a2 United States Patent
Najork et al.

US006321265B1

US 6,321,265 Bl
Nov. 20, 2001

(10) Patent No.:
5) Date of Patent:

(54) SYSTEM AND METHOD FOR ENFORCING
POLITENESS WHILE SCHEDULING
DOWNLOADS IN A WEB CRAWLER

(75) Inventors: Marc Alexander Najork, Palo Alto;
Clark Allan Heydon, San Francisco,
both of CA (US)

(73) Assignee: AltaVista Company, Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/433,005

(22) Filed: Nov. 2, 1999

(51) Int. CL7 oo cenecensnncs GO6F 13/00
(52) US. Clo .o 709/224
(58) Field of Searchccccvevvcnunnne 709/200, 201,
709/203, 217, 218, 219, 220, 223, 224,
245

(56) References Cited

U.S. PATENT DOCUMENTS

5,855,020 1271998 KitSCh ovveeeeereereeeeesrserereeennns 707/10
5,907,837 * 5/1999 Ferrel et al.ccevvivvnvnnnnnnnn. 707/3
5,961,602 * 10/1999 Thompson et al. ... 709/299
5,974,455 1071999 Monier 700/223
6,032,196 2/2000 Monier 7097245
6,094,649 * 7/2000 Bowen 707/3
6,101,491 8/2000 WOOLS weonrvvereeerrerrseeeeesessrren 707/3
6,145,003 11/2000 Sanu et al. ...coovvvviiiiiinnnns 709/225
6,154,738 * 11/2000 Call ..ocvivvvviviiiviiniiiiiiineciae 707/4

6,199,081 * 3/2001 Meyerzon et al.cooeuuuene 707/513

Start

f 204 ~ 1

FOREIGN PATENT DOCUMENTS

PCT/US01/

29497 3/2001 (WO).

* cited by examiner

Primary Examiner—Moustafa M. Meky
(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP

(7) ABSTRACT

A web crawler downloads data sets from among a plurality
of host computers. The web crawler enqueues data set
addresses in a set of queues, with all data set addresses
sharing a respective common host address being stored in a
respective common one of the queues. Each non-empty
queue is assigned a next download time. Multiple threads
substantially concurrently process the data set addresses in
the queues. The number of queues is at least as great as the
number of threads, and the threads are dynamically assigned
to the queues. In particular, each thread selects a queue not
being serviced by any of the other threads. The queue is
selected in accordance with the next download times
assigned to the queues. The data set corresponding to a data
set address in the selected queue is downloaded and
processed, and the data set address is dequeued from the
selected queue. When the selected queue is not empty after
the dequeuing step, it is assigned an updated download time.
Then the thread deselects the selected queue, and the process
of selecting a queue and processing a data set repeats. The
next download time assigned to each queue is preferably a
function of the length of time it took to download a previous
document whose address was stored in the queue. For
instance, the next download time may be set equal to the
current time plus the a scaling constant multiplied by the
download time of the previous document.

42 Claims, 9 Drawing Sheets

Dequeue

Select ready queue with minimal time value.
(If no queue is ready, block the thread until
there is a queue that is ready.)

205 ~ ¢

Download document whose URL is at head of Queue "i";
Measure download time;
Dequeue URL from selected queue.

206 ~]

Iﬁantify and process URL's in document (See Fig. 8)

207 ~

| Execute other procedures on document;l

210~

208

No

Determine wait time for processing next
URL in selected queue.

212~ i

Add selected queue to ordered set of queues
waiting to be serviced (e.g., Heap 134)

e

U.S. Patent Nov. 20, 2001 Sheet 1 of 9 US 6,321,265 B1

[\/ 100
103
112 ~N 114 ~ 116 ~
Web Servers: Domain Name Web Page
All Web pages Service Indexing System
;] f
v Y v
Vs 110
Network Interconnection (Switches, etc.)

i

Web Crawler
104 Memory 102
I\ A 118~ —=
Communications . 120
Interface Operating System | .
Internet Access Proc |/~
106 107 124
h 2 Mux e
CPU | [Clock Demux f126
128
Queues | 130
Threads e 129
Table e 124
JO| e -
136
AddQueue S
AT SelociQuoue 138
Op. Interface elec
108

FIG. 1

U.S. Patent Nov. 20, 2001 Sheet 2 of 9 US 6,321,265 B1
Enqueue
126~ pemux
I I !
FIFO FIFO e e
queue 0 | |queue 1 d
n-1
128-0 128-1 128-n
MUX |™—124
Dequeue
FIG. 2
136 ~ 140 ~
AddQueue(#,Time) SelectQueue(#,Time)
Ordered Set of
Queue # Ready Time Queues
| Waiting to be
Queue # |Ready Time S(?_lr;’::)d
134
Queue # Ready Time |T™—135

FIG. 3

U.S. Patent Nov. 20, 2001 Sheet 3 of 9 US 6,321,265 B1

Enqueue

%

160 A thread discovers a new URL "u”
"~ having a host name component "h"

'

162 —_| Resolve the host name component "h" of the
URL "u" into a host identifier "H" using DNS

'

Hash "H" into an integer "I"

!

Divide "I" by the number of queues
"n" to get remainder "r"

'

168 Enqueue URL into queue "r"

164 —_|

166 —_|

174\

Assign next download
time for queue "r" (e.g., =
present time+c)

176 ~ l
Add queue "r" to ordered

set of queues waiting to
be services (e.g., Heap
172 ~ Return |fe——{134)

170

Was
gueue "r" empty before

URL was added to
it ?

FIG. 4

U.S. Patent Nov. 20, 2001 Sheet 4 of 9 US 6,321,265 B1

Dequeue

Start [\/

i 204 ~ i

Select ready queue with minimal time value.
(If no queue is ready, block the thread until
there is a queue that is ready.)

205 ~ ¢
Download document whose URL is at head of Queue "i";

Measure download time;
Dequeue URL from selected queue.

206 ~ l
Identify and process URL’s in document (See Fig. 8)
207 ~ l

Execute other procedures on document.

208
Queue empty ?

210~ No

Determine wait time for processing next
URL in selected queue.

212 ~, '

Add selected queue to ordered set of queues
waiting to be serviced (e.g., Heap 134)

’ !

FIG. 5

U.S. Patent Nov. 20, 2001 Sheet 5 of 9 US 6,321,265 B1

Enqueue

'

242 —_[Main FIFO

queue
244 ~1" pEMUX

v v v
FIFO FIFO FIFO
queue queue o oo queue

0 1 n-1
246-0 246-1 246-n

v v !

!

MUX " |™—248

v

Dequeue

FIG. 6

U.S. Patent

260
-

132

N\

Nov. 20, 2001

Sheet 6 of 9

US 6,321,265 Bl

—— 262

TABLE
HOST QUEUE IDS
IDENTIFIERS
A 0
B 1
C 2
H n-1

FIG. 7

U.S. Patent Nov. 20, 2001

Thread finds a new URL "u,”
and extracts the host name
component "h" of the URL

v

Sheet 7 of 9

US 6,321,265 Bl

T 280

Resolve the host name
component "h" of URL "u" into
a host identifier "H" using DNS

[— 282

284
Main FIFO
queue empty?

288

Does the Tablé

contain an entry <H, i>
?

Is there an empty
gqueue "j"?

Yes

. 286

Enqueue URL "u" in
main FIFO queue &
Return

290

Enqueue URL "u"
into queue "i" &
Return

294

Enqueue "u" into
main FIFO queue

& Return
Add <H, j> to Table; ——206
Enqueue "u" in queue "j";
' 298

Assign next load time for queue "j
Add queue "|" to ordered set of qu
Return

"

(e.g., = present time+c);
eues waiting to be serviced;

FIG. 8

U.S. Patent Nov. 20, 2001 Sheet 8 of 9 US 6,321,265 B1

Start

204 ~ l

Select ready queue "i" with minimal time value.
(If no queue is ready, block the thread until
there is a queue that is ready.)

Process URL at head of
selected Queue "i"

/ 330

Download document whose URL is at head of Queue "i";
Measure download time;

v -~ 332
Dequeue URL from Queue "i*

v . 334
Identify and process URL'’s in document (See Fig. 8)

! 336
Execute other procedures on document.

FIG. 9

U.S. Patent Nov. 20, 2001 Sheet 9 of 9 US 6,321,265 B1

338 340~

No Determine wait time for
processing next URL in
selected queue.

e 350 342 ~ l

Add selected queue to
ordered set of queues
waiting to be serviced

352 (e.g., Heap 134)

Yes >l

Queue "i" empty ?

Yes

Remove Table entry for queue "i"

Main queue empty ?

Return to step 204
No /354
Remove head URL "u" from main FIFO queue
l 356

Resolve the host name component "h" of
URL "u" into a host identifier "H" using DNS

358 360
Add <H.,i> to Table;

Enqueue "u" in

queue "i

Does
the Table contain
an entry <H, j> 2

Yes -362
L— Enqueue URL "u" into queue "}"

FIG. 10

US 6,321,265 B1

1

SYSTEM AND METHOD FOR ENFORCING
POLITENESS WHILE SCHEDULING
DOWNLOADS IN A WEB CRAWLER

The present invention relates to a system and method for
accessing documents, called web pages, on the world wide
web (WWW) and, more particularly, to a method for sched-
uling web crawlers to efficiently download web pages from
the world wide web.

BACKGROUND OF THE INVENTION

Documents on interconnected computer networks are
typically stored on numerous host computers that are con-
nected over the networks. For example, so-called “web
pages” are stored on the global computer network known as
the Internet, which includes the world wide web. Each web
page on the world wide web has a distinct address called its
uniform resource locator (URL), which at least in part
identifies the location of the web page. Most of the docu-
ments on the world wide web are written in standard
document description languages (e.g., HTML, XML). These
languages allow an author of a document to create hypertext
links to other documents. Hypertext links allow a reader of
a web page to quickly move to other web pages by clicking
on their respective links. These links are typically high-
lighted in the original web page. A web page containing
hypertext links to other web pages generally refers to those
pages by their URL’s. Links in a web page may refer to web
pages that are stored in the same or different host computers.

A web crawler is a program that automatically finds and
downloads documents from host computers in networks
such as the world wide web. When a web crawler is given
a set of starting URL’s, the web crawler downloads the
corresponding documents, then the web crawler extracts any
URL’s contained in those downloaded documents and
downloads more documents using the newly discovered
URL’s. This process repeats indefinitely or until a predeter-
mined stop condition occurs. As of 1999 there were approxi-
mately 500 million web pages on the world wide web, and
the number is continuously growing; thus, web crawlers
need efficient data structures to keep track of downloaded
documents and any discovered addresses of documents to be
downloaded. One common data structure to keep track of
addresses of documents to be downloaded is a first-in-
first-out (FIFO) queue. Using FIFO queues, URL’s are
enqueued as they are discovered, and dequeued in the order
enqueued when the crawler needs a new URL to download.

A high-performance web crawler typically has the capa-
bility to download multiple documents in parallel, either by
using asynchronous I/O or multiple threads. A thread is an
abstraction for an execution entity within a running com-
puter program. When a running computer program is com-
posed of more than one thread, the program is said to be
“multi-threaded.” The threads of a multi-threaded program
run in parallel and share the same memory space, but each
thread in a multi-threaded program executes independently
of the others. Each thread in a multi-threaded program has
its own program counter and stack.

Discovered URL’s from any particular web page often
tend to refer to documents located on the same host com-
puter. Therefore, if a FIFO queue is used by a web crawler
to store those discovered URL’s, sequentially dequeued
URL’s could cause multiple parallel requests to the same
host computer. Sending multiple parallel requests to the
same host computer may overload the host, diminishing its
responsiveness to page requests, or may even cause the host

10

15

25

30

35

40

45

50

55

60

65

2

to crash, either of which may create a bottleneck in the web
crawl and reduce the crawler’s effective parallel processing.

Examples of known prior art methods aimed at preventing
the issuance of multiple parallel requests to one host com-
puter include the Internet Archive web crawler and the
Scooter web crawler used by AltaVista.

The Internet Archive crawler keeps a separate FIFO queue
per web host. During a crawling process, 64 FIFO queues
are selected and assigned to the process. The 64 queues are
processed in parallel with the crawler dequeuing one URL at
a time from each queue and downloading the corresponding
document. This process ensures that no more than one URL
from each queue is downloaded at a time and that the
crawler makes at most one request to each host computer at
a time. The FIFO queues in the Internet Archive web crawler
have a one-to-one correspondence with the number of web
hosts on the Internet; therefore, this approach requires a
staggering number of queues, easily several million.
However, this approach only processes 64 queues at a time;
thus, not only are millions of queues sitting idle, but this
process also puts a prolonged load on a small fraction of the
Internet’s web hosts.

The Scooter web crawler used by AltaVista uses a differ-
ent approach. Scooter keeps a first list of URL’s of web
pages to be downloaded, and a second list of host computers
from which downloads are in progress. Newly discovered
URL’s are added to the end of the first list. To locate a new
URL to download, Scooter compares items in the first list
with the second list until it finds a URL whose host computer
is not in the second list. Scooter then removes that URL from
the first list, updates the second list, and downloads the
corresponding document. One of the disadvantages of this
approach is the time wasted scanning through the list of
URL’s each time a thread in the crawler is ready to perform
a download.

The Scooter web crawler also implements a policy called
“politeness.” In particular, it maintains an in-memory table
mapping all known web servers to a next download time
when they may be contacted again. This in-memory table
can be very large, since the web crawler can have entries for
hundreds of thousands or even millions of known web
servers. The next download time value assigned to each web
server by the Scooter web crawler is based on the download
time of a previous document from the same web server. In
particular, the time value assigned is the time at which the
last download from the web server ended plus a constant
factor C times the duration of that last download. The
constant factor is user configurable. If a value of say, one
hundred is used, this strategy guarantees that Scooter
accounts for at most one percent of any given web server’s
load.

While scanning through the first list (see above discussion
of the Scooter web crawler), Scooter not only skips over
items in the first list that are in the second list, Scooter also
skips over items in the first list whose associated web server
has an assigned next download time value that is later than
the current time. In this way, Scooter avoids sending down-
load requests to any web server until the web server has been
free of requests from Scooter for at least as long as C (the
constant factor discussed above) times the duration of Scoot-
er’s last download from that web server.

The present invention provides more efficient web page
downloading methods that avoid certain of the disadvan-
tages and inefficiencies in the prior art methods, while
preserving a politeness policy similar to the one imple-
mented by the Scooter web server.

US 6,321,265 B1

3
SUMMARY OF THE INVENTION

A web crawler downloads data sets from among a plu-
rality of host computers. The web crawler enqueues data set
addresses in a set of queues, with all data set addresses
sharing a respective common host address being stored in a
respective common one of the queues. Each non-empty
queue is assigned a next download time. Multiple threads
substantially concurrently process the data set addresses in
the queues. The number of queues is at least as great as the
number of threads, and the threads are dynamically assigned
to the queues. In particular, each thread selects a queue not
being serviced by any of the other threads. The queue is
selected in accordance with the next download times
assigned to the queues. The data set corresponding to the
data set address at the head of the selected queue is down-
loaded and processed, and the data set address is dequeued
from the selected queue. When the selected queue is not
empty after the dequeuing step, it is assigning an updated
download time. Then the thread deselects the selected
queue, and the process of selecting a queue and processing
a data set repeats.

The next download time assigned to each queue is pref-
erably a function of the length of time it took to download
a previous document whose address was stored in the queue.
For instance, the next download time may be set equal to the
current time plus a scaling constant multiplied by the
download time of the previous document downloaded from
that queue.

The queue selected by each thread is preferably a queue
that has been assigned a next download time that is no later
than the assigned next download time of all other eligible
queues not selected by any of the other threads. All queues
not currently being serviced by a thread are represented by
entries in an ordered set, such as a heap or balanced tree.
When a queue is selected by a thread, it is removed from the
ordered set, and when a thread is finished processing an
address from the selected queue, the queue is returned to the
ordered set.

While a thread dequeues URL’s from its assigned queue,
it also enqueues any URL’s discovered during the process of
processing downloaded documents. When a thread discov-
ers a new URL (i.e., in a document it has downloaded from
a web site), a numerical function is performed to determine
the queue in which to enqueue the new URL. Each queue
may contain URL’s referring to documents stored on dif-
ferent host computers; however, URL’s referring to docu-
ments stored on the same host computer are always
enqueued into the same queue. In this way, when all the
threads are dequeuing in parallel from each respectively
assigned queue, no more than one request to one host
computer is made at the same time.

In a second exemplary embodiment, each queue is also
dynamically assigned to a single host computer, so that
URL’s having the same host component are enqueued into
the same underlying queue, and all URL’s in any particular
one of the underlying queues are all for the same host. When
a new URL is discovered, the new URL is generally first
enqueued into a main FIFO queue, and is later enqueued into
one of the underlying queues based on host assignments to
the queues. However, if the main queue is empty, the new
URL may be directly enqueued into one of the underlying
queues. Whenever a queue becomes empty, a new host can
be dynamically assigned to it. For example, when a queue
becomes empty, the thread servicing the empty queue begins
enqueuing URL’s from the main queue into the underlying
queues until the thread finds a URL whose corresponding

10

15

20

25

30

35

40

45

50

55

60

65

4

host is not yet assigned to any queue. The empty queue is
assigned to the host of the new URL and the new URL is
enqueued into that queue in accordance with the new
assignment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a distributed computer
system illustrating an exemplary embodiment of the inven-
tion.

FIG. 2 is a block diagram illustrating an first exemplary
embodiment of the invention.

FIG. 3 is a block diagram of an ordered set data structure
and procedures used to access the ordered set in a second
exemplary embodiment of the invention.

FIGS. 4 and 5 are flow charts depicting the first exemplary
embodiment of the invention.

FIG. 6 is a block diagram illustrating the second exem-
plary embodiment of the invention.

FIG. 7 illustrates a table used in the second exemplary
embodiment.

FIGS. 8, 9 and 10 are flow charts depicting the second
exemplary embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 shows an exemplary embodiment of a distributed
computer system 100. The distributed computer system 100
includes a web crawler 102 connected to a network 103
through a network interconnection 110. The network 103
may be a global communication network, such as the
Internet, or a private network, sometimes called an Intranet.
Examples of network interconnections 110 includes
switches, routers, etc.

The Internet network 103 includes web servers 112 and a
service known as a domain name system (DNS) 114. It may
also optionally include a web page indexing system 116. The
web servers 112 store web pages. The domain name system
114 is a distributed database that provides the mapping
between Internet protocol (IP) addresses and host names.
The domain name system 114 is a distributed system
because no single site on the Internet has the domain name
mapping information for all the web servers in the network.
Each site participating in the domain name system 114
maintains its own database of information and runs a server
program that other systems across the Internet can query.
The domain name system provides the protocol that allows
clients and servers to communicate with each other. Any
application may look up the IP address (or addresses)
corresponding to a given host name or the host name
corresponding to a given IP address in the domain name
system 114. An application accesses the domain name
system 114 through a resolver. The resolver contacts one or
more name servers to perform a mapping of a host name to
the corresponding IP address, or vice versa. A given host
name may be associated with more than one IP address
because an Internet host may have multiple interfaces, with
each interface of the host having a unique IP address. Also,
a host may be replicated on multiple computers, each having
its own IP address, but providing access to the same infor-
mation.

The web page indexing system 116 includes an index of
words used on the world wide web and addresses of the web
pages that use each word. Such indexing systems are main-
tained by various search engines, such as the AltaVista
search engine. The domain name system 114 and the web

US 6,321,265 B1

5

page indexing system 116 may be accessed by the web
crawler 102 in the process of downloading web pages from
the world wide web.

The web crawler 102 includes a communications interface
104, one or more central processing units (CPU’s) 106, a
clock circuit 107 for keeping track of the current time, an
operator interface 108 (which may be remotely located on
another computer) and memory 118. In the preferred
embodiment, the communications interface 104 is able to
handle overlapping communication requests. The memory
118 includes:

a multitasking operating system 120;

an Internet access procedure 122 for fetching web pages
as well as communicating with the domain name sys-
tem 114;

a multiplexer (mux) procedure 124 used by threads 130
for dequeuing URL’s from the queues 128;

a demultiplexer (demux) procedure 126 used by the
threads for enqueuing URL’s on the queues 128;

queues 128 for storing addresses of web pages to be
downloaded;

threads 130 for downloading web pages from the servers
112, and processing the downloaded web pages;

a host-to-queue assignment table 132 for recording
dynamic assignments of host identifiers to the queues
128;

a heap or other ordered set data structure 134 for storing
information about queues waiting to be serviced by
threads;

an AddQueue procedure 136 for adding a queue to the
ordered set data structure 134;

a SelectQueue procedure 140 for selecting a queue in the
ordered set that has an assigned next download time
that is no later than the next download time of any other
queue in the ordered set.

In the second exemplary embodiment, discussed below,
the host-to-queue assignment table 132 is both used and
updated by the demux and mux procedures 126, 124. In the
first exemplary embodiment, the assignment table 132 is not
used at all.

In both exemplary embodiments, the number of queues is
at least the number of threads. Preferably, the number of
queues is at least twice the number of threads, and more
preferably the number of queues exceeds the number of
threads by a factor of three to ten. The number of threads is
generally determined by the computational resources of the
web crawler, while the number of queues is determined by
setting a queue-to-thread ratio parameter when the web
crawler is configured. The larger the ratio of queues to
threads, the less likely it will be that any thread will ever be
idle.

Given a set of URL’s, the web crawler 102 begins
downloading documents by enqueuing the URL’s into
appropriate queues 128. Multiple threads 130 are used to
dequeue URL’s out of the queues 128, to download the
corresponding documents or web pages from the world wide
web and to extract any new URL’s from the downloaded
documents. Any new URL’s are enqueued into the queues
128. This process repeats indefinitely or until a predeten-
nined stop condition occurs, such as when all URL’s in the
queues have been processed and thus all the queues are
empty. Multiple threads 130 are used to simultaneously
enqueue and dequeue URL’s from multiple queues 128.
During the described process, the operating system 120
executes an Internet access procedure 122 to access the
Internet through the communications interface 104.

10

15

20

25

30

35

40

45

50

55

60

65

6

The web crawler’s threads substantially concurrently pro-
cess the URL’s in the queues. When the web crawler is
implemented on a multiprocessor, some of the threads may
run concurrently with each other, while others run substan-
tially concurrently through the services of the multitasking
operating system 120.

FIG. 2 illustrates the relationships between a set of “n”
first-in-first-out (FIFO) queues 128 and the demux and mux
procedures 126, 124 in a first exemplary embodiment of the
present invention. When a new URL is discovered, the new
URL is passed to the demux 126. The demux 126 enqueues
the new URL into an appropriate queue based on a prede-
tennined policy. In particular, URL’s having the same asso-
ciated host component are enqueued into the same queue.
When a thread 130 is ready to dequeue from one of the
queues 128, the head URL in the queue assigned to that
thread is dequeued from that queue by the mux 124 and is
passed to the thread for processing.

FIG. 3 illustrates an “ordered set data structure” 134 for
keeping track of the queues that are waiting to be serviced
by threads. The data structure 134 stores an entry 135 for
each queue that is waiting to be serviced. The entry 135 has
a plurality of fields, including one for identifying the queue,
and another for indicating the queue’s assigned next down-
load time. Although not shown, the data structure 134 has
internal structure for ordering the entries 135 in accordance
with the assigned next download times of the entries. A
number of well known data structures can be used for this
purpose, including a heap, a balanced tree, or even a simple
linked list (suitable only if the number of queues being used
is very small, e.g., less than a ten or twenty). The ordered set
data structure is indirectly accessed by the enqueue and
dequeue procedures through a set of interface procedures
136, 140. In particular, an AddQueue procedure 136 is used
to add a queue to the ordered set. A SelectQueue procedure
140 is used to select and remove from the ordered set a
queue whose assigned next download time is no later than
any other queue in the ordered set. This procedure 140
blocks the calling thread until such a queue becomes
available, either because enough time has elapsed, or
because a queue was added to the set by another thread via
the AddQueue procedure. If multiple queues have identical
carliest assigned next download times, the SelectQueue
procedure 140 selects any one of those queues, removes it
from the ordered set, and passes it to the calling thread.

Enqueue and Dequeue Procedures

In the exemplary embodiments, and in most web crawlers,
the web crawler begins its crawls with an initial set of root
documents. The root documents are selected so that all
documents of interest in the Intranet or Internet being
crawled can be reached from the URL links in the initial set
of root documents and in the subsequent documents
accessed via those URL links. This initial set of root
documents may be preloaded into the queues 128 of the web
crawler’s Frontier.

FIG. 4 is a flow chart illustrating the process, in the first
exemplary embodiment of the present invention, for enqueu-
ing URL’s into a set of “n” queues using a set of “k” threads,
where n is preferably larger than k. When a thread of the web
crawler downloads a page or document, it inspects each
URL in the downloaded page. The thread then determines if
the web crawler should enqueue the page corresponding to
the URL for downloading. For instance, the thread may
query a database to determine whether that page has been
visited during the current crawl or within a particular period
of time, and then enqueues the URL only if the response to

US 6,321,265 B1

7

that inquiry is negative. The enqueue procedure described
below is performed once for each URL that the thread has
decided to enqueue.

In this exemplary process, queues are identified by
numerical ID’s. For example, when a thread with ID invokes
the “dequeue” operation for a selected queue “i,” the first
item of the queue “i” is dequeued and returned.

The enqueue operation, performed by a thread executing
the demux procedure 126, works as follows in the first
exemplary embodiment. A thread discovers a new URL “u”
having a host name component “h” during the course of
downloading web pages (160). The host name component
“h” of the URL “u” is resolved into a host identifier “H”
using the domain name system 114 (162). The resolved host
identifier is preferably a canonical name or a canonical IP
address for the host. Step 162 maps all the host names
associated with an Internet host to the same host identifier.
Without step 162, the URL’s associated with a single host
might be assigned to multiple queues. That could cause the
web crawler to submit multiple overlapping download
requests to the host, which would violate one of the principle
goals of this invention.

The host identifier “H” of the new URL “u” is mapped
into a queue identifier “r” using a suitable numerical func-
tion. For example, in one preferred implementation, a fin-
gerprinting function is used to hash the host identifier “H”
into an integer “I” (164). The integer “I” (which is some-
times called the “fingerprint of H”) is divided by the number
of queues in the system, such as “n”, to get a remainder “r”
between 0 and n-1 (166). In other words, r is set equal to the
fingerprint of H modulo n. Examples of other possible
numerical functions that could be used to map the host
identifier into a queue identifier are checksum or CRC
functions, and simply hash functions based on bitwise
operations.

Having selected queue “r,” the new URL “u” is enqueued
into queue “r” (168). If queue “r” already had at least one
entry in it when the new URL “u” was enqueued on it
(170-No), the procedure returns (172). Otherwise, if the
queue “r” was empty (170-Yes), the thread executing the
enqueue procedure assigns a next download time to the
queue (174). For instance, the assigned next download time
may be set equal to the current time plus a fixed increment.
Alternately, a table may be used to store a download time
value for each queue, in which case the assigned next
download time is set equal to the current time plus the stored
download time for the queue. When a table is used to store
a download time value for each queue, that value is updated,
using a rolling average methodology, each time that a
document is downloaded from an address stored in the
queue. For instance, the download time for each document
is measured, and then averaged with the previously stored
average download time using a weighted average that
weights the previous average value with a weight of o and
weights the newly measured download time with a weight of
1-a.

Next, the thread servicing queue “r” adds queue “r” to the
ordered set of queues waiting to be serviced (176), and then
the enqueue procedure returns (172).

Referring to FIG. 5, each thread of the web crawler selects
one of the queues in the ordered set that is waiting to be
serviced, downloads the page or document corresponding to
a URL in the selected queue, dequeues the URL from the
selected thread, processes the page, and then repeats the
process. This continues until the web crawl completes.

More specifically, the dequeue procedure, when executed

o

by any of the web crawler threads, first selects a queue “i

«@

Pyt
T

10

15

20

25

30

35

40

45

50

55

60

65

8

having a minimal next download time value (204). This step
is preferably accomplished by calling the SelectQueue pro-
cedure. If no queues are ready for processing, because their
assigned next download times are all in the future, the thread
executing the dequeue procedure blocks until there is a
queue that is ready for processing.

As indicated above, if multiple queues have identical
carliest assigned next download times, the SelectQueuc
procedure selects any one of those queues, removes it from
the ordered set, and passes it to the calling thread. After
selecting a queue, the thread processes the URL at the head
of the selected queue by downloading the corresponding
document, measuring the download time, and dequeuing the
URL from the selected queue if the download is successful
(205). The downloaded document is typically processed by
the web crawler by identifying and processing the URL’s in
the document (206), as well as by executing other proce-
dures on the downloaded document (207). In the preferred
embodiment, the set of other procedures executed on the
downloaded document is user configurable (e.g., by the
person setting up the web crawler).

If the selected queue is empty (208-Yes) after the head
URL is dequeued, the queue is not returned to the ordered
set, and the thread resumes processing at step 204. If the
queue is not empty, the thread determines a next download
time for the queue (210), and then the queue is added to the
ordered set of queues (212) by calling the AddQueue
procedure, which stores in the ordered set an entry for the
queue that includes the assigned next download time. Then
the thread resumes processing at step 204.

In a preferred embodiment, the next download time
assigned to the selected queue at step 210 is:

next download time=current time+p-(measured download time)

where f is a predefined scaling constant. While § may be set
equal to 1, it can also be set equal to a larger number (e.g.,
100) or smaller number (e.g., 0.5), depending on the polite-
ness policy selected by the person configuring the web
crawler.

Second Exemplary Embodiment

FIG. 6 illustrates a second exemplary embodiment of the
present invention. In this embodiment, there is a main FIFO
queue 242, a demultiplexer procedure (demux) 244, “n”
FIFO queues 246 and a multiplexer procedure (mux) 248.
When a new URL is discovered, it is typically enqueued in
the main FIFO queue 242. However, if the main FIFO queue
242 is empty, the new URL is not necessarily stored in the
main FIFO queue 242; instead, it may be enqueued in one
of the queues 246 by the demux 244. The demux 244
dynamically enqueues the new URL in an appropriate queue
246 according to a host-to-queue assignment table 132,
based on the host identifier of the new URL. For example,
each queue may be preassigned to a host and the new URL
is enqueued into a queue based on the assignment so that
each queue contains URL’s having the same host name
component. When a thread is ready to dequeue a URL from
a queue 246, the head URL in a queue dynamically assigned
to the thread passes through the mux 248 and is dequeued
from the queue. The corresponding web page of the
dequeued URL is downloaded and processed.

FIG. 7 illustrates an exemplary embodiment of the host-
to-queue assignment table 132. The host-to-queue assign-
ment table 132 is updated when a host identifier 260 is
assigned to a queue (represented by a queue identifier 262)
or when the association of a host identifier 260 with a queue

US 6,321,265 B1

9

is removed. Each queue 246 (FIG. 6) may be dynamically
reassigned to a new host identifier whenever the queue
becomes empty.

FIGS. 8, 9 and 10 are flow charts of the second exemplary
embodiment of the present invention. In particular, the flow
chart in FIG. 8 illustrates the enqueue operation, correspond-
ing to the demux procedure 244 shown in FIG. 6, which is
the procedure used by each of the threads to store new
URL’s discovered while processing downloaded web pages.
In the following explanations, queues are identified by
numerical ID’s.

Referring to FIG. 8, while processing a downloaded web
page, a thread will determine whether the URL in each link
in the page is a known URL, which has already been
enqueued and/or processed by the web crawler, or a new
URL, which has not yet been enqueued or processed by the
web crawler. When a thread discovers a new URL “u,” it
extracts the host name component “h” from the URL (280).
The host name component “h” of the URL “u” is resolved
into a host identifier “H” using the domain name system 114
(282). The thread then determines whether the main FIFO
queue 402 is empty (284). If the main FIFO queue 402 is not
empty, the URL “u” is enqueued into the main FIFO queue
402 (286) and then the enqueue procedure exits. The process
for moving URL’s from the main FIFO queue into the
underlying queues is described later.

If the main FIFO queuec 402 is empty (284-Yes), the
thread searches the table 132 for an entry assigning “H” to
any of the queues (288). If such an entry is found, the new
URL “u” is enqueued into the queue “i” to which host
address “H” is assigned, and the thread returns (290). If such
an entry does not exist, the thread searches for an empty
queue “j” (292). If there is no empty queue, the URL “u” is
enqueued into the main FIFO queue 402 and the thread
returns (294). If an empty queue “” is found, “H” is
assigned to queue “j”, table 132 is updated with the new
assignment, and the URL “u” is enqueued into the queue “5”
(296). In addition, the queue “j” is assigned a next download
time and is added to the ordered set of queues waiting to be
serviced (298), and then the thread returns. Since the last
time that the web crawler performed a download from the
host H is unknown, the next download time assigned to the
queue is arbitrarily selected, for instance by adding a small
constant to the current time.

FIGS. 9 and 10 contain a flow chart of the procedure
performed by each thread in the second exemplary embodi-
ment to dequeue and process the URL’s in the queues. This
procedure corresponds to the mux procedurc 248 shown in
FIG. 6. As part of this procedure, the thread moves URL’s
from the main queue to the underlying queues whenever the
queue selected by the thread becomes empty, because all the
URL’s in the queue have been processed and dequeued. The
demux procedure shown in FIGS. 9 and 10 is performed
continuously by each of the “n” threads of the web crawler.
The enqueue procedure, discussed above and shown in FIG.
8, is performed while processing a downloaded web page
(step 334 of FIG. 10). Step 204 of the demux procedure in
this second exemplary embodiment is the same as step 204
of the demux procedure in the first exemplary embodiment,
described above with reference to FIG. 5. After selecting a
queue, the thread processes the thread at the head of the
selected queue. In particular, the thread processes the URL
at the head of the selected queue (330) by downloading the
corresponding document, measuring the download time, and
dequeuing the URL from the selected queue if the download
is successful (332). The downloaded document is typically
processed by the web crawler by identifying and processing

10

15

20

25

30

35

40

45

50

55

60

65

10

the URL’s in the document (334), as well as by executing
other procedures on the downloaded document (336). In the
preferred embodiment, the set of other procedures executed
on the downloaded document is user configurable.

If the selected queue is not empty (338-No) after the head
URL is dequeued, the thread determines a next download
time for the queue (340), and then the queue is added to the
ordered set of queues (342) by calling the AddQueue
procedure, which stores in the ordered set an entry for the
queue that includes the assigned next download time. Then
the thread resumes processing at step 204 (FIG. 9).

However, if the selected queue “i” is empty (338-Yes), the
queue is not immediately returned to the ordered set. Rather,
the table entry for queue “i” is removed, on the basis that an
empty queue is available for reassignment to a new host. If
the main FIFO queue is empty (352-Yes), the thread then
resumes processing at step 204. Otherwise (i.e., the main
FIFO is not empty, 352-No), the thread removes the head
URL “u” from the main FIFO queue (354), and resolves the
host name “h” of the URL “u” into a host identifier “H”
using the domain name system 114 (456). If there is an entry
in the host-to-queue assignment table 132 (FIG. 7) such that
“H” is the assigned host identifier for a queue “j” (358-Yes),
the URL “u” is enqueued into the queue “j” (362) and the
thread goes back to step 352 to process the next URL (if any)
in the main FIFO. If there is not an entry in the table 132 that
maps host identifier “H” to a queue “j” (358-No), “H” is
assigned to queue “i” (360). In particular, the table 132 is
updated with the new assignment and the URL “u” is
enqueued into the queue “i” (360). The thread then executes
steps 340 and 342 (described above) before resuming pro-
cessing at step 204 (FIG. 9).

In the first exemplary embodiment, when crawling in a
network with a relatively small number of host computers,
such as in an Intranet, some queues may be empty while
other queues may contain URL’s for multiple server hosts.
Thus, in the first embodiment, parallelism may not be
efficiently maintained, since more threads will be idle. The
second embodiment described makes better use of thread
capacity, on average, by dynamically reassigning queues to
whichever hosts have pages that need processing. In both
exemplary embodiments, the same politeness policies are
enforced, whereby the web crawler not only does not submit
overlapping download requests to any host, but also waits
between document downloads from each host for a period of
time. The wait time between downloads from a particular
host may be a constant value, or may be proportional to the
download time of one or more previous documents down-
loaded from the host.

The foregoing examples illustrate certain exemplary
embodiments of the invention from which other
embodiments, variations and modifications will be apparent
to those skilled in the art. The invention should therefore not
be limited to the particular exemplary embodiments dis-
cussed herein, but rather defined by the claims appended
hereto.

What is claimed is:

1. A method of downloading data sets from among a
plurality of host computers, comprising:

(a) obtaining at least one referring data set that includes
addresses of one or more referred data sets; each
referred data set address including a host address;

(b) enqueuing the referred data set addresses in a plurality
of queues, including enqueuing those of the referred
data set addresses sharing a respective common host
address into a respective common one of the queues;

US 6,321,265 B1

11

(c) assigning a next download time to each of the queues
that has enqueued therein at least one referred data set
address;

(d) substantially concurrently operating a plurality of
threads, wherein the number of queues is at least as
great as the number of threads;

(e) while operating each thread, repeatedly performing
steps of:

(e1) selecting one of the queues not selected by any of
the other threads, in accordance with the next down-
load times assigned to the queues not selected by any
of the other threads;

(e2) downloading a referred data set corresponding to
a referred data set address in the selected queue,
processing the downloaded referred data set, dequeu-
ing the referred data set address from the selected
queue;

(e3) when the selected queue is not empty after the
dequeuing step, assigning an updated next download
time to the selected queue; and

(e4) deselecting the selected queue;

wherein the enqueuing of referred data set addresses
sharing a respective common host address to a respec-
tive common one of the queues in step (b) ensures that
the downloading in step (e2) by the plurality of threads
does not simultaneously download more than one
referred data set from any of the host computers.

2. The method of claim 1, wherein the queue selected in
step el has an assigned next download time that is no later
than the assigned next download time of all other queues not
selected by any of the other threads.

3. The method of claim 1, further comprising iteratively
downloading additional data sets by:

(i) using at least one of the downloaded referred data sets

of step e2 as a new referring data set for step a; and

(ii) repeating steps a through e.

4. The method of claim 1, wherein the data sets include
web pages and the data set addresses include uniform
resource locators.

5. The method of claim 1, wherein each of the queues is
a first-in-first-out queue.

6. The method of claim 1, wherein

the queues not selected by any of the other threads are
stored as an ordered set, ordered with respect to the
next download times assigned to the queues in the
ordered set;

said stepe 1 includes removing the selected queue from
the ordered set; and

said step e4 includes returning the selected queue to the
ordered set.

7. The method of claim 6, including delaying the queue
selection step when the next download times assigned to all
the queues in the ordered set are later than a current time.

8. The method of claim 1, including delaying the queue
selection step when the next download times assigned to all
the queues in the ordered set are later than a current time.

9. The method of claim 1, wherein

step e2 includes determining a download time for the
downloading of the referred data set;

the updated next download time assigned by step €3 to the
selected queue is a function of the determined down-
load time.

10. The method of claim 9, wherein the updated next
download time assigned by step €3 is equal to a current time
plus a scaling constant multiplied by the determined down-
load time.

5

10

15

20

25

30

35

40

45

50

55

65

12

11. The method of claim 1, wherein said step (b) of
enqueuing the referred data set addresses includes:

(b1) calculating a fingerprint for each referred data set
address based on at least part of the host address
included in the referred data set address; and

(b2) allocating the address to one of the queues based on
the fingerprint.

12. The method of claim 11, wherein:

(i) the plurality of queues comprises N queues, each of the
queues having an associated numerical identifier; and

(i) step (b2) includes assigning each referred data set
address to the queue having a numerical identifier equal
to the referred data set address fingerprint modulo N.

13. The method of claim 1, where step (b) includes:

(b1) enqueuing the referred data set addresses into a main
queue;

(b2) assigning a host to each of said plurality of queues;

(b3) enqueuing said referred data set addresses from said
main queue into said queues according to said assign-
ment; and

(b4) assigning a new host any one of said plurality of
queues when said one queue becomes empty.

14. The method of claim 1, wherein there are at least twice

as many queues as threads.

15. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com-
puter program mechanism comprising:

an enqueuing module that, when executed by the com-
puter system, obtains at least one referring data set that
includes addresses of one or more referred data sets,
each referred data set address including a host address
corresponding to a host computer, and enqueues the
referred data set addresses in a plurality of queues,
including enqueuing those of the referred data set
addresses sharing a respective common host address
into a respective common one of the queues;

a thread module for launching execution of a plurality of
threads, wherein there are at least as many queues as
threads;

a dequeuing module that is substantially concurrently
executed by each of the plurality of threads so as to
sequentially processes the referred data set addresses in
the queues; the dequeuing module, when executed by a
respective one of the threads, repeatedly performs the
functions of
(al) selecting one of the queues not selected by any of

the other threads;

(a2) downloading a referred data set corresponding to
a referred data set address in the selected queue,
processing the downloaded referred data set, dequeu-
ing the referred data set address from the selected
queue;

(a3) when the selected queue is not empty after the
dequeuing step, assigning an updated next download
time to the selected queue; and

(a4) deselecting the selected queue;

wherein

the dequeuing module selects a queue in accordance with
the next download times assigned to the queues not
selected by any of the other threads;

wherein the enqueuing module enqueues all referred data
set addresses sharing a respective common host address
to a respective common one of the queues, and the

US 6,321,265 B1

13

dequeuing module downloads at most one referred data
set from any one host computer at any one time.

16. The computer program product of claim 15, wherein
the queue selected by the enqueuing module has an assigned
next download time that is no later than the assigned next
download time of all other queues not selected by any of the
other threads.

17. The computer program product of claim 15, wherein
said enqueuing module is configured to use at least one of
the downloaded referred data sets as a new referring data set.

18. The computer program product of claim 15, wherein
the data sets include web pages and the data set addresses
include uniform resource locators.

19. The computer program product of claim 15, wherein
each of the queues is a first-in-first-out queue.

20. The computer program product of claim 15, wherein
the dequeuing module instructions for storing representa-
tions of the queues not selected by any of the threads in an
ordered set, ordered with respect to the next download times
assigned to the queues in the ordered set, removes the
selected queue from the ordered set prior to downloading a
referred data set corresponding to a referred data set address
in the selected queue, and returns the select queue to the
ordered set after dequeuing the referred data set address
from the selected queue.

21. The computer program product of claim 20, wherein
the dequeuing module includes instructions for delaying
selection of a queue when the next download times assigned
to all the queues in the ordered set are later than a current
time.

22. The computer program product of claim 15, wherein
the dequeuing module includes instructions for delaying
selection of a queue when the next download times assigned
to all the queues in the ordered set are later than a current
time.

23. The computer program product of claim 15, wherein

the dequening module includes instructions for determin-

ing a download time for the downloading of the
referred data set; and

the updated next download time assigned by the dequeu-

ing module to the selected queue is a function of the
determined download time.

24. The computer program product of claim 23, wherein
the updated next download time assigned by the dequeuing
module is equal to a current time plus a scaling constant
multiplied by the determined download time.

25. The computer program product of claim 15, wherein
said enqueuing module includes instructions for calculating
a fingerprint for each referred data set address based on at
least part of the host address included in the referred data set
address, and allocating the address to one of the queues
based on the fingerprint.

26. The computer program product of claim 15, wherein
said enqueuing module addresses includes instructions for
calculating a fingerprint for each referred data set address
based on at least part of the host address included in the
referred data set address, and instructions for allocating the
address to one of the queues based on the fingerprint.

27. The computer program product of claim 26, wherein:
the plurality of queues comprises N queues, each of the
queues having an associated numerical identifier; and the
instructions for allocating assign each referred data set
address to the queue having a numerical identifier equal to
the referred data set address fingerprint modulo N.

28. The computer program product of claim 15, wherein
there are at least twice as many queues as threads.

29. A web crawler for downloading data sets from among
a plurality of host computers, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

14

a plurality of threads of execution;

an enqueuing module, executed by each of the plurality of

threads, that obtains at least one referring data set that
includes addresses of one or more referred data sets,
each referred data set address including a host address
corresponding to a host computer, and enqueues the
referred data set addresses in a plurality of queues,
including enqueuing those of the referred data set
addresses sharing a respective common host address
into a respective common one of the queues; and

a dequeuing module that is substantially concurrently

executed by each of the plurality of threads so as to

sequentially processes the referred data set addresses in

the queues; the dequeuing module, when executed by a

respective one of the threads, repeatedly performs the

functions of

(al) selecting one of the queues not selected by any of
the other threads;

(a2) downloading a referred data set corresponding to
a referred data set address in the selected queue,
processing the downloaded referred data set, dequeu-
ing the referred data set address from the selected
queue;

(a3) when the selected queue is not empty after the
dequeuing step, assigning an updated download time
to the selected queue; and

(a4) deselecting the selected queue;

wherein

the dequeuing module selects a queue in accordance with

the next download times assigned to the queues not

selected by any of the other threads;

wherein the enqueuing module enqueues all referred data

set addresses sharing a respective common host address

to a respective common one of the queues, and the
dequeuing module downloads at most one referred data
set from any one host computer at any one time.

30. The web crawler of claim 29, wherein the queue
selected by the enqueuing module has an assigned next
download time that is no later than the assigned next
download time of all other queues not selected by any of the
other threads.

31. The web crawler of claim 29, wherein said enqueuing
module is configured to use at least one of the downloaded
referred data sets as a new referring data set.

32. The web crawler of claim 29, wherein the data sets
include web pages and the data set addresses include uni-
form resource locators.

33. The web crawler of claim 29, wherein each of the
queues is a first-in-first-out queue.

34. The web crawler of claim 29, wherein the dequeuing
module instructions for storing representations of the queues
not selected by any of the threads in an ordered set, ordered
with respect to the next download times assigned to the
queues in the ordered set, removes the selected queue from
the ordered set prior to downloading a referred data set
corresponding to a referred data set address in the selected
queue, and returns the select queue to the ordered set after
dequeuing the referred data set address from the selected
queue.

35. The web crawler of claim 34, wherein the dequeuing
module includes instructions for delaying selection of a
queue when the next download times assigned to all the
queues in the ordered set are later than a current time.

36. The web crawler of claim 29, wherein the dequeuing
module includes instructions for delaying selection of a
queue when the next download times assigned to all the
queues in the ordered set are later than a current time.

US 6,321,265 B1

15
37. The web crawler of claim 29, wherein

the dequeuing module includes instructions for determin-
ing a download time for the downloading of the
referred data set; and

the updated next download time assigned by the dequeu-
ing module to the selected queue is a function of the
determined download time.

38. The web crawler of claim 37, wherein the updated
next download time assigned by dequeuing module is equal
to a current time plus a scaling constant multiplied by the
determined download time.

39. The web crawler of claim 29, wherein said enqueuing
module includes instructions for calculating a fingerprint for
each referred data set address based on at least part of the
host address included in the referred data set address, and
allocating the address to one of the queues based on the
fingerprint.

10

15

16

40. The web crawler of claim 29, wherein said enqueuing
module addresses includes instructions for calculating a
fingerprint for each referred data set address based on at least
part of the host address included in the referred data set
address, and instructions for allocating the address to one of
the queues based on the fingerprint.

41. The web crawler of claim 40, wherein: the plurality of
queues comprises N queues, each of the queues having an
associated numerical identifier; and the instructions for
allocating assign each referred data set address to the queue
having a numerical identifier equal to the referred data set
address fingerprint modulo N.

42. The web crawler of claim 29, wherein there are at least
twice as many queues as threads.

#* #* #* #* #*

