
111
US006952730Bl

(12) United States Patent
Najork et al.

(10) Patent No.:
(45) Date of Patent:

US 6,952,730 BI
Oct. 4, 2005

(54) SYSTEM AND METHOD FOR EFFICIENT
FILTERING OF DATA SET ADDRESSES IN A
WEB CRAWLER

(75) Inventors: Marc Alexander Najork, Palo Alto,
CA (US); Clark Allan Heydon, San
Francisco, CA (US)

OTHER PUBLICATIONS

Brin and Page, The Anatomy of a Large-Scale Hypertextual
Web Search Engine, Database (Online), Available Web Site:
http://www7.scu.edu.au/programme/fullpapers/1921/
com1921.htm Last Update: Feb. 3, 2000.
Heydon and Najork, Mercator: A Scalable, Extensible Web
Crawler, [No Info].

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

U.S. PATENT DOCUMENTS

References Cited

ABSTRACT(57)

A web crawler stores fixed length representations of docu
ment addresses in a buffer and a disk file, and optionally in
a cache. When the web crawler downloads a document from
a host computer, it identifies URL's (document addresses) in
the downloaded document. Each identified URL is con
verted into a fixed size numerical representation. The
numerical representation may optionally be systematically
compared to the contents of a cache containing web sites
which are likely to be found during the web crawl, for
example previously visited web sites. The numerical repre
sentation is then systematically compared to numerical
representations in the buffer, which stores numerical repre
sentations of recently-identified URL's. If the representation
is not found in the buffer, it is stored in the buffer. When the
buffer is full, it is ordered and then merged with numerical
representations stored, in order, in the disk file. In addition,
the document corresponding to each representation not
found in the disk file during the merge is scheduled for
downloading. The disk file may be a sparse file, indexed to
correspond to the numerical representations of the URL's,
so that only a relatively small fraction of the disk file must
be searched and re-written in order to merge each numerical
representation in the buffer.

64 Claims, 11 Drawing Sheets

* cited by examiner

Primary Examiner-Moustafa M. Meky

10/1996 Lam 711/161
4/1999 Schmuck et al. 707/1
6/1999 Brown et al. 707/3
9/1999 Cabrera et al. 707/204

10/1999 Monier 709/223
7/2000 Bowen et al. 707/3

10/2001 Najork et al. 709/223
11/2001 Najork et al. 709/224
12/2002 Ahmed et al. 711/140

4/2003 Meyerzon et al. 715/501.1

Jun. 30, 2000Filed:

Notice:

Int. CI? G06F 13/00
U.S. CI. 709/225; 709/217; 709/219;

709/224
Field of Search 709/223-225,

709/226,220,204,200-203,217-219

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 677 days.

Appl. No.: 09/607,710

5,564,037 A *
5,893,086 A *
5,913,208 A *
5,953,729 A *
5,974,455 A *
6,094,649 A *
6,301,614 B1 *
6,321,265 B1 *
6,490,658 B1 *
6,547,829 B1 *

(21)

(22)

(51)
(52)

(58)

(56)

(*)

100

"
>--121 122 123

w.._(~
Web Page

All Web Name Indexing ~1

System System

i i
• •

Network Interconnection (Switches, Routers. Etc.) 116

f

Network J~l 02 _115
Connection

Main Memory

~>--1011 104,
Operating System 105

Internet Access Procedure 106

, 103
1 BufferS 107

sar n e ace Threads 108

~f3
Main Web Crawl Procedure 109

Address Filter Procedure 110

... 111

Disk/Secondary Memory
112,

IFingerprint Disk File 113

I'" r-114

20

u.s. Patent Oct. 4, 2005 Sheet 1 of 11 US 6,952,730 BI

100

"
120

..,..121 122 .-123

Web Servers: Domain Web Page

All Web Name Indexing ...".

System System

~
~

j

, , 1

I Network Interconnection (Switches, Routers, Etc.) 116

I
Network 102 v 115

...r

Connection
Main Memory

CPU .;101 104,

Operating System v 105
I Internet Access Procedure v 106

r 103 Buffer B ,.,-107

User Interface Threads .."..108

D Main Web Crawl Procedure ,.,.109

Address Filter Procedure ,.,.110
~arrgarrg77'arrgarrgarru. ,.,.111

IDDIfJ'DIZ7DD . . .

Disk/Secondary Memory
112,

Fingerprint Disk File v-113

.,..114

FIG. 1

u.s. Patent Oct. 4, 2005 Sheet 2 of 11 US 6,952,730 BI

140

QUEUE

MERGE

NEW URL's

FINGERPRINT
SBUFFER B

142

107

DOCUMEN
T
LOCATED
AT URL-i

xxxxxxxxxxxx
xxxxxxxxxxxx
~

~

URL's FRO
DOCUMENT
AND
FINGERPRINTS

113

STORED, "OLD"
FINGERPRINTS

FINGERPRINT
DISK
FILE MERGED NEW

AND OLD
FINGERPRINT

FIG. 2

u.s. Patent Oct. 4, 2005 Sheet 3 of 11 US 6,952,730 BI

MAIN PROCEDURE, PERFORMED
BY EACH THREAD

109~

150

SELECT NEXT URL FROM LIST IN
QUEUE

151

DOWNLOAD WEB PAGE
CORRESPONDING TO URL

152

IDENTIFY URL's IN
DOWNLOADED PAGE

153

PASS URL TO URL FILTERING
.-------I~I PROCEDURE (FIG. 4-5)

155

NEXT NO
URL

FROM

YES

FIG. 3

u.s. Patent Oct. 4, 2005 Sheet 4 of 11 US 6,952,730 BI

167

14------1 NEXT URL

ADDRESS FILTERING
PROCEDURE STEP 153
110~

CONVERT URL U INTO A NUMERICAL 160
REPRESENTATION N USING

FINGERPRINT FUNCTION

162

URL U IS

URL U MAY BE NEW: ADD 63
FINGERPRINT NAND URL U TO

BUFFER B

164
NO

SORT BUFFER B BY FINGERPRINT 65
VALUES; MAINTAIN TABLE

CORRELATING FINGERPRINT
VALUES Ni AND URL's Ui

__166
MERGE NEW FINGERPRINTS

FROM BUFFER B INTO DISK D,
ADDING ONLY THE NEW URL's t--------.......J

TO LIST OF URL's IN QUEUE

FIG. 4

u.s. Patent Oct. 4, 2005

STEP

166~

Sheet 5 of 11 US 6,952,730 BI

Discard
fingerprint Nk

(URL Uk is old)

172

YES

No

Select next fingerprint 176
Nk in sorted list of

fingerprints in buffer B

Add Nk to disk file D j 73

Add URL Uk to list of ~74

URL'S in queue

Delete contents of Buffer B 177

FIG. 5

u.s. Patent Oct. 4, 2005 Sheet 6 of 11 US 6,952,730 BI

"\
10

12

19

24

25

29

31

32

36

38

39

43

45

49

51

53

62

Merged Fingerprint Disk File
113

Fingerprint Disk
File
113

10

Buffer 25
107

12
29

19
31

24
32

29
36

39
38

51 43

45

49

53

62

FIG. 6

u.s. Patent Oct. 4, 2005 Sheet 7 of 11 US 6,952,730 BI

140

QUEUE

NEW URL'

MERGED NEW
AND OLD
FINGERPRINT

MERGE

FILTERED
FINGERPRINTS
AND URL's

107 SORTED
FINGERPRINT
S

SORTED, "OLD"
FINGERPRINTS

FINGERPRINT
DISK
FILE

142

CACHE C

BUFFER B

DOCUMENT
LOCATED
AT URL-i
141

117

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxx
xxxxxxx

URL's FRO
DOCUMENT AND
FI NGERPRINTS

u.s. Patent Oct. 4, 2005 Sheet 8 of 11 US 6,952,730 BI

140

NEW URL's

FINGERPRINT
S
FOR NEW

FINGERPRINT
""" S

"'..
\

\

QUEUE

FIG. 8

FINGERPRINT
DISK
FILE

STORED, "OLD"
FINGERPRINTS

MERGE

113

BUFFER B'

BUFFER B

DOCUMEN
T
LOCATED
AT URL-i

\
\

\
"

URL's FROM ''''-,
'~-

DOCUMENT
AND
FINGERPRINTS

xxxxxxxxxxxx
xxxxxxxxxxxx
~

xxxxxxx

u.s. Patent Oct. 4, 2005 Sheet 9 of 11 US 6,952,730 BI

140

FINGERPRINT

MERGE

STORED, "OLD"
FINGERPRINTS

191

QUEUE

BUFFER B

113

POINTERS
FOR

URL's

190a

DOCUMEN FP PTR D
xxXXJO()(J()(J()()

TXXXXJO()(J()(J()() xxxx xxx 0
~ LOCATED x xxx 1
xxxxxxx

0AT URL-i xxxx xxx

URL
DIS
K

192

URL's FROM
DOCUMENT

FINGERPRINT
DISK
FILE MERGED NEW

AND OLD
FINGERPRINT

FIG. 9

u.s. Patent Oct. 4, 2005 Sheet 10 of 11 US 6,952,730 BI

Sort buffer B by fingerprint 200

.---------.t Select next fingerprint Nk in sorted

list of fingerprints in buffer B

Yes

209

202

Discard URL Uk;

Set bit Ok to "0"
(URL Uk is old)

URL Uk is new;

Merge passes fingerprint
FPk to fingerprint disk file

Set bit Ok to "1" in table
206

No

Sort buffer B by pointer Pk

For each FPk in buffer B with

Ok =1, add URLk to queue

210

212

u.s. Patent Oct. 4, 2005 Sheet 11 of 11 US 6,952,730 BI

140

QUEUE

142,
,......-L--------.

DOCUMEN
T
LOCATED
AT URL-i

HAS! BUFFER B
I

xxxxxxxxxxxx
xxxxxxxxxxxx
~

xxxxxxx

URL's FRO
DOCUMENT
AND
FINGERPRINTS

MERGE (IDLE)

113

DISK FILE
(NO

FINGERPRINTS

FIG. 11

US 6,952,730 Bl

millions of web pages. Thus, web crawlers need efficient
data structures to keep track of downloaded documents and
any discovered addresses of documents to be downloaded.
Such data structures are needed to facilitate fast data check-

S ing and to avoid downloading a document multiple times.
Typically, the set of downloaded document addresses is

stored in disk storage, which has relatively slow access time.
One example of a method designed to facilitate fast data
checking and to avoid downloading a document multiple

10 times is disclosed in U.S. patent application Ser. No. 09/433,
008, filed Nov. 2, 1999. That document discloses storing
address representations on disk, and using an efficient
address representation to facilitate fast look-up of document
addresses stored on disk. The present invention provides

15 improved storage methods, decreasing the frequency with
which disk storage must be accessed.

1
SYSTEM AND METHOD FOR EFFICIENT

FILTERING OF DATA SET ADDRESSES IN A
WEB CRAWLER

FIELD OF THE INVENTION

The present invention relates to a system and method for
filtering document addresses in a web crawler and, more
particularly, to a method for efficiently filtering the addresses
of downloaded documents to avoid downloading from
duplicate addresses.

BACKGROUND OF THE INVENTION

Documents on interconnected computer networks are
typically stored on numerous host computers that are con
nected over the networks. For example, so-called "web
pages" may be stored on the global computer network
known as the Internet, which includes the world wide web.
Web pages can also be stored on Intranets, which are 20

typically private networks maintained by corporations, gov
ernment entities, and other groups. Each web page, whether
on the world wide web or an Intranet, has a distinct address
called its uniform resource locator (URL), which at least in
part identifies the location or host computer of the web page. 25

Many of the documents on Intranets and the world wide web
are written in standard document description languages
(e.g., HTML, XML). Theses languages allow an author of a
document to create hypertext links to other documents.
Hypertext links allow a reader of a web page to access other 30

web pages by clicking on links to the other pages. These
links are typically highlighted in the original web page. A
web page containing hypertext links to other web pages
generally refers to those pages by their URL's. A URL may
be referred to more generally as a data set address, which 35

corresponds to a web page, or data set. Links in a web page
may refer to web pages that are stored in the same or
different host computers.

A web crawler is a program that automatically finds and
downloads documents from host computers in an Intranet or 40

the world wide web. A computer with a web crawler
installed on it may also be referred to as a web crawler.
When a web crawler is given a set of starting URL's, the
web crawler downloads the corresponding documents. The
web crawler then extracts any URL's contained in those 45

downloaded documents. Before the web crawler downloads
the documents associated with the newly discovered URL's,
the web crawler needs to find out whether these documents
have already been downloaded. If the documents associated
with the newly discovered URL's have not been down- 50

loaded, the web crawler downloads the documents and
extracts any URL's contained in them. This process repeats
indefinitely or until a predetermined stop condition occurs.

Typically, to find out whether the documents associated
with a set of discovered URL's have already been down- 55

loaded or are scheduled to be downloaded, the web crawler
checks a directory of document addresses. These document
addresses are URL's that correspond to documents which
have either already been downloaded or are scheduled to be
downloaded; for convenience, these documents will be 60

referred to as downloaded documents. The directory stores
the URL's of the downloaded documents, or representations
of the URL's. The set of URL's in downloaded documents
could potentially contain addresses of every document on
the world wide web. As of 1999 there were approximately 65

800 million web pages on the world wide web and the
number is continuously growing. Even Intranets can store

2

SUMMARY OF THE INVENTION

The present invention provides efficient address filtering
operations for a web crawler by storing representations of
recently-identified URL'S, typically a checksum or "finger
print," in a buffer in main memory, rather than on disk. A
representation of a URL is added to the buffer only when it
is not already stored in the buffer. The buffer is merged with
a disk file only when the buffer is full. Thus, the disk is
accessed only when the buffer is full, and not every time a
URL is identified by the web crawler while processing a
downloaded document.

During the merge, items in the buffer not found in the disk
file are identified and the corresponding URL's are queued
for downloading by the web crawler.

The present application is applicable to both Internet and
Intranet web crawlers.

In one embodiment, a cache for storing "popular" URL's
is maintained in memory in addition to the buffer. Each
identified URL is compared with entries in the cache and
entries in the buffer, and is added to the buffer only when it
is not in either the cache or buffer. Use of the cache reduces
the rate at which the buffer is filled with fingerprints, which
reduces the frequency of merges with the disk file.

In some embodiments the disk file is a sparse file, having
empty entries interspersed among the non-empty entries,
using open-addressing. Thus, during a merge, the number of
writes to the disk is one for each representation in the buffer
that is not already present in the disk file, which increases the
efficiency of the merge operation. In some embodiments, the
disk file is divided into sparse sub-files, which further
increases the efficiency of the merge operation. Efficient
address representations may be used, increasing the effi
ciency of the merge operation, particularly in the case where
URLs on a given web page have a high degree of locality.

Additional features of various embodiments of the inven
tion are described in the detailed description of the invention
provided below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system network III

accordance with an embodiment of the invention.
FIG. 2 is a block diagram of the data flow in an embodi

ment of the invention.
FIG. 3 is a flow chart of a main web crawling procedure

executed by each of a plurality of threads in an exemplary
embodiment of the invention.

FIG. 4 is a flow chart of an address filtering procedure
used in an exemplary embodiment of the invention.

US 6,952,730 Bl
3 4

Main Web Crawler Procedure

In the exemplary embodiment the web crawler uses
multiple threads to download and process documents. The
web crawler 115 is given a set of initial URL's and begins
downloading documents using those URL's. Various data
structures may be used to keep track of which documents
(web pages) the threads should download and process, but
those particular data structures are not the subject of the
present document. Rather, the present invention concerns
the data structures used to keep track of the URL's of
documents that have been downloaded or may be scheduled
for downloading and to ensure that duplicate URL's are not
scheduled for downloading.

Each thread executes a main web crawler procedure 109,
which will be now described with reference to the diagram
shown in FIG. 2 and the flow chart shown in FIG. 3. The web
crawler thread determines the data set address, URL-i, of the
next document, or data set, to be downloaded, typically by
retrieving it from a queue data structure 140 (step 150). The
thread then downloads the document 141 corresponding to
the URL (step 151), and processes the document. The
processing may include indexing the words in the document
so as to make the document accessible via a search engine.
However, the only processing of the document that is
relevant to the present discussion is that the main procedure

5

20

ment, the network connection 102 is able to handle over
lapping communication requests. The memory 104 includes:

a multitasking operating system 105;
an Intranet/lnternet access procedure 106 for fetching web

pages as well as communicating with the domain name
system 122;

a fixed size buffer B 107 for storing recently added
numerical representations of URL's, and optionally the
URL's themselves;

an optional second fixed size buffer B' (not shown) for
storing recently-added numerical representations of
URL's, and optionally the URL's as well, when buffer
B 107 is being merged with disk file 113;

an optional cache C (not shown) for storing "popular"
URL's;

threads 108 for downloading web pages from the servers
121, and processing the downloaded web pages;

a main web crawler procedure 109 executed by each of
the threads 108; and

a URL address filtering procedure 110 executed by each
of the threads 108 to filter the URL's identified in a
downloaded web page, and determine which URL's are
new and therefore should be scheduled for download-
ing.

Buffer B 107, optional buffer B' and optional cache Care
preferably implemented in main memory as hash tables to
facilitate fast lookup operations.

A fingerprint disk file 113, which is not bounded in size,
is stored in secondary disk storage 112. A second URL disk

30 file, not shown, may also be stored in disk storage 112. The
buffers Band B', cache C and the fingerprint disk file 113
store a numerical representation, or "fingerprint," of each
URL known to the web crawler. The fingerprint of a URL
may be generated using an appropriate function, such as a

35 function that employs one or more checksum functions. The
buffers may additionally store the actual address, or URL,
corresponding to each stored fingerprint. Alternatively, in a
preferred embodiment, the addresses corresponding to the
fingerprints in a buffer may be stored in the optional URL

40 disk file instead of in a buffer.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 5 is a flow chart of the merge process used by the
address filtering procedure in an exemplary embodiment of
the invention.

FIG. 6 is a block diagram of data structures used in
accordance with an embodiment of the invention.

FIG. 7 is a block diagram of the data flow in an alternative
embodiment of the invention.

FIG. 8 is a block diagram of the data flow in an alternative
embodiment of the invention.

FIG. 9 is a block diagram of the data flow in an alternative 10

embodiment of the invention.
FIG. 10 is a flow chart of the merge process used by the

address filtering procedure in an alternative embodiment of
the invention. 15

FIG. 11 is a block diagram of the data flow for one aspect
of an exemplary embodiment of the invention.

FIG. 1 shows an exemplary embodiment of a distributed
computer system 100. The distributed computer system 100
includes a web crawler 115 connected to a network 120
through a network interconnection 116. The network 120 25

may be a global communication network, such as the
Internet, or a private network, sometimes called an Intranet.
Examples of network interconnection 116 includes switches,
routers, etc.

The Internet network 120 includes web servers 121 and a
service known as a domain name system 122. It may also
optionally include a web page indexing system 123. The
web servers 121 store web pages. The domain name system
122 is a distributed database that provides the mapping
between Internet Protocol (IP) addresses and host names.
The domain name system 122 is a distributed system
because no single site on the Internet has the domain name
mapping information for all the web servers in the network.
Each site participating in the domain name system 122
maintains its own database of information and runs a server
program that other systems across the Intranet or Internet
can query. The domain name system provides the protocol
that allows clients and servers to communicate with each
other. Any application may look up the IP address (or
addresses) corresponding to a given host name or the host 45

name corresponding to a given IP address in the domain
name system 122. An application accesses the domain name
system 122 through a resolver. The resolver contacts one or
more name servers to perform a mapping of a host name to
the corresponding IP address, or vice versa. A given host 50

name may be associated with more than one IP address
because an Intranet or Internet host may have multiple
interfaces, with each interface of the host having a unique IP
address.

The web page indexing system 123 includes an index of 55

words used on the world wide web and addresses of the web
pages that use each word. Such indexing systems are main
tained by various search engines, such as the AltaVista
search engine. The domain name system 122 and the web
page indexing system 123 may be accessed by the web 60

crawler 115 in the process of downloading web pages from
the world wide web.

The web crawler 115 includes a communications inter
face, or network connection, 102, one or more CPUs 101, an
operator interface 103 (which may be remotely located on 65

another computer), primary or main memory 104 and sec
ondary (e.g. disk) memory 112. In an exemplary embodi-

US 6,952,730 Bl
5 6

Therefore buffer B 107 is typically made fairly large so as
to minimize the frequency of such merge operations.

During the merge process, which is an ordered merge,
fingerprint Nk must be inserted in the fingerprint disk file 113
in the proper location, as illustrated in FIG. 6, so that the disk
file 113 remains ordered. This requires the disk file to be
completely re-written. To avoid this lengthy rewrite process,
in a preferred embodiment, the fingerprint disk file may be
sparsely-filled, using open addressing. For this embodiment,
the fingerprint disk file represents a hash table, with a
substantial proportion of the table, for example 50% or 75%,
being empty entries, or "holes."

In this embodiment, in order to determine whether a
particular fingerprint Nk is in the disk file, the hash of the
fingerprint is computed. In one embodiment, only a prefix of
the fingerprint is used for the hash value. The hash value is
the starting position for searching through the fingerprint
disk file. The disk file is searched sequentially, starting at the
starting position, for either a match or a hole. If a hole is

20 found, the fingerprint Nk is stored in that hole; if a match is
found, Nk is discarded. Thus, there is only one write to the
disk file for each fingerprint not already present in the disk
file, and the size of the disk file is not a factor in the merge
time. When the disk file becomes too full-for example,

25 when only 25% of the slots in the disk file are holes-the file
must be completely rewritten into a new, larger file. For
example, the new file may be doubled in size, in which case
the amortized cost of maintaining the file is constant per
fingerprint in the hash table. It will be appreciated that the

30 use of open addressing a sparsely-filled disk file drastically
reduces the disk re-writing required during a merge.

In one embodiment, the disk file may be divided into
sparse sub-files, with open-addressing used for each sub-file.

35 An index may be used to identify the range of fingerprint
hash values located in each sub-file, or an additional hash
table may be used to map fingerprints to the various sub
files. When a sub-file becomes too full, it may be re-written
into a new, larger file, but the entire disk file need not be

40 re-written.
In another aspect of the present invention, an efficient

addressing scheme may be used for either a sparse disk file,
or a disk file consisting of a set of sparse sub-files. In this
addressing scheme, discussed in U.S. patent application Ser.

45 No. 09/433,008, filed Nov. 2, 1999 (hereby incorporated by
reference in its entirety), each fingerprint is composed of two
components: a first fingerprint component based only upon
the host component of the URL, and a second fingerprint
component based upon the entire URL. A canonical repre-

50 sentation of the host component of each URL may be used
instead of the actual host component. Each fingerprint
component is generated using a fingerprint function, which
may differ for the two components. The fingerprint for a
URL is the concatenation of these two components.

The disk file (or each sub-file) is ordered, so that all
fingerprints from the same host will be likely stored in either
the same sub-file, or at contiguous memory locations within
the disk file. Because URL's located on a given web page
often have the same host, this efficient addressing scheme

60 can significantly improve the speed of the merge process.
When a new fingerprint is to be added to the disk file during
the merge, often the buffer used for the merge will already
contain the disk page on which that fingerprint will be
stored. This will occur when the previous fingerprint added

65 to the disk file was from the same host as the new fingerprint,
and consequently would likely have been stored on the same
disk page as the new fingerprint.

Address Filtering Procedure

An exemplary embodiment of the address filtering pro
cedure (also herein called the address filter) invoked by the
main web crawler procedure is described next with reference
to the diagram shown in FIG. 2 and the flow chart shown in
FIGS. 4 and 5. The first step of the URL processing
procedure is to convert a specified URL into a fixed length
numeric representation, or "fingerprint," (step 160), by
applying a predefined checksum function (for example,
without limitation, a checksum fingerprint function), or set
of checksum functions, to the URL. The fingerprint disk file
113 stores fingerprints of URL's instead of storing the
corresponding URL's. The buffer B 107 also stores finger
prints, and additionally stores the corresponding URL's as
well. Many suitable fingerprint functions are known to those
skilled in the art, and thus are not described here.

After the specified URL U has been converted into a
numeric representation N, a lookup is performed to see if N
is already stored in buffer B 107 (step 161), which stores the
fingerprints of recently added URL's, as well as the corre
sponding URL's. IfN is already stored in buffer B 107, it has
already been scheduled for downloading, and therefore no
further processing of the URL U is needed. If N is not stored
in buffer B 107, it may be new (although it may already be
stored in the fingerprint disk file 113), and therefore Nand
the corresponding URL U are added to buffer B 107 (step
163). The address filter continues to process URL's (step
167) until buffer B 107 is full.

If the buffer B 107 is full (step 164), it must be merged
with the fingerprint disk file 113 (step 166). The buffer B 107
is first sorted (step 165) so that the fingerprints are in order.
After ordering, the buffer B 107 is then merged with the
fingerprint disk file 113, where only fingerprints correspond- 55

ing to new URL's are added to the disk file 113. As shown
in FIG. 5, during the merge, the fingerprint disk file 113 is
searched to determine whether a fingerprint Nk is located in
the disk file (step 171). If so, fingerprint Nk is ignored. If not,
the fingerprint is added to the disk file 113, and the corre
sponding URL is added to the queue for downloading of the
corresponding web page document in step 174. If there are
more fingerprints in buffer B (step 175), the next fingerprint
in buffer B 107 is processed (step 176). When the merge
process is completed, the contents of buffer B 107 are
deleted (step 177). The process of merging buffer B 107 into
the disk file 113 is a relatively time-consuming operation.

identifies URL's in the downloaded document 141 (step
152) that are candidates for downloading and processing.
Typically, these URL's are found in hypertext links in the
document 141 being processed.

Each identified URL is passed to the address filtering 5

procedure in step 153 to determine if it is the URL for a page
already known to the web crawler, or is a "new URL" for a
document not previously known to the web crawler. If that
procedure determines that the identified URL is already
known to the web crawler, the URL is discarded and is not 10

scheduled for downloading. If the identified URL is not
known, it is ultimately added to the queue 140 of URL's
scheduled for downloading. In the meantime, the main
procedure continues to identify URL's and pass URL's to
the address filtering procedure until all URL's from the 15

downloaded page have been processed (steps 154-155).
When all URL's have been passed to the address filtering
procedure, the next address in the queue 140 is downloaded
(step 150).

US 6,952,730 Bl
7

In an alternative embodiment, illustrated in FIG. 7, in
addition to buffer B 107, a cache C 117 of "popular" URL's
is included. When a URL is removed from the queue 140 and
the corresponding web page 141 is downloaded, the finger
print for each URL extracted from the web page 141 is first
compared to fingerprints in cache C 117, to see whether the
URL is a "popular" URL that has already been downloaded
and therefore need not be processed any further. If the
fingerprint is not in cache C 117, the address filter then goes
on to compare the fingerprint to the fingerprints in buffer B
107, as discussed previously. Use of the cache C 117
significantly reduces the rate at which the buffer B 107 is
filled with fingerprints, which reduces the frequency of
merges with the disk file and thus improves the efficiency of
the address filter.

The cache C is updated according to an update policy.
When, according to the update policy, a new fingerprint must
be added to cache C, and cache C 117 is full, a fingerprint
is evicted from cache C 117. The fingerprint to be evicted at
anyone time is determined using an appropriate eviction
policy, such as a least recently used eviction policy a round
robin eviction policy or a clock replacement eviction policy.

A new fingerprint is added to cache C 117 according to
one of the following update policies. A fingerprint corre
sponding to a URL may be added to cache C 117, following
the comparison of the fingerprint to the contents of cache C
117, whenever that fingerprint is not already contained in
cache C 117. Thus, under this update policy, cache C 117 is
simply a cache of fingerprints for recently-identified URL's.
Alternatively, a fingerprint may be added to cache C 117
following the comparison of a fingerprint to the contents of
buffer B 107 whenever that fingerprint is not contained in
cache C 117, but is contained in buffer B 107. In this case,
cache C 117 is a cache of fingerprints for URL's which have
been identified more than once recently. Or, a fingerprint
may be added to cache C whenever that fingerprint is not
contained in cache C 117 and is not contained in buffer B
107. Cache C 117 in this case is a cache of fingerprints for
URL's which have been identified only once recently.
Finally, a fingerprint may be added to cache C 117 during the
merge when the fingerprint is found to have previously
existed in the fingerprint disk file 113. For this policy, cache
C 117 is a cache of fingerprints for URL's which have been
identified more than once during the entire web crawl.

Experiments conducted using these various update poli
cies indicate that the policies yield comparable results, with
the last-mentioned policy providing marginally better results
than the other three. Each policy has a corresponding "miss
rate"-a fraction of fingerprints compared against buffer B
107 following the comparison with cache C 117---{)f close to
30%. That is, about 70% of all the fingerprints that would
have been compared against the buffer B 107 were instead
discarded after a comparison with cache C 117 indicated that
the fingerprints were old. Obviously, this reduction in fin
gerprints compared against, and potentially stored in, buffer
B 107 reduces the frequency with which buffer B 107 must
be merged 142 with the fingerprint disk file 113, and thus
increases the efficiency of the address filter.

Another alternative embodiment is illustrated in FIG. 8.
When buffer B 107 is full, it must be merged 142 with the
fingerprint disk file 113, and cannot accept any newly
identified URL's. Hence, no new address cache accepted for
filtering while the time-consuming merge process is in
progress. To avoid delaying the address filtering procedure
during the merge process, the address filter uses a second
buffer B' 180 in addition to the buffer B 107. While buffer
B 107 is being merged with the disk file 113, buffer B' 180

8
takes over the role of buffer B 107. Fingerprints for newly
identified URL's are compared with the contents of buffer B'
180 and then stored in buffer B' 180 if it is determined that
the fingerprints are not already stored in buffer B' 180. When

5 buffer B' 180 is full, the two buffers change roles again.

The cache C 117 of the embodiment in FIG. 7 can also be
used in the embodiment shown in FIG. 8. The addition of
cache C makes use of the buffer B 107/180 more efficient,
while the use of two buffer B's 107, 180 greatly reduces the

10 "cost" of the buffer merge operations in terms of the web
crawler's ability to process discovered URL's that mayor
may not be new URL'S.

Yet another alternative embodiment is illustrated in FIG.
9, with the process performed by this embodiment shown in

15 FIG. 10. In this embodiment, instead of storing URL's in
buffer B 190, along with their corresponding fingerprints,
the URL's are stored in a separate URL disk file 192. In this
embodiment, each fingerprint in buffer B 190 includes a
pointer to the corresponding URL in the URL disk file 192.

20 The pointer may, for instance, indicate the relative character
position of the start of the URL from the start of the URL
disk file 192. Alternatively, the pointer may simply indicate
the count of the URL in the disk file-the first URL gets
pointer 1, the second pointer 2 and so on. In addition, each

25 fingerprint in buffer B 190 will be associated with a flag D.

When the fingerprints are sorted (step 200, FIG. 10) by
fingerprint value, at the beginning of the merge 191 (FIG. 9),
the pointers must remain associated with their corresponding

30 fingerprints. Pointers and flags may be stored, along with
their associated fingerprints, in a table 190a, to facilitate
preserving this association. In other words, during the buffer
sort operation (step 200), each row of the buffer 190 (i.e.,
table 190a) is moved as a whole within the buffer to its new

35 position.
As in other embodiments described above, for each fin

gerprint, the merge process 191 determines whether the
fingerprint Nk is in the fingerprint disk file 113 (step 201). If
so, the corresponding URL Uk is old, and the fingerprint and

40 URL are discarded, and the flag Dk is set to a first predefined
value (e.g., "0") to indicate that the fingerprint is already
located in the fingerprint disk file (step 202). If the finger
print Nk is not in the fingerprint disk file 113, it is new, is
added to the fingerprint disk file 113 in step 204, and the flag

45 Dk is set to a second predefined value (e.g., "1") to indicate
that the URL Uk needs to be added to the list of URL in the
queue 140 (FIG. 9).

After the merge process 191 is complete, buffer B 190 is
sorted a second time (step 210), using the pointers as the sort

50 key, and sorting the pointers in, for example, increasing
order. Again, each row, consisting of a fingerprint, a pointer,
and a flag, is moved as a whole during the sort. After the sort,
URL's from the URL disk file are added to the queue. More
specifically, for every fingerprint FPk in the buffer B whose

55 flag Dk is set to the second predefined value ("1"), the URL
is added to the queue for downloading (step 212). If flag Dk

is not set to the second predefined value, the corresponding
URL is not added to the queue. Because the entries in buffer
B are sorted in the same order as URL's are stored in the

60 URL disk file, the URL disk file is read sequentially from
beginning to end during step 212, which is much more
efficient than reading the URL's in the URL disk file in
random order. After step 212 is completed, and thus all new
URL's in the URL disk file have been added to the queue,

65 the URL disk file is either discarded, in which case a new
URL disk file is used for storing the URL's while the buffer
is filled again with fingerprints of URL's, or the URL disk

US 6,952,730 Bl
9 10

65

45

35

3. The method of claim 1, further comprising:
in step (d2), when the determination is negative, storing

the identified address in a second disk file;
in step (d2), additionally storing with each representation

in the buffer a pointer to the corresponding address
stored in the second disk file; and

in step (e1), while ordering the contents of the buffer,
keeping with each representation in the buffer its
pointer to the corresponding address in the second disk
file.

4. The method of claim 3 wherein
step (e2) includes: for each representation in the buffer

storing an associated flag, setting the flag to a first value
when the representation is equal to a representation
previously stored in the first disk file, and setting the
flag to a second value, distinct from the first value,
when the representation is not equal to any represen
tation previously stored in the first disk file; and

step (e) includes: (e4) for each representation whose flag
is set to the second value, scheduling the corresponding
data set for downloading.

5. The method of claim 1 wherein:
step (a), storing representations of data set addresses,

includes the step of storing
representations of data set addresses in a sparse disk file

which is divided into portions, each portion having a
starting address and contents comprising an ordered list
of representations of data addresses; and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes:

for each of a plurality of the representations stored in the
buffer:

(e2-1) determining a starting address for a corresponding
portion of the sparse disk file; and

(e2-2) performing an ordered merge of a subset of the
buffer, starting at the representation for which the
starting address was obtained, into the contents of the
corresponding portion.

6. The method of claim 1 wherein:
step (a), storing representations of data set addresses,

includes the step of storing representations of data set
addresses in a sparse disk file having empty entries
interspersed among entries storing said representations;
and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes:

for each respective representation stored in the buffer:
(e2-1) determining a starting address for a corresponding

portion of the sparse disk file; and
(e2-2) sequentially scanning the disk file, starting at the

representation for which the starting address was
obtained, until the first of (A) a representation matching
the respective representation is found and (B) one of
the empty entries is found, and when an empty entry is
found storing the respective representation in the empty
entry.

7. The method of claim 1 wherein, in step (d1), the
representation comprises a checksum of at least a portion of

60 the identified address.
8. The method of claim 1 wherein step (d2) further

comprises:
(d2-1) determining whether the representation is stored in

a cache before determining whether the representation
is stored in the buffer;

(d2-2) when the representation is not stored in the cache,
the cache has not reached a predefined full condition,

What is claimed is:
1. A method of downloading data sets from among a

plurality of host computers, comprising the steps of:
(a) storing representations of data set addresses in a set of 40

data structures, including a buffer and a first disk file,
wherein the representations of data set addresses stored
in the first disk file are ordered;

(b) downloading at least one data set that includes
addresses of one or more referred data sets;

(c) identifying the addresses of the one or more referred
data sets;

(d) for each identified address:
(d1) generating a representation of the identified

address; 50

(d2) determining whether the representation is stored in
the buffer without determining whether the represen
tation is stored in the first disk file, and when this
determination is negative, storing the representation
~~~~~ ~

(e) when the buffer reaches a predefined full condition:
(e1) ordering the contents of the buffer according to the

representations;
(e2) performing an ordered merge of the contents of the

buffer into the contents of the first disk file; and
(e3) preventing duplication of any of the representa

tions of data set addresses stored in the first disk file
after the ordered merge.

2. The method of claim 1, further comprising:
in step (d2), when the determination is negative, storing

the identified address in the buffer.

file 192 may be cleared for reuse (step 214). In addition, the
contents of buffer B are deleted to make buffer B ready for
reuse (step 214).

Another aspect of the present invention is illustrated in
FIG. 11, where the web crawler has just been initialized and 5

no fingerprints have been stored in the fingerprint disk file.
Since there are no "old" URL's, the address filter procedure
simply bypasses the merge operation 142 to save processing
time. The buffer B 107, which is implemented as a hash
table, is searched to see if a newly-identified URLis in buffer 10

B 107. If not, the URL is loaded directly into the queue 140,
and the corresponding fingerprint is stored in buffer B 107.
When buffer B 107 fills up, all of its fingerprints are written
to the fingerprint disk file 113. After the first buffer B of
fingerprints has been written to the fingerprint disk file, 15

normal operation of the web crawler, as described above,
begins.

The present invention can be implemented as a computer
program product that includes a computer program mecha
nism embedded in a computer readable storage medium. For 20

instance, the computer program product could contain the
program modules shown in FIG. 1. These program modules
may be stored on a CD-ROM, magnetic disk storage prod
uct, or any other computer readable data or program storage
product. The software modules in the computer program 25

product may also be distributed electronically, via the Inter
net or otherwise, by transmission of a computer data signal
(in which the software modules are embedded) on a carrier
wave.

The foregoing examples illustrate certain exemplary 30

embodiments of the invention from which other embodi
ments, variations and modifications will be apparent to those
skilled in the art. The invention should therefore not be
limited to the particular exemplary embodiments discussed
herein, but rather defined by the claims appended hereto.



US 6,952,730 Bl
11

and other predefined criteria are met, adding the rep
resentation to the cache; and

(d2-3) when the representation is not stored in the cache,
the cache has reached said predefined full condition,
and said other predefined criteria are met, evicting a 5

stored representation from the cache in accordance with
an eviction policy and adding the representation to the
cache.

9. The method of claim 8 wherein step (e2) further
comprises: 10

when a representation in the buffer is not found in the first
disk file during merging, scheduling the corresponding
data set for downloading.

10. The method of claim 8 wherein:
step (a), storing representations of data set addresses, 15

includes the step of storing representations of data set
addresses in a sparse disk file which is divided into
portions, each portion having a starting address and
contents comprising an ordered list of representations
of data addresses; and 20

step (e2), performing an ordered merge of the contents of
the buffer into the contents of the sparse disk file,
includes:

for each of a plurality of the representations stored in the
buffer: 25

(e2-1) obtaining a starting address for a corresponding
portion of the sparse disk file; and

(e2-2) performing an ordered merge of a subset of the
buffer, starting at the

representation for which the starting address was 30

obtained, into the contents of the corresponding por
tion.

11. The method of claim 8 wherein:
step (a), storing representations of data set addresses,

includes the step of storing representations of data set 35

addresses in a sparse disk file having empty entries
interspersed among entries storing said representations;
and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes: 40

for each respective representation stored in the buffer:
(e2-1) determining a starting address for a correspond-

ing portion of the sparse disk file; and
(e2-2) sequentially scanning the disk file, starting at the

representation for which the starting address was 45

obtained, until the first of (A) a representation
matching the respective representation is found and
(B) one of the empty entries is found, and when an
empty entry is found storing the respective repre-
sentation in the empty entry. 50

12. The method of claim 1 wherein step (e2) further
comprises:

when a representation in the first buffer is not found in the
first disk file during merging, scheduling the corre-
sponding data set for downloading. 55

13. A method of downloading data sets from among a
plurality of host computers, comprising the steps of:

(a) storing representations of data set addresses in a set of
data structures, including a first buffer, a second buffer,
and a first disk file, wherein the first disk file contains 60

ordered representations of data set addresses;
(b) selecting as a current buffer one of the first and second

buffers;
(c) downloading at least one data set that includes

addresses of one or more referred data sets; 65

(d) identifying the addresses of the one or more referred
data sets; and

12
(e) for each identified address:

(e1) generating a representation of the identified
address; and

(e2) determining whether the representation is stored in
the current buffer without determining whether the
representation is stored in the first disk file, and when
this determination is negative, storing the represen
tation in the current buffer; and

(f) when the current buffer reaches a predefined full
condition:
(fl) selecting the other buffer as the current buffer,

wherein the previously current buffer is identified as
a non-current buffer;

(f2) ordering representations stored in the non-current
buffer; and

(f3) performing an ordered merge of the contents of the
non-current buffer into the contents of the first disk
file wherein the ordered merge comprises preventing
duplication of any of the representations of data set
addresses stored in the first disk file during or after
merging.

14. The method of claim 13, further comprising:
in step (e2), when the determination is negative, storing

the identified address in the current buffer.
15. The method of claim 13, further comprising:
in step (e2), when the determination is negative, storing

the identified address in a second disk file;
in step (e2), additionally storing with each representation

in the current buffer a pointer to the corresponding
address stored in the second disk file; and

in step (f2), while ordering the contents of the non-current
buffer, keeping with each representation in the non
current buffer its pointer to the corresponding address
in the second disk file.

16. The method of claim 15 wherein
step (e2) comprises: for each representation in the buffer

storing an associated flag, setting the flag to a first value
when the representation is equal to a representation
previously stored in the first disk file, and setting the
flag to a second value, distinct from the first value,
when the representation is not equal to any represen
tation previously stored in the first disk file; and

step (f) includes: (f4) for each representation whose flag
is set to the second value, scheduling the corresponding
data set for downloading.

17. The method of claim 13 wherein step (e2) further
comprises:

when a representation in the current buffer is not found in
the first disk file during merging, scheduling the cor
responding data set for downloading.

18. The method of claim 13 wherein:
step (a), storing representations of data set addresses,

includes storing representations of data set addresses in
a sparse disk file which is divided into portions, each
portion having a starting address and contents compris
ing an ordered list of representations of data addresses;
and

step (e2), performing an ordered merge of the contents of
the current buffer into the contents of the sparse disk
file, comprises the following steps:

for each of a plurality of the representations stored in the
current buffer:
(e2-1) obtaining a starting address for a corresponding

portion of the sparse disk file; and
(e2-2) performing an ordered merge of a subset of the

current buffer, starting at the representation for



US 6,952,730 Bl
13 14

5

20

25

45

a first disk file and a buffer, for storing representations of
data set addresses;

a main web crawler module for downloading and pro
cessing data sets stored on a plurality of host comput
ers, the main web crawler module identifying addresses
of one or more referred data sets in the downloaded
data sets; and

an address filtering module for processing a specified one
of the identified addresses;

the address filtering module including instructions for:
generating a representation of the identified address;
determining whether the representation is stored in the

buffer without determining whether the representa
tion is stored in the first disk file, and when this
determination is negative storing the representation
in the buffer; and

determining whether the buffer has reached a pre
defined full condition, and when this determination
is positive, ordering the contents of the buffer and
then performing an ordered merge of contents of the
buffer into the contents of the first disk file wherein
the ordered merge comprises preventing duplication
of any of the representations of data set addresses
stored in the first disk file during or after merging the
contents of the buffer into the contents of the first
disk file.

24. The computer program product of claim 23, wherein
the address filtering module further includes instructions for
storing the identified address in the buffer after determining

30 that the representation is not stored in the buffer.
25. The computer program product of claim 23, wherein

the address filtering module further includes instructions for:
storing the identified address in a second disk file after

determining that the representation is not stored in the
buffer; and

storing with each representation in the buffer a pointer to
the corresponding address stored in the second disk file;
and

during the ordering of the contents of the buffer, keeping
with each representation in the buffer its pointer to the
corresponding address in the second disk file.

26. The computer program product of claim 23, wherein
the first disk file is a sparse disk file divided into portions,

each portion having a starting address and contents
comprising an ordered list of representations of data
addresses; and

the address filtering module includes instructions for
performing the ordered merge of the ordered contents
of the buffer with the contents of the sparse disk file by
obtaining a starting address for a sub-file of the sparse
disk file, the portion corresponding to one of the
representations in the buffer, and performing an ordered
merge of a subset of the representations in the buffer,
starting at the one representation, into the contents of
the portion.

27. The computer program product of claim 23, wherein
the first disk file is a sparse disk file having empty entries

interspersed among entries storing said representations
of data addresses; and

the address filtering module includes instructions for
performing the ordered merge of the ordered contents
of the buffer with the contents of the sparse disk file by
obtaining a starting address corresponding to each
respective representations in the buffer, and sequen
tially scanning the first disk file, starting at the starting
address, until the first of (A) a representation matching
the respective representation is found and (B) one of

10

which the starting address was obtained, into the
contents of the corresponding portion.

19. The method of claim 13 wherein:
step (a), storing representations of data set addresses,

includes the step of storing
representations of data set addresses in a sparse disk file

having empty entries interspersed among entries stor
ing said representations; and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes:
for each respective representation stored in the buffer:

(e2-1) determining a starting address for a corre
sponding portion of the sparse disk file; and

(e2-2) sequentially scanning the disk file, starting at
the representation for which the starting address 15

was obtained, until the first of (A) a representation
matching the respective representation is found
and (B) one of the empty entries is found, and
when an empty entry is found storing the respec
tive representation in the empty entry.

20. The method of claim 13 wherein the representation of
the identified address comprises a checksum of at least a
portion of the identified address.

21. The method of claim 13 wherein step (e2) further
comprises:

(e2-1) determining whether the representation is stored in
a cache before determining whether the representation
is stored in the current buffer;

(e2-2) when the representation is not stored in the cache,
and the cache has not reached a predefined full condi
tion, adding the representation to the cache; and

(e2-3) when the representation is not stored in the cache,
and the cache has reached said predefined full condi
tion, evicting a stored representation from the cache in
accordance with an eviction policy and adding the 35

representation to the cache.
22. A method of downloading data sets from among a

plurality of host computers, comprising the steps of:
(a) storing representations of data set addresses in a set of

data structures, including a buffer and a disk file, 40

wherein representations of data set addresses stored in
the disk file are ordered;

(b) downloading at least one data set that includes an
address of a referred data set;

(c) identifying the address of the referred data set;
(d) generating a representation of the identified address;
(e) determining whether the representation is stored in the

buffer, and whether the disk file is empty;
(f) when the representation is not stored in the buffer and

the disk file is empty, scheduling the corresponding 50

data set for downloading;
(g) when the representation is not stored in the buffer and

the disk file is not empty, storing the representation in
the buffer and delaying scheduling of the corresponding
data set for downloading until a condition occurs; and 55

(h) when it is determined that the condition has occurred,
performing an ordered merge of contents of the buffer
into contents of the first disk file wherein the ordered
merge comprises preventing duplication of any of the
representations of data set addresses stored in the first 60

disk file during or after merging the contents of the
buffer into the contents of the first disk file.

23. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a 65

computer program mechanism embedded therein, the com
puter program mechanism comprising:



15
US 6,952,730 Bl

16

20

25

the empty entries is found, and when an empty entry is
found storing the respective representation in the empty
entry.

28. The computer program product of claim 23 wherein
the representation of the identified address comprises a 5

checksum of at least a portion of the identified address.
29. The computer program product of claim 23, wherein

the address filtering module further includes instructions for
first determining whether the representation is stored in a
cache, and when the first determination is positive, skipping 10

the determination of whether the representation is stored in
the buffer.

30. The computer program product of claim 23, wherein
the address filtering module further includes instructions for:

determining whether the first disk file is empty and 15

whether the representation is stored in the buffer; and
if the first disk file is empty and the representation is not

stored in the buffer, storing the representation in the
buffer and scheduling the corresponding data set for
downloading.

31. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com
puter program mechanism comprising:

a first disk file, a first buffer, and a second buffer, for
storing representations of data set addresses;

a main web crawler module for downloading and pro
cessing data sets stored on a plurality of host comput
ers, the main web crawler module identifying addresses 30

of the one or more referred data sets in the downloaded
data sets; and

an address filtering module for processing a specified one
of the identified addresses; the address filtering module
including instructions for: 35

identifying one of the first and second buffers as a
current buffer;

generating a representation of the identified address;
determining whether the representation is stored in the 40

current buffer without determining whether the rep
resentation is stored in the first disk file, and when
this determination is negative, storing the represen
tation in the current buffer; and

determining whether the current buffer has reached a 45

predefined full condition, and when this determina
tion is positive, selecting the other buffer as the
current buffer, wherein the previously current buffer
is identified as a non-current buffer, ordering the
contents of the non-current buffer and then perform- 50

ing an ordered merge of the contents of the non
current buffer into the contents of the first disk file
wherein the ordered merge comprises preventing
duplication of any of the representations of data set
addresses stored in the first disk file during or after 55

merging the contents of the buffer into the contents
of the first disk file.

32. The computer program product of claim 31, wherein
the address filtering module further includes instructions for
storing the identified address in the current buffer after 60

determining that the representation is not stored in the
current buffer.

33. The computer program product of claim 31, wherein
the address filtering module further includes instructions for:

storing the identified address in a second disk file after 65

determining that the representation is not stored in the
current buffer;

storing with each representation in the current buffer a
pointer to the corresponding address stored in the
second disk file; and

during the ordering of the contents of the non-current
buffer, keeping with each representation in the non
current buffer its pointer to the corresponding address
in the second disk file.

34. The computer program product of claim 31, wherein
the first disk file is a sparse disk file divided into sub-files,

each sub-file having a starting address and contents
comprising an ordered list of representations of data
addresses; and

the instructions for performing the ordered merge includ
ing instructions for obtaining a starting address for a
sub-file of the first disk file, the sub-file corresponding
to one of the representations in the buffer, and perform
ing an ordered merge of a subset of the representations
in the non-current buffer, starting at the one represen
tation, into the contents of the sub-file.

35. The computer program product of claim 31, wherein
the first disk file is a sparse disk file having empty entries

interspersed among entries storing said representations
of data addresses; and

the address filtering module includes instructions for
performing the ordered merge of the ordered contents
of the buffer with the contents of the sparse disk file by
obtaining a starting address corresponding to each
respective representations in the buffer, and sequen
tially scanning the first disk file, starting at the starting
address, until the first of (A) a representation matching
the respective representation is found and (B) one of
the empty entries is found, and when an empty entry is
found storing the respective representation in the empty
entry.

36. The computer program product of claim 31 wherein
the representation of the identified address comprises a
checksum of at least a portion of the identified address.

37. The computer program product of claim 31, wherein
the address filtering module further includes instructions for:

determining whether the first disk file is empty and
whether the representation is stored in the current
buffer; and

if the first disk file is empty and the representation is not
stored in the current buffer, storing the representation in
the current buffer and scheduling the corresponding
data set for downloading.

38. A web crawler for downloading data set addresses
from among a plurality of host computers, comprising:

a first disk file and a buffer, for storing representations of
data set addresses;

a main web crawler module for downloading and pro
cessing data sets stored on a plurality of host comput
ers, the main web crawler module identifying addresses
of the one or more referred data sets in the downloaded
data sets; and

an address filtering module for processing a specified one
of the identified addresses; the address filtering module
including instructions for:
generating a representation of the identified address;
determining whether the representation is stored in the

buffer without determining whether the representa
tion is stored in the first disk file, and when this
determination is negative storing the representation
in the buffer; and

determining whether the buffer has reached a pre
defined full condition, and when this determination
is positive, ordering the contents of the buffer and



US 6,952,730 Bl
17 18

55

when the cache has reached a predefined full condition,
evicting a stored representation from the cache in
accordance with an eviction policy.

45. The web crawler of claim 38 wherein the address
5 filtering module further includes instructions for determin

ing whether the first disk file is empty and whether the
representation is stored in the buffer, and if the first disk file
is empty and the representation is not stored in the buffer,
storing the representation in the buffer and scheduling the

10 corresponding data set for downloading.
46. A web crawler for downloading data set addresses

from among a plurality of host computers, comprising:
a first disk file, a first buffer and a second buffer, for

storing representations of data set addresses;
a main web crawler module for downloading and pro

cessing data sets stored on a plurality of host comput
ers, the main web crawler module identifying addresses
of the one or more referred data sets in the downloaded
data sets; and

an address filtering module for processing a specified one
of the identified addresses; the address filtering module
including instructions for:
identifying one of the first and second buffers as a

current buffer;
generating a representation of the identified address;
determining whether the representation is stored in the

current buffer without determining whether the rep
resentation is stored in the first disk file, and when
this determination is negative, storing the represen-
tation in the current buffer; and

determining whether the current buffer has reached a
predefined full condition, and when this determina
tion is positive, selecting the other buffer as the
current buffer, wherein the previously current buffer
is identified as a non-current buffer, ordering the
contents of the non-current buffer and then perform-
ing an ordered merge of the contents of the non
current buffer into the contents of the first disk file
wherein the ordered merge comprises preventing
duplication of any of the representations of data set
addresses stored in the first disk file during or after
merging the contents of the buffer into the contents
of the first disk file.

47. The web crawler of claim 46, wherein the address
45 filtering module further includes instructions for storing the

identified address in the current buffer after determining that
the representation is not stored in the current buffer.

48. The web crawler of claim 46, wherein the address
filtering module further includes instructions for:

storing the identified address in a second disk file after
determining that the representation is not stored in the
current buffer;

storing with each representation in the current buffer a
pointer to the corresponding address stored in the
second disk file; and

during the ordering of the contents of the non-current
buffer, keeping with each representation in the non
current buffer its pointer to the corresponding address
in the second disk file.

49. The web crawler of claim 46, wherein
the first disk file is a sparse disk file divided into sub-files,

each sub-file having a starting address and contents
comprising an ordered list of representations of data
addresses; and

the instructions for performing the ordered merge includ
ing instructions for obtaining a starting address for a
sub-file of the first disk file, the sub-file corresponding

then performing an ordered merge of the contents of
the buffer into the contents of the first disk file
wherein the ordered merge comprises preventing
duplication of any of the representations of data set
addresses stored in the first disk file during or after
merging the contents of the buffer into the contents
of the first disk file.

39. The web crawler of claim 38, wherein the address
filtering module further includes instructions for storing the
identified address in the buffer following a determination
that the representation is not stored in the buffer.

40. The web crawler of claim 38, wherein the address
filtering module further includes instructions for:

storing the identified address in a second disk file after
determining that the representation is not stored in the 15

buffer; and
storing with each representation in the buffer a pointer to

the corresponding address stored in the second disk file;
and

during the ordering of the contents of the buffer, keeping 20

with each representation in the buffer its pointer to the
corresponding address in the second disk file.

41. The web crawler of claim 38 wherein
the first disk file is a sparse disk file divided into portions,

each portion having a starting address and contents 25

comprising an ordered list of representations of data
addresses; and

the address filtering module further includes instructions
for:
obtaining, from an index, a starting address for a 30

portion in the sparse disk file corresponding to one of
the representations stored in the buffer; and

performing an ordered merge of a subset of the repre
sentations stored in the buffer, starting at the repre
sentation for which the starting address was 35

obtained, into the contents of the corresponding
portion.

42. The web crawler of claim 38 wherein
the first disk file is a sparse disk file having empty entries

interspersed among entries storing said representations 40

of data addresses; and
the address filtering module includes instructions for

performing the ordered merge of the ordered contents
of the buffer with the contents of the sparse disk file by
obtaining a starting address corresponding to each
respective representations in the buffer, and sequen
tially scanning the first disk file, starting at the starting
address, until the first of (A) a representation matching
the respective representation is found and (B) one of
the empty entries is found, and when an empty entry is 50

found storing the respective representation in the empty
entry.

43. The web crawler of claim 38 wherein the represen
tation of the identified address comprises a checksum of at
least a portion of the identified address.

44. The web crawler of claim 38 wherein the address
filtering module further includes instructions for:

determining whether the representation is stored in a
cache before determining whether the representation is
stored in the buffer, and when this determination is 60

negative, determining whether the representation is
stored in the buffer;

when the second determination is negative, storing the
representation in the buffer;

when the first determination is negative, and predefined 65

other criteria are met, storing the representation in the
cache; and



US 6,952,730 Bl
19 20

5

50

in step (el), while ordering the contents of the buffer,
keeping with each representation in the buffer its
pointer to the corresponding address in the second disk
file.

56. The method of claim 55 wherein
step (e2) includes: for each representation in the buffer

storing an associated flag, setting the flag to a first value
when the representation is equal to a representation
previously stored in the first disk file, and setting the
flag to a second value, distinct from the first value,
when the representation is not equal to any represen-
tation previously stored in the first disk file; and

step (e) includes: (e4) for each representation whose flag
is set to the second value, scheduling the corresponding
data set for downloading.

57. The method of claim 53 wherein:
step (a), storing representations of data set addresses,

includes the step of storing
representations of data set addresses in a sparse disk file

which is divided into portions, each portion having a
starting address and contents comprising an ordered list
of representations of data addresses; and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes:

for each of a plurality of the representations stored in the
buffer:

(e2-l) determining a starting address for a corresponding
portion of the sparse disk file; and

(e2-2) performing an ordered merge of a subset of the
buffer, starting at the representation for which the
starting address was obtained, into the contents of the
corresponding portion.

58. The method of claim 53 wherein:
step (a), storing representations of data set addresses,

includes the step of storing representations of data set
addresses in a sparse disk file having empty entries
interspersed among entries storing said representations;
and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes:

for each respective representation stored in the buffer:
(e2-l) determining a starting address for a corresponding

portion of the sparse disk file; and
(e2-2) sequentially scanning the disk file, starting at the

representation for which the starting address was
obtained, until the first of (A) a representation matching
the respective representation is found and (B) one of
the empty entries is found, and when an empty entry is
found storing the respective representation in the empty
entry.

59. The method of claim 53 wherein, in step (dl), the
representation comprises a checksum of at least a portion of

55 the identified address.
60. The method of claim 53 wherein step (d2) further

comprises:
(d2-l) determining whether the representation is stored in

a cache before determining whether the representation
is stored in the buffer;

(d2-2) when the representation is not stored in the cache,
the cache has not reached a predefined full condition,
and other predefined criteria are met, adding the rep
resentation to the cache; and

(d2-3) when the representation is not stored in the cache,
the cache has reached said predefined full condition,
and said other predefined criteria are met, evicting a

to one of the representations in the buffer, and perform
ing an ordered merge of a subset of the representations
in the non-current buffer, starting at the one represen
tation, into the contents of the sub-file.

50. The web crawler of claim 46 wherein
the first disk file is a sparse disk file having empty entries

interspersed among entries storing said representations
of data addresses; and

the address filtering module includes instructions for
performing the ordered merge of the ordered contents 10

of the buffer with the contents of the sparse disk file by
obtaining a starting address corresponding to each
respective representations in the buffer, and sequen
tially scanning the first disk file, starting at the starting
address, until the first of (A) a representation matching 15

the respective representation is found and (B) one of
the empty entries is found, and when an empty entry is
found storing the respective representation in the empty
entry.

51. The web crawler of claim 46 wherein the represen- 20

tation of the identified address comprises a checksum of at
least a portion of the identified address.

52. The web crawler of claim 46, wherein the address
filtering module further includes

instructions for: determining whether the first disk file is 25

empty and whether the representation is stored in the
current buffer; and

when the first disk file is empty and the representation is
not stored in the current buffer, storing the representa
tion in the current buffer and scheduling the corre- 30

sponding data set for downloading.
53. A method of downloading data sets from among a

plurality of host computers, comprising the steps of:
(a) storing representations of data set addresses in a set of

data structures, including a buffer and a first disk file, 35

wherein the representations of data set addresses stored
in the first disk file are ordered;

(b) downloading at least one data set that includes
addresses of one or more referred data sets;

(c) identifying the addresses of the one or more referred 40

data sets;
(d) for each identified address:

(dl) generating a representation of the identified
address; 45

(d2) determining whether the representation is stored in
the buffer without determining whether the represen
tation is stored in the first disk file, and when this
determination is negative, storing the representation
in the buffer; and

(e) when the buffer reaches a predefined full condition:
(el) ordering the contents of the buffer according to the

representations;
(e2) performing an ordered merge of the contents of the

buffer into the contents of the first disk file; and
(e3) preventing duplication of any of the representa

tions of data set addresses stored in the first disk file
during the ordered merge.

54. The method of claim 53, further comprising:
in step (d2), when the determination is negative, storing 60

the identified address in the buffer.
55. The method of claim 53, further comprising:
in step (d2), when the determination is negative, storing

the identified address in a second disk file;
in step (d2), additionally storing with each representation 65

in the buffer a pointer to the corresponding address
stored in the second disk file; and



US 6,952,730 Bl
21

stored representation from the cache in accordance with
an eviction policy and adding the representation to the
cache.

61. The method of claim 60 wherein step (e2) further
comprises: 5

when a representation in the buffer is not found in the first
disk file during merging, scheduling the corresponding
data set for downloading.

62. The method of claim 60 wherein:
step (a), storing representations of data set addresses, 10

includes the step of storing representations of data set
addresses in a sparse disk file which is divided into
portions, each portion having a starting address and
contents comprising an ordered list of representations
of data addresses; and 15

step (e2), performing an ordered merge of the contents of
the buffer into the contents of the sparse disk file,
includes:

for each of a plurality of the representations stored in the
buffer: 20

(e2-1) obtaining a starting address for a corresponding
portion of the sparse disk file; and

(e2-2) performing an ordered merge of a subset of the
buffer, starting at the

representation for which the starting address was 25

obtained, into the contents of the corresponding por
tion.

22
63. The method of claim 60 wherein:

step (a), storing representations of data set addresses,
includes the step of storing representations of data set
addresses in a sparse disk file having empty entries
interspersed among entries storing said representations;
and

step (e2), merging the contents of the buffer with the
ordered contents of the sparse disk file, includes:

for each respective representation stored in the buffer:

(e2-1) determining a starting address for a correspond-
ing portion of the sparse disk file; and

(e2-2) sequentially scanning the disk file, starting at the
representation for which the starting address was
obtained, until the first of (A) a representation
matching the respective representation is found and
(B) one of the empty entries is found, and when an
empty entry is found storing the respective repre
sentation in the empty entry.

64. The method of claim 53 wherein step (e2) further
comprises:

when a representation in the first buffer is not found in the
first disk file during merging, scheduling the corre
sponding data set for downloading.

* * * * *


