
111
US006351755Bl

(12) United States Patent
Najork et al.

(10) Patent No.:
(45) Date of Patent:

US 6,351,755 Bl
Feb. 26,2002

Primary Examiner---8tephen S. Hong
(74) Attorney, Agent, or Firm-Pennie & Edmonds LLP

(54) SYSTEM AND METHOD FOR ASSOCIATING
AN EXTENSIBLE SET OF DATA WITH
DOCUMENTS DOWNLOADED BY A WEB
CRAWLER (57) ABSTRACT

5,748,954 A * 5/1998 Mauldin 707/10
5,832,494 A * 11/1998 Egger et al. 707/102
5,875,446 A * 2/1999 Brown et al. 707/3
5,944,783 A * 8/1999 Nieten 709/202
6,006,217 A * 12/1999 Lumsden 707/2
6,038,610 A * 3/2000 Belfiore et al. 709/300
6,094,649 A * 7/2000 Bowen et al. 707/3
6,145,003 A * 11/2000 Sanu et al. 709/225

* cited by examiner

Notice:

(75)

(73)

(*)

(21)

(22)

(51)
(52)
(58)

(56)

Inventors: Marc Alexander Najork, Palo Alto;
Clark Allan Heydon, San Francisco,
both of CA (US)

Assignee: Alta Vista Company, Palo Alto, CA
(US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

Appl. No.: 09/433,006

Filed: Nov. 2, 1999

Int. CI? G06F 17/21
U.S. CI. 707/501.1; 707/513
Field of Search 707/3,4,5, 102,

707/501, 513

References Cited

U.S. PATENT DOCUMENTS

A web crawler downloads documents from among a plural
ity of host computers. The web crawler enqueues document
addresses in a data structure called the Frontier. The Frontier
generally includes a set of queues, with all document
addresses sharing a respective common host component
being stored in a respective common one of the queues.
Multiple threads substantially concurrently process the
document addresses in the queues. The web crawler includes
a set of tools for storing an extensible set of data with each
document address in the Frontier. These tools enable the
applications to which the web crawler passes downloaded
documents to store a record of information associated with
each download, where each record of information includes
an extensible set of name/value pairs specified by the
applications. The applications also determine how many
records of information to retain for each document, when to
delete records of information, and so on. In another aspect
of the present invention, the Frontier include a set of parallel
"priority queues," each associated with a distinct priority
level. Queue elements for documents to be downloaded are
assigned a priority level, and then stored in the correspond
ing priority queue. Queue elements are then distributed from
the priority queues to a set of underlying queues in accor
dance with their relative priorities. The threads then process
the queue elements in the underlying queues.

29 Claims, 12 Drawing Sheets

Download document whose URL is at head of selected Queue;
Measure download time;

Dequeue

rJ
200

202
Dequeue queue element from Queue "i":
Add download history record to the queue element.

204

--------------1
206 I

,---- -'- -L-----, Supplemental I

Processing of
URUdocument I

I
I
I

I

I
I
I
I
I
I
I

-------- 1

Start

u.s. Patent Feb. 26,2002 Sheet 1 of 12 US 6,351,755 Bl

~100

112 \ 114 '"\ 116 \
103

Web Servers: Domain Name Web Page
All Web pages Sysytem Indexing System

'II- II-

,Ir 1

Network Interconnection (Switches, etc.) V 110

II-

104\
Web Crawler

,Ir Memory 102

Communications
118\

Interface Operating System V 120

V 122Internet Access Proc
106 \ 107 \

Mux V 124
IClockCPU

Demux V126

I Queues V 128

Threads V 130

Table f132

0 He)1 Heap f134

Heap Procs
f136

MraaaaalW'aoaaaaaaa f138aaaaaaaaa
Queue Element Procs

Op. Interface
URL Priority ,..1140

'--108
Determination Proc(s)
Document processing V 141
Proc(s)

name/value det & V 139
storing instructions

• • •

FIG. I

u.s. Patent Feb. 26,2002 Sheet 2 of 12 US 6,351,755 Bl

Enqueue Frontier
~

FIFO
queue 0

128-0

FIFO
queue 1

128-1

Dequeue

FIG. 2

• • •

~124

FIFO
queue

n-1

128-m-1

Queue Entry

144

146

148-1

149-1
149-2

148-2

'-- URL I ~142

""- Header: Download counter,
Download attemot counter. etc.

""- Record

"\. Name1 Value1--
"\. r- Name2 Value2

• • •
""- Record

• • •

FIG. 3

u.s. Patent Feb. 26,2002 Sheet 3 of 12 US 6,351,755 Bl

162

172

Enqueue

;cJ

A thread discovers a new URL lIUll

having a host name component lIh"

--- Resolve the host name component "h" of the
URL "u" into a host identifier "H" using DNS

1 ..

--- Hash "H" into an integer "I"

1 ..

--- Divide "I" by the number of queues
"m" to get remainder "r'l

l'
--- Enqueue a queue element for the

URL into queue "r"

,
169

Was queue "r" NO 1 Return I'--
empty? "'1

~l

Yes
.J

170 Signal any thread blocked
~ on queue fIr"~ to unblock

168

166

160

164

FIG. 4

u.s. Patent Feb. 26,2002

Start

Sheet 4 of 12 US 6,351,755 Bl

Dequeue

r-!.. ["200r

Download document whose URL is at head of selected Queue;
Measure download time;

+ /202
Dequeue queue element from Queue "i";
Add download history record to the queue element.

["204

Identify and process URL's in document (See Fig. 4) I
r------- ------------- - 1

, ["206

Execute other procedures on document. I Supplemental
Processing of
URUdocument

212\ Ir

Determine values for all
namelvalue pairs in defined record.

214\

Store determined values in new record
of queue entry for this URL.

216 \

Optional: Delete one or more records in
accordance with record deletion criteria

L ------- --------- - - - --
220", iF

+-
Add queue entry for this URL to the Frontier,
or to database of processed URL's.

FIG. 5

u.s. Patent Feb. 26,2002 Sheet 5 of 12

Enqueue

US 6,351,755 Bl

Frontier
..--'

Dequeue

Queue i FIG. 6
(Set of N priority \ -.

sub-queues) '-' ~

--- 124

• + +
Priority Priority Priority
queue queue queue

0 1 n-1

242-0 242-0 242-n-1

• • •

• t •
FIG. 7

u.s. Patent Feb. 26,2002 Sheet 6 of 12 US 6,351,755 Bl

---282

Determine download priority level "p" for URL "u"

Enqueue URL into queue "r"
168 ~

260

Download
priority level
determination
criteria List of high

priority hosts

264

270

262

Enqueue URL into sUbqueue(priority level) "p" of queue "r"

FIG.8A

Download document whose URL is at head of selected Queue;

200~

Generate random number z
Map z to subqueue priority level "p" using non-uniform
mapping weighted in accordance with the priority levels.

276
Block until signaled that
selected queue is non
empty

Yes

Select closest non-empty subqueue

280

Select and download URL at head of identified subqueue

FIG.8B

u.s. Patent Feb. 26,2002 Sheet 7 of 12 US 6,351,755 Bl

Frontier
r-/290

Enqueue
I.. Front-

298 DEMUX I End
Queue

292 ___
~ + +

Priority Priority Priority
queue queue queue

0 1 m-1

294-0 294-0 294-n-1

• • •

+ + +
I MUX 1-----302

300 Back-End
DEMUX I (Underlying)

Queues
-Ir

• + +
FIFO FIFO FIFO

queue queue • • • queue
0 1 n-1

296-0 296-1 296-m-1

+ + +
I MUX 1-----304

I•Dequeue

FIG. 9

u.s. Patent Feb. 26,2002 Sheet 8 of 12 US 6,351,755 Bl

132
~

308~

TABLE

HOST
QUEUE IDS

IDENTIFIERS ~

A 0

B 1

C 2

• • • • • •

H n-1

309

FIG. 10

136C"\ ""\

AddQueue(#,Time) I ISelectQueue(#,Time)

~ t
Ordered Set of

IQueue # IReady Time I Queues
Waiting to be

\Queue# IReady Time I Serviced
(Heap)

IQueue#
I 134~eady Time 1~135-

• • •

Ordered Set
Data Structure
13~ 136A

FIG. 11

u.s. Patent Feb. 26,2002 Sheet 9 of 12 US 6,351,755 Bl

Thread finds a new URL "u," and extracts
the host name component "h" of the URL 310

Resolve the host name component "h" of
URL "u" into a host identifier "H" using DNS 311

No Enqueue "u" into
main FIFO queue
& Return

Yes Enqueue URL "u"
into queue "i" &
Return

316

312

314

318

Enqueue URL "u" in
-:>--~ identified priority

queue &Return

Determine download priority level for URL "u"

Add <H, j> to Table; 319
Enqueue "u" in queue "j";

320

Assign next load time for queue "j" (e.g., = present time+c);
Add queue "j" to ordered set of queues waiting to be serviced;
Return

FIG. 12

u.s. Patent Feb. 26,2002 Sheet 10 of 12 US 6,351,755 Bl

326

Select ready queue with minimal time value.
(If no queue is ready, block the thread until
there is a queue that is ready.)

330

Download document whose URL is at head of Queue "i" ;
Measure download time;

Dequeue URL from Queue "i";

334

Identify and process URL's in document (See Fig. 12)

Execute other procedures on document.

Determine priority level for next download of the document.

3378
Reinsert queue element into the Frontier, in the priority
level subqueue for the determined priority level.

340

342

Add selected queue to ordered
set of queues waiting to be
serviced (e.g., Heap 134)

Determine wait time for
~-----.t

processing next URL in
selected queue.

Remove Table entry for queue "i"

FIG.13

u.s. Patent Feb. 26,2002 Sheet 11 of 12 US 6,351,755 Bl

~---.I Return to step 326 (Fig. 13)
Yes

Randomly select a priority level subqueue (Fig. 11);
Remove head ueue element from riorit ueue

356

Resolve the host name component "h" of
URL "u" into a host identifier "H" using DNS

360

No Add <H,i> to Table;
~---+l Enqueue queue

element for URL "u"
in queue "i"

'4---1 Enqueue queue element for
URL "u" into queue "j"

FIG. 14

u.s. Patent Feb. 26,2002 Sheet 12 of 12 US 6,351,755 Bl

370

Select priority queue and URL at head of selected priority queue
354 '----..

Generate random number z
Map z to subqueue priority level using non-uniform mapping
weighted in accordance with the priority levels.

Select closest non-empty subqueue

376

Select queue element at head of identified
prioritylevelsubqueue

FIG. 15

Determine download priority level for URL "u"
337A '----..

priority = fcn (data in
download history for URL)

FIG. 16

US 6,351,755 B1
2

Prioritizing Document Downloads

Every web crawler must maintain a data structure or set
of data structures reflecting the set of URL's that still must
be downloaded. In this document, that set of data structures
is called "the Frontier." The crawler repeatedly selects a
URL from the Frontier, downloads the corresponding
document, processes the downloaded document, and then
either removes the URL from the Frontier or reschedules it
for downloading again at a later time. The latter scheme is
used for so-called "continuous" web crawlers.

When selecting a URL from the Frontier, the inventors
have determined that it would often be desirable for the
crawler to preferentially select certain URL's over others so
as to maximize the quality of the information processed by
the other applications to which the web crawler passes

10

the download, whether the download was successful, the
document's size, its MIME type, the date and time it was last
modified, its expiration date and time, and a checksum of its
contents. These data can be used for a variety of purposes,

5 including, but not limited to:

passing information from one processing module to a later
processing module in a processing pipeline;

collecting statistics about the downloaded documents; and

in the context of a continuous web crawler, the collected
data can be used as a basis for determining when a
document should next be downloaded (refreshed).

After a document has been processed, its associated data
can be saved to disk and analyzed off line.

15 A continuous web crawler is one that automatically
refreshes a database of information about the pages it has
downloaded. A web page can have an assigned or purported
expiration date and time, which indicates when the page
should be assumed to be no longer valid. Furthermore, a web

20 crawler can be configured to assume that certain types of
pages, such as pages on certain types of web sites, cannot be
valid for more that a particular length of time. Thus, pages
on a news web site might be assumed to be valid for only a
few hours, while pages of an online encyclopedia might be

25 assumed to be valid for a much longer time, such as month.
In the context of a continuous web crawler, it may be

advantageous to record not only the data associated with a
document's most recent download, but also with its previous
downloads. How complete a document download history to

30 keep may vary depending on the user's requirements.
The Scooter (a trademark of AltaVista Company) web

crawler saves a fixed set of data for each document it
discovers and downloads, namely, the document's URL, the
number of attempts that have been made to download it, the

35 date and time of the last download attempt, the HTTP status
code of the last download, and the document's last modifi
cation date and time.

The Sphinx web crawler developed by Bharat and Miller
allows document classifiers to associate name/value pairs

40 with a downloaded page. However, Sphinx discards any
name/value pairs associated with a document once the
document has been processed. Moreover, the values must be
strings, not values of arbitrary types.

It would be desirable to provide a much more flexible
45 mechanism that enables application programs that process

downloaded pages to determine what information to save for
each document downloaded. In that way the data structure
for storing such information would be dynamically
determined, and the manner in which that information is

50 used would be dynamically determined, without having to
customize the code of the web crawler for each application.

BACKGROUND OF THE INVENTION

Collecting Information About Documents
Downloaded by a Web Crawler

1
SYSTEM AND METHOD FOR ASSOCIATING

AN EXTENSIBLE SET OF DATA WITH
DOCUMENTS DOWNLOADED BY A WEB

CRAWLER

The present invention relates to a system and method for
accessing documents, called web pages, on the world wide
web (WWW) and, more particularly, to a method for asso
ciating an extensible set of data with each document down
loaded by a web crawler.

Documents on interconnected computer networks are
typically stored on numerous host computers that are con
nected over the networks. For example, so-called "web
pages" are stored on the global computer network known as
the Internet, which includes the world wide web. Each web
page on the world wide web has a distinct address called its
uniform resource locator (URL), which identifies the loca
tion of the web page. Most of the documents on the world
wide web are written in standard document description
languages (e.g., HTML, XML). These languages allow an
author of a document to create hypertext links to other
documents. Hypertext links allow a reader of a web page to
quickly move to other web pages by clicking on their
respective links. These links are typically highlighted in the
original web page. A web page containing hypertext links to
other web pages generally refers to those pages by their
URL's. Links in a web page may refer to web pages that are
stored in the same or different host computers.

A web crawler is a program that automatically finds and
downloads documents from host computers in networks
such as the world wide web. When a web crawler is given
a set of starting URL's, the web crawler downloads the
corresponding documents, extracts any URL's contained in
those downloaded documents and downloads more docu
ments using the newly discovered URL's. This process
repeats indefinitely or until a predetermined stop condition
occurs. As of 1999 there were approximately 500 million
web pages on the world wide web and the number is
continuously growing; thus, web crawlers need efficient data
structures to keep track of downloaded documents and any
discovered addresses of documents to be downloaded.

After a document is downloaded by the web crawler, the
web crawler may extract and store information about the
downloaded page. For instance, the web crawler may deter
mine if the downloaded page contains any new URL's not
previously known to the web crawler, and may enqueue
those URL's for later processing. In addition, pages down
loaded by the web crawler may be processed by a sequence
of processing modules. For instance, one processing module 55

might determine whether the document has already been
included in a web page index, and whether the page has
changed by more than a predefined amount since its entry in
the web page index was last updated. Another processing
module might add or update a document's entry in the web 60

page index. Yet another processing module might look for
information of a specific type in the downloaded documents,
extract the information and store it in a directory or other
data structure.

During the course of processing a downloaded document, 65

various data can be collected about it. Examples include the
date and time of the download, how long it took to perform

US 6,351,755 B1
3 4

25
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a distributed computer
system illustrating an exemplary embodiment of the inven
tion.

FIG. 2 is a block diagram illustrating an first exemplary
embodiment of the invention.

FIG. 3 is a block diagram of a queue element stored in the
Frontier data structures of the first exemplary embodiment.

FIGS. 4 and 5 are flow charts depicting the first exemplary
embodiment of the invention.

FIGS. 6 and 7 are block diagrams illustrating the Frontier
data structures used in a second exemplary embodiment of
the invention.

FIGS. SA and SB are flow charts depicting the second
exemplary embodiment of the invention.

FIG. 9 is block diagram illustrating the Frontier data
structures used in a third exemplary embodiment of the
invention.

FIG. 10 illustrates a table used in the third exemplary
45 embodiment.

FIG. 11 is a block diagram of an ordered set data structure
and procedures used to access the ordered set in the third
exemplary embodiment of the invention.

50 FIGS. 12, 13, 14, 15 and 16 are flow charts depicting the
third exemplary embodiment of the invention.

mine how many records of information to retain for each
URL, when to delete records of information, and so on.

In another aspect of the present invention, the Frontier
includes a set of parallel "priority queues," each associated

5 with a distinct priority level. Queue elements for URL's to
be downloaded are assigned a priority level, and then stored
in the corresponding priority queue. Queue elements are
then distributed from the priority queues to a set of under
lying queues in accordance with their relative priorities. The

10 threads then process the queue elements in the underlying
queues.

In yet another aspect of the present invention, the web
crawler performs a continuous crawl. The URL element for
each downloaded document is assigned a priority level and

15 then reinserted into the Frontier, in the priority queue
corresponding to the assigned priority level. The priority
level is determined as a function of the extensible set of data
stored with the queue element. Each queue element for a
newly found URL is also assigned a priority level. That

20 priority level is based on the fact that it is a newly found
URL and may also be based on properties of the URL itself,
or the web page on which the URL was found.

As alluded to earlier, web crawlers are traditionally used
to collect documents from the world wide web, as well as
from Intranets, for some purpose, the most common of
which is to build an index for a search engine. However,
since many of the documents on the web and on Intranets 30

change over time, at any given point in time, some fraction
of any web index will contain stale content.

There are two obvious approaches to refreshing an index.
One is to perform repeated complete or "scratch" crawls to 35

rebuild the index from scratch. The disadvantage of this
approach is that many of the documents may not have
changed between the two scratch crawls, in which case
valuable computer resources will be wasted unnecessarily
refetching and processing documents. Another approach is 40

to perform a more targeted crawl, but it is difficult to know
a priori which documents need to be refetched, since the web
does not include an invalidation mechanism. That is, the
only way to discover that a page has changed is to query its
web server.

Therefore it would be desirable to have a mechanism for
keeping the results of a crawl up to date, using a continuous
crawl that is somehow biased toward pages that are most
likely to have been changed since the last time the crawler
fetched them.

downloaded documents. For instance, the web crawler may
pass downloaded pages to a document indexer. An index of
documents on an Intranet or the Internet will be more
accurate or higher quality if the documents of most interest
to the users of the index have been preferentially updated so
as to make sure that those documents are accurately repre
sented in the index. To accomplish this, the web crawler
might preferentially select URL's on web servers with
known high quality content. Alternately, heuristics might be
used to gauge page quality. For instance, shorter URL's
might be considered to be better candidates than longer
URL's.

In the context of a continuous web crawler, it may be
desirable to prefer URL's on web servers whose content is
known to change rapidly, such as news sites. It may be
desirable to prefer newly-discovered URL's over those that
have been previously processed. Among the previously
processed URL's, it may be advantageous to prefer URL's
whose content has changed between the previous two down
loads over URL's whose content has not changed, and to
prefer URL's with shorter expiration dates over those with
longer expiration dates.

Maintaining Freshness of Documents Downloaded
by a Continuous Web Crawler

SUMMARY OF THE INVENTION
DETAILED DESCRIPTION OF PREFERRED

EMBODIMENTS

FIG. 1 shows an exemplary embodiment of a distributed
computer system 100. The distributed computer system 100
includes a web crawler 102 connected to a network 103
through a network interconnection 110. The network 103
may be a global communication network, such as the

60 Internet, or a private network, sometimes called an Intranet.
Examples of the network interconnection 110 include
switches, routers, etc.

The network 103 includes web servers 112 and a service
known as a domain name system 114. It may also optionally
include a web page indexing system 116. The web servers
112 store web pages. The domain name system 114 is a
distributed database that provides the mapping between

A web crawler downloads documents from among a
plurality of host computers. The web crawler enqueues
document addresses in a data structure called the Frontier. 55

The Frontier generally includes a set of queues, with all
document addresses sharing a respective common host com
ponent being stored in a respective common one of the
queues. Multiple threads substantially concurrently process
the document addresses in the queues.

The web crawler includes a set of tools for storing an
extensible set of data with each document address (URL) in
the Frontier. These tools enable the applications to which the
web crawler passes downloaded documents to store a record
of information associated with each download, where each 65

record of information includes a set of name/value pairs
specified by the applications. The applications also deter-

US 6,351,755 B1
5 6

Queue Elements with Extensible Set of Download
History Data

FIG. 3 illustrates a queue element data structure 142, also
called the URL entry data structure, which is the data
structure used to represent each URL in the Frontier, rep
resented in this embodiment by queues 128. Each queue

60 element 142 includes a URL value 144, and a list (i.e., an
ordered set) of information records 148. Each record 148
includes one or more name/value pairs 149 for a particular
download of the document corresponding to the URL 144,
where the names identify parameters and the values are the
corresponding values for those parameters. In addition to the
records 148, the queue element 142 may also include a
header 146 for retaining cumulative download history

one or more document processing applications 141, which
process documents downloaded by the web crawler.

The document processing applications include instruc
tions 139 for determining the value of various parameters
(e.g., metadata sent by the host server from which the
documents were downloaded) and storing corresponding
name/value pairs in the download history portion of the
queue elements corresponding to the downloaded docu
ments.

In the third exemplary embodiment, discussed below, the
host-to-queue assignment table 132 is used and updated by
the demux and mux procedures 126, 124. In the first and
second exemplary embodiments the assignment table 132 is
not used.

In some of the exemplary embodiments the number of
queues exceeds the number of threads, and in those embodi
ments the number of queues is preferably at least twice the
number of threads; in some embodiments the number of
queues exceeds the number of threads by a factor of three to
ten. The number of threads is generally determined by the
computational resources of the web crawler, while the
number of queues is determined by setting a queue-to-thread
ratio parameter when the web crawler is configured.

Given a set of URL's, the web crawler 102 enqueues the
URL's into appropriate queues 128. Multiple threads 130
are used to dequeue URL's out of the queues 128, to
download the corresponding documents or web pages from
the world wide web and to extract any new URL's from the
downloaded documents. Any new URL's are enqueued into
the queues 128. This process repeats indefinitely or until a
predetermined stop condition occurs, such as when all
URL's in the queues have been processed and thus all the
queues are empty. In continuous web crawler embodiments,
there is no such stop condition. Multiple threads 130 are
used to simultaneously enqueue and dequeue URL's from
multiple queues 128. During the described process, the
operating system 120 executes an Internet access procedure
122 to access hosts on the network through the communi
cations interface 104.

FIG. 2 illustrates the relationships between a set of "m"
first-in-first-out (FIFO) queues 128 and the demux and mux
procedures 126, 124 in a first exemplary embodiment of the
present invention. When a new URL is discovered, the new
URL is passed to the demux 126. The demux 126 enqueues
the new URL into an appropriate queue based on a prede
termined policy. In the preferred embodiments, URL's hav-
ing the same associated host component will be enqueued
into the same queue. However, other URL to queue assign
ment policies could also be used. When a thread 130 is ready

50 to dequeue from one of the queues 128, the head URL in the
queue assigned to that thread is dequeued from that queue by
the mux 124 and is passed to the thread for processing.

Internet protocol (IP) addresses and host names. The domain
name system 114 is a distributed system because no single
site on the Internet has the domain name mapping informa
tion for all the web servers in the network. Each site
participating in the domain name system 114 maintains its 5

own database of information and runs a server program that
other systems across the network can query. The domain
name system 114 provides the protocol that allows clients
and servers to communicate with each other. Any applica
tion may look up the IP address (or addresses) corresponding 10

to a given host name or the host name corresponding to a
given IP address in the domain name system 114. An
application accesses the domain name system 114 through a
resolver. The resolver contacts one or more name servers to
perform a mapping of a host name to the corresponding IP 15

address, or vice versa. A given host name may be associated
with more than one IP address because a host may have
multiple interfaces, with each interface of the host having a
unique IP address. Also, a host may be replicated on multiple
computers, each having its own IP address, but providing 20

access to the same information.

The web page indexing system 116 includes an index of
words used on the world wide web and addresses of the web
pages that use each word. Such indexing systems are main
tained by various search engines, such as the AltaVista 25

search engine. The domain name system 114 and the web
page indexing system 116 may be accessed by the web
crawler 102 in the process of downloading web pages from
the world wide web.

The web crawler 102 includes a communications interface 30

104, one or more central processing units (CPU's) 106, a
clock circuit 107 for keeping track of the current time, an
operator interface 108 (which may be remotely located on
another computer) and memory 118. In the preferred
embodiment, the communications interface 104 is able to 35

handle overlapping communication requests. The memory
118 includes:

a multitasking operating system 120;
an Internet access procedure 122 for fetching web pages 40

as well as communicating with the domain name sys
tem 114;

a multiplexer (mux) procedure 124 used by threads 130
for dequeuing URL's from the queues 128;

a demultiplexer (demux) procedure 126 used by the 45

threads for enqueuing URL's on the queues 128;
a set of queues 128, also called the "Frontier," for storing

addresses of web pages to be downloaded;
threads 130 for downloading web pages from the servers

112, and processing the downloaded web pages;
a host-to-queue assignment table 132 for recording

dynamic assignments of host identifiers to the queues
128;

a heap or other ordered set data structure 134 for storing 55

information about queues waiting to be serviced by
threads;

a set of heap procedures 136 for adding a queue to, and
for selecting a queue from the ordered set data structure
134;

a set of Queue Element handling procedures 138 for
adding and deleting records of information to queue
elements, and for adding and deleting name/value pairs
to those records of information;

one or more URL priority determination procedures 140 65

for assigning a priority level to a queue element asso
ciated with a URL; and

US 6,351,755 B1
7 8

55

ing URL's into a set of "m" queues using a set of "k"
threads. To simplify the explanation of the web crawler's
basic operation, and how the queue element download
history is generated and used, we will assume that the
number of queues "m" is equal to the number of threads "k."
In other embodiments, however, "m" may be larger than k.

When a thread of the web crawler downloads a page or
document, it inspects each URL in the downloaded page.
The thread then determines if the web crawler should
enqueue each discovered URL for downloading. For
instance, the thread may query a database to determine
whether that URL has been visited during the current crawl,
and then enqueue the URL only if the response to that
inquiry is negative and if the URL passes a user-supplied

15 filter. The enqueue procedure described below is performed
once for each URL that the thread has decided to enqueue.

In this exemplary process, queues are identified by
numerical ID's. For example, when a thread invokes the
"dequeue" operation for a selected queue "i," the first item
of the queue "i" is dequeued and returned.

The enqueue operation, performed by a thread executing
the demux procedure 126, works as follows in the first
exemplary embodiment. A thread discovers a new URL "u"
having a host name component "h" during the course of
downloading web pages (160). The host name component
"h" of the URL "u" is resolved into a host identifier "H"
using the domain name system 114 (162). The resolved host
identifier is preferably a canonical name or a canonical IP
address for the host. Step 162 maps all the host names
associated with an Internet or Intranet host to the same host
identifier. Without step 162, the URL's associated with a
single host might be assigned to multiple queues. That could
cause the web crawler to submit multiple overlapping down-
load requests to the host, which would violate the "polite
ness" policy observed in the preferred embodiments.

The host identifier "H" of the new URL "V" is mapped
into a queue identifier "r" using a suitable numerical func
tion. For example, in one preferred implementation a fin-

40 gerprint function is used to hash the host identifier "H" into
an integer "I" (164). The integer "I" is divided by the
number of queues in the system, such as "m", to get a
remainder "r" between 0 and m-I (166). In other words, r
is set equal to the fingerprint of H modulo m. Examples of
other possible numerical functions that could be used to map
the host identifier into a queue identifier are checksum and
hash functions.

Having selected queue "r," a queue element for the new
URL "u" is enqueued into queue "r" (168). If queue "r" was
empty immediately before the new URL "u" was enqueued
on it, (169-Yes), then the system signals any thread blocked
on queue "r" to unblock (step 170) and returns (172). If
queue "r" was not empty (169-No), the procedure simply
returns (172).

Referring to FIG. 5, each thread of the web crawler selects
one of the queues in the ordered set. In this first exemplary
embodiment, each thread services just one queue, but in
other embodiments there would be a preliminary set of steps
by which the thread would first be assigned to a queue that

60 is waiting to be serviced. The thread then downloads the
page or document corresponding to a queue element in the
queue, dequeues the queue element from the queue, pro
cesses the page, and then repeats the process. This continues
until the web crawl completes, or without stop in the case of

65 a continuous web crawler.
More specifically, the dequeue procedure, when executed

by any of the web crawler threads, downloads the document

information, such as a count of the number of downloads of
the corresponding document by the web crawler, a count of
the number of download attempts, and the like. This infor
mation could also be kept in the records, with increasing
count values being stored in successive records 148. The list 5

of records associated with a URL together comprise the
URL's download history.

The set of queue element handling procedures 138 that
can be used by the web crawler, and more particularly by
document processing applications 141 which process the 10

pages downloaded by the web crawler, include but are not
limited to the following:

Size() returns the number of records in the list, for the
currently selected queue element;

Get(i) returns the record at position i in the list;

Delete(i) removes the record at position i from the list;
compacting the list accordingly;

Add(record) inserts the given record at the front of the list;
as well as procedures that operate on a particular 20

record, including:

Lookup(name) returns the value from the name/value
pair, if a matching pair is found;

Set(name, value) adds a name/value pair to the record
consisting of the given name and given value, and 25

replaces any previous pair with the identical name;

Delete(name) removes the name/value pair with the given
name from the record, if a matching pair is found; and

Enumerate() returns a list of the name/value pairs in the 30

record.
As will be described in more detail below, when a queue

element is removed from the Frontier, a new empty record
is added to its download history, representing the imminent
download attempt. The document identified by the queue 35

element's URL is downloaded and processed. During the
course of processing a document, all records of the corre
sponding queue element's download history may be
inspected, and name/value pairs may be set in the element's
newly added record.

In the case of a continuous crawl, the queue element is
reinserted into the Frontier. Before the queue element is
reinserted, one or more of its records maybe removed. If no
records are removed, the document's complete download
history is kept. Other alternatives include, but are not limited 45

to: keeping the "p" most recent records; keeping a uniform
sample of records (e.g., for every third download); keeping
a random sample of records (e.g., each record might be kept
with a probability of 0.25); or keeping the records corre
sponding to the initial download and the last "p" downloads. 50

Independent of whether continuous crawling is used, once
the processing of a document is complete, the document's
queue element may be written to a file for subsequent
off-line analysis.

Enqueue and Dequeue Procedures

In the exemplary embodiments, and in most web crawlers,
the web crawler begins its crawls with an initial set of root
documents. The root documents are selected so that all
documents of interest in the Intranet or Internet being
crawled can be reached from the URL links in the initial set
of root documents and in the subsequent documents
accessed via those URL links. This initial set of root
documents may be preloaded into the queues 128 of the web
crawler's Frontier.

FIG. 4 is a flow chart illustrating the process, in the first
exemplary embodiment of the present invention, for enqueu-

US 6,351,755 B1
9 10

0.0 ta 0.5079
0.5080 ta 0.7619
0.7620 ta 0.8888
0.8889 ta 0.9524
0.9525 ta 0.9841
0.9842 ta 1.0000

Range af z Far Priarity Level

TABLE 2

1
2
3
4
5
6

Mapping a Random Value z to a Priority Level

Priority Level

Next, the dequeue procedure checks to see if the selected
priority level subqueue "p" is empty (272). If so, it also
checks to see if all the priority level subqueues of queue "r"

55 are empty (274). If all are empty, this means that subqueue
"f' is empty, in which case the thread blocks until the
selected queue is no longer empty (276). In embodiments
where there are many more queues than threads, step 274 is
not needed because a thread will not be assigned to an empty

60 queue.
If the selected priority level subqueue is empty (272-Yes)

but there is at least one non-empty subqueue (274-No), then
a subqueue closest to the selected subqueue is selected
(278).

Once a non-empty priority level subqueue has been
selected, the document corresponding to the URL at the head
of the selected subqueue is downloaded, and then the

50

following differences. Referring to FIG. 8A, in the enqueue
procedure of FIG. 4, the enqueuing step 168 includes
determining a priority level for downloading the document
associated with the URL "u" (260) and then enqueuing the

5 associated queue element into the priority subqueue of
queue "r" for the determined priority level (262). Note that
queue "r" now represents the set of priority subqueues for
queue entries whose URL has a host identifier that was
mapped to queue "r".

At step 260, the priority level "p" for the URL "u" is
determined as a function of the URL itself, since the URL is
for a document that has not yet been downloaded by the web
crawler. In the preferred embodiment, the queue entries for
newly found URL's are given higher priority than the queue

15 entries for URL's whose corresponding documents have
already been downloaded and processed. In addition, the
web crawler may reference a list of "high priority" hosts 264
whose documents are to be given higher downloading
priority than other hosts. In addition, the web crawler may

20 give higher priority to new URL's whose host is not found
on the list 264 that meet predefined criteria for being "short".
For instance, short URL's may be ones whose character
string is less than a certain number of letter, or whose tree
structure contains less than a certain number of tree levels.

25 The latter example prefers pages near the root node of each
host to those further away from the root node.

Referring to FIGS. 5 and 8E, step 200 for downloading
the URL at the head of the selected queue "f" is replaced by
the steps shown in FIG. 8E. In particular, the dequeue

30 procedure selects a priority level subqueue by generating a
random number, z, and then mapping z to one of the priority
level subqueues using a non-uniform mapping that is
weighted in accordance with the weights assigned to the
priority levels. For instance, using the priority level weights

35 shown in Table 1, the priority level 1 subqueue has thirty
two times the likelihood of being selected than the priority
level 6 subqueue. Table 2 shows an exemplary non-linear
mapping of z to a priority level, where z is a random or
pseudo-random value between 0 and 1.

32
16

8
4
2
1

Priority Weight

TABLE 1

1
2
3
4
5
6

Priarity Level

corresponding to the queue element at the head of the queue
assigned to (or selected by) the thread, and measures the
download time (200). Then it dequeues the queue element
from the selected queue and adds a new, empty download
history record to the queue element (see FIG. 3) (202). The
downloaded document is typically processed by the web
crawler by identifying and processing the URL's in the
document (204), as well as by executing other procedures on
the downloaded document (206). In the preferred
embodiment, the set of other procedures executed on the 10

downloaded document is configurable by the person setting
up the web crawler.

Steps 212, 214, 216 are typically performed by the
document processing applications, but could be incorporated
into the dequeue procedure by making procedure calls to a
set of procedures that would be provided by the person
setting up the web crawler. The name/value pairs to be stored
in the current (new) download history record are determined
(212) and stored in that record (214). Optionally, one or
more download history records may be removed from the
queue element in accordance with record deletion criteria
established by the applications (216). Examples of the
record deletion criteria include criteria for retaining only the
last "p" records, or the first record and the last "p" records.
To implement such record deletion, an application program
includes instructions for determining the number of records
in a queue element by calling the Size() procedure, instruc
tions for comparing the returned number with a threshold
value, and instructions for conditionally deleting specific
ones of the records based on the result of the comparison.

When the processing of the downloaded document and
the queue element is completed, the queue element is either
reinserted into the Frontier (thereby enabling continuous
crawling), added to a file or database of processed URL's
(from where the download history information can be pro
cessed offline), or both (220).

where each priority weight is proportional to the probability
of a queue element in one of the priority queues being
selected for processing. In this scheme, queue elements in
priority level 1 queue are thirty-two times more likely to be
processed than queue elements in the priority level 6 queue.
Of course, the number of priority queues, and the weights
assigned to them can be arbitrarily determined, or deter
mined in accordance with any of a large number of schemes.

The enqueue and dequeue procedures for this second 65

exemplary embodiment are very similar to the ones
described above with reference to FIGS. 4 and 5, with the

Prioritizing Document Downloads

Referring to FIGS. 6 and 7, in a second exemplary
embodiment, each of the m queues 240 in the Frontier is 40

replaced by a set of n subqueues 242, herein called priority
subqueues or priority level subqueues. Furthermore, a pri
ority level is assigned or associated with each of the priority
queues. For example, a set of six priority queues 242 could
be assigned priority "weights" as shown in Table 1. 45

US 6,351,755 B1
11 12

20

by one of ordinary skill in the art, depending in large part on
what information is stored in the document's download
history and an assessment of which documents are the most
important to refresh the most frequently. Furthermore, dif-

5 ferent download priority criteria may be applied to different
subsets of the queue elements. For example, one set of
criteria may be used for queue elements having no download
history, a second set of criteria may be used for queue
elements denoting URL's at web sites known to the web

10 crawler, a third set of criteria may be used for queue
elements whose expiration date and time is deemed to be
"soon" (e.g., less than X hours from the current time), and
yet other sets of criteria may be used for other queue
elements identified in various ways.

The present invention enables the criteria 282 for priori
tizing document downloads in a continuous web crawler to
be determined by applications external to the web crawler.

Polite Continuous Web Crawling

FIGS. 9-16 show a third exemplary embodiment for a
continuous web crawler having priority level subqueues that
are used to maintain the freshness of document indices and
other document based information databases. The third
exemplary embodiment uses a Frontier data structure and a

25 dynamic assignment of threads to queues that is more
"polite" than the ones described above. In particular, in this
embodiment, the web crawler enforces a "politeness" policy,
which requires the web crawler to wait between document
downloads from any given host for a sufficient period so that

30 there are no document downloads being performed from that
host for at least a specified percentage (e.g., 50%) of the
time. In all the exemplary embodiments, the web crawler
never downloads more than one document at a time from
any host.

In this third embodiment, the Frontier data structures 290
include a front-end queue 292, which is implemented as a set
of n priority level FIFO subqueues 294, and m FIFO
"underlying" queues (also called the back-end queues) 296,
where m is preferably larger than the number of threads. A

40 first demultiplexer (demux) procedure 298 is used to store
queue elements in the front-end queue 292, while a second
demultiplexer (demux) procedure 300 is used to store queue
elements in the underlying FIFO queues 296. Similarly, a
first multiplexer (mux) procedure 302 is used to select and

45 remove queue elements from the front-end queue 292 (for
insertion into the underlying queues 296), while a second
multiplexer (mux) procedure 304 is used to select and
remove queue elements from the underlying FIFO queues
296. Mux 302 and demux 300 are used only for moving

50 queue elements from the priority subqueues 294 into the
underlying queues 296.

When a new URL is discovered, it is typically enqueued
in the front-end queue 292. However, if the front-end queue
292 is empty, the new URL is not necessarily stored in the

55 front-end queue 292; instead, it may be enqueued in one of
the queues 296 by the demux 298/300. The demux 298/300
dynamically enqueues the new URL in an appropriate queue
296 according to a host-to-queue assignment table 132,
based on the host identifier of the new URL. The host-to-

60 queue assignment table 132 is used to guarantee that each
queue is homogenous, i.e., that each queue contains URL's
having the same host name component. When a thread is
ready to dequeue a queue element from a queue 296 the head
queue element in a queue assigned to the thread passes

65 through the mux 304 and is dequeued from the queue. The
corresponding document (e.g., web page) of the dequeued
queue element is downloaded and processed.

dequeue procedure continues from there at step 200 as
shown in FIG. 5. When the document is downloaded, the
host web server from which the document is downloaded
returns both the document and associated metadata, which
typically includes, but is not limited to, the HTTP status
code, the date and time the document was last modified, the
document's purported expiration date and time, document
length, the character set used by the document, and identi
fication of the web server from which the document was
downloaded.

In this exemplary embodiment, the supplemental process
ing steps 206-216 include storing attributes for each docu
ment download that include, but are not limited to:

the date and time of the download;
the date and time the document was last modified, accord- 15

ing to the host server;
the document's expiration date and time, according to the

host server;
a checksum of the document's contents; and
a "sketch" of the document's contents.
A sketch of a document is a small number (e.g., eight) of

values, generated by converting a document into a set of
symbols (e.g., fingerprints of four word sequences), per
forming a set of permutations on the symbols, selecting a
subset of the symbols (e.g., the lowest values) from each
permutation, and possibly performing various combinations
or other mathematical operations on the selected symbols to
form the values in the sketch. An important property of the
sketch is that when a document has been modified, but only
minimally, at least a certain number of the values of the
document's sketch will remain unchanged, but when the
document is modified by more than a minimal amount (e.g.,
by more than 5% or so) less than a threshold number of
values in the sketch will remain unchanged. The document 35

sketch therefore gives a good basis for determining when a
document has changed "enough" for the supplemental appli
cations to treat it as a modified document. For more infor
mation about document sketches, see U.S. Pat. No. 5,909,
677, which is hereby incorporated by reference as
background information.

In this exemplary embodiment, step 220 (FIG. 5) of the
dequeue procedure includes selecting a priority level sub
queue in which to re-insert the queue element for the
document that has just been downloaded and processed. In
this exemplary embodiment, the document is assigned to a
priority level subqueue based on a predefined set of criteria
282 are satisfied, including but not limited to:

the document's expiration date; the sooner the docu
ment's expiration date, the higher its assigned priority
level; and

the document's rate of change, based on (a) its modifi
cation date and time (according to the host server), (b)
whether the document's checksum differs from the
prior checksum, or (c) whether the document's sketch
differs from the prior document sketch by more than a
predefined amount; documents that change more fre
quently should be assigned to a higher priority level
subqueue, on the basis that pages that exhibit changes
are likely to change again in the near future; and

the host component of the document's URL; for example,
documents from certain web sites known to the web
crawler may be assigned a high or low download
priority based on knowledge of how often documents at
those web sites are updated.

Many other examples of criteria 282 for assigning a
priority level to a document's queue element can be devised

US 6,351,755 B1
13

FIG. 10 illustrates an exemplary embodiment of the
host-to-queue assignment table 132. The host-to-queue
assignment table 132 is updated when a host identifier 308
is dynamically assigned to a queue 296 (represented by a
queue identifier 309) or when the association of a host 5

identifier 308 with a queue 296 is removed. Each queue 296
(FIG. 9) may be dynamically reassigned to a new host
identifier after all URL's in the queue have been processed.

FIG. 11 illustrates an "ordered set data structure" 134 for
keeping track of the queues 296 that are waiting to be 10

serviced by threads. The data structure 134 stores an entry
135 for each queue that is waiting to be serviced. The entry
135 has a plurality of fields, including one for identifying the
queue, and another for indicating the queue's assigned next
download time. Although not shown, the data structure 134 15

has internal structure for ordering the entries 135 in accor
dance with the assigned next download times of the entries.
A number of well known data structures can be used for this
purpose, including a heap, a balanced tree, or even a simple
linked list (suitable only if the number of queues being used 20

is very small, e.g., less than twenty). The ordered set data
structure is indirectly accessed by the enqueue and dequeue
procedures through a set of interface procedures 136A,
136B. In particular, an AddQueue procedure 136A is used to
add a queue to the ordered set. A SelectQueue procedure 25

136B is used to select and remove from the ordered set a
queue whose assigned next download time is no later than
any other queue in the ordered set. If multiple queues have
identical earliest assigned next download times, the Select
Queue procedure selects anyone of those queues, removes 30

it from the ordered set, and passes it to the calling thread.
FIGS. 12-16 are flow charts of the third exemplary embodi
ment of the present invention. In particular, the flow chart in
FIG. 12 illustrates the enqueue operation, corresponding to
the demux procedures 298, 300 shown in FIG. 9, which are 35

used by each of the threads to store queue elements for new
URL's discovered while processing downloaded web pages,
as well as to reinsert the queue elements.

Referring to FIG. 12, while processing a downloaded web
page, a thread will determine whether the URL in each link 40

in the page is a known URL, which has already been
enqueued and/or processed by the web crawler, or a new
URL, which has not yet been enqueued or processed by the
web crawler. When a thread discovers a new URL "u," it
extracts the host name component "h" from the URL (310). 45

The host name component "h" of the URL "u" is resolved
into a host identifier "H" using the domain name system 114
(311). The thread then determines whether the front-end
queue 292 is empty (313). The front-end queue 292 is empty
only if all the priority level subqueues 294 are empty. If the 50

front-end queue 292 is not empty, a queue element for URL
"U" is enqueued into the front-end queue 292 (314) and then
the enqueue procedure exits.

The procedure for enqueuing the queue element for URL 55

"u" into the front-end 292 is the same as the procedure
shown in FIG. 8A. In particular, the enqueue procedure
determines a priority level for downloading the document
associated with the URL "u" (260) and then enqueues the
associated queue element into the priority subqueue of the 60

front-end queue for the determined priority level (262).

The process for moving URL's from the front-end queue
292 into the underlying queues is described later.

If all the priority level subqueues 294 of the front-end
queue 292 are empty (313-Yes), the thread searches the table 65

132 for an entry assigning "H" to any of the queues (315).
If such an entry is found, the new URL "u" is enqueued into

14
the queue "i" 296-i to which host identifier "H" is assigned,
and the thread returns (316). If such an entry does not exist,
the thread searches for an empty queue "j" 296-j (317). If
there is no empty queue, the URL "u" is enqueued into the
front-end queue 292 and the thread returns (318). If an
empty queue "j" is found, "H" is assigned to queue "j", table
132 is updated with the new assignment, and the URL "u"
is enqueued into the queue "j" (319). In addition, the queue
"j" is assigned a next download time and is added to the
ordered set of queues waiting to be serviced (320), and then
the thread returns. Since the last time that the web crawler
performed a download from the host H is unknown, the next
download time assigned to the queue is arbitrarily selected,
for instance by adding a small constant to the current time.
In this embodiment the small constant is selected to be equal
to the average document download time for an "average"
host web site. Other delay values could be used in other
embodiment.

FIGS. 13, 14, 15 and 16 contain a flow chart of the
dequeue procedure performed by each thread in the third
exemplary embodiment to dequeue and process the queue
elements in the FIFO queues 296 (FIG. 9). This procedure
corresponds to the mux procedure of FIG. 9. As part of this
procedure, the thread moves queue elements from the front
end queue 292 to the underlying queues 296 whenever the
queue selected by the thread becomes empty, because all the
queue elements in the assigned or selected queue have been
processed and dequeued. The dequeue procedure shown in
FIGS. 13 and 14 is performed repeatedly by each of the "n"
threads of the web crawler. The enqueue procedure, dis
cussed above and shown in FIG. 12, is performed while
processing a downloaded web page.

Referring to FIGS. 13 and 14, each thread of the web
crawler selects one of the queues in the ordered set that is
waiting to be serviced, downloads the page or document
corresponding to a URL in the selected queue, dequeues the
URL from the selected thread, processes the page, and then
repeats the process. This continues until the web crawl
completes.

More specifically, the dequeue procedure, when executed
by any of the web crawler threads, first selects a queue "i"
having a minimal next download time value (326). This step
is preferably accomplished by calling the SelectQueue pro
cedure. If no queues are ready for processing, because their
assigned next download times are all in the future, the thread
executing the dequeue procedure blocks until there is a
queue that is ready for processing.

As indicated above, if multiple queues have identical
earliest assigned next download times, the SelectQueue
procedure selects anyone of those queues, removes it from
the ordered set, and passes it to the calling thread. After
selecting a queue "i", the thread processes the URL at the
head of the selected queue by downloading the correspond
ing document, measuring the download time (330), and
dequeuing the URL from the selected queue (332).

The downloaded document is typically processed by the
web crawler by identifying and processing the URL's in the
document (334), as well as by executing other procedures
(application programs external to the web crawler) on the
downloaded document (336). In the preferred embodiment,
the set of other procedures executed on the downloaded
document is configurable by the person setting up the web
crawler, and often includes a document indexer. As
described above, these procedures may store various param
eters in the download history of the queue element corre
sponding to the downloaded document.

US 6,351,755 B1
15 16

next download is determined as a function of the document's
download history in the queue element (392), using down
load history based criteria such as those discussed above. If
not (390-No), then the priority level for the next download
is determined as a function of the document's URL (394),
using URL based criteria such as those discussed above.
Alternately, if this is the first download of the document, the
priority level can be determined from the purposed expira
tion date of the document.

In the second exemplary embodiment described above,
when crawling in a network with a relatively small number
of host computers, such as in an Intranet, some queues may
be empty while other queues may contain URL's for mul
tiple server hosts. Thus, in the second embodiment, paral
lelism may not be efficiently maintained, since the threads

15 associated with the empty queues will be idle. The third
embodiment described makes better use of thread capacity,
on average, by dynamically reassigning queues to whichever
hosts have pages that need processing. In both of these
exemplary embodiments the same politeness policies may

20 be enforced, whereby the web crawler not only does not
submit overlapping download requests to any host, it waits
between document downloads from each host for a period of
time. The wait time between downloads from a particular
host may be a constant value, or may be proportional to the

25 download time of one or more previous documents down
loaded from the host.

The foregoing examples illustrate certain exemplary
embodiments of the invention from which other
embodiments, variations and modifications will be apparent
to those skilled in the art. The invention should therefore not

30 be limited to the particular exemplary embodiments dis
cussed herein, but rather defined by the claims appended
hereto.

What is claimed is:
1. A method of performing a continuous crawl for locating

35 and downloading documents from among a plurality of host
computers, comprising:

(a) obtaining at least one referring document set that
includes addresses of one or more referred documents;
each referred document address including a host com
ponent;

(b) enqueuing queue elements in a plurality of queues,
each queue element denoting one of the referred docu
ment addresses; each queue element including a down
load history comprising zero or more records;

(c) substantially concurrently operating a plurality of
threads;

(d) while operating each thread, repeatedly performing
steps of:
(dl) identifying a queue element in a selected one of the

queues, downloading a referred document corre
sponding to a referred document address in the
identified queue element, and dequeuing the identi
fied queue element;

(d2) adding a record to the queue element;
(d3) executing at least one application program, distinct

from a web crawler application that performs the
downloading and dequeuing, for processing the
downloaded document, the at least one application
program including instructions that store name/value
pairs in the record added to the queue element,
wherein the name of each name/value pair is speci-
fied by the at least one application program and the
value of each name/value is determined by the at
least one application program; and

(d4) storing the queue element, including the added
record, in a predefined data structure for further
processing.

50

next download time~current time+I3"(measured download time)

After the document has been processed, and its download
history has been updated by the external application pro
grams in step 336, a priority level is determined for the next
download of the document (338), using the same criteria as
described above. Then the queue element for the document 5

is reinserted into the Frontier, in the priority level subqueue
294 (FIG. 9) corresponding to the determined priority level.

If the selected queue is not empty (338-No) after the head
queue element is dequeued, the thread determines a next
download time for the queue (340). In a preferred 10

embodiment, the next download time assigned to the
selected queue at step 340 is:

where ~ is a predefined scaling constant. While ~ may be set
equal to 1, it can also be set equal to a larger number (e.g.,
2) or smaller number (e.g., 0.5), depending on the politeness
policy selected by the person configuring the web crawler.
Once the next download time has been determined for the
queue, the queue is added to the ordered set of queues (342)
by calling the AddQueue procedure, which stores in the
ordered set an entry for the queue that includes the assigned
next download time. Then the thread resumes processing at
step 326 (FIG. 13) to process the head URL in queue "i."

However, if the selected queue "i" is empty (338-Yes), the
queue is not immediately returned to the ordered set. Rather,
the table entry for queue "i" is removed, on the basis that an
empty queue is available for reassignment to a new host. If
all the priority level subqueues of the front-end queue are
empty (352-Yes), the thread then resumes processing at step
326 (FIG. 313). Otherwise (i.e., the front-end is not empty,
352-No), the thread randomly selects a priority level
subqueue, using the methodology discussed above, and
removes the head queue element from that priority level
subqueue (354). Then the thread resolves the host name "h"
of the URL "u" of this queue element into a host identifier
"H" using the domain name system 114 (356). If there is an
entry in the host-to-queue assignment table 132 (FIG. 10)
such that "H" is the assigned host identifier for a queue "j"
(358-Yes), the queue element for URL "V" is enqueued into 40

the queue "j" (362), any thread blocked on queue "j" is
signaled that the queue is no longer empty, and the thread
goes back to step 352 to process another queue element (if
any) in the front-end. If there is not an entry in the table 132
that maps host identifier "H" to a queue "j" (358-No), "H" 45

is assigned to queue "i" (360). In particular, the table 132 is
updated with the new assignment and the queue element for
URL "u" is enqueued into queue "i" (360). The thread then
returns to step 326 (FIG. 13) to process a queue element
from any queue that is ready for processing.

Referring to FIG. 15, the step of randomly selecting a
priority level subqueue (354) in FIG. 14 includes randomly
or pseudo-randomly generating a number, z, and then map
ping z to one of the priority level subqueues using a
non-uniform mapping that is weighted in accordance with 55

the weights assigned to the priority level (370). The dequeue
procedure checks to see if the selected priority level sub
queue is empty (372). If so, then a subqueue closest to the
selected subqueue is selected (374). Once a non-empty
priority level subqueue has been selected, the queue element 60

at the head of the selected subqueue is selected. (376).
Referring to FIG. 16, the step 337A (FIG. 13) of deter

mining a priority level for a next download of a document
includes determining if the queue element for the document
has a download history (390). That is, does the queue 65

element have more than one record of download history
information? If so (390-Yes), then the priority level for the

US 6,351,755 B1
17 18

10

queue element denoting one of the referred document
addresses; each queue element including a download
history comprising zero or more records; and

a dequeuing module that is substantially concurrently
executed by each of a plurality of threads so as to
process the referred document addresses in the queues;
the dequeuing module, when executed by a respective
one of the threads, repeatedly performs the functions of
(al) identifying a queue element in a selected one of the

queues, downloading a referred document corre
sponding to a referred document address in the
identified queue element, and dequeuing the identi
fied queue element;

(a2) adding a record to the queue element;
(a3) executing at least one application program, distinct

from the enqueuing module and dequeuing module,
for processing the downloaded document, the at least
one application program including instructions that
store name/value pairs in the record added to the
queue element, wherein the name of each name/
value pair is specified by the at least one application
program and the value of each name/value is deter-
mined by the at least one application program; and

(a4) storing the queue element, including the added
record, in a predefined data structure for further
processing.

11. The computer program product of claim 10, wherein
said enqueuing module is configured to use at least one of
the downloaded referred documents as a new referring
document.

12. The computer program product of claim 10, wherein
the at least one application program includes instructions for
deleting a subset of the records in the queue element in
accordance with predefined record deletion criteria.

13. The computer program product of claim 10, wherein
the at least one application program includes instructions for
determining a number corresponding to how many records
are in the queue element, and the predefined record deletion
criteria include the number of records in the queue element
exceeding a threshold value.

14. The computer program product of claim 10, wherein
the at least one application program includes instructions for
reading the name/value pairs in at least one of the records in
the queue element and for conditionally performing an
action based on the value in at least one of the name/value

45 pairs read by the at least one application program.
15. The computer program product of claim 10, wherein
the plurality of queues includes a plurality of parallel

priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

the computer program product includes instructions for
determining a download priority level for the document
associated with the queue element as a function of the
download history of the queue element.

16. The computer program product of claim 15, wherein
the name/value pairs stored in each of the records in the

queue element include at least one content based value
which can be compared with a corresponding content
based value in another of the records to determine
whether the document's content changed between the
downloads of the document corresponding to the
records in which the content based values are stored;
and

the computer program product includes instructions for
determining a download priority level for the document

2. The method of claim 1, wherein the at least one
application program includes instructions for deleting a
subset of the records in the queue element in accordance
with predefined record deletion criteria.

3. The method of claim 2, wherein the at least one 5

application program includes instructions for determining a
number corresponding to how many records are in the queue
element, and the predefined record deletion criteria include
the number of records in the queue element exceeding a
threshold value.

4. The method of claim 1, wherein the at least one
application program includes instructions for reading the
name/value pairs in at least one of the queue element and for
conditionally performing an action based on the value in at
least one of the name/value pairs read by the at least one 15

application program.
5. The method of claim 1, wherein
the plurality of queues includes a plurality of parallel

priority level queues, each having a distinct associated
download priority level, the download priority level 20

corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

step d4 includes determining a download priority level for
the document associated with the queue element as a 25

function of the download history of the queue element.
6. The method of claim 5, wherein
the name/value pairs stored in each of the records in the

queue element include at least one content based value
which can be compared with a corresponding content 30

based value in another of the records to determine
whether the document's content changed between the
downloads of the document corresponding to the
records in which the content based values are stored;

35
step d4 includes determining a download priority level for

the document associated with the queue element as a
function of whether the content based value in a last
one of the records in the queue element is not equal to
the corresponding content based value in an earlier one 40

of the records in the queue element.
7. The method of claim 6, wherein the content base value

is a checksum of the contents of the document correspond
ing to the queue element.

8. The method of claim 5, wherein
the name/value pairs stored in each of the records in the

queue element include a purported expiration date and
time; and

step d4 includes comparing the purported expiration date
and time with at least one other date and time value and 50

assigning the queue element a download priority level
in accordance with an outcome of the comparison.

9. The method of claim 1, wherein the name/value pairs
stored in each of the records by the at least one application
program are dynamically extensible by the at least one 55

application program.
10. A computer program product for use in conjunction

with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com- 60

puter program mechanism comprising:
an enqueuing module that, when executed by the com

puter system, obtains at least one referring document
that includes addresses of one or more referred
documents, each referred document address including a 65

host component corresponding to a host computer, and
enqueues queue elements in a plurality of queues, each

US 6,351,755 B1
19 20

5

45

40

25

22. The computer system of claim 20, wherein the at least
one application program includes instructions for deleting a
subset of the records in the queue element in accordance
with predefined record deletion criteria.

23. The computer system of claim 20, wherein the at least
one application program includes instructions for determin
ing a number corresponding to how many records are in the
queue element, and the predefined record deletion criteria
include the number of records in the queue element exceed-

10 ing a threshold value.
24. The computer system of claim 20, wherein the at least

one application program includes instructions for reading
the name/value pairs in at least one of the records in the
queue element and for conditionally performing an action

15 based on the value in at least one of the name/value pairs
read by the at least one application program.

25. The computer system of claim 20, wherein

the plurality of queues includes a plurality of parallel
priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

the at least one application program includes instructions
for determining a download priority level for the docu
ment associated with the queue element as a function of
the download history of the queue element.

26. The computer system of claim 25, wherein
the name/value pairs stored in each of the records in the

queue element include at least one content based value
which can be compared with a corresponding content
based value in another of the records to determine
whether the document's content changed between the
downloads of the document corresponding to the
records in which the content based values are stored;
and

the at least one application program includes instructions
for determining a download priority level for the docu
ment associated with the queue element as a function of
whether the content based value in a last one of the
records in the queue element is not equal to the corre
sponding content based value in an earlier one of the
records in the queue element.

27. The computer system of claim 25, wherein the content
base value is a checksum of the contents of the document
corresponding to the queue element.

28. The computer system of claim 25, wherein
the name/value pairs stored in each of the records in the

queue element include a purported expiration date and
time; and

the at least one application program includes instructions
for comparing the purported expiration date and time
with at least one other date and time value and assign
ing the queue element a download priority level in
accordance with an outcome of the comparison.

29. The computer system of claim 20, wherein the name/
value pairs stored in each of the records by at the least one
application program are dynamically extensible by the at

60 least one application program.

associated with the queue element as a function of
whether the content based value in a last one of the
records in the queue element is not equal to the corre
sponding content based value in an earlier one of the
records in the queue element.

17. The computer program product of claim 16, wherein
the content base value is a checksum of the contents of the
document corresponding to the queue element.

18. The computer program product of claim 15, wherein

the name/value pairs stored in each of the records in the
queue element include a purported expiration date and
time; and

the computer program product includes instructions for
comparing the purported expiration date and time with
at least one other date and time value and assigning the
queue element a download priority level in accordance
with an outcome of the comparison.

19. The computer program product of claim 10, wherein
the name/value pairs stored in each of the records by the at
least one application program are dynamically extensible by 20

the at least one application program.
20. A computer system for downloading documents from

among a plurality of host computers, comprising:

a plurality of threads of execution;

an enqueuing module that, when executed by the com
puter system, obtains at least one referring document
that includes addresses of one or more referred
documents, each referred document address including a
host component corresponding to a host computer, and 30

enqueues queue elements in a plurality of queues, each
queue element denoting one of the referred document
addresses; each queue element including a download
history comprising zero or more records; and

a dequeuing module that is substantially concurrently 35

executed by each of the plurality of threads so as to
process the referred document addresses in the queues;
the dequeuing module, when executed by a respective
one of the threads, repeatedly performs the functions
of:
(al) identifying a queue element in a selected one of the

queues, downloading a referred document corre
sponding to a referred document address in the
identified queue element, and dequeuing the identi
fied queue element;

(a2) adding a record to the queue element;
(a3) executing at least one application program, distinct

from the enqueuing module and dequeuing module,
for processing the downloaded document, the at least
one application program including instructions that 50

store name/value pairs in the record added to the
queue element, wherein the name of each name/
value pair is specified by the at least one application
program and the value of each name/value is deter
mined by the at least one application program; and 55

(a4) storing the queue element, including the added
record, in a predefined data structure for further
processing.

21. The computer system of claim 20, wherein said
enqueuing module is configured to use at least one of the
downloaded referred documents as a new referring docu
ment.

