
111
US006301614Bl

(12) United States Patent
Najork et al.

(10) Patent No.:
(45) Date of Patent:

US 6,301,614 Bl
Oct. 9,2001

(73) Assignee: Alta Vista Company, Palo Alto, CA
(US)

(54) SYSTEM AND METHOD FOR EFFICIENT
REPRESENTATION OF DATA SET
ADDRESSES IN A WEB CRAWLER

(75) Inventors: Marc Alexander Najork, Palo Alto;
Clark Allan Heydon, San Francisco,
both of CA (US)

(*) Notice:

ABSTRACT

A web crawler stores fixed length representations of docu
ment addresses in first and second caches and a disk file.
When the web crawler downloads a document from a host
computer, it identifies URL's (document addresses) in the
downloaded document. Each identified URL is converted
into a fixed size numerical representation. The numerical
representation is systematically compared to numerical rep
resentations in the caches and disk file. If the representation
is not found in the caches and disk file, the document
corresponding to the representation is scheduled for
downloading, and the representation is stored in the second
cache. If the representation is not found in the caches but is
found in the disk file, the representation is added to the first
cache. When the second cache is full, it is merged with the
disk file and the second cache is reset to an initial state.
When the first cache is full, one or more representations are
evicted in accordance with an eviction policy. The repre
sentations include a prefix that is a function of a host
component of the corresponding URL's, and the represen
tations are stored in the disk file in sorted order. When the
web crawler searches for a representation in the disk file, an
index of the disk file is searched to identify a single block of
the disk file, and only that single block of the disk file is
searched for the representation.

(57)

Primary Examiner-Mark H. Rinehart
Assistant Examiner-Farzaneh Farahi
(74) Attorney, Agent, or Firm-Gary S. Williams; Pennie &
Edmonds LLP

Nov. 2, 1999

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

Int. CI? G06F 15/173; G06F 13/38
U.S. CI. 709/223; 709/218; 709/215;

709/245; 709/216; 707/10; 707/3; 707/5
Field of Search 709/218, 223,

709/245, 215, 216; 707/10, 3, 5, 1

Filed:

U.S. PATENT DOCUMENTS

References Cited

Appl. No.: 09/433,008

5,864,852 * 1/1999 Luotonen 707/10
5,898,836 * 4/1999 Freivald et al. 709/218
5,974,455 * 10/1999 Monier 709/223
6,094,649 * 7/2000 Bowen et al. 707/3

(58)

(21)

(22)

(51)
(52)

(56)

* cited by examiner 22 Claims, 4 Drawing Sheets

100

~
11 103

112\. Domain
Name \web Page .-1

116

IWeb Servers: System Indexing
All Web pages System

i t
~ ~

INetwork Interconnection (Switches, etc.)
110

i
... Main Memory

Web Crawler
104 Communications I 102

Interface 118"'\
f120

Operating System

~106 Internet Access Procedure
f122

Cache C
f124

Cache B
f126

;108 Buffer Cache
,..-128

./

&JtiD Index
f134

Threads
f130

Amm!!Y Main Web Crawl Proc
f140

f142Op. Interface
Process URL Proc...

Disk/Secondary Memory
119,

Disk File
136... I

u.s. Patent Oct. 9,2001 Sheet 1 of 4 US 6,301,614 Bl

100

~
11 - 103

112 Domain
\. Name Web PageV 116

Web Servers: System Indexing
All Web pages System

j

J

, Ir Ir

Network Interconnection (Switches, etc.) V 110

Ir Web Crawler
104~ Communications Main Memory

102
Interface 118\

f120
Operating System

CPU i"'- Internet Access Procedure
f122

106 f124Cache C

Cache B f126

r 108 Buffer Cache ,-128
-/

)\ Index
f134

0 f130
Threads

A:1I1111111111111r f140111111111111111111

Main Web Crawl Proc11111111111111111111

f142Op. Interface
Process URL Proc

• • •

Disk/Secondary Memory
119,

Disk File
r----136

• • •

Fig. 1

u.s. Patent Oct. 9,2001 Sheet 2 of 4 US 6,301,614 Bl

Disk File

Index
136

134 A
•152A • 154AA •

152B
B

B
152C •C • 154B•
1520

0
152E C

E •
• 154C• ••

•
0
•• 1540•

/ E
•

/ •
/ • 154E

/
/

Buffer Cache /
/ / •

128 / •/ •
/ /

/ /

/ /

/ /
/

/
E /
• /154E '- •• /

/

Fig. 2

u.s. Patent Oct. 9,2001 Sheet 3 of 4 US 6,301,614 Bl

Main Procedure, Performed by Each Thread
140~

..
(160... "

Determine Next URL to process from list of
URL's for downloading

l' (162

Download web page corresponding to URL;
Identify URL's in downloaded page

IF (164

For each identified URL: (170
Done Next Invoke the "URL Processing~

Procedure" (Fig. 4)

1r (172....
.... Yes

Return=True....

No {174,..

.... Add identified URL to list of....
URL's for downloading

Fig. 3

u.s. Patent Oct. 9,2001 Sheet 4 of 4 US 6,301,614 Bl

Convert URL into a numerical
representation "N" using a
predefined fingerprint function

202

214 Add N to
Cache B

No

220 Return
"False"

206
Yes

Yes

212

Yes Add N to Cache C

Merge contents of Cache
B into the Disk File, reset
Cache B to a predefined
initial (empty) state.

218

Fig. 4

US 6,301,614 B1
2

SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 is a block diagram of a system network III

accordance with an embodiment of the invention.

FIG. 2 is a block diagram of data structures used in an
embodiment of the invention.

FIG. 3 is a flow chart of a main web crawling procedure
executed by each of a plurality of reads in an exemplary
embodiment of the invention.

FIG. 4 is a flow chart of a URL processing procedure used
in an exemplary embodiment of the invention.

The present invention allows an efficient representation of
a set of downloaded document addresses using a bounded
main memory and an unbounded disk file. This invention
also provides efficient address lookup operations.

When a URL is found by the web crawler in a downloaded
document, that URL is converted into a fixed size numerical
representation based at least in part on the host component
of the corresponding URL. The URL's numerical represen
tation is systematically compared to a structured set of
stored numerical representations (converted from down
loaded document addresses) in multiple memory caches and
a disk file. If the new numerical representation is not found
in the set of stored numerical representations, the URL's
numerical representation is added to the set and its corre
sponding document is scheduled for downloading.

Main memory usage is user configurable and most of the
fixed-size numerical representations of URL's are stored on
a disk file. While most of the fixed-size numerical repre
sentations of URL's are stored on the disk file, data look-up
remains fast because an in-memory cache is used to store the
numerical representations of recently looked-up URL's,
another in-memory cache is used to store recently added
numerical representations, and an index for the disk file is
used to reduce the number of disk reads performed by the
operating system.

The present application is applicable to both Internet and
Intranet web crawlers.

FIG. 1 shows an exemplary embodiment of a distributed
computer system 100. The distributed computer system 100
includes a web crawler 102 connected to a network 103
through a network interconnection 110. The network 103
may be a global communication network, such as the
Internet, or a private network, sometimes called an Intranet.
Examples of network interconnection 110 includes switches,
routers, etc.

The Internet network 103 includes web servers 112 and a
service known as a domain name system 114. It may also

crawler, the set of downloaded document addresses is rep
resented by a set of corresponding fingerprints. Each fin
gerprint in the set of fingerprints is a fixed-size numerical
checksum, calculated directly from its corresponding URL.

For fast data access, the Scooter web crawler stores the set
of fingerprints entirely in main memory. Due to the volume
of documents on the world wide web, Scooter requires an
extremely large main memory for storage of the directory of
known web pages. The present invention provides more

10 efficient document address representation and storage meth
ods that avoid certain of the disadvantages and inefficiencies
in the prior art.

BACKGROUND OF THE INVENTION

1
SYSTEM AND METHOD FOR EFFICIENT

REPRESENTATION OF DATA SET
ADDRESSES IN A WEB CRAWLER

The present invention relates to a system and method for 5

representation of document addresses in a web crawler and,
more particularly, to a method for efficiently representing the
addresses of downloaded documents even when memory
space is relatively small.

Documents on interconnected computer networks are
typically stored on numerous host computers that are con
nected over the networks. For example, so-called "web 15

pages" may be stored on the global computer network
known as the Internet, which includes the world wide web.
Web pages can also be stored on Intranets, which are
typically private networks maintained by corporations, gov
ernment entities, and other groups. Each web page, whether 20

on the world wide web or an Intranet, has a distinct address
called its uniform resource locator (URL), which at least in
part identifies the location or host computer of the web page.
Many of the documents on Intranets and the world wide web
are written in standard document description languages 25

(e.g., HTML, XML). Theses languages allow an author of a
document to create hypertext links to other documents.
Hypertext links allow a reader of a web page to quickly
move to another web page by clicking on the links. These
links are typically highlighted in the original web page. A 30

web page containing hypertext links to other web pages
generally refers to those pages by their URL's. Links in a
web page may refer to web pages that are stored in the same
or different host computers.

A web crawler is a program that automatically finds and 35

downloads documents from host computers in an Intranet or
the world wide web. When a web crawler is given a set of
starting URL's, the web crawler downloads the correspond
ing documents, then the web crawler extracts any URL's
contained in those downloaded documents. Before the web 40

crawler downloads the documents associated with the newly
discovered URL's, the web crawler needs to find out
whether these documents have already been downloaded. If
the documents associated with the newly discovered URL's
have not been downloaded, the web crawler downloads the 45

documents and extracts any URL's contained in them. This
process repeats indefinitely or until a predetermined stop
condition occurs.

Typically, to find out whether the documents associated
with a set of discovered URL's have already been 50

downloaded, the web crawler checks a directory of down
loaded document addresses. The directory stores the URL's
of the downloaded documents, or representations of the
URL's. The set of downloaded document addresses could
potentially contain addresses of every document on the 55

world wide web. As of 1999 there were approximately 500
million web pages on the world wide web and the number
is continuously growing. Even Intranets can store millions
of web pages. Thus, web crawlers need efficient data struc
tures to keep track of downloaded documents and any 60

discovered addresses of documents to be downloaded. Such
data structures are needed to facilitate fast data checking and
to avoid downloading a document multiple times.

One example of a known prior art method designed to
facilitate fast data checking and to avoid downloading a 65

document multiple times is the method implemented by the
Scooter web crawler used by Alta Visa. In the Scooter web

US 6,301,614 B1
3 4

Main Web Crawler Procedure

In the exemplary embodiment the web crawler uses
multiple threads to download and process documents. The
web crawler 102 is given a set of initial URL's and begins
downloading documents using those URL's. Various data
structures may be used to keep track of which documents
(web pages) the threads should download and process, but
those particular data structures are not the subject of the
present document. Rather, the present invention concerns

55 the data structures and methods used to keep track of the
URL's of documents that have already been downloaded or
that have already been scheduled for downloading.

Each thread executes a main web crawler procedure 140,
which will be now described with reference to FIG. 3. The
web crawler thread determines the URL of the next docu
ment to be downloaded (step 160), typically by retrieving it
from a queue data structure (not shown). The thread then
downloads the document corresponding to the URL, and
processes the document (162). That processing may include
indexing the words in the document so as to make the
document accessible via a search engine. However, the only
processing of the document that is relevant to the present

designed to minimize disk access. In particular, it is well
known that, on average, many of the URL's in any particular
document will typically point to multiple documents on the
same host. Each URL numeric representation has a prefix
portion and a suffix portion. The prefix is solely a function
of the host portion of the URL, while the suffix is a function
of the entire URL. As a result, all URL's having the same
most component have a common prefix, and therefore when
the URL numeric representations are arranged in a pre
defined (e.g., numerically ascending or descending) sorted
order, the URL numeric representations for documents on a
particular host will form a contiguous set of items.

The index 134 stores the numeric representation for the
first URL in each disk block of the disk file 136. Since the
disk file is in sorted order, the URL numeric representations
in the index 134 are also stored in sorted order. By using the
index 134 to determine which disk block of the disk file 136
a URL would be stored in, if that URL were stored in the
disk file, the number of disk reads (read kernel calls)
performed per look-up in the disk file 136 is reduced. In fact,
any single look-up operation will never require more than
one disk read operation. The average number of disk reads
per look-up operation is a function of the size of the two
caches 124, 126, and the number of disk blocks stored in the
buffer cache 128, and generally will be much, much less than
one.

Referring to FIG. 2, the disk file 136 includes an
unbounded number of disk blocks 154A-154E. The index
134 contains the first numerical representation 152A-152E

30 in each disk block 154 in the disk file 136. In the exemplary
embodiment, when a particular disk block, for example,
154E, is accessed, the disk block 154E is copied by the
operating system to the buffer cache 128. The buffer cache
128 is an array in main memory 118 that stores a fixed,

35 relatively small number of disk blocks. The buffer cache 128
may be in either user level program memory or kernel level
memory within the operating system 120. Caching one or
more accessed disk blocks 154 in buffer cache 128 increases
the efficiency of data look-ups and reduces hard drive

40 access. Disk blocks are evicted from the buffer cache 128
when space is needed for newly accessed disk blocks. The
disk block to be evicted at anyone time is determined using
an appropriate eviction policy, such as a least recently used
eviction policy or a round robin eviction policy.

optionally include a web page indexing system 116. The web
servers 112 store web pages. The domain name system 114
is a distributed database that provides the mapping between
Internet Protocol (IP) addresses and hostnames. The domain
name system 114 is a distributed system because no single 5

site on the Internet has the domain name mapping informa
tion for all the web servers in the network. Each site
participating in the domain name system 114 maintains its
own database of information and runs a server program that
other systems across the Intranet or Internet can query. The 10

domain name system provides the protocol that allows
clients and servers to communicate with each other. Any
application may look up the IP address (or addresses)
corresponding to a given hostname or the hostname corre
sponding to a given IP address in the domain name system 15

114. An application accesses the domain name system 114
through a resolver. The resolver contacts one or more name
servers to perform a mapping of a hostname to the corre
sponding IP address, or vice versa. A given hostname may
be associated with more than one IP address because an 20

Intranet or Internet host may have multiple interfaces, with
each interface of the host having a unique IP address.

The web page indexing system 116 includes an index of
words used on the world wide web and addresses of the web
pages that use each word. Such indexing systems are main- 25

tained by various search engines, such as the Alta Vista
search engine. The domain name system 114 and the web
page indexing system 116 may be accessed by the web
crawler 102 in the process of downloading web pages from
the world wide web.

The web crawler 102 includes a communications interface
104, one or more CPU's 106, an operator interface 108
(which may be remotely located on another computer),
primary or main memory 118 and secondary (e.g. disk)
memory 119. In an exemplary embodiment, the communi
cations interface 104 is able to handle overlapping commu
nication requests. The memory 118 includes:

a multitasking operating system 120;

an Intranet/lnternet access procedure 122 for fetching web
pages as well as communicating with the domain name
system 114;

a fixed size cache C 124 for storing recently looked-up
numerical representations of URL's;

a fixed size cache B 126 for storing recently added 45

numerical representations of URL's;

a buffer cache 128 maintained by the operating system for
storing accessed disk block(s);

an index 134 indicating the first numerical representation 50

stored in each disk block of a disk file 136;
threads 130 for downloading web pages from the servers

112, and processing the downloaded web pages;
a main web crawler procedure 140 executed by each of

the threads 130; and
a URL processing procedure 142 executed by each of the

threads 130 to process the URL's identified in a down
loaded web page.

It should be noted that caches C and B are preferably
implemented in main memory as hash tables to facilitate fast 60

lookup operations.
The disk file 136, which is not bounded in size, is stored

in secondary (e.g., disk) storage 119. The caches C and B
124, 126 and the disk file 136 store a numerical represen
tation of each URL known to the web crawler. As will be 65

described in more detail below, the numerical representa
tions of the URL's are formed and stored in a manner

US 6,301,614 B1
5 6

In alternate embodiments the two fingerprints could be
combined in other ways to form the fixed length URL
numeric representation.

After the specified URL has been converted into a
numeric representation N, a lookup is performed to see if N
is already stored in cache C (step 204), which stores the
numeric representations of recently looked up URL's. If N
is already stored in cache C, that means that the web crawler
already knows the corresponding URL, and therefore no
further processing of the URL is needed. The procedure
returns a True value (step 206) to indicate that the web
crawler has previously "processed" the specified URL,
where "processed" means either that the corresponding
document has been downloaded and processed, or that the
document has already been scheduled for downloading.

If the URL numeric representation N was not found in
cache C, a lookup is performed to see if N is already stored
in cache B (step 208), which stores the numeric represen
tations of URL's recently added to the list of URL's known
to the web crawler. If N is already stored in cache B, that
means that the web crawler already knows the correspond
ing URL, and therefore it returns a True value (step 206).

If the URL numeric representation N was not found in
25 caches C and B, a lookup is performed to see if N is already

stored in the disk file (step 210). To do this, a binary search
or interpolated binary search is performed on the disk file
index to determine which disk block to inspect. Once the
disk block corresponding to the numeric representation N
has been identified, the operating system determines
whether a copy of the disk block is already stored in the
buffer cache (see FIG. 2), and if not, reads the disk block into
the buffer cache. Finally, an interpolated binary search is
performed on the disk block to determine whether or not
numeric representation N is already stored in the disk block,
and thus in the disk file.

Since the numeric representations of all URL's with the
same host component share the same a-bit prefix, the rep
resentations of such URL's will be grouped together in the
disk file 136, which contains the numeric representations in
sorted order. As a result, in the expected case in which the
stream of URL's discovered by the web crawler contains a
high degree of host locality, there will be a high degree of
locality to the parts of the disk file that are accessed during
lookups. The operating system's file buffer cache 128 will
therefore often contain the requested disk page in memory,
which can lead to dramatic performance improvements. If
each URL's numeric representation was formed solely from
the fingerprint of the entire URL, the numeric representa
tions of URL's with the same host component would be
spread across the entire disk file, thereby minimizing the
effectiveness of the buffer cache 128.

If the URL numeric representation N is found in the disk
file (210-Yes), the numeric representation N is added to
cache C (step 212). If cache C is full, an entry in cache C is
evicted to make room for the numeric representation N in
accordance with a predefined eviction policy. Suitable cache
entry eviction policies include evicting a least recently used
entry, and evicting entries in round robin order. Numerous
cache entry eviction policies are known to those skilled in
the art, including many types or variations of the LRU (least
recently used) policy.

If the URL numeric representation N was not found in the
disk file (212-No), that means the specified URL is a "new
URL" for a document not previously known to the web
crawler. In this case, the URL numeric representation N is
added to cache B (step 214). If adding the URL numeric

discussion is that the main procedure identifies URL's in the
downloaded document that are candidates for downloading
and processing (step 162). Typically, these URL's are found
in hypertext links in the document being processed.

Each identified URL is processed (step 164) to determine 5

if it is the URL for a page already known to the web crawler,
or is a "new URL" for a document not previously known to
the web crawler. In particular, the thread invokes the URL
processing procedure of the present invention (step 170). If
that procedure returns a True value (172-Yes), the identified 10

URL is already known to the web crawler, in which case the
main procedure continues processing any other identified
URL's in the document being processed (step 170). If it
returns a False value (172-No), the identifier URL is added
to a list of URL's for downloading (step 174), and then the 15

main procedure continues processing any other identified
URL's in the document being processed (step 170).

URL Processing Procedure

The URL processing procedure invoked in step 170 of the 20

main web crawler procedure is described next with reference
to FIG. 4. The first step of the URL processing procedure is
to convert a specified UTRL into a fixed length numeric
representation (step 202), by applying a predefined finger
print function, or set of fingerprint functions, to the URL.

The caches C and B 124, 126 and the disk file 136 store
fixed length "numeric representations" of URL's instead of
storing the corresponding URL's. These fixed length
numeric representations are formed as follows. Each URL
has a host component identifying the host computer where 30

the corresponding document or web page is stored. The
numerical representation of each URL is composed of two
fingerprints: (1) a fingerprint of the host name component of
the URL and (2) a fingerprint of the entire URL. Each of
these fingerprints is formed using a predefined fingerprint 35

function that generates a fixed length result; the results
produced by the two functions may have different lengths.
Many suitable fingerprint functions are known to those
skilled in the art, and thus are not described here.

Prior to generating the two fingerprints for a URL, the 40

host name component "h" of the URL "u" may be resolved
into a host identifier "H" using the domain name system 114.
The resolved host identifier is preferably a canonical name
or a canonical IP address for the host. All host names
associated with an Internet host are mapped to the same host 45

identifier. After the host component of the URL is replaced
by the host identifier "H," the two fingerprints for the URL
are generated. When the term "host component" is used
below in connection with the computation of fingerprints for
a URL, the host component used is actually the correspond- 50

ing host identifier "H."
The first fingerprint, of the host identifier "H," has a

length of "a" bits, while the second fingerprint, of the full
URL has a length of "b" bits. The two fingerprints may be
generated using a fingerprint function that generates fixed 55

length initial fingerprints, and then selecting"a" bits of the
first initial fingerprint to form the first fingerprint and
selecting "b" bits of the second initial fingerprint to form the
second fingerprint.

The URL numeric representation is formed by concat- 60

enating the first and second fingerprints, to form a numeric
representation of length "a+b". The first a-bit portion of a
URL numeric representation is called its prefix, while the
last b-bit portion of a URL numeric representation is called
its suffix. All URL's with the same host component (i.e., host 65

identifier) will have numerical representations having the
same a-bit prefix.

US 6,301,614 B1
7 8

65

50

the data set address representations in the disk file are
stored in a predefined sorted order;

step (a) includes generating a disk file index, distinct from
said set of data structures, that stores information
corresponding to a first data set address representation
in each of the disk blocks of the disk file; and

the step of determining whether the representation of the
identified address is stored in the disk file includes
searching the disk file index to identify a single disk
block of the disk file to search.

5. The method of claim 1, wherein
step (dl) includes generating a first fingerprint of only a

host address portion of the identified address, and
concatenating the first and second fingerprints to form
the fixed-length representation of the identified
address;

the data set address representations in the disk file each
comprise a concatenation of a first fingerprint of only a
host address portion of the data set address associated
with the data set address representation and a second
fingerprint of the data set address, and the data set
representations are stored in the disk file in an order
corresponding to numeric values of the data address
representations.

6. The method of claim 5, wherein the data sets include
25 web pages and the data set addresses include uniform

resource locators.
7. The method of claim 1, wherein said step (dl) includes
(i) obtaining a first representation portion based solely on

a host component of said identified address;
(ii) obtaining a second representation portion based on

said identified address; and
(iii) combining said first and second representation por

tions.
8. A computer program product for use in conjunction

35 with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com
puter program mechanism comprising:

a disk file, a first cache and a second cache, for storing
representations of data set addresses;

a main web crawler module for downloading and pro
cessing data sets stored on a plurality of host
computers, the main web crawler module identifying
addresses of the one or more referred data sets in the
downloaded data sets, and

an address processing module for processing a specified
one of the identified addresses; the address processing
module including instructions for:
generating a fixed-length representation of the identi

fied address;
determining first whether the representation of the

identified address is stored in the first cache, and
when the first determination is negative determining
second whether the representation of the identified
address is stored in the second cache, and when the
second determination is negative determining third
whether the representation ofthe identified address is
stored in the disk file;

when the third determination is negative, storing the
representation of the identified address in the second
cache and scheduling the corresponding data set for
downloading; and

when the third determination is positive, storing the
representation of the identified address in the first
cache.

9. The computer program product of claim 8, wherein the
address processing module includes instructions for deter-

representation to cache B causes cache B to become fall
(216-Yes), then the contents of cache B are merged with the
disk file (step 218) and cache B is reset to a predefined initial
(i.e., empty) state. During the merging process, the stored
numerical representations in cache B 126 and in the disk file 5

136 are combined and reorganized into a sorted order. The
resulting merged set of URL numeric representations are
stored in a new disk file, and a new index is generated to
represent the first URL numeric representation in each disk
block of the new disk file. When the merge process is 10

completed, the old disk file and index are deleted. The
process of merging cache B into the disk file is an expensive
operation. Therefore cache B is typically made fairly large
so as to minimize the frequency of such merge operations.

After a URL numeric representation N is added to cache 15

B (step 214), the procedure returns a False value to indicate
that the specified URL was not previously known to the web
crawler (step 220).

The foregoing examples illustrate certain exemplary
embodiments of the invention from which other 20

embodiments, variations and modifications will be apparent
to those skilled in the art. The invention sold therefore not
be limited to the particular exemplary embodiments dis
cussed herein, but rather defined by the claims appended
hereto.

What is claimed is:
1. A method of downloading data sets from among a

plurality of host computers, comprising the steps of:
(a) storing representations of data set addresses in a set of

data structures, including a first cache, a second cache, 30

and a disk file;
(b) downloading at least one data set that includes

addresses of one or more referred data sets;
(c) identifying the addresses of the one or more referred

data sets, and
(d) for each identified address:

(dl) generating a fixed-length representation of the
identified address;

(d2) determining first whether the representation of the
identified address is stored in the first cache, and 40

when the first determination is negative determining
second whether the representation of the identified
address is stored in the second cache, and when the
second determination is negative determining third
whether the representation of the identified address is 45

stored in the disk file;
(d3) when the third determination is negative, storing

the representation of the identified address in the
second cache and scheduling the corresponding data
set for downloading; and

(d4) when the third determination is positive, storing
the representation of the identified address in the first
cache.

2. The method of claim 1, wherein
when the first cache reaches a predefined full condition, 55

one or more data set address representations in the first
cache are evicted in accordance with a predefined
eviction policy.

3. The method of claim 1, wherein
when the second cache reaches a predefined full 60

condition, the data set address representations in the
second cache are merged into the data set address
representations in the disk file, and the second cache is
reset to a predefined initial state.

4. The method of claim 1, wherein
the disk file in which data set address presentations are

stored comprises a sequence of disk blocks;

US 6,301,614 B1
9 10

50

second whether the representation of the identified
address is stored in the second cache, and when the
second determination is negative determining third
whether the representation ofthe identified address is
stored in the disk file;

when the third determination is negative, storing the
representation of the identified address in the second
cache and scheduling the corresponding data set for
downloading; and

when the third determination is positive, storing the
representation of the identified address in the first
cache.

16. The web crawler of claim 15, wherein the address
processing module includes instructions for determining

15 when the first cache reaches a predefined full condition, and
for evicting one or more data set address representations in
the first cache in accordance with a predefined eviction
policy.

17. The web crawler of claim 15, wherein the address
20 processing module includes instructions for determining

when second cache reaches a predefined full condition and
merging the data set address representations in the second
cache into the data set address representations in the disk
file, and resetting the second cache to a predefined initial

25 state.
18. The web crawler of claim 15, wherein
the disk file in which data set address representations are

stored comprises a sequence of disk blocks;
the data set address representations in the disk file are

stored in a predefined sorted order;
the address processing module includes instructions for

generating a disk file index, distinct from said set of
data structures, that stores information corresponding
to a first data set address representation in each of the
disk blocks of the disk file; and

the address processing module includes instructions for
searching the disk file index to identify a single disk
block of the disk file to search for the identified address.

19. The web crawler of claim 15, wherein the address
40 processing module includes instructions for generating a

first fingerprint of only a host address portion of the iden
tified address, generating a second fingerprint of the iden
tified address, and concatenating the first and second fin
gerprints to form the fixed-length representation of the

45 identified address; and
the data set address representations in the disk file each

comprise a concatenation of a first fingerprint of only a
host address portion of the data set address associated
with the data set address representation and a second
fingerprint of the data set address, and the data set
representations are stored in the disk file in an order
corresponding to numeric values of the data address
representations.

20. The web crawler of claim 19, wherein the data sets
55 include web pages and the data set addresses include uni

form resource locators.
21. The web crawler of claim 15, wherein the address

processing module includes instructions for
(i) obtaining a first representation portion based solely on

a host component of said identified address;
(ii) obtaining a second representation portion based on

said identified address; and
(iii) combining said first and second representation por

tions.
22. The method of claim 7, wherein
the data set address representations in the disk file each

comprise a concatenation of a first representation por-

mmmg when the first cache reaches a predefined full
condition, and for evicting one or more data set address
representations in the first cache in accordance with a
predefined eviction policy.

10. The computer program product of claim 8, wherein 5

the address processing module includes instructions for
determining when the second cache reaches a predefined full
condition and merging the data set address representations in
the second cache into the data set address representations in
the disk file, and resetting the second cache to a predefined 10

initial state.
11. The computer program product of claim 8, wherein

the disk file in which data set address representations are
stored comprises a sequence of disk blocks;

the data set address representations in the disk file are
stored in a predefined sorted order;

the address processing module includes instructions for
generating a disk file index, distinct from said set of
data structures, that stores information corresponding
to a first data set address representation in each of the
disk blocks of the disk file; and

the address processing module includes instructions for
searching the disk file index to identify a single disk
block of the disk file to search for the identified address.

12. The computer program product of claim 8, wherein
the address processing module includes instructions for
generating a first fingerprint of only a host address portion
of the identified address, generating a second fingerprint of
the identified address, and concatenating the first and second
fingerprints to form the fixed-length representation of the 30

identified address; and
the data set address representations in the disk file each

comprise a concatenation of a first fingerprint of only a
host address portion of the data set address associated
with the data set address representation and a second 35

fingerprint of the data set address, and the data set
representations are stored in the disk file in an order
corresponding to numeric values of the data address
representations.

13. The computer program product of claim 12, wherein
the data sets include web pages and the data set addresses
include uniform resource locators.

14. The computer program product of claim 8, wherein
the address processing module includes instructions for

(i) obtaining a first representation portion based solely on
a host component of said identified address;

(ii) obtaining a second representation portion based on
said identified address; and

(iii) combining said first and second representation por
tions.

15. A web crawler for downloading data set addresses
from among a plurality of host computers, comprising:

a disk file, a first cache and a second cache, for storing
representations of data set addresses;

a main web crawler module for downloading and pro
cessing data sets stored on a plurality of host
computers, the main web crawler module identifying
addresses of the one or more referred data sets in the
downloaded data sets, and

an address processing module for processing a specified 60

one of the identified addresses; the address processing
module including instructions for:
generating a fixed-length representation of the identi

fied address;
determining first whether the representation of the 65

identified address is stored in the first cache, and
when the first determination is negative determining

11
US 6,301,614 B1

12
tion of only a host component of the data set address
associated with the data set address representation and
a second representation portion based on the data set
address, and the data set representations are stored in

the disk file in an order corresponding to numenc
values of the data address representations.

* * * * *

