
111
US006263364Bl

(12) United States Patent
Najork et ai.

(10) Patent No.:
(45) Date of Patent:

US 6,263,364 BI
Jui. 17,2001

(54) WEB CRAWLER SYSTEM USING
PLURALITY OF PARALLEL PRIORITY
LEVEL QUEUES HAVING DISTINCT
ASSOCIATED DOWNLOAD PRIORITY
LEVELS FOR PRIORITIZING DOCUMENT
DOWNLOADING AND MAINTAINING
DOCUMENT FRESHNESS

6,157,963 * 12/2000 Courtright, II et al. 710/5
6,182,085 * 1/2001 Eichstaedt et al. 707/104
6,192,364 * 2/2001 Baclawski 707/10

* cited by examiner

Primary Examiner~e Hien Luu
(74) Attorney, Agent, or Firm-Pennie & Edmonds LLP

(73) Assignee: Alta Vista Company, Palo Alto, CA
(US)

(75) Inventors: Marc Alexander Najork, Palo Alto;
Clark Allan Heydon, San Francisco;
Janet Lynn Wiener, Sunnyvale, all of
CA(US)

(*) Notice:

U.S. PATENT DOCUMENTS

ABSTRACT(57)

30 Claims, 12 Drawing Sheets

A web crawler downloads documents from among a plural­
ity of host computers. The web crawler enqueues document
addresses in a data structure called the Frontier. The Frontier
generally includes a set of queues, with all document
addresses sharing a respective common host component
being stored in a respective common one of the queues.
Multiple threads substantially concurrently process the
document addresses in the queues. The Frontier includes a
set of parallel "priority queues," each associated with a
distinct priority level. Queue elements for documents to be
downloaded are assigned a priority level, and then stored in
the corresponding priority queue. Queue elements are then
distributed from the priority queues to a set of underlying
queues in accordance with their relative priorities. The
threads then process the queue elements in the underlying
queues. When performing a continuous crawl, the web
crawler reinserts the queue element for a downloaded docu­
ment into the Frontier in accordance with a download
priority level associated with the downloaded document. For
example, the download priority level may be determined as
a function of an expiration date and time associated with
document whose document address is denoted by the queue
element.

Nov. 2, 1999

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

References Cited

Filed:

Int. CI? G06F 15/16; G06F 15/173
U.S. CI. 709/217; 709/201; 709/226
Field of Search 709/217, 201,

709/226, 223, 225; 710/5; 707/10, 3, 104

Appl. No.: 09/433,007

5,907,837 * 5/1999 Ferrel et al. 707/3
5,974,455 * 10/1999 Monier 709/223
6,145,003 * 11/2000 Sanu et al. 709/225

(56)

(21)

(22)

(51)
(52)
(58)

____100

112, 114 "' 116 "'
103

I~eb Servers: II Domain Name III, Web Page I
All Web pages Sysylem Indexing System

f + +..
INetwork Interconnection (Switches, etc.)

110

i
104,

Web Crawler
Memory 102

ICommunications

I
118,

Interface Operating System .../120

Internet Access Proc .../122

'OOCc%~
.../124Mux

CPU Clock
Demux .../126

Queues .../128

Threads .../130

Table c-r132

~ Heap Lr134

Lr136

~
Heap Procs

1IIIIIlI1I1IDlIlI

Queue Element Procs V 138
Gp. Interface

URL Priority V 140
'-108

Determination Proc(s)
Document processing V 141

Proc(s)

Iname/value del & V 139
storing instructions...

u.s. Patent Jui. 17,2001 Sheet 1 of 12 US 6,263,364 BI

~100

112 \ 114 \ 116 \
103

Web Servers: Domain Name Web Page
All Web pages Sysytem Indexing System

~~

,Ir

Network Interconnection (Switches, etc.) V 110

A

104\
Web Crawler

,Ir Memory 102

Communications
118\

Interface Operating System /120

/122Internet Access Proc
106 \ 107 \

Mux /124
CPU IICIOCk I Demux /126

I Queues /128

Threads V 130

Table V 132

0 i()1 Heap V 134

Heap Procs V 136
Araaaaa:waaaaaaaaa

V 138aaaaaaaaa
Queue Element Procs

Op. Interface
URL Priority V 140

\......108
Determination Proc(s)
Document processing /141
Proc(s)

name/value det & V 139
storing instructions

• • •

FIG.l

u.s. Patent Jui. 17,2001 Sheet 2 of 12 US 6,263,364 BI

Enqueue Frontier
~

FIFO
queue 0

128-0

FIFO
queue 1

128-1

Dequeue

FIG. 2

• • •

--- 124

FIFO
queue

n-1

128-m-1

Queue Entry

144

146

148-1

149-1
149-2

148-2

~ URL I ~142

~
Header: Download counter,
Download attemot counter etc.

~ Record

~ Name1 Value1
'--

~ '- Name2 Value2

• • •
~

Record

• • •

FIG. 3

u.s. Patent Jui. 17,2001 Sheet 3 of 12 US 6,263,364 BI

160

162

164

166

168

A thread discovers a new URL IIUIl

having a host name component IIhll

Resolve the host name component IIhll of the
URL IIUIl into a host identifier IIH" using DNS

Hash IIHII into an integer 111
11

Divide "I" by the number of queues
11m" to get remainder 1Ir"

Enqueue a queue element for the
URL into queue "r"

Return

170 Signal any thread blocked
--- on queue "r" to unblock

FIG. 4

Enqueue

r-I

172

u.s. Patent Jui. 17,2001 Sheet 4 of 12 US 6,263,364 BI

Dequeue

r-/Start
~

j (200

Download document whose URL is at head of selected Queue;
Measure download time;

• (202
Dequeue queue element from Queue "i";
Add download history record to the queue element.

(204

Identify and process URL's in document (See Fig. 4) 1
,------- ------------- - I

,--206

Execute other procedures on document. I Supplemental
Processing of
URLldocument

212"""\ ...
Determine values for all
name/value pairs in defined record.

214,

Store determined values in new record
of queue entry for this URL.

216,

Optional: Delete one or more records in
accordance with record deletion criteria

L ------- -------- - - - - --
220, .Ir

I+-
Add queue entry for this URL to the Frontier,
or to database of processed URL's.

FIG. 5

u.s. Patent Jui. 17,2001 Sheet 5 of 12

Enqueue

US 6,263,364 BI

, Frontier

126 ---I I
~

DEMUX

,.

+ + +
Queue 0 Queue 1 Queue

m-1
• • •

(Set of N (Set of N
(Set of Npriority priority

sub- sub- priority

queues) queues) sub-

240-0 240-1 queues)
240-m-1

+ + +
"

I MUX 1--- 124

"
Dequeue

Queue i FIG. 6
(Set of N priority \ ,...

sub-queues), ~

+ + +
Priority Priority Priority
queue queue queue

0 1 n-1

242-0 242-0 242-n-1

• • •
+ + +

FIG. 7

u.s. Patent Jui. 17,2001 Sheet 6 of 12 US 6,263,364 BI

Download ---282ueue URL into queue "r" priority level

~
determination
criteria

/ List of high

260, / priority hosts

IDetermine download priority level "p" for URL "u" I \...264

262,

IEnqueue URL into subqueue(priority level) "p" of queue fIr"~ I

Enq
168

FIG. SA

270

Download document whose URL is at head of selected Queue;

200~

Generate random number z
Map z to subqueue priority level "p" using non-uniform
mapping weighted in accordance with the priority levels.

276

Block until signaled that
selected queue is non­
empty

Yes

Select closest non-empty subqueue

280

Select and download URL at head of identified subqueue

FIG. SB

u.s. Patent Jui. 17,2001 Sheet 7 of 12 US 6,263,364 BI

Frontier

y:J290
Enqueue

I.. Front-
298 DEMUX I End

Queue

292 ____
~ + ~

Priority Priority Priority
queue queue queue

0 1 m-1

294-0 294-0 294-n-1

• • •
~ ~ +

I MUX 1----302

,r Back-End300 IDEMUX (Underlying)
Queues

+ + ~

FIFO FIFO FIFO
queue queue • • • queue

0 1 n-1

296-0 296-1 296-m-1

~ ~ ~

I MUX 1----304

•Dequeue

FIG. 9

u.s. Patent

132
'---.

Jui. 17,2001 Sheet 8 of 12 US 6,263,364 BI

308 _____

TABLE

HOST
QUEUE IDSIDENTIFIERS r----

A 0

B 1

C 2

• • • • • •

H n-1

FIG. 10

309

Ordered Set
Data Structure

13L,.. 13r--6_A----I. ---.

IQueue #

IQueue #

IQueue #

Ordered Set ofIReady Time I Queues
Waiting to be

IReady Time I Serviced
(Heap)

134IReady Time 1~135-

• • •

FIG. 11

u.s. Patent Jui. 17,2001 Sheet 9 of 12 US 6,263,364 BI

Thread finds a new URL "u," and extracts
the host name component "h" of the URL 310

Resolve the host name component "h" of
URL "u" into a host identifier "H" using DNS 311

Yes Enqueue URL "u"
into queue "i" &
Return

316

318

312

314

No Enqueue "u" into
.:>----1~ main FI FO queue

& Return

Enqueue URL "u" in
~-~ identified priority

queue & Return

Determine download priority level for URL "u"

Add <H, j> to Table; 319
Enqueue "u" in queue "t;

320

Assign next load time for queue "t (e.g., =present time+c);
Add queue "t to ordered set of queues waiting to be serviced;
Return

FIG. 12

u.s. Patent Jui. 17,2001 Sheet 10 of 12 US 6,263,364 BI

326

Select ready queue with minimal time value.
(If no queue is ready, block the thread until
there is a queue that is ready.)

330

Download document whose URL is at head of Queue "i" ;
Measure download time;

Dequeue URL from Queue "i";

334

Identify and process URL's in document (See Fig. 12)

Execute other procedures on document.

Determine priority level for next download of the document.

3378

Reinsert queue element into the Frontier, in the priority
level subqueue for the determined priority level.

340

342

Add selected queue to ordered
set of queues waiting to be
serviced (e.g., Heap 134)

No Determine wait time for
processing next URL in
selected queue.

Remove Table entry for queue "i"

FIG. 13

u.s. Patent Jui. 17,2001 Sheet 11 of 12 US 6,263,364 BI

=>------l~ Return to step 326 (Fig. 13)
Yes

Randomly select a priority level subqueue (Fig. 11);
Remove head ueue element from riorit ueue

356

Resolve the host name component "h" of
URL "u" into a host identifier "H" using DNS

360

No Add <H,i> to Table;
Enqueue queue
element for URL "u"
in queue "i"

...----i Enqueue queue element for
URL "u" into queue "j"

FIG. 14

u.s. Patent Jui. 17,2001 Sheet 12 of 12 US 6,263,364 BI

370

Select priority queue and URL at head of selected priority queue

354 '-----'

Generate random number z
Map z to subqueue priority level using non-uniform mapping
weighted in accordance with the priority levels.

Select closest non-empty subqueue

376

Select queue element at head of identified
priority level subqueue

FIG. 15

Determine download priority level for URL "u"
337A '-----'

No

priority =fcn (data in
download history for URL)

FIG. 16

US 6,263,364 Bl
2

Prioritizing Document Downloads

Every web crawler must maintain a data structure or set
of data structures reflecting the set of URL's that still must
be downloaded. In this document, that set of data structures
is called "the Frontier." The crawler repeatedly selects a
URL from the Frontier, downloads the corresponding
document, processes the downloaded document, and then
either removes the

URL from the Frontier or reschedules it for downloading
again at a later time. The latter scheme is used for so-called
"continuous" web crawlers.

During the course of processing a downloaded document,
various data can be collected about it. Examples include the
date and time of the download, how long it took to perform
the download, whether the download was successful, the

5 document's size, its MIME type, the date and time it was last
modified, its expiration date and time, and a checksum of its
contents. These data can be used for a variety of purposes,
including, but not limited to:

passing information from one processing module to a later
processing module in a processing pipeline;

collecting statistics about the downloaded documents; and

in the context of a continuous web crawler, the collected
data can be used as a basis for determining when a
document should next be downloaded (refreshed).

After a document has been processed, its associated data
can be saved to disk and analyzed off line.

A continuous web crawler is one that automatically
refreshes a database of information about the pages it has

20 downloaded. A web page can have an assigned or purported
expiration date and time, which indicates when the page
should be assumed to be no longer valid. Furthermore, a web
crawler can be configured to assume that certain types of
pages, such as pages on certain types of web sites, cannot be

25 valid for more that a particular length of time.
Thus, pages on a news web site might be assumed to be

valid for only a few hours, while pages of an on line
encyclopedia might be assumed to be valid for a much
longer time, such as month.

30 In the context of a continuous web crawler, it may be
advantageous to record not only the data associated with a
document's most recent download, but also with its previous
downloads. How complete a document download history to
keep may vary depending on the user's requirements.

35 The Scooter web crawler used by AltaVista saves a fixed
set of data for each document it discovers and downloads,
namely, the document's URL, the number of attempts that
have been made to download it, the date and time of the last
download attempt, the HTTP status code of the last

40 download, and the document's last modification date and
time.

The Sphinx web crawler developed by Bharat and Miller
allows document classifiers to associate name/value pairs
with a downloaded page. However, Sphinx discards any

45 name/value pairs associated with a document once the
document has been processed. Moreover, the values must be
strings, not values of arbitrary types.

It would be desirable to provide a much more flexible
mechanism that enables application programs that process

50 downloaded pages to determine what information to save for
each document downloaded. In that way the data structure
for storing such information would be dynamically
determined, and the manner in which that information is
used would be dynamically determined, without having to

55 customize the code of the web crawler for each application.

15BACKGROUND OF THE INVENTION

Collecting Information About Documents
Downloaded by a Web Crawler

1
WEB CRAWLER SYSTEM USING

PLURALITY OF PARALLEL PRIORITY
LEVEL QUEUES HAVING DISTINCT

ASSOCIATED DOWNLOAD PRIORITY
LEVELS FOR PRIORITIZING DOCUMENT

DOWNLOADING AND MAINTAINING
DOCUMENT FRESHNESS

The present invention relates to a system and method for
accessing documents, called web pages, on the world wide 10

web (WWW) and, more particularly, to a method for asso­
ciating an extensible set of data with each document down­
loaded by a web crawler.

Documents on interconnected computer networks are
typically stored on numerous host computers that are con­
nected over the networks. For example, so-called "web
pages" are stored on the global computer network known as
the Internet, which includes the world wide web. Each web
page on the world wide web has a distinct address called its
uniform resource locator (URL), which identifies the loca­
tion of the web page. Most of the documents on the world
wide web are written in standard document description
languages (e.g., HTML, XML). These languages allow an
author of a document to create hypertext links to other
documents. Hypertext links allow a reader of a web page to
quickly move to other web pages by clicking on their
respective links. These links are typically highlighted in the
original web page. A web page containing hypertext links to
other web pages generally refers to those pages by their
URL's. Links in a web page may refer to web pages that are
stored in the same or different host computers.

A web crawler is a program that automatically finds and
downloads documents from host computers in networks
such as the world wide web. When a web crawler is given
a set of starting URL's, the web crawler downloads the
corresponding documents, extracts any URL's contained in
those downloaded documents and downloads more docu­
ments using the newly discovered URL's. This process
repeats indefinitely or until a predetermined stop condition
occurs. As of 1999 there were approximately 500 million
web pages on the world wide web and the number is
continuously growing; thus, web crawlers need efficient data
structures to keep track of downloaded documents and any
discovered addresses of documents to be downloaded.

After a document is downloaded by the web crawler, the
web crawler may extract and store information about the
downloaded page. For instance, the web crawler may deter­
mine if the downloaded page contains any new URL's not
previously known to the web crawler, and may enqueue
those URL's for later processing. In addition, pages down­
loaded by the web crawler may be processed by a sequence
of processing modules. For instance, one processing module
might determine whether the document has already been
included in a web page index, and whether the page has 60

changed by more than a predefined amount since its entry in
the web page index was last updated. Another processing
module might add or update a document's entry in the web
page index. Yet another processing module might look for
information of a specific type in the downloaded documents, 65

extract the information and store it in a directory or other
data structure.

US 6,263,364 Bl
3

When selecting a URL from the Frontier, the inventors
have determined that it would often be desirable for the
crawler to preferentially select certain URL's over others so
as to maximize the quality of the information processed by
the other applications to which the web crawler passes
downloaded documents. For instance, the web crawler may
pass downloaded pages to a document indexer. An index of
documents on an Intranet or the Internet will be more
accurate or higher quality if the documents of most interest
to the users of the index have been preferentially updated so
as to make sure that those documents are accurately repre­
sented in the index. To accomplish this, the web crawler
might preferentially select URL's on web servers with
known high quality content. Alternately, heuristics might be
used to gauge page quality. For instance, shorter URL's
might be considered to be better candidates than longer
URL's.

In the context of a continuous web crawler, it may be
desirable to prefer URL's on web servers whose content is
known to change rapidly, such as news sites. It may be
desirable to prefer newly-discovered URL's over those that
have been previously processed. Among the previously
processed URL's, it may be advantageous to prefer URL's
whose content has changed between the previous two down­
loads over URL's whose content has not changed, and to
prefer URL's with shorter expiration dates over those with
longer expiration dates.

4
ments for URL's to be downloaded are assigned a priority
level, and then stored in the corresponding priority queue.
Queue elements are then distributed from the priority queues
to a set of underlying queues in accordance with their

5 relative priorities. The threads then process the queue ele­
ments in the underlying queues.

In another aspect of the present invention, the web crawler
performs a continuous crawl. The URL element for each
downloaded document is assigned a priority level and then

10 reinserted into the Frontier, in the priority queue correspond­
ing to the assigned priority level. The priority level is
determined as a function of the extensible set of data stored
with the queue element. Each queue element for a newly
found URL is also assigned a priority level. That priority

15 level is based on the fact that it is a newly found URL and
may also be based on properties of the URL itself, or the web
page on which the URL was found.

In another aspect of the present invention, the web crawler
includes a set of tools for storing an extensible set of data

20 with each document address (URL) in the Frontier. These
tools enable the applications to which the web crawler
passes downloaded documents to store a record of informa­
tion associated with each download, where each record of
information includes a set of name/value pairs specified by

25 the applications. The applications also determine how many
records of information to retain for each URL, when to
delete records of information, and so on.

BRIEF DESCRIPTION OF THE DRAWINGS

55

FIG. 1 is a block diagram of a distributed computer
system illustrating an exemplary embodiment of the inven­
tion.

FIG. 2 is a block diagram illustrating an first exemplary
embodiment of the invention.

FIG. 3 is a block diagram of a queue element stored in the
Frontier data structures of the first exemplary embodiment.

FIGS. 4 and 5 are flow charts depicting the first exemplary
embodiment of the invention.

FIGS. 6 and 7 are block diagrams illustrating the Frontier
data structures used in a second exemplary embodiment of
the invention.

FIGS. SA and SB are flow charts depicting the second
exemplary embodiment of the invention.

FIG. 9 is block diagram illustrating the Frontier data
structures used in a third exemplary embodiment of the
invention.

FIG. 10 illustrates a table used in the third exemplary
50 embodiment.

FIG. 11 is a block diagram of an ordered set data structure
and procedures used to access the ordered set in the third
exemplary embodiment of the invention.

FIGS. 12, 13, 14, 15 and 16 are flow charts depicting the
third exemplary embodiment of the invention.

30

SUMMARY OF THE INVENTION

Maintaining Freshness of Documents Downloaded
by a Continuous Web Crawler

As alluded to earlier, web crawlers are traditionally used
to collect documents from the world wide web, as well as
from Intranets, for some purpose, the most common of
which is to build an index for a search engine. However,

35since many of the documents on the web and on Intranets
change over time, at any given point in time, some fraction
of any web index will contain stale content.

There are two obvious approaches to refreshing an index.
One is to perform repeated complete or "scratch" crawls to 40

rebuild the index from scratch. The disadvantage of this
approach is that many of the documents may not have
changed between the two scratch crawls, in which case
valuable computer resources will be wasted unnecessarily
refetching and processing documents. Another approach is 45

to perform a more targeted crawl, but it is difficult to know
a priori which documents need to be refetched, since the web
does not include an invalidation mechanism. That is, the
only way to discover that a page has changed is to query its
web server.

Therefore it would be desirable to have a mechanism for
keeping the results of a crawl up to date, using a continuous
crawl that is somehow biased toward pages that are most
likely to have been changed since the last time the crawler
fetched them.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 shows an exemplary embodiment of a distributed
computer system 100. The distributed computer system 100
includes a web crawler 102 connected to a network 103
through a network interconnection 110. The network 103
may be a global communication network, such as the

65 Internet, or a private network, sometimes called an Intranet.
Examples of the network interconnection 110 include
switches, routers, etc. The network 103 includes web servers

A web crawler downloads documents from among a
plurality of host computers. The web crawler enqueues
document addresses in a data structure called the Frontier. 60

The Frontier generally includes a set of queues, with all
document addresses sharing a respective common host com­
ponent being stored in a respective common one of the
queues. Multiple threads substantially concurrently process
the document addresses in the queues.

The Frontier includes a set of parallel "priority queues,"
each associated with a distinct priority level. Queue ele-

US 6,263,364 Bl
5 6

elements, and for adding and deleting name/value pairs
to those records of information;

one or more URL priority determination procedures 140
for assigning a priority level to a queue element asso­
ciated with a URL; and

one or more document processing applications 141, which
process documents downloaded by the web crawler.

The document processing applications include instruc­
tions 139 for determining the value of various parameters

10 (e.g., metadata sent by the host server from which the
documents were downloaded) and storing corresponding
name/value pairs in the download history portion of the
queue elements corresponding to the downloaded docu-
ments.

In the third exemplary embodiment, discussed below, the
host-to-queue assignment table 132 is used and updated by
the demux and mux procedures 126, 124. In the first and
second exemplary embodiments the assignment table 132 is
not used.

In some of the exemplary embodiments the number of
queues exceeds the number of threads, and in those embodi­
ments the number of queues is preferably at least twice the
number of threads; in some embodiments the number of
queues exceeds the number of threads by a factor of three to

25 ten. The number of threads is generally determined by the
computational resources of the web crawler, while the
number of queues is determined by setting a queue-to-thread
ratio parameter when the web crawler is configured.

Given a set of URL's, the web crawler 102 enqueues the
30 URL's into appropriate queues 128. Multiple threads 130

are used to dequeue URL's out of the queues 128, to
download the corresponding documents or web pages from
the world wide web and to extract any new URL's from the
downloaded documents. Any new URL's are enqueued into

35 the queues 128. This process repeats indefinitely or until a
predetermined stop condition occurs, such as when all
URL's in the queues have been processed and thus all the
queues are empty. In continuous web crawler embodiments,
there is no such stop condition. Multiple threads 130 are

40 used to simultaneously enqueue and dequeue URL's from
multiple queues 128. During the described process, the
operating system 120 executes an Internet access procedure
122 to access hosts on the network through the communi-
cations interface 104.

FIG. 2 illustrates the relationships between a set of "m"
first-in-first-out (FIFO) queues 128 and the demux and mux
procedures 126, 124 in a first exemplary embodiment of the
present invention. When a new URL is discovered, the new
URL is passed to the demux 126. The demux 126 enqueues

50 the new URL into an appropriate queue based on a prede­
termined policy. In the preferred embodiments, URL's hav­
ing the same associated host component will be enqueued
into the same queue. However, other URL to queue assign­
ment policies could also be used. When a thread 130 is ready

55 to dequeue from one of the queues 128, the head URL in the
queue assigned to that thread is dequeued from that queue by
the mux 124 and is passed to the thread for processing.

Queue Elements with Extensible Set of Download
History Data

FIG. 3 illustrates a queue element data structure 142, also
called the URL entry data structure, which is the data
structure used to represent each URL in the Frontier, rep­
resented in this embodiment by queues 128. Each queue

65 element 142 includes a URL value 144, and a list (i.e., an
ordered set) of information records 148. Each record 148
includes one or more name/value pairs 149 for a particular

112 and a service known as a domain name system 114. It
may also optionally include a web page indexing system
116. The web servers 112 store web pages. The domain
name system 114 is a distributed database that provides the
mapping between Internet protocol (IP) addresses and host 5

names. The domain name system 114 is a distributed system
because no single site on the Internet has the domain name
mapping information for all the web servers in the network.
Each site participating in the domain name system 114
maintains its own database of information and runs a server
program that other systems across the network can query.
The domain name system 114 provides the protocol that
allows clients and servers to communicate with each other.
Any application may look up the IP address (or addresses)
corresponding to a given host name or the host name 15

corresponding to a given IP address in the domain name
system 114. An application accesses the domain name
system 114 through a resolver. The resolver contacts one or
more name servers to perform a mapping of a host name to
the corresponding IP address, or vice versa. A given host 20

name may be associated with more than one IP address
because a host may have multiple interfaces, with each
interface of the host having a unique IP address. Also, a host
may be replicated on multiple computers, each having its
own IP address, but providing access to the same informa­
tion.

The web page indexing system 116 includes an index of
words used on the world wide web and addresses of the web
pages that use each word. Such indexing systems are main­
tained by various search engines, such as the AltaVista
search engine. The domain name system 114 and the web
page indexing system 116 may be accessed by the web
crawler 102 in the process of downloading web pages from
the world wide web.

The web crawler 102 includes a communications interface
104, one or more central processing units (CPU's) 106, a
clock circuit 107 for keeping track of the current time, an
operator interface 108 (which may be remotely located on
another computer) and memory 118. In the preferred
embodiment, the communications interface 104 is able to
handle overlapping communication requests. The memory
118 includes:

a multitasking operating system 120;

an Internet access procedure 122 for fetching web pages 45

as well as communicating with the domain name sys­
tem 114;

a multiplexer (mux) procedure 124 used by threads 130
for dequeuing URL's from the queues 128;

a demultiplexer (demux) procedure 126 used by the
threads for enqueuing URL's on the queues 128;

a set of queues 128, also called the "Frontier," for storing
addresses of web pages to be downloaded;

threads 130 for downloading web pages from the servers
112, and processing the downloaded web pages;

a host-to-queue assignment table 132 for recording
dynamic assignments of host identifiers to the queues
128;

a heap or other ordered set data structure 134 for storing 60

information about queues waiting to be serviced by
threads;

a set of heap procedures 136 for adding a queue to, and
for selecting a queue from the ordered set data structure
134;

a set of Queue Element handling procedures 138 for
adding and deleting records of information to queue

US 6,263,364 Bl
7 8

60

accessed via those URL links. This initial set of root
documents may be preloaded into the queues 128 of the web
crawler's Frontier.

FIG. 4 is a flow chart illustrating the process, in the first
exemplary embodiment of the present invention, for enqueu­
ing URL's into a set of"m" queues using a set of"k" threads.
To simplify the explanation of the web crawler's basic
operation, and how the queue element download history is
generated and used, we will assume that the number of
queues "m" is equal to the number of threads "k." In other
embodiments, however, "m" may be larger than k.

When a thread of the web crawler downloads a page or
document, it inspects each URL in the downloaded page.
The thread then determines if the web crawler should
enqueue each discovered URL for downloading. For
instance, the thread may query a database to determine
whether that URL has been visited during the current crawl,
and then enqueue the URL only if the response to that
inquiry is negative and if the URL passes a user-supplied

20 filter. The enqueue procedure described below is performed
once for each URL that the thread has decided to enqueue.

In this exemplary process, queues are identified by
numerical ID's. For example, when a thread invokes the
"dequeue" operation for a selected queue "i," the first item
of the queue "i" is dequeued and returned.

The enqueue operation, performed by a thread executing
the demux procedure 126, works as follows in the first
exemplary embodiment. A thread discovers a new URL "u"
having a host name component "h" during the course of
downloading web pages (160). The host name component
"h" of the URL "u" is resolved into a host identifier "H"
using the domain name system 114 (162). The resolved host
identifier is preferably a canonical name or a canonical IP
address for the host. Step 162 maps all the host names
associated with an Internet or Intranet host to the same host
identifier. Without step 162, the URL's associated with a
single host might be assigned to multiple queues. That could
cause the web crawler to submit multiple overlapping down­
load requests to the host, which would violate the "polite­
ness" policy observed in the preferred embodiments.

The host identifier "H" of the new URL "u" is mapped
into a queue identifier "r" using a suitable numerical func­
tion. For example, in one preferred implementation a fin-

45 gerprint function is used to hash the host identifier "H" into
an integer "I" (164). The integer "I" is divided by the
number of queues in the system, such as "m", to get a
remainder "r" between 0 and m-l (166). In other words, r
is set equal to the fingerprint of H modulo m. Examples of
other possible numerical functions that could be used to map
the host identifier into a queue identifier are checksum and
hash functions.

Having selected queue "r," a queue element for the new
URL "u" is enqueued into queue "r" (168). If queue "r" was
empty immediately before the new URL "u" was enqueued
on it, (169-Yes), then the system signals any thread blocked
on queue "r" to unblock (step 170) and returns (172). If
queue "r" was not empty (169-No), the procedure simply
returns (172).

Referring to FIG. 5, each thread of the web crawler selects
one of the queues in the ordered set. In this first exemplary
embodiment, each thread services just one queue, but in
other embodiments there would be a preliminary set of steps
by which the thread would first be assigned to a queue that

65 is waiting to be serviced. The thread then downloads the
page or document corresponding to a queue element in the
queue, dequeues the queue element from the queue, pro-

download of the document corresponding to the URL 144,
where the names identify parameters and the values are the
corresponding values for those parameters. In addition to the
records 148, the queue element 142 may also include a
header 146 for retaining cumulative download history 5

information, such as a count of the number of downloads of
the corresponding document by the web crawler, a count of
the number of download attempts, and the like. This infor­
mation could also be kept in the records, with increasing
count values being stored in successive records 148. The list 10

of records associated with a URL together comprise the
URL's download history.

The set of queue element handling procedures 138 that
can be used by the web crawler, and more particularly by
document processing applications 141 which process the 15

pages downloaded by the web crawler, include but are not
limited to the following:

Size() returns the number of records in the list, for the
currently selected queue element;

Get(i) returns the record at position i in the list;

Delete(i) removes the record at position i from the list;
compacting the list accordingly;

Add(record) inserts the given record at the front of the list;
as well as procedures that operate on a particular 25

record, including:

Lookup(name) returns the value from the name/value
pair, if a matching pair is found;

Set(name, value) adds a name/value pair to the record
consisting of the given name and given value, and 30

replaces any previous pair with the identical name;

Delete(name) removes the name/value pair with the given
name from the record, if a matching pair is found; and

Enumerate() returns a list of the name/value pairs in the 35

record.
As will be described in more detail below, when a queue

element is removed from the Frontier, a new empty record
is added to its download history, representing the imminent
download attempt. The document identified by the queue 40

element's URL is downloaded and processed. During the
course of processing a document, all records of the corre­
sponding queue element's download history may be
inspected, and name/value pairs may be set in the element's
newly added record.

In the case of a continuous crawl, the queue element is
reinserted into the Frontier. Before the queue element is
reinserted, one or more of its records may be removed. If no
records are removed, the document's complete download
history is kept. Other alternatives include, but are not limited 50

to: keeping the "p" most recent records; keeping a uniform
sample of records (e.g., for every third download); keeping
a random sample of records (e.g., each record might be kept
with a probability of 0.25); or keeping the records corre­
sponding to the initial download and the last "p" downloads. 55

Independent of whether continuous crawling is used, once
the processing of a document is complete, the document's
queue element may be written to a file for subsequent
off-line analysis.

Enqueue and Dequeue Procedures

In the exemplary embodiments, and in most web crawlers,
the web crawler begins its crawls with an initial set of root
documents. The root documents are selected so that all
documents of interest in the Intranet or Internet being
crawled can be reached from the URL links in the initial set
of root documents and in the subsequent documents

9
US 6,263,364 Bl

10
cesses the page, and then repeats the process. This continues
until the web crawl completes, or without stop in the case of
a continuous web crawler.

More specifically, the dequeue procedure, when executed
by any of the web crawler threads, downloads the document
corresponding to the queue element at the head of the queue
assigned to (or selected by) the thread, and measures the
download time (200). Then it dequeues the queue element
from the selected queue and adds a new, empty download
history record to the queue element (see FIG. 3) (202). The
downloaded document is typically processed by the web
crawler by identifying and processing the URL's in the
document (204), as well as by executing other procedures on
the downloaded document (206). In the preferred
embodiment, the set of other procedures executed on the
downloaded document is configurable by the person setting
up the web crawler.

Steps 212, 214, 216 are typically performed by the
document processing applications, but could be incorporated
into the dequeue procedure by making procedure calls to a
set of procedures that would be provided by the person
setting up the web crawler. The name/value pairs to be stored
in the current (new) download history record are determined
(212) and stored in that record (214). Optionally, one or
more download history records may be removed from the
queue element in accordance with record deletion criteria
established by the applications (216). Examples of the
record deletion criteria include criteria for retaining only the
last "p" records, or the first record and the last "p" records.
To implement such record deletion, an application program
includes instructions for determining the number of records
in a queue element by calling the Size() procedure, instruc­
tions for comparing the returned number with a threshold
value, and instructions for conditionally deleting specific
ones of the records based on the result of the comparison.

When the processing of the downloaded document and
the queue element is completed, the queue element is either
reinserted into the Frontier (thereby enabling continuous
crawling), added to a file or database of processed URL's
(from where the download history information can be pro­
cessed off-line), or both (220).

assigned to them can be arbitrarily determined, or deter­
mined in accordance with any of a large number of schemes.

The enqueue and dequeue procedures for this second
exemplary embodiment are very similar to the ones

5 described above with reference to FIGS. 4 and 5, with the
following differences. Referring to FIG. 8A, in the enqueue
procedure of FIG. 4, the enqueuing step 168 includes
determining a priority level for downloading the document
associated with the URL "u" (260) and then enqueuing the

10 associated queue element into the priority subqueue of
queue "r" for the determined priority level (262). Note that
queue "r" now represents the set of priority subqueues for
queue entries whose URL has a host identifier that was
mapped to queue "r".

At step 260, the priority level "p" for the URL "u" is
15 determined as a function of the URL itself, since the URL is

for a document that has not yet been downloaded by the web
crawler. In the preferred embodiment, the queue entries for
newly found URL's are given higher priority than the queue
entries for URL's whose corresponding documents have

20 already been downloaded and processed. In addition, the
web crawler may reference a list of "high priority" hosts 264
whose documents are to be given higher downloading
priority than other hosts. In addition, the web crawler may
give higher priority to new URL's whose host is not found

25 on the list 264 that meet predefined criteria for being "short".
For instance, short URL's may be ones whose character
string is less than a certain number of letter, or whose tree
structure contains less than a certain number of tree levels.
The latter example prefers pages near the root node of each

30 host to those further away from the root node.
Referring to FIGS. 5 and 8E, step 200 for downloading

the URL at the head of the selected queue "r" is replaced by
the steps shown in FIG. 8E. In particular, the dequeue
procedure selects a priority level subqueue by generating a
random number, z, and then mapping z to one of the priority

35 level subqueues using a non-uniform mapping that is
weighted in accordance with the weights assigned to the
priority levels. For instance, using the priority level weights
shown in Table 1, the priority level 1 subqueue has thirty­
two times the likelihood of being selected than the priority

40 level 6 subqueue. Table 2 shows an exemplary non-linear
mapping of z to a priority level, where z is a random or
pseudo-random value between 0 and 1.

Priority Level Range af z Far Priority Level

1 0.0 ta 0.5079
2 0.5080 ta 0.7619

50 3 0.7620 ta 0.8888
4 0.8889 ta 0.9524
5 0.9525 ta 0.9841
6 0.9842 ta 1.0000

Prioritizing Document Downloads

Referring to FIGS. 6 and 7, in a second exemplary
embodiment, each of the m queues 240 in the Frontier is 45

replaced by a set of n subqueues 242, herein called priority
subqueues or priority level subqueues. Furthermore, a pri­
ority level is assigned or associated with each of the priority
queues. For example, a set of six priority queues 242 could
be assigned priority "weights" as shown in Table 1.

TABLE 1

TABLE 2

Mapping a Random Value z to a Priority Level

where each priority weight is proportional to the probability
of a queue element in one of the priority queues being
selected for processing. In this scheme, queue elements in
priority level 1 queue are thirty-two times more likely to be
processed than queue elements in the priority level 6 queue.
Of course, the number of priority queues, and the weights

Priarity Level

1
2
3
4
5
6

Priority Weight

32
16

8
4
2
1

55 Next, the dequeue procedure checks to see if the selected
priority level subqueue "p" is empty (272). If so, it also
checks to see if all the priority level subqueues of queue "r"
are empty (274). If all are empty, this means that subqueue
"r" is empty, in which case the thread blocks until the

60 selected queue is no longer empty (276). In embodiments
where there are many more queues than threads, step 274 is
not needed because a thread will not be assigned to an empty
queue.

If the selected priority level subqueue is empty (272-Yes)
65 but there is at least one non-empty subqueue (274-No), then

a subqueue closest to the selected subqueue is selected
(278).

US 6,263,364 Bl
11 12

Many other examples of criteria 282 for assigning a
priority level to a document's queue element can be devised
by one of ordinary skill in the art, depending in large part on
what information is stored in the document's download

5 history and an assessment of which documents are the most
important to refresh the most frequently. Furthermore, dif­
ferent download priority criteria may be applied to different
subsets of the queue elements. For example, one set of
criteria may be used for queue elements having no download

10 history, a second set of criteria may be used for queue
elements denoting URL's at web sites known to the web
crawler, a third set of criteria may be used for queue
elements whose expiration date and time is deemed to be
"soon" (e.g., less than X hours from the current time), and

15 yet other sets of criteria may be used for other queue
elements identified in various ways.

The present invention enables the criteria 282 for priori­
tizing document downloads in a continuous web crawler to
be determined by applications external to the web crawler.

Polite Continuous Web Crawling

FIGS. 9-16 show a third exemplary embodiment for a
continuous web crawler having priority level subqueues that
are used to maintain the freshness of document indices and

25 other document based information databases. The third
exemplary embodiment uses a Frontier data structure and a
dynamic assignment of threads to queues that is more
"polite" than the ones described above. In particular, in this
embodiment, the web crawler enforces a "politeness" policy,

30 which requires the web crawler to wait between document
downloads from any given host for a sufficient period so that
there are no document downloads being performed from that
host for at least a specified percentage (e.g., 50%) of the
time. In all the exemplary embodiments, the web crawler

35 never downloads more than one document at a time from
any host.

In this third embodiment, the Frontier data structures 290
include a front-end queue 292, which is implemented as a set
of n priority level FIFO subqueues 294, and m FIFO

40 "underlying" queues (also called the back-end queues) 296,
where m is preferably larger than the number of threads. A
first demultiplexer (demux) procedure 298 is used to store
queue elements in the front-end queue 292, while a second
demultiplexer (demux) procedure 300 is used to store queue

45 elements in the underlying FIFO queues 296. Similarly, a
first multiplexer (mux) procedure 302 is used to select and
remove queue elements from the front-end queue 292 (for
insertion into the underlying queues 296), while a second
multiplexer (mux) procedure 304 is used to select and

50 remove queue elements from the underlying FIFO queues
296. Mux 302 and demux 300 are used only for moving
queue elements from the priority subqueues 294 into the
underlying queues 296.

When a new URL is discovered, it is typically enqueued
55 in the front-end queue 292. However, if the front-end queue

292 is empty, the new URL is not necessarily stored in the
front-end queue 292; instead, it may be enqueued in one of
the queues 296 by the demux 298/300. The demux 298/300
dynamically enqueues the new URL in an appropriate queue

60 296 according to a host-to-queue assignment table 132,
based on the host identifier of the new URL. The host-to­
queue assignment table 132 is used to guarantee that each
queue is homogenous, i.e., that each queue contains URL's
having the same host name component. When a thread is

65 ready to dequeue a queue element from a queue 296 the head
queue element in a queue assigned to the thread passes
through the mux 304 and is dequeued from the queue. The

Once a non-empty priority level subqueue has been
selected, the document corresponding to the URL at the head
of the selected subqueue is downloaded, and then the
dequeue procedure continues from there at step 200 as
shown in FIG. 5. When the document is downloaded, the
host web server from which the document is downloaded
returns both the document and associated metadata, which
typically includes, but is not limited to, the HTTP status
code, the date and time the document was last modified, the
document's purported expiration date and time, document
length, the character set used by the document, and identi­
fication of the web server from which the document was
downloaded.

In this exemplary embodiment, the supplemental process­
ing steps 206-216 include storing attributes for each docu­
ment download that include, but are not limited to:

the date and time of the download;
the date and time the document was last modified, accord­

ing to the host server;
the document's expiration date and time, according to the 20

host server;
a checksum of the document's contents; and
a "sketch" of the document's contents.
A sketch of a document is a small number (e.g., eight) of

values, generated by converting a document into a set of
symbols (e.g., fingerprints of four word sequences), per­
forming a set of permutations on the symbols, selecting a
subset of the symbols (e.g., the lowest values) from each
permutation, and possibly performing various combinations
or other mathematical operations on the selected symbols to
form the values in the sketch. An important property of the
sketch is that when a document has been modified, but only
minimally, at least a certain number of the values of the
document's sketch will remain unchanged, but when the
document is modified by more than a minimal amount (e.g.,
by more than 5% or so) less than a threshold number of
values in the sketch will remain unchanged. The document
sketch therefore gives a good basis for determining when a
document has changed "enough" for the supplemental appli­
cations to treat it as a modified document. For more infor­
mation about document sketches, see U.S. Pat. No. 5,909,
677, which is hereby incorporated by reference as
background information.

In this exemplary embodiment, step 220 (FIG. 5) of the
dequeue procedure includes selecting a priority level sub­
queue in which to re-insert the queue element for the
document that has just been downloaded and processed. In
this exemplary embodiment, the document is assigned to a
priority level subqueue based on a predefined set of criteria
282 are satisfied, including but not limited to:

the document's expiration date; the sooner the docu­
ment's expiration date, the higher its assigned priority
level;

the document's rate of change, based on (a) its modifi­
cation date and time (according to the host server), (b)
whether the document's checksum differs from the
prior checksum, or (c) whether the document's sketch
differs from the prior document sketch by more than a
predefined amount; documents that change more fre­
quently should be assigned to a higher priority level
subqueue, on the basis that pages that exhibit changes
are likely to change again in the near future; and

the host component of the document's URL; for example,
documents from certain web sites known to the web
crawler may be assigned a high or low download
priority based on knowledge of how often documents at
those web sites are updated.

US 6,263,364 Bl
13 14

132 for an entry assigning "H" to any of the queues (315).
If such an entry is found, the new URL "u" is enqueued into
the queue "i" 296-i to which host identifier "H" is assigned,
and the thread returns (316). If such an entry does not exist,

5 the thread searches for an empty queue "j" 296-j (317). If
there is no empty queue, the URL "u" is enqueued into the
front-end queue 292 and the thread returns (318). If an
empty queue "j" is found, "H" is assigned to queue "j", table
132 is updated with the new assignment, and the URL "u"

10 is enqueued into the queue "j" (319). In addition, the queue
"j" is assigned a next download time and is added to the
ordered set of queues waiting to be serviced (320), and then
the thread returns. Since the last time that the web crawler
performed a download from the host H is unknown, the next

15 download time assigned to the queue is arbitrarily selected,
for instance by adding a small constant to the current time.
In this embodiment the small constant is selected to be equal
to the average document download time for an "average"
host web site. Other delay values could be used in other

20 embodiment.

FIGS. 13, 14, 15 and 16 contain a flow chart of the
dequeue procedure performed by each thread in the third
exemplary embodiment to dequeue and process the queue
elements in the FIFO queues 296 (FIG. 9). This procedure

25 corresponds to the mux procedure of FIG. 9. As part of this
procedure, the thread moves queue elements from the front­
end queue 292 to the underlying queues 296 whenever the
queue selected by the thread becomes empty, because all the
queue elements in the assigned or selected queue have been

30 processed and dequeued. The dequeue procedure shown in
FIGS. 13 and 14 is performed repeatedly by each of the "n"
threads of the web crawler. The enqueue procedure, dis­
cussed above and shown in FIG. 12, is performed while
processing a downloaded web page.

Referring to FIGS. 13 and 14, each thread of the web
crawler selects one of the queues in the ordered set that is
waiting to be serviced, downloads the page or document
corresponding to a URL in the selected queue, dequeues the
URL from the selected thread, processes the page, and then

40 repeats the process. This continues until the web crawl
completes.

More specifically, the dequeue procedure, when executed
by any of the web crawler threads, first selects a queue "i"

45 having a minimal next download time value (326). This step
is preferably accomplished by calling the SelectQueue pro­
cedure. If no queues are ready for processing, because their
assigned next download times are all in the future, the thread
executing the dequeue procedure blocks until there is a

50 queue that is ready for processing.

As indicated above, if multiple queues have identical
earliest assigned next download times, the SelectQueue
procedure selects anyone of those queues, removes it from
the ordered set, and passes it to the calling thread. After

55 selecting a queue "i", the thread processes the URL at the
head of the selected queue by downloading the correspond­
ing document, measuring the download time (330), and
dequeuing the URL from the selected queue (332).

The downloaded document is typically processed by the
60 web crawler by identifying and processing the URL's in the

document (334), as well as by executing other procedures
(application programs external to the web crawler) on the
downloaded document (336). In the preferred embodiment,
the set of other procedures executed on the downloaded

65 document is configurable by the person setting up the web
crawler, and often includes a document indexer. As
described above, these procedures may store various param-

corresponding document (e.g., web page) of the dequeued
queue element is downloaded and processed.

FIG. 10 illustrates an exemplary embodiment of the
host-to-queue assignment table 132. The host-to-queue
assignment table 132 is updated when a host identifier 308
is dynamically assigned to a queue 296 (represented by a
queue identifier 309) or when the association of a host
identifier 308 with a queue 296 is removed. Each queue 296
(FIG. 9) may be dynamically reassigned to a new host
identifier after all URL's in the queue have been processed.

FIG. 11 illustrates an "ordered set data structure" 134 for
keeping track of the queues 296 that are waiting to be
serviced by threads. The data structure 134 stores an entry
135 for each queue that is waiting to be serviced. The entry
135 has a plurality of fields, including one for identifying the
queue, and another for indicating the queue's assigned next
download time.

Although not shown, the data structure 134 has internal
structure for ordering the entries 135 in accordance with the
assigned next download times of the entries. A number of
well known data structures can be used for this purpose,
including a heap, a balanced tree, or even a simple linked list
(suitable only if the number of queues being used is very
small, e.g., less than twenty). The ordered set data structure
is indirectly accessed by the enqueue and dequeue proce­
dures through a set of interface procedures 136A, 136B. In
particular, an AddQueue procedure 136A is used to add a
queue to the ordered set. A SelectQueue procedure 136B is
used to select and remove from the ordered set a queue
whose assigned next download time is no later than any
other queue in the ordered set. If multiple queues have
identical earliest assigned next download times, the Select­
Queue procedure selects anyone of those queues, removes
it from the ordered set, and passes it to the calling thread.

FIGS. 12-16 are flow charts of the third exemplary 35

embodiment of the present invention. In particular, the flow
chart in FIG. 12 illustrates the enqueue operation, corre­
sponding to the demux procedures 298, 300 shown in FIG.
9, which are used by each of the threads to store queue
elements for new URL's discovered while processing down­
loaded web pages, as well as to reinsert the queue elements.

Referring to FIG. 12, while processing a downloaded web
page, a thread will determine whether the URL in each link
in the page is a known URL, which has already been
enqueued and/or processed by the web crawler, or a new
URL, which has not yet been enqueued or processed by the
web crawler. When a thread discovers a new URL "u," it
extracts the host name component "h" from the URL (310).
The host name component "h" of the URL "u" is resolved
into a host identifier "H" using the domain name system 114
(311). The thread then determines whether the front-end
queue 292 is empty (313). The front-end queue 292 is empty
only if all the priority level subqueues 294 are empty. If the
front-end queue 292 is not empty, a queue element for URL
"u" is enqueued into the front-end queue 292 (314) and then
the enqueue procedure exits.

The procedure for enqueuing the queue element for URL
"u" into the front-end 292 is the same as the procedure
shown in FIG. 8A. In particular, the enqueue procedure
determines a priority level for downloading the document
associated with the URL "u" (260) and then enqueues the
associated queue element into the priority subqueue of the
front-end queue for the determined priority level (262).

The process for moving URL's from the front-end queue
292 into the underlying queues is described later.

If all the priority level subqueues 294 of the front-end
queue 292 are empty (313-Yes), the thread searches the table

US 6,263,364 Bl
15 16

65

includes determining if the queue element for the document
has a download history (390). That is, does the queue
element have more than one record of download history
information? If so (390-Yes), then the priority level for the
next download is determined as a function of the document's
download history in the queue element (392), using down-
load history based criteria such as those discussed above. If
not (390-No), then the priority level for the next download
is determined as a function of the document's URL (394),
using URL based criteria such as those discussed above.
Alternately, if this is the first download of the document, the
priority level can be determined from the purposed expira­
tion date of the document.

In the second exemplary embodiment described above,
15 when crawling in a network with a relatively small number

of host computers, such as in an Intranet, some queues may
be empty while other queues may contain URL's for mul­
tiple server hosts. Thus, in the second embodiment, paral­
lelism may not be efficiently maintained, since the threads

20 associated with the empty queues will be idle. The third
embodiment described makes better use of thread capacity,
on average, by dynamically reassigning queues to whichever
hosts have pages that need processing. In both of these
exemplary embodiments the same politeness policies may

25 be enforced, whereby the web crawler not only does not
submit overlapping download requests to any host, it waits
between document downloads from each host for a period of
time. The wait time between downloads from a particular
host may be a constant value, or may be proportional to the

30 download time of one or more previous documents down­
loaded from the host.

The foregoing examples illustrate certain exemplary
embodiments of the invention from which other
embodiments, variations and modifications will be apparent

35 to those skilled in the art. The invention should therefore not
be limited to the particular exemplary embodiments dis­
cussed herein, but rather defined by the claims appended
hereto.

What is claimed is:
1. A method of performing a continuous crawl for locating

and downloading documents from among a plurality of host
computers, comprising:

(a) obtaining at least one referring document set that
includes addresses of one or more referred documents;
each referred document address including a host com­
ponent;

(b) enqueuing queue elements in a plurality of queues,
each queue element denoting one of the referred docu­
ment addresses;

(c) substantially concurrently operating a plurality of
threads;

(d) while operating each thread, repeatedly performing
steps of:
(dl) identifying a queue element in a selected one of the

queues, downloading a referred document corre­
sponding to a referred document address in the
identified queue element, and dequeuing the identi­
fied queue element; and

(d2) executing at least one application program for
processing the downloaded document;

the plurality of queues including a plurality of parallel
priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

next download time~current time+I3·(measured download time)

eters in the download history of the queue element corre­
sponding to the downloaded document.

After the document has been processed, and its download
history has been updated by the external application pro­
grams in step 336, a priority level is determined for the next 5

download of the document (338), using the same criteria as
described above. Then the queue element for the document
is reinserted into the Frontier, in the priority level subqueue
294 (FIG. 9) corresponding to the determined priority level.

If the selected queue is not empty (338-No) after the head 10

queue element is dequeued, the thread determines a next
download time for the queue (340). In a preferred
embodiment, the next download time assigned to the
selected queue at step 340 is:

where ~ is a predefined scaling constant. While ~ may be set
equal to 1, it can also be set equal to a larger number (e.g.,
2) or smaller number (e.g., 0.5), depending on the politeness
policy selected by the person configuring the web crawler.
Once the next download time has been determined for the
queue, the queue is added to the ordered set of queues (342)
by calling the AddQueue procedure, which stores in the
ordered set an entry for the queue that includes the assigned
next download time. Then the thread resumes processing at
step 326 (FIG. 13) to process the head URL in queue "i."

However, if the selected queue "i" is empty (338-Yes), the
queue is not immediately returned to the ordered set. Rather,
the table entry for queue "i" is removed, on the basis that an
empty queue is available for reassignment to a new host. If
all the priority level subqueues of the front-end queue are
empty (352-Yes), the thread then resumes processing at step
326 (FIG. 313). Otherwise (i.e., the front-end is not empty,
352-No), the thread randomly selects a priority level
subqueue, using the methodology discussed above, and
removes the head queue element from that priority level
subqueue (354). Then the thread resolves the host name "h"
of the URL "u" of this queue element into a host identifier 40

"H" using the domain name system 114 (356). If there is an
entry in the host-to-queue assignment table 132 (FIG. 10)
such that "H" is the assigned host identifier for a queue "j"
(358-Yes), the queue element for URL "u" is enqueued into
the queue "j" (362), any thread blocked on queue "j" is 45

signaled that the queue is no longer empty, and the thread
goes back to step 352 to process another queue element (if
any) in the front-end. If there is not an entry in the table 132
that maps host identifier "H" to a queue "j" (358-No), "H"
is assigned to queue "i" (360). In particular, the table 132 is 50

updated with the new assignment and the queue element for
URL "u" is enqueued into queue "i" (360). The thread then
returns to step 326 (FIG. 13) to process a queue element
from any queue that is ready for processing.

Referring to FIG. 15, the step of randomly selecting a 55

priority level subqueue (354) in FIG. 14 includes randomly
or pseudo-randomly generating a number, z, and then map­
ping z to one of the priority level subqueues using a
non-uniform mapping that is weighted in accordance with
the weights assigned to the priority level (370). The dequeue 60

procedure checks to see if the selected priority level sub­
queue is empty (372). If so, then a subqueue closest to the
selected subqueue is selected (374). Once a non-empty
priority level subqueue has been selected, the queue element
at the head of the selected subqueue is selected. (376).

Referring to FIG. 16, the step 337A (FIG. 13) of deter­
mining a priority level for a next download of a document

US 6,263,364 Bl
17 18

55

10

(d2) executing at least one application program for
processing the downloaded document;

the plurality of queues including a plurality of parallel
priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

step (b) including determining a download priority level
for each queue element and enqueuing the queue ele­
ment in one of the parallel priority level queues in
accordance with the determined download priority
level.

10. The method of claim 9, wherein the download priority
level for each of a subset of the queue elements is deter­
mined as a function of the referred document address
denoted by the queue element.

11. A computer program product for use in conjunction
with a computer system, the computer program product

20 comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com­
puter program mechanism comprising:

an enqueuing module that, when executed by the com­
puter system, obtains at least one referring document
that includes addresses of one or more referred
documents, each referred document address including a
host component corresponding to a host computer, and
enqueues queue elements in a plurality of queues, each
queue element denoting one of the referred document
addresses; and

a dequeuing module that is substantially concurrently
executed by each of a plurality of threads so as to
process the referred document addresses in the queues;
the dequeuing module including instructions that, when
executed by a respective one of the threads, repeatedly
perform the functions of:
(al) identifying a queue element in a selected one of the

queues, downloading a referred document corre­
sponding to a referred document address in the
identified queue element, and dequeuing the identi­
fied queue element;

(a2) executing at least one application program for
processing the downloaded document; and

(a3) determining a download priority level for main­
taining freshness of the downloaded document;

the plurality of queues including a plurality of parallel
priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

the de queuing module including instructions for
re-enqueuing the queue element for the downloaded
document in one of the parallel priority level queues in
accordance with the download priority level deter­
mined for the queue element.

12. The computer program product of claim 11, wherein
said enqueuing module is configured to use at least one of

60 the downloaded referred documents as a new referring
document.

13. The computer program product of claim 11, wherein
the plurality of queues includes a front-end data structure

and a back-end data structure, the front-end data struc­
ture including the plurality of parallel priority level
queues, and the back-end data structure including a
plurality of parallel first-in-first-out underlying queues;

step (d) including determining a download priority level
for maintaining freshness of the downloaded document
and re-enqueuing the queue element for the down­
loaded document in one of the parallel priority level
queues in accordance with the determined download 5

priority level.
2. The method of claim 1, wherein said enqueuing module

is configured to use at least one of the downloaded referred
documents as a new referring document.

3. The method of claim 1, wherein
the plurality of queues includes a front-end data structure

and a back-end data structure, the front-end data struc­
ture including the plurality of parallel priority level
queues, and the back-end data structure including a
plurality of parallel first-in-first-out underlying queues; 15

step (b) includes enqueuing at least a subset of the queue
elements in the priority level queues, each such queue
element being enqueued in one of the priority level
queues in accordance with a priority level associated
with the queue element; and

step (d) includes transferring queue elements from the
priority level queues to the underlying queues in accor­
dance with the download priority levels of the priority
level queues.

4. The method of claim 3, wherein step (b) includes 25

enqueuing those of the referred data set addresses sharing a
respective common host address into a respective common
one of the underlying queues.

5. The method of claim 4, wherein referred data sets
corresponding to referred data set addresses from different 30

ones of the underlying queues are downloaded substantially
concurrently, while referred data sets corresponding to
referred data set addresses from any single one of the
underlying queues are downloaded one at a time.

6. The method of claim 1, wherein the download priority 35

level for each of a subset of the queue elements is deter­
mined as a function of an expiration date and time associated
with document whose document address is denoted by the
queue element.

7. The method of claim 1, wherein the download priority 40

level for each of a subset of the queue elements is deter­
mined as a function of a host component of the document
address denoted by the queue element.

8. The method of claim 1, wherein the download priority
level for each of a subset of the queue elements is deter- 45

mined as a function of a historical rate of change of the
document whose address is denoted by the queue element.

9. A method of performing a continuous crawl for locating
and downloading documents from among a plurality of host
computers, comprising: 50

(a) obtaining at least one referring document set that
includes addresses of one or more referred documents;
each referred document address including a host com­
ponent;

(b) enqueuing queue elements in a plurality of queues,
each queue element denoting one of the referred docu­
ment addresses;

(c) substantially concurrently operating a plurality of
threads;

(d) while operating each thread, repeatedly performing
steps of:
(dl) identifying a queue element in a selected one of the

queues, downloading a referred document corre­
sponding to a referred document address in the 65

identified queue element, and dequeuing the identi­
fied queue element; and

US 6,263,364 Bl
19 20

40

35

30

the enqueuing module including instructions for deter­
mining a download priority level for each queue ele­
ment and enqueuing the queue element in one of the
parallel priority level queues in accordance with the
determined download priority level.

20. The computer program product of claim 19, wherein
the download priority level for each of a subset of the queue
elements is determined as a function of the referred docu­
ment address denoted by the queue element.

21. A web crawler for downloading documents from
among a plurality of host computers, comprising:

at least one central processing unit;

a plurality of threads of execution that are executed by the
at least one central processing unit;

memory for storing a plurality of queues;

an enqueuing module that, when executed by the com-
puter system, obtains at least one referring document
that includes addresses of one or more referred
documents, each referred document address including a
host component corresponding to a host computer, and
enqueues queue elements in the plurality of queues; and

a dequeuing module that is substantially concurrently
executed by each of a plurality of threads so as to
process the referred document addresses in the queues;
the dequeuing module including instructions that, when
executed by a respective one of the threads, repeatedly
perform the functions of:
(al) identifying a queue element in a selected one of the

queues, downloading a referred document corre­
sponding to a referred document address in the
identified queue element, and dequening the identi­
fied queue element;

(a2) executing at least one application program for
processing the downloaded document; and

(a3) determining a download priority level for main­
taining freshness of the downloaded document;

the plurality of queues including a plurality of parallel
priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

the de queuing module including instructions for
re-enqueuing the queue element for the downloaded
document in one of the parallel priority level queues in
accordance with the download priority level deter­
mined for the queue element.

22. The web crawler of claim 21, wherein said enqueuing
50 module is configured to use at least one of the downloaded

referred documents as a new referring document.
23. The web crawler of claim 21, wherein

the plurality of queues includes a front-end data structure
and a back-end data structure, the front-end data struc­
ture including the plurality of parallel priority level
queues, and the back-end data structure including a
plurality of parallel first-in-first-out underlying queues;

the enqueuing module includes instructions for enqueuing
at least a subset of the queue elements in the priority
level queues, each such queue element being enqueued
in one of the priority level queues in accordance with
a priority level associated with the queue element; and

the dequeuing module includes instructions for transfer­
ring queue elements from the priority level queues to
the underlying queues in accordance with the download
priority levels of the priority level queues.

the enqueuing module includes instructions for enqueuing
at least a subset of the queue elements in the priority
level queues, each such queue element being enqueued
in one of the priority level queues in accordance with
a priority level associated with the queue element; and 5

the dequeuing module includes instructions for transfer­
ring queue elements from the priority level queues to
the underlying queues in accordance with the download
priority levels of the priority level queues.

14. The computer program product of claim 13, wherein 10

the enqueuing module includes instructions for enqueuing
those of the referred data set addresses sharing a respective
common host address into a respective common one of the
underlying queues.

15. The computer program product of claim 14, wherein 15

referred data sets corresponding to referred data set
addresses from different ones of the underlying queues are
downloaded substantially concurrently, while referred data
sets corresponding to referred data set addresses from any
single one of the underlying queues are downloaded one at 20

a time.
16. The computer program product of claim 11, wherein

the download priority level for each of a subset of the queue
elements is determined as a function of an expiration date
and time associated with document whose document address 25

is denoted by the queue element.
17. The computer program product of claim 11, wherein

the download priority level for each of a subset of the queue
elements is determined as a function of a host component of
the document address denoted by the queue element.

18. The computer program product of claim 11, wherein
the download priority level for each of a subset of the queue
elements is determined as a function of a historical rate of
change of the document whose address is denoted by the
queue element.

19. A computer program product for use in conjunction
with a computer system, the computer program product
comprising a computer readable storage medium and a
computer program mechanism embedded therein, the com­
puter program mechanism comprising:

an enqueuing module that, when executed by the com­
puter system, obtains at least one referring document
that includes addresses of one or more referred
documents, each referred document address including a
host component corresponding to a host computer, and 45

enqueues queue elements in a plurality of queues, each
queue element denoting one of the referred document
addresses; and

a dequeuing module that is substantially concurrently
executed by each of a plurality of threads so as to
process the referred document addresses in the queues;
the dequeuing module including instructions that, when
executed by a respective one of the threads, repeatedly
perform the functions of:
(al) identifying a queue element in a selected one of the 55

queues, downloading a referred document corre­
sponding to a referred document address in the
identified queue element, and dequeuing the identi­
fied queue element; and

(a2) executing at least one application program for 60

processing the downloaded document;
the plurality of queues including a plurality of parallel

priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements 65

enqueued in the associated priority level queue therein
being processed by the threads; and

21
US 6,263,364 Bl

22

5

20

documents, each referred document address including a
host component corresponding to a host computer, and
enqueues queue elements in the plurality of queues; and

a dequeuing module that is substantially concurrently
executed by each of a plurality of threads so as to
process the referred document addresses in the queues;
the dequeuing module including instructions that, when
executed by a respective one of the threads, repeatedly
perform the functions of:
(al) identifying a queue element in a selected one of the

queues, downloading a referred document corre­
sponding to a referred document address in the
identified queue element, and dequeuing the identi-
fied queue element; and

(a2) executing at least one application program for
processing the downloaded document;

the plurality of queues including a plurality of parallel
priority level queues, each having a distinct associated
download priority level, the download priority level
corresponding to a probability of the queue elements
enqueued in the associated priority level queue therein
being processed by the threads; and

the enqueuing module including instructions for deter­
mining a download priority level for each queue ele­
ment and enqueuing the queue element in one of the
parallel priority level queues in accordance with the
determined download priority level.

30. The web crawler of claim 29, wherein the download
30 priority level for each of a subset of the queue elements is

determined as a function of the referred document address
denoted by the queue element.

24. The web crawler of claim 23, wherein the enqueuing
module includes instructions for enqueuing those of the
referred data set addresses sharing a respective common host
address into a respective common one of the underlying
queues.

25. The web crawler of claim 24, wherein referred data
sets corresponding to referred data set addresses from dif­
ferent ones of the underlying queues are downloaded sub­
stantially concurrently, while referred data sets correspond­
ing to referred data set addresses from any single one of the 10

underlying queues are downloaded one at a time.
26. The web crawler of claim 21, wherein the download

priority level for each of a subset of the queue elements is
determined as a function of an expiration date and time
associated with document whose document address is 15

denoted by the queue element.
27. The web crawler of claim 21, wherein the download

priority level for each of a subset of the queue elements is
determined as a function of a host component of the docu­
ment address denoted by the queue element.

28. The web crawler of claim 21, wherein the download
priority level for each of a subset of the queue elements is
determined as a function of a historical rate of change of the
document whose address is denoted by the queue element.

29. A web crawler for downloading documents from 25

among a plurality of host computers, comprising:

at least one central processing unit;

a plurality of threads of execution that are executed by the
at least one central processing unit;

memory for storing a plurality of queues;

an enqueuing module that, when executed by the com­
puter system, obtains at least one referring document
that includes addresses of one or more referred

