(12)

US006377984B1

United States Patent
Najork et al.

10y Patent No.: US 6,377,984 B1
5) Date of Patent: *Apr. 23, 2002

(54

(75)

(73)

*)

@D
(22

D
(52)
(58)

(56)

WEB CRAWLER SYSTEM USING
PARALLEL QUEUES FOR QUEING DATA
SETS HAVING COMMON ADDRESS AND
CONCURRENTLY DOWNLOADING DATA
ASSOCIATED WITH DATA SET IN EACH
QUEUE

Inventors: Marc Alexander Najork, Palo Alto;
Clark Allan Heydon, San Francisco,
both of CA (US)

Assignee: Alta Vista Company, Palo Alto, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.
Appl. No.: 09/433,004
Filed: Nov. 2, 1999
Int. CL7 ..o GO6F 15/16; GO6F 15/173
US.CL ..o 709/217; 709/201; 709/226
Field of Search 709/217, 226,

709/219, 201, 234, 235, 236, 237; 707/7,
10; 710/52, 53, 54, 55, 56; 370/229, 230

References Cited
U.S. PATENT DOCUMENTS
5,386,551 A * 1/1995 Chikira et al. 714/46
5,633,858 A * 5/1997 Chang et al. 370/255
5,680,622 A * 10/1997 Evenccccevvvevneennn. 395/709
5,748,954 A * 5/1998 Mauldinocoover... 707/10
5,793,747 A * 8/1998 Kline 370/230
5,835,763 A * 11/1998 Klein 395/671
*

5,878,233 A 3/1999 Schloss o 709/225

5,881,269 A * 3/1999 Dobbelstein 703/21
5,924,097 A * 7/1999 Hill et al.ccceeeeeeeenn. 707/10
5,937,162 A * 8/1999 Funk et al. 709/206
5,974,455 A * 10/1999 Moniercccceeeeeeen.. 709/223
5,974,481 A * 10/1999 Brodercccccoeeeeenen. 710/49
5,999,964 A * 12/1999 Murakata et al. 709/201
6,002,785 A * 12/1999 Ucida ...cccocvvveveeeeneenn. 382/124
6,067,543 A * 5/2000 BUITOWS ...cccovvereeernnenen. 707/4
6,067,566 A * 5/2000 Molinecccceeeeeenn. 709/219
6,137,549 A * 10/2000 Rasson et al. 348/906
6,144,637 A * 11/2000 Calvignac et al. 370/229
6,182,085 B1 * 1/2001 FEichstaedt et al. .. 707/104
6,216,167 B1 * 4/2001 Momirov 709/238
6,222,822 B1 * 4/2001 Geradin et al. 370/230

* cited by examiner

Primary Examiner—_e Hien Luu
Assistant Examiner—Bunjob Jaroenchonwanit
(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP

(7) ABSTRACT

A method and system for scheduling downloads in a web
crawler. A web crawler may use multiple threads to down-
load documents from the world wide web. Both threads and
queues are identified by numerical ID’s. Each thread in the
web crawler is assigned to dequeue from a queue until the
assigned queue is empty. Each thread enqueues URL’s as
new URL’s are discovered in the course of downloading
web pages. In one embodiment, when a thread discovers a
new URL, a numerical function is performed on the URL’s
host component to determine the queue in which to enqueue
the new URL. In another embodiment, each queue in a web
crawler may be dynamically assigned to a host computer so
that URL’s enqueued into the same queue all have the same
host component. When a queue becomes empty, a new host
may be dynamically assigned to it. In both embodiments,
when all the threads are dequeuing in parallel from each of
the respectively assigned queues, no more than one request
to one host computer is made at the same time.

36 Claims, 9 Drawing Sheets

A thread discovers a new URL "u"
300 —_| having a host name component *h"

'

301 —_{ Resolve the host name component "h" of the
URL "u" into a host identifier "H" using DNS

l

Hash "H" into an integer "I"

'

304 —_| Divide "I" by the number of
gueues "n" to get
remainder "r"

302—_

/306

Engueue URL
into queue "r"

308
Was queue "r"
empty ?

Yes

310 Signal any thread blocked
™ nn
on queue "r" to unblock

U.S. Patent Apr. 23, 2002 Sheet 1 of 9 US 6,377,984 B1
/\/ 100
103
114
112 \ Domain Web Page
Name Indexing
Web Servers: Service System
All Web pages
116
Network Interconnection (Switches, etc.) Ve 110
Web Crawler
104\ 102
Communications Memory
Interface 118
\ . 120
cpPu| 106 Operating System e
Internet Access Proc | /~ 122
Mux e 124
Demux e 126
128
@/ 1) Queues - 130
gooopooan Threads f 132
Gaaaaansag Table Ve
Op. Interface
~~108 i

FIG. 1

U.S. Patent Apr. 23, 2002 Sheet 2 of 9 US 6,377,984 B1

Enqueue
126 —_ DEMUX
FIFO FIFO L. FIFO
queue 0 queue 1 QL;iue
128-0 | | 128-1 1281
Y v l 7
MUX ~— 124
v
Dequeue

FIG. 2

U.S. Patent Apr. 23, 2002 Sheet 3 of 9 US 6,377,984 B1

A thread discovers a new URL "u"
300 —_ | having a host name component "h"

'

Resolve the host name component "h" of the
URL "u" into a host identifier "H" using DNS

'

Hash "H" into an integer "["

!

304 —__| Divide "I" by the number of

queues "n" to get
remainder "r"

l [306

Enqueue URL
into queue "r"

301 —_|

302—_

308 —_

Was queue "r"
empty ?

Return

Yes

310 Signal any thread blocked
on queue "r" to unblock

FIG. 3A

U.S. Patent Apr. 23, 2002 Sheet 4 of 9 US 6,377,984 B1

s 334

Process URL at top of Queue "i";
Dequeue URL from Queue "i*;

Start

330

Queue "i" empty ?

Block until signaled that queue |—»

"i" is not empty

FI1G. 3B

U.S. Patent Apr. 23, 2002 Sheet 5 of 9 US 6,377,984 B1

Enqueue
402 —_| main
FIFO
queue
404 __ DEMUX
FIFO FIFO FIFO
queue queue queue
O 1 s o o n‘1
406-0 406-1 406-n
Y v l Y
MUX —~—
408
Dequeue

FIG. 4A

U.S. Patent

410

Apr. 23, 2002 Sheet 6 of 9

US 6,377,984 Bl

—— 406

TABLE
HOST QUEUES
IDENTIFIERS
A 0
B 1
C 2
H n-1
FI1G. 4B

U.S. Patent Apr. 23,2002

Sheet 7 of 9

US 6,377,984 Bl

Enqueue

Thread finds a new URL "u,"
and extracts the host name
component "h" of the URL

o

[™— 500

l

Resolve the host name
component "h" of URL

u

into
a host identifier "H" using DNS

[™— 502

504

Main FIFO
queue empty?

Does the Table

contain an entry <H, i>
2

Yes

506
4

Enqueue URL "u" in
main FIFO queue &
Return

510
e

Enqueue URL "u" into
queue "I" & Return

f 514
512 L1 | B
Enqueue "u" into
Is there an empty 'main FIFO queue
queue 'j"? & Return
Add <H, j> to Table; —— 516
Enqueue "u" in queue "j";
Signal the thread for queue "j" to unblock;
Return

FIG.

5

U.S. Patent Apr. 23, 2002 Sheet 8 of 9 US 6,377,984 B1

Dequeue

f\/ 530

Processing related to URL at
head of queue "i" (Fig. 6B)

A
Prepareto | -
Consume URL i
540
S No
Queue "i" empty ? >
Unblock

~ 542

Remove Table entry for queue "i"

544 546
Yes /

Block on

Main queue empty ?
queue "i

Remove head URL "u" from [—~_ 548
main FIFO queue

¢ s 550

Resolve the host name component "h" of
URL "u" into a host identifier "H" using DNS

556
/

Add <H,i> to Table;

Enqueue "u" in

queue "i

Does the Table contain
an entry <H, j> ?

Yes

Enquelﬂg URL "u"into [~ 554
queue "]

FIG. 6A

U.S. Patent Apr. 23, 2002 Sheet 9 of 9 US 6,377,984 B1

. 560

Download document whose
URL is at head of Queue "i"

I 562
Dequeue URL from Queue "i";
¢ 564

|ldentify and process URL'’s in document
(See Fig. 5)

¢ 566

Execute other procedures on document.

FIG. 6B

US 6,377,984 B1

1

WEB CRAWLER SYSTEM USING
PARALLEL QUEUES FOR QUEING DATA
SETS HAVING COMMON ADDRESS AND
CONCURRENTLY DOWNLOADING DATA
ASSOCIATED WITH DATA SET IN EACH

QUEUE

The present invention relates to a system and method for
accessing documents, called web pages, on the world wide
web (WWW) and, more particularly, to a method for sched-
uling web crawlers to efficiently download web pages from
the world wide web.

BACKGROUND OF THE INVENTION

Documents on interconnected computer networks are
typically stored on numerous host computers that are con-
nected over the networks. For example, so-called “web
pages” are stored on the global computer network known as
the Internet, which includes the world wide web. Each web
page on the world wide web has a distinct address called its
uniform resource locator (URL), which identifies the loca-
tion of the web page. Most of the documents on the world
wide web are written in standard document description
languages (e.g., HTML, XML). These languages allow an
author of a document to create hypertext links to other
documents. Hypertext links allow a reader of a web page to
quickly move to other web pages by clicking on their
respective links. These links are typically highlighted in the
original web page. A web page containing hypertext links to
other web pages generally refers to those pages by their
URL’s. Links in a web page may refer to web pages that are
stored in the same or different host computers.

A web crawler is a program that automatically finds and
downloads documents from host computers in networks
such as the world wide web. When a web crawler is given
a set of starting URL’s, the web crawler downloads the
corresponding documents, then the web crawler extracts any
URL’s contained in those downloaded documents and
downloads more documents using the newly discovered
URL’s. This process repeats indefinitely or until a predeter-
mined stop condition occurs. As of 1999 there were approxi-
mately 500 million web pages on the world wide web and
the number is continuously growing; thus, web crawlers
need efficient data structures to keep track of downloaded
documents and any discovered addresses of documents to be
downloaded. One common data structure to keep track of
addresses of documents to be downloaded is a first-in-
first-out (FIFO) queue. Using FIFO queues, URL’s are
enqueued as they are discovered, and dequeued in the order
enqueued when the crawler needs a new URL to download.

A high-performance web crawler typically has the capa-
bility to download multiple documents in parallel, either by
using asynchronous I/O or multiple threads. A thread is an
abstraction for an execution entity within a running com-
puter program. When a running computer program is com-
posed of more than one thread, the program is said to be
“multi-threaded.” The threads of a multi-threaded program
run in parallel and share the same memory space, but each
thread in a multi-threaded program executes independently
of the others. Each thread in a multi-threaded program has
its own program counter and stack.

Discovered URL’s from any particular web page often
tend to refer to documents located on the same host com-
puter. Therefore, if a FIFO queue is used by a web crawler
to store those discovered URL’s, sequentially dequeued
URL’s could cause multiple parallel requests to the same

10

15

30

35

40

45

50

55

60

65

2

host computer. Sending multiple parallel requests to the
same host computer may overload the host, diminishing its
responsiveness to page requests, or may even cause the host
to crash, either of which may create a bottleneck in the web
crawl and reduce the crawler’s effective parallel processing.

Examples of known prior art methods aimed at preventing
the issuance of multiple parallel requests to one host com-
puter include the Internet Archive web crawler and the
Scooter web crawler used by AltaVista.

The Internet Archive crawler keeps a separate FIFO queue
per web host. During a crawling process, 64 FIFO queues
are selected and assigned to the process. The 64 queues are
processed in parallel with the crawler dequeuing one URL at
a time from each queue and downloading the corresponding
document. This process ensures that no more than one URL
from each queue is downloaded at a time and that the
crawler makes at most one request to each host computer at
a time. The FIFO queues in the Internet Archive web crawler
have a one-to-one correspondence with the number of web
hosts on the Internet; therefore, this approach requires a
staggering number of queues, easily several million.
However, this approach only processes 64 queues at a time;
thus, not only are millions of queues sitting idle, this process
also puts a prolonged load on a small fraction of the
Internet’s web hosts.

The Scooter web crawler used by AltaVista uses a differ-
ent approach. Scooter keeps a first list of URL’s of web
pages to be downloaded, and a second list of host computers
from which downloads are in progress. Newly discovered
URL’s are added to the end of the first list. To locate a new
URL to download, Scooter compares items in the first list
with the second list until it finds a URL whose host computer
is not in the second list. Scooter then removes that URL from
the first list, updates the second list, and downloads the
corresponding document. One of the disadvantages of this
approach is the time wasted scanning through the first list of
URL’s each time a thread in the crawler is ready to perform
a download.

This present invention provides more efficient web page
downloading methods that avoid certain of the disadvan-
tages and inefficiencies in the prior art methods.

SUMMARY OF THE INVENTION

The present invention provides a method and system for
downloading data sets from among a plurality of host
computers.

A given set of web pages typically contains addresses or
URL’s of one or more other web pages. Each address or
URL typically includes a host address indicating the host
computer of the particular web page. Addresses or URL’s
discovered during the process of downloading data sets are
enqueued into a number of queues based on predetermined
policies.

In this invention, a web crawler may have multiple
first-in-first-out (FIFO) queues and use multiple threads to
dequeue from those queues and to download documents
from the world wide web. Each queue is assigned a single,
fixed thread that dequeues URL’s from that queue until it
becomes empty. While a thread dequeues URL’s from its
assigned queue, it also enqueues any URL’s discovered
during the course of processing downloaded documents. In
the exemplary embodiments, all URL’s with the same host
component are enqueued in the same queue. As a result,
when all the threads are dequeuing in parallel from each of
their respectively assigned queues, no more than one request
to one host computer is made at the same time.

US 6,377,984 B1

3

In a first exemplary embodiment, when a thread discovers
a new URL (i.e., in a document it has downloaded from a
web site), a numerical function is performed on the URL’s
host component to determine the queue in which to enqueue
the new URL. Each queue may contain URL’s referring to
documents stored on different host computers; however, as
stated previously, URL’s referring to documents stored on
the same host computer are always enqueued into the same
queue.

In a second exemplary embodiment, the mechanism for
enqueuing URL’s is based on a dynamic assignment of hosts
to queues. When a new URL is discovered, the new URL is
generally first enqueued into a main FIFO queue, and is later
enqueued into one of the underlying FIFO queues based on
the dynamic assignment of hosts to queues. However, if the
main queue is empty, the new URL may be directly
enqueued into one of the underlying queues. In this
embodiment, not only are all URL’s having the same host
component enqueued into the same underlying queue, but all
URL’s in any particular one of the underlying queues have
the same host component.

In the second exemplary embodiment, in which hosts are
dynamically assigned to queues, when one of the underlying
queues becomes empty, a different host may be assigned to
it. For example, when a queue becomes empty, the empty
queue’s corresponding thread begins enqueuing URL’s from
the main queue into the underlying queues until the thread
finds a URL whose corresponding host is not yet assigned to
any underlying queue. The host of the new URL is assigned
to the empty queue, and the new URL is enqueued into that
queue in accordance with the new assignment. If the main
queue becomes empty, the thread becomes idle and is
blocked.

Both embodiments allow for the case where there are
more queues than threads, in which case some threads will
be assigned to dequeue from a set of multiple queues. In
such embodiments, each thread dequeues URL’s from each
of its assigned queues until each of those queues becomes
empty.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a distributed computer
system illustrating an exemplary embodiment of the inven-
tion.

FIG. 2 is a block diagram illustrating an exemplary
embodiment of the invention.

FIGS. 3A and 3B are flow charts depicting a first exem-
plary embodiment of the invention.

FIG. 4A is a block diagram of an exemplary embodiment
of the invention.

FIG. 4B is a table illustrating an exemplary embodiment
in more detail.

FIGS. 5, 6A and 6B are flow charts depicting a second
exemplary embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 shows an exemplary embodiment of a distributed
computer system 100. The distributed computer system 100
includes a web crawler 102 connected to a network 103
through a network interconnection 110. The network 103
may be a global communication network, such as the
Internet, or a private network, sometimes called an Intranet.
Examples of the network interconnection 110 include
switches, routers, etc.

10

15

20

25

30

35

40

45

50

60

65

4

The Internet network 103 includes web servers 112 and a
service known as a domain name system 114. It may also
optionally include a web page indexing system 116. The web
servers 112 store web pages. The domain name system 114
is a distributed database that provides the mapping between
Internet protocol (IP) addresses and hostnames. The domain
name system 114 is a distributed system because no single
site on the Internet has the domain name mapping informa-
tion for all the web servers in the network. Each site
participating in the domain name system 114 maintains its
own database of information and runs a server program that
other systems across the Internet can query. The domain
name system provides the protocol that allows clients and
servers to communicate with each other. Any application
may look up the IP address (or addresses) corresponding to
a given hostname or the hostname corresponding to a given
IP address in the domain name system 114. An application
accesses the domain name system 114 through a resolver.
The resolver contacts one or more name servers to perform
a mapping of a hostname to the corresponding IP address, or
vice versa. A given hostname may be associated with more
than one IP address because an Internet host may have
multiple interfaces, with each interface of the host having a
unique IP address. Also, a host may be replicated on multiple
computers, each having its own IP address, but providing
access to the same information.
The web page indexing system 116 includes an index of
words used on the world wide web and addresses of the web
pages that use each word. Such indexing systems are main-
tained by various search engines, such as the AltaVista
search engine. The domain name system 114 and the web
page indexing system 116 may be accessed by the web
crawler 102 in the process of downloading web pages from
the world wide web.
The web crawler 102 includes a communications interface
104, one or more central processing units (CPU’s) 106, an
operator interface 108 (which may be remotely located on
another computer) and memory 118. In the preferred
embodiment, the communications interface 104 is able to
handle overlapping communication requests. The memory
118 includes:
a multitasking operating system 120;
an Internet access procedure 122 for fetching web pages
as well as communicating with the domain name sys-
tem 114;

a multiplexer (mux) procedure 124 used by threads 130
for dequeuing URL’s from the queues 128;

a demultiplexer (demux) procedure 126 used by the
threads for enqueuing URL’s on the queues 128;

queues 128 for storing addresses of web pages to be
downloaded;
threads 130 for downloading web pages from the servers
112, and processing the downloaded web pages; and

a host-to-queue assignment table 132 for recording
dynamic assignments of host identifiers to the queues
128.

In a first embodiment the assignment table 132 is not used
at all. In a second embodiment, the host-to-queue assign-
ment table 132 is both used and updated by the demux and
mux procedures 126, 124.

Given a set of URL’s, the web crawler 102 enqueues the
URL’s into appropriate queues 128. Multiple threads 130
are used to dequeue URL’s out of the queues 128, to
download the corresponding documents or web pages from
the world wide web and to extract any new URL’s from the
downloaded documents. Any new URL’s are enqueued into

US 6,377,984 B1

5

the queues 128. This process repeats indefinitely or until a
predetermined stop condition occurs, such as when all
URL’s in the queues have been processed and thus all the
queues are empty. In continuous web crawler embodiments,
there is no such stop condition. Multiple threads 130 are
used to simultaneously enqueue and dequeue URL’s from
multiple queues 128. During the described process, the
operating system 120 executes an Internet access procedure
122 to access the Internet through the communications
interface 104.

FIG. 2 illustrates the relationships between a set of “n”
first-in-first-out (FIFO) queues 128 and the demux and mux
procedures 126, 124 in a first exemplary embodiment of the
present invention. When a new URL is discovered, the new
URL is passed to the demux 126. The demux 126 enqueues
the new URL into an appropriate queue based on a prede-
termined policy. In particular, URL’s having the same
associated host component are enqueued into the same
queue. (Note that since there are typically many more hosts
than queues, the URL’s in any given queue will in general
correspond to documents on a variety of hosts.) When a
thread 130 is ready to dequeue from one of the queues 128,
the head URL in the queue assigned to that thread is
dequeued from that queue by the mux 124 and is passed to
the thread for processing.

FIG. 3Ais a flow chart illustrating the process, in the first
exemplary embodiment of the present invention, for enqueu-
ing URL’s into a set of “n” queues using a set of “n” threads.
In this exemplary process, both the threads and queues are
identified by numerical ID’s. For example, when the thread
with ID “i” invokes the “dequeue” operation, the first item
of the underlying queue “i” is dequeued and returned. A
thread discovers a new URL “u” having a host name
component “h” during the course of downloading web pages
(step 300). The host name component “h” of the URL “u” is
resolved into a host identifier “H” using the domain name
system 114 (step 301). The resolved host identifier is pref-
erably a canonical name or a canonical IP address for the
host. Step 301 maps all the host names associated with an
Internet host to the same host identifier. Without step 301,
the URL’s associated with a single host might be assigned
to multiple queues. That could cause the web crawler to
submit multiple overlapping download requests to the host,
which would violate one of the principle goals of this
invention.

The host identifier “H” of the new URL “u” is mapped
into a queue identifier “r” using a suitable numerical func-
tion. For example, in one preferred implementation a fin-
gerprint function is used to hash the host identifier “H” into
an integer “I” (step 302). The integer “I” is divided by the
number of queues in the system, such as “n”, to get a
remainder “r” between 0 and n-1 (step 304). In other words,
r is set equal to the fingerprint of H modulo n. Examples of
other possible numerical functions that could be used to map
the host identifier into a queue identifier are checksum and
hash functions.

Having selected queue “r,” the new URL “u” is enqueued
into queue “r” (step 306). If queue “r” was empty immedi-
ately before the new URL “u” was enqueued on it, (308-
Yes), then the system signals any thread blocked on queue
“r”” to unblock (step 310) and returns. If queue “r” was not
empty (308-No), the procedure simply returns.

Referring to FIG. 3B, each thread of the web crawler
processes the URL’s in one queue. More specifically, the
thread checks to see if its associated queue is empty (330).
If so, it blocks until it is signaled by another thread that there
is at least one URL in the queue (332). It then downloads and

10

15

20

25

30

35

40

45

50

55

60

65

6

processes the web page identified by the head URL in the
queue, and then dequeues the URL for the downloaded web
page so as to remove it from the queue (334). This process
repeats until the web crawl completes.

FIG. 4A illustrates a second embodiment of the present
invention. In this embodiment, there is a main FIFO queue
402, a demultiplexer procedure (demux) 404, “n” FIFO
queues 406 and a multiplexer procedure (mux) 408. When a
new URL is discovered, it is typically enqueued in the main
FIFO queue 402. However, if the main FIFO queue 402 is
empty, the new URL is not necessarily stored in the main
FIFO queue 402; instead, it may be enqueued in one of the
queues 406 by the demux 404. The demux 404 dynamically
enqueues the new URL in an appropriate queue 406 accord-
ing to a host-to-queue assignment table 132, based on the
host identifier of the new URL. The host-to-queue assign-
ment table 132 is used to guarantee that each queue is
homogenous, i.e., that each queue contains URL’s having
the same host name component. When a thread is ready to
dequeue a URL from a queue 406 the head URL in a queue
assigned to the thread passes through the mux 408 and is
dequeued from the queue. The corresponding web page of
the dequeued URL is downloaded and processed. Subse-
quent to downloading the web page, the thread requests the
next URL in the queue assigned to that thread.

FIG. 4B illustrates an exemplary embodiment of the
host-to-queue assignment table 132. The host-to-queue
assignment table 132 is updated when a host identifier is
assigned to a queue or when the association of a host
identifier is removed from a queue. Each queue may be
dynamically reassigned to a new host identifier after all
URL’s in the queue have been processed. The operations
that must be supported by on the table 132 are: 1) return the
identifier of the queue associated with a given host (or an
error value if there is none), 2) add a <host,queue identifier>
pair to the table, and 3) remove the <host,queue identifier>
pair in the table for a given queue identifier.

FIGS. 5 and 6 are flow charts of the second exemplary
embodiment of the present invention. In particular, the flow
chart in FIG. 5 illustrates the enqueue operation, correspond-
ing to the demux procedure 404 shown in FIG. 4A, which is
the procedure used by each of the threads to store new
URL’s discovered while processing downloaded web pages.
In the following explanations, threads and queues are both
identified by numerical ID’s. For example, when the thread
with ID “i” invokes the “dequeue” operation, the first item
of the underlying queue “i” is dequeued and processed.

Referring to FIG. 5, while processing a downloaded web
page, a thread will determine whether the URL in each link
in the page is a known URIL, which has already been
enqueued and/or processed by the web crawler, or a new
URL, which has not yet been enqueued or processed by the
web crawler. When a thread discovers a new URL “u,” it
extracts the host name component “h” from the URL (step
500). The host name component “h” of the URL “u” is
resolved into a host identifier “H” using the domain name
system 114 (step 502). The thread then determines whether
the main FIFO queue 402 is empty (step 504). If the main
FIFO queue 402 is not empty, the URL “u” is enqueued into
the main FIFO queue 402 (step 506) and then the enqueue
procedure exits. The process for moving URL’s from the
main FIFO queue into the underlying queues is described
later.

If the main FIFO queue 402 is empty (504-Yes), the
thread searches the table 132 for an entry assigning “H” to
any of the queues (step 508). If such an entry is found, the
new URL “u” is enqueued into the queue “i” to which host

US 6,377,984 B1

7

address “H” is assigned, and the thread returns (step 510). If
such an entry does not exist, the thread searches for an empty
queue “j” (step 512). If there is no empty queue, the URL
“u” is enqueued into the main FIFO queue 402 and the
thread returns (step 514). If an empty queue “j” is found,
“H” 1s assigned to queue “j”, table 132 is updated with the
new assignment, the URL “u” is enqueued into the queue
“1”, any thread blocked on queue “j” is signaled that the
queue is no longer empty, and the thread returns (step 516).

FIGS. 6A and 6B contain a flow chart of the “consume
URL?” procedure performed by each thread in the exemplary
embodiment to dequeue and process the URL’s in the
queues. This procedure corresponds to the mux procedure
408 shown in FIG. 4A. As part of this procedure, a thread
moves URL’s from the main queue to the underlying queues
whenever the queue assigned to the thread becomes empty,
because all the URL’s in the queue have been processed and
dequeued. The procedure shown in FIGS. 6A and 6B is
performed continuously by each of the “n” threads of the
web crawler. The enqueue procedure, discussed above and
shown in FIG. §, is performed while processing a down-
loaded web page (see step 564 of FIG. 6B).

The “consume URL” procedure has two main portions, a
“prepare to consume” stage, which makes sure that the
underlying queue “i” for thread “i” has at least one URL to
process, and a URL processing and dequeuing stage. The
prepare to consume stage of the procedure begins by check-
ing whether queue “i,” which is the queue associated with a
particular thread, is empty (step 540). If the queue is not
empty, the prepare to consume stage is completed, and the
URL at the head of queue “i” is processed (530). In
particular, referring to FIG. 6B, the web page for the URL
is downloaded (560), and upon successful downloading the
URL is dequeued, and thus removed, from queue “i” (562).
The thread determines if the downloaded page includes
URL’s not previously encountered by the web crawler, and
enqueues those URL’s using the procedure described above
(564). The downloaded page may also be processed by
additional applications (566), such as a document indexer.

If queue “i” is empty (540-Yes), thread “i” removes the
Table entry for queue “i” because there is no longer a host
associated with queue “i” (step 542), and then checks to see
if the main FIFO queue 402 is empty (544). If the main FIFO
queue 402 is empty (544-Yes), the thread blocks until it
receives a signal that queue “i” is no longer empty (546).
Once the thread has been signaled and thereby unblocked,
the thread returns to step 530 to process the URL at the head
of queue “i.”

If the main FIFO queue 402 is not empty (544-No), the
head URL “u” in the main FIFO queue 402 is removed (step
548). The host name “h” of the URL “u” is resolved into a
host identifier “H” using the domain name system 114 (step
550). If there is an entry in the host-to-queue assignment
table 132 (FIG. 4B) such that “H” is the assigned host
identifier for a queue “j” (step 552), the URL “u” is
enqueued into the queue “j” (step 554) and the thread goes
back to step 544 to process the next URL (if any) in the main
FIFO. If there is not an entry in the table 132 that maps host
identifier “H” to a queue “j” (552-No), “H” is assigned to
queue “i” (step 556). In particular, the table 132 is updated
with the new assignment and the URL “u” is enqueued into
queue “i” (556). The thread returns to step 530 to process the
head URL in queue “i.”

In the first exemplary embodiment, when crawling in a
network with a relatively small number of host computers,
such as in an Intranet, some queues may be empty while
other queues may contain URL’s for multiple server hosts.

10

15

20

25

35

40

45

50

55

60

65

8

Thus, in the first embodiment, parallelism may not be
efficiently maintained, since the threads associated with the
empty queues will be idle. The second embodiment
described makes better use of thread capacity, on average, by
dynamically reassigning queues to whichever hosts have
pages that need processing.

Both the first and second exemplary embodiments can be
modified so as to utilize more queues than threads. In these
modified embodiments, there is still a single, fixed thread
assigned to dequeue from each queue, but because there are
more queues than threads, each thread will dequeue from a
plurality of queues. In such cases, a variety of policies can
be used to control the order in which each thread dequeues
from its assigned queues. For example, each thread could
process its queues in round-robin order, or each thread could
dequeue from the first non-empty queue in its assigned
queue set.

The foregoing examples illustrate certain exemplary
embodiments of the invention from which other
embodiments, variations and modifications will be apparent
to those skilled in the art. The invention should therefore not
be limited to the particular exemplary embodiments dis-
cussed herein, but rather defined by the claims appended
hereto.

What is claimed is:

1. A method of downloading data sets from among a
plurality of host computers, comprising:

(a) obtaining at least one referring data set that includes
addresses of one or more referred data sets; each
referred data set address including a host address, the
host address comprising a network address of a respec-
tive host computer of the plurality of host computers;

(b) enqueuing the referred data set addresses in a plurality
of queues, including enqueuing those of the referred
data set addresses sharing a respective common host
address into a respective common one of the queues;

(¢) from each of the queues, dequeuing a single, respec-
tive referred data set address; and

(d) substantially concurrently downloading the referred
data sets corresponding to the dequeued referred data
set addresses from locations in the host computers
specified by the dequeued referred data set addresses,
the host address included in each dequeued referred
data set address comprising the network address of the
respective host computer from which the respective
referred data set is to be downloaded;

(e) repeating steps (c) and (d) with respect to any one of
the queues only after the referred data set correspond-
ing to the dequeued referred data set address from the
one queue has been downloaded;

whereby referred data sets corresponding to referred data
set addresses from different ones of the queues are
downloaded substantially concurrently, while referred
data sets corresponding to referred data set addresses
from any single one of the queues are downloaded one
at a time.

2. The method of claim 1, further comprising:

establishing a plurality of threads; and

associating with each respective queue a single one of the
threads for processing the referred data set addresses
enqueued in that queue;

wherein, the method includes processing each respective
queue, including said dequeuing and downloading
steps, using the one thread associated therewith.

3. The method of claim 2, further comprising performing

at least one processing function on each downloaded
referred data set;

US 6,377,984 B1

9

wherein said repeating step (¢) comprises repeating said
dequeuing, downloading and processing steps with
respect to any one of the queues only after the referred
data set corresponding to the dequeued referred data set
address from the one queue has been downloaded and
processed.

4. The method of claim 2, wherein there are at least as

many queues as threads.

5. The method of claim 1, further comprising iteratively
downloading additional data sets by:

(i) using at least one of the downloaded referred data sets

of step (d) as a new referring data set for step (a); and

(ii) repeating steps (a) through (d).

6. The method of claim 5, wherein the data sets include
web pages and the data set addresses include uniform
resource locators.

7. The method of claim 6, wherein each of the queues is
a first-in-first-out queue.

8. The method of claim 1, wherein the data sets include
web pages and the data set addresses include uniform
resource locators.

9. The method of claim 1, wherein said step (b) of
enqueuing the referred data set addresses includes:

(b1) calculating a fingerprint for each referred data set
address based on at least part of the host address
included in the referred data set address, such that the
fingerprints calculated for all referred data set addresses
having a same host address are identical; and

(b2) associating the address with one of the queues based
on the fingerprint.

10. The method of claim 9, wherein:

(i) the plurality of queues comprises N queues, each of the
queues having an associated numerical identifier; and

(ii) step (b2) includes assigning each referred data set
address to the queue having a numerical identifier equal
to the referred data set address fingerprint modulo N.

11. The method of claim 1, where step (b) includes:

(b1) enqueuing the referred data set addresses into a main
queue;

(b2) dynamically assigning a host to each of said plurality
of queues;

(b3) enqueuing said referred data set addresses from said
main queue into said queues according to said assign-
ment; and

(b4) assigning a new host any one of said plurality of
queues when said one queue becomes empty.

12. The method of claim 1, wherein when one of the
queues is empty, the associated thread is blocked until
additional referred data set addresses are enqueued in said
one queue.

13. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com-
puter program mechanism comprising:

an enqueuing module that, when executed by the com-
puter system, obtains at least one referring data set that
includes addresses of one or more referred data sets,
each referred data set address including a host address
corresponding to a host computer, and enqueues the
referred data set addresses in a plurality of queues,
including enqueuing those of the referred data set
addresses sharing a respective common host address
into a respective common one of the queues, the host
address comprising a network address of a respective
host computer of the plurality of host computers; and

10

15

20

25

30

40

45

50

55

60

65

10

a dequeuing module that, when executed by a set of
threads of the computer system, processes the referred
data set addresses in each of the queues; the dequeuing
module including instructions that, when executed by a
respective one of the threads, perform the functions of
identifying a single referred data set address in a
corresponding respective one of the queues, download-
ing the single referred data set corresponding to the
identified referred data set address from a location in a
host computer specified by the identified referred data
set address, dequeuing the referred data set address
from the corresponding respective one of the queues,
and repeating the downloading and dequeuing func-
tions with respect to a next referred data set address in
the one queue only after the downloading of the single
referred data set and the dequeuing of the single
referred data set address have been completed;

whereby referred data sets corresponding to referred data
set addresses from different ones of the queues are
downloaded substantially concurrently, while referred
data sets corresponding to referred data set addresses
from any single one of the queues are downloaded one
at a time.

14. The computer program product of claim 13, wherein
the dequeuing module associates each respective queue with
a single one of the threads for processing the referred data
set addresses enqueued in that queue.

15. The computer program product of claim 14, wherein
the dequeuing module includes instructions for initiating at
least one processing function on each downloaded referred
data set, and instructions for repeating the downloading,
dequeuing and processing functions with respect to said next
referred data set address in the one queue only after the
referred data set corresponding to the dequeued referred data
set address from the one queue has been downloaded and
processed.

16. The computer program product of claim 14, wherein
there are at least as many queues as threads.

17. The computer program product of claim 13, wherein
said enqueuing module is configured to use at least one of
the downloaded referred data sets as a new referring data set.

18. The computer program product of claim 17, the data
sets include web pages and the data set addresses include
uniform resource locators.

19. The computer program product of claim 18, wherein
each of the queues is a first-in-first-out queue.

20. The computer program product of claim 13, wherein
the data sets include web pages and the data set addresses
include uniform resource locators.

21. The computer program product of claim 13, wherein
said enqueuing module includes instructions for calculating
a fingerprint for each referred data set address based on at
least part of the host address included in the referred data set
address, such that the fingerprints calculated for all referred
data set addresses having a same host address are identical,
and associating the referred data set address with one of the
queues based on the fingerprint.

22. The computer program product of claim 21, wherein

the plurality of queues comprises N queues, each of the
queues having an associated numerical identifier; and

said enqueuing module assigns each referred data set
address to the queue having a numerical identifier equal
to the referred data set address fingerprint modulo N.

23. The computer program product of claim 13, wherein
the enqueuing module enqueues the referred data set
addresses into a main queue, dynamically assigns a host to
each of said plurality of queues; enqueuing said referred data

US 6,377,984 B1

11

set addresses from said main queue into said queues accord-
ing to said assignment; and assigns a new host any one of
said plurality of queues when said one queue becomes
empty.

24. The computer program product of claim 13, wherein
the dequeuing module includes instructions for blocking
execution of the thread associated with one of the queues
when the one queue is empty until additional referred data
set addresses are enqueued in said one queue.

25. A web crawler for downloading data sets from among
a plurality of host computers, comprising:

at least one central processing unit;

a plurality of threads of execution that are executed by the
at least one central processing unit;

memory for storing a plurality of queues;

an enqueuing module, executed by each of the plurality of
threads, that obtains at least one referring data set that
includes addresses of one or more referred data sets,
each referred data set address including a host address
corresponding to a host computer, and enqueues the
referred data set addresses in the plurality of queues,
including enqueuing those of the referred data set
addresses sharing a respective common host address
into a respective common one of the queues, the host
address comprising a network address of a respective
host computer of the plurality of host computers; and

a dequeuing module, that when executed by the plurality
of threads, processes the referred data set addresses in
each of the queues; the dequeuing module including
instructions that, when executed by a respective one of
the threads, perform the functions of identifying a
single referred data set address in a corresponding
respective one of the queues, downloading the single
referred data set corresponding to the identified referred
data set address from a location in a host computer
specified by the identified referred data set address,
dequeuing the referred data set address from the cor-
responding respective one of the queues, and repeating
the downloading and dequeuing functions with respect
to a next referred data set address in the one queue only
after the downloading of the single referred data set and
the dequeuing of the single referred data set address
have been completed;

whereby referred data sets corresponding to referred data
set addresses from different ones of the queues are
downloaded substantially concurrently, while referred
data sets corresponding to referred data set addresses
from any single one of the queues are downloaded one

at a time.
26. The web crawler of claim 25, wherein the dequeuing
module associates each respective queue with a single one of

10

15

20

25

30

35

40

45

50

12

the threads for processing the referred data set addresses
enqueued in that queue.

27. The web crawler of claim 26, wherein the dequeuing
module includes instructions for initiating at least one pro-
cessing function on each downloaded referred data set, and
instructions for repeating the downloading, dequeuing and
processing functions with respect to said next referred data
set address in the one queue only after the referred data set
corresponding to the dequeued referred data set address
from the one queue has been downloaded and processed.

28. The web crawler of claim 27, wherein there are at least
as many queues as threads.

29. The web crawler of claim 25, wherein said enqueuing
module is configured to use at least one of the downloaded
referred data sets as a new referring data set.

30. The web crawler of claim 25, wherein the data sets
include web pages and the data set addresses include uni-
form resource locators.

31. The web crawler of claim 30, wherein each of the
queues is a first-in-first-out queue.

32. The web crawler of claim 25, wherein the data sets
include web pages and the data set addresses include uni-
form resource locators.

33. The web crawler of claim 25, wherein said enqueuing
module includes instructions for calculating a fingerprint for
each referred data set address based on at least part of the
host address included in the referred data set address, such
that the fingerprints calculated for all referred data set
addresses having a same host address are identical, and
associating the address with one of the queues based on the
fingerprint.

34. The web crawler of claim 33, wherein

the plurality of queues comprises N queues, each of the

queues having an associated numerical identifier; and
said enqueuing module assigns each referred data set
address to the queue having a numerical identifier equal
to the referred data set address fingerprint modulo N.

35. The web crawler of claim 25, wherein the enqueuing
module enqueues the referred data set addresses into a main
queue, dynamically assigns a host to each of said plurality
of queues; enqueuing said referred data set addresses from
said main queue into said queues according to said assign-
ment; and assigns a new host any one of said plurality of
queues when said one queue becomes empty.

36. The web crawler of claim 25, wherein the dequeuing
module includes instructions for blocking execution of the
thread associated with one of the queues when the one queue
is empty until additional referred data set addresses are
enqueued in said one queue.

#* #* #* #* #*

