­
puting a hash function of the host computer identifier to
generate an intennediate value V, and computing V
modulo n.

15. The web crawler system of claim 13, further com­
prising:

for each respective web crawler, a web crawler interface
for transmitting the identified address to the destination
web crawler and for receiving identified addresses from
each of the plurality of web crawlers other than the
respective web crawler.

16. The web crawler system of claim 13, further com­
prising:

for each respective web crawler, a lookup table storing for
each of the plurality of web crawler identifiers a
corresponding web crawler address, said lookup table
for use by the address distribution module in detennin­
ing a web crawler address to which to send the iden­
tified data set address.

17. The web crawler system of claim 13 wherein each of
the plurality of web crawlers includes multiple threads to
download and process documents from a plurality of host
computers.

* * * * *

