
RiSER: Learning Better Representations for Richly Structured
Emails

Furkan Kocayusufoglu∗
University of California,

Santa Barbara
furkan@cs.ucsb.edu

Ying Sheng
Google

yingsheng@google.com

Nguyen Vo
Google

nguyenvo@google.com

James B. Wendt
Google

jwendt@google.com

Qi Zhao
Google

zhaqi@google.com

Sandeep Tata
Google

tata@google.com

Marc Najork
Google

tata@google.com

ABSTRACT
Recent studies show that an overwhelming majority of emails are
machine-generated and sent by businesses to consumers. Many
large email services are interested in extracting structured data from
such emails to enable intelligent assistants. This allows experiences
like being able to answer questions such as “What is the address
of my hotel in New York?” or “When does my flight leave?”. A
high-quality email classifier is a critical piece in such a system. In
this paper, we argue that the rich formatting used in business-to-
consumer emails contains valuable information that can be used
to learn better representations. Most existing methods focus only
on textual content and ignore the rich HTML structure of emails.
We introduce RiSER (Richly Structured Email Representation) –
an approach for incorporating both the structure and content of
emails. RiSER projects the email into a vector representation by
jointly encoding the HTML structure and thewords in the email.We
then use this representation to train a classifier. To our knowledge,
this is the first description of a neural technique for combining
formatting information along with the content to learn improved
representations for richly formatted emails. Experimenting with
a large corpus of emails received by users of Gmail, we show that
RiSER outperforms strong attention-based LSTM baselines. We
expect that these benefits will extend to other corpora with richly
formatted documents. We also demonstrate with examples where
leveraging HTML structure leads to better predictions.

CCS CONCEPTS
• Information systems → Email; • Computing methodolo-
gies → Artificial intelligence;

∗Work done while interning at Google.

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313720

KEYWORDS
Email Representation; HTML Structure Encoding; Email Classifica-
tion

1 INTRODUCTION
Classifying documents into two or more target classes is a core
problem in many web applications, and has received attention from
several research communities. Identifying the sentiment in text
documents [43], detecting spam in email [12] and the web [36],
and fake news detection [42] are well-known applications. Even
enterprise applications like legal discovery [40] make use of the
core abstraction of document classification.

Most existing approaches focus on short plain-text documents
like tweets, reviews, and posts in online discussion forums. How-
ever, several interesting applications are on corpora where the
documents are longer, and often have rich HTML markup structure.
Such corpora have not received as much research attention, but
are important for many applications. For instance, web pages have
rich HTML structure; classifying them [39] is useful for several
applications like focused crawling, faceted search, and even as a
signal for web page search ranking.

Email is another area that contains longer documents with rich
HTML markup structure. Recent studies [31] have shown that most
email is richly formatted and machine-generated rather than plain-
text sent by humans. Several interesting applications beyond spam-
detection rely on learning good classifiers over email. This includes
foldering [19], automatic prioritization [15], and even information
extraction [2, 14, 41]. In particular, these studies show that learning
a high-precision classifier over richly formatted emails is a key
ingredient to extracting structured data from email that is then
used to power several intelligent experiences [14, 41].

In this paper, we tackle the problem of learning a good represen-
tation (embedding) for structured documents like richly formatted
emails. We focus on evaluating these embeddings for the task of
classifying an email into one of k target classes. Recent literature has
shown that for relatively short documents, a recurrent neural net-
work with an attention mechanism [48] is a very strong baseline for
learning good representations. With richly formatted documents,
most existing techniques ignore the formatting information except

https://doi.org/10.1145/3308558.3313720

WWW ’19, May 13–17, 2019, San Francisco, CA, USA F. Kocayusufoglu et al.

Order … confirmed

Email

Subject Html

Head

TableTable

Body

Title

tr

td

h1

text

tbody

span

text

The Nexar Shop

text

ORDER #XXX

tr

td

h2

text

tbody

p

text

Thank … purchase! Hi AAAA … today.

. . .

Figure 1: An example purchase email (left) and a simplified DOM tree (right) representing a portion of the email. For clarity,
we trim long trivial HTML sequences such as nested div tags. Note that we extend the DOM tree beyond the email message
body to include a branch representing the subject.

for assuming that documents are hierarchically organized [48] into
sentences and paragraphs. We illustrate in Section 2 that the rich
structure of HTML-formatted email can be a valuable signal for
the relative importance of various pieces of information in the doc-
ument. We introduce a neural architecture called RiSER (Richly
Structured Email Representation) to take advantage of the struc-
ture of the email in addition to the content. RiSER projects the
input email into a vector representation by jointly encoding the
HTML structure of the email along with the terms in the email.
It consists of a 2-level LSTM to first construct a structural encod-
ing and combines this with an encoding of the terms for which
there is a second LSTM layer. This provides a simple way to en-
code the formatting and layout information as opposed to manually
engineering structural and visual features.

Experiments on real data from Gmail corpus show that the struc-
ture does indeed contain useful information and that RiSER is able
to exploit this information to outperform a strong baseline that
only considers textual information. While we focus on emails, the
techniques introduced in RiSER are generic and can be used for any
document corpus containing richly formatted information such as
HTML web pages and PDF documents.

We make the following key contributions in this paper:

• We identify that structural information in richly formatted
HTML emails is a valuable signal that is ignored by existing
classification approaches focused on textual content.

• We propose a 2-level neural architecture called RiSER that
jointly learns to encode both the structure and the content
of the email by examining the sequence of HTML tags that
each text term is associated with.

• We demonstrate through experiments on two classification
tasks on data from Gmail that RiSER learns enhanced email
representations.

The rest of this paper is organized as follows: Section 2 pro-
vides more detailed background on the information available in
the structure and markup, explains how we represent the input
document, and lays out the problem definition for applications like
information extraction. Section 3 introduces our two-level neural
architecture that jointly encodes the HTML markup and the textual
content of documents to learn a good representation. Section 4
reports on the performance of this architecture on two real-world
classification tasks using data from Gmail. We compare the perfor-
mance of this architecture with several baselines including ones
that try to leverage manual feature-engineering to represent as-
pects of this information. The experimental results show that the
models with the proposed architecture significantly increase recall
at high precision compared to previous baselines by up to 8.6%.
Section 5 summarizes areas of related work from the data mining,
NLP, and ML research communities. Finally, Section 6 concludes
the paper with a summary and potential directions for additional
research.

2 EMAIL STRUCTURE
We focus on business-to-consumer (B2C) emails, the vast majority
of which are machine-generated instantiations of predefined tem-
plates, accounting for up to 90% of all email traffic on the internet
[30].

Figure 1 (left) depicts an example email from the author’s inbox
that contains a purchase confirmation. Unlike personal emails sent
by humans, B2C emails like these often have rich HTML structure.
This structure introduces a complex hierarchy which can be repre-
sented by a Document Object Model (DOM) tree [27], such as the
one illustrated in Figure 1 (right). Each node in this tree represents
an HTML tag in the message body, and its children consist of the
HTML tags nested within it. The text of the message resides at the
leaf nodes. Note that we have extended this DOM tree beyond the

RiSER: Learning Better Representations for Richly Structured Emails WWW ’19, May 13–17, 2019, San Francisco, CA, USA

standard model to also include the subject of the email as a child
node of the email root. A typical commercial email like the example
in Figure 1 may contain around 2,000 leaf nodes. In fact, we have
observed some messages, albeit few, that have as many as 10,000
leaf nodes and a depth of up to 200.

The use of richHTML structure draws the attention of the human
eye to different parts of the email. We find that the categorically
similar emails often share similar structure. For example, bill re-
minder emails will format a “pay now” link close to the middle
of the email, while hotel confirmation emails often contain tables
of check-in and check-out information. This manifests as tables,
headers, footers, highlighted and emboldened text in the markup.
The key hypothesis we test in this paper is whether the markup in
such richly formatted emails offers additional signal over just the
textual content.

The remainder of this section describes how we convert this
tree representation into a sequence of features that are suitable
as input for the classification models described in the following
section. The sequence consists of three types of features: textual
features, annotation features, and structural features.

The textual features consist of a sequence of the first 200 terms
(including punctuation) extracted from the DOM tree (including
the subject branch) via in-order traversal. Limiting ourselves to 200
terms allows us to fully represent most emails without the risk of
allowing very long emails to derail model training.

The annotation features indicate whether a particular text span
contains an annotation. Several examples such as Date, Price, and
Time are listed in Table 1. A term may correspond to one or more
annotations. These annotations are extracted through a variety
of methods including dictionary lookups and regular expression
matching. Libraries of these annotators were developed over several
years to support more traditional rule-based information extraction
tasks. An entity detection library, for example, is also available as
a Google Cloud API [18]. Readers can refer to Sheng et al. [41]
for more detailed discussion on these annotators. In this work, we
provide a way to incorporate the signals from these annotations.

Annotation Types
Address Location
Alphabet-Number Price
Confirmation Number Telephone Number
Date Time
Establishment Tracking Number

Table 1: Annotation features.

Finally, we represent the structure of the document using XPaths
[7]. An XPath is the sequence of nodes (HTML tags) extending from
the root of the DOM tree to a leaf node. For example, the XPath of
the term “ORDER” in the example email in Figure 1 is
/html/body/table/tbody/tr/td/span/text. All the terms in a paragraph
(in a p node), for instance, might share the same sequence of HTML
tags for their XPath feature.

We considered several alternative approaches to represent docu-
ment structure. For example, one can identify the XPath patterns
for text in key HTML tags like headers, tables, lists and then use
these to mark each term. This approach is labor-intensive and more

importantly ad-hoc and may not take into account patterns than an
engineer has not visually inspected and considered important. For
our problem, we are interested in an approach that can be applied
to all the emails from various domains with different structural
patterns without having to manually engineer structural features.
Another possible representation is to use a visual blocks structure
using external parsers [11]. Visual blocks are tree structures based
on the visual layout of the page. Such an approach would depend
on an external parser to produce features that can then be repre-
sented as part of the input example. We chose to use the XPath
since it is simple, and provides a detailed representation of the
markup. This allows us to directly test the hypothesis of whether
the information in the markup is valuable for learning a better rep-
resentation. We expect that using visual features from a sub-system
that understands document layout could be interesting future work.

A complete set of features representing a single email document
thus consists of a stream of up to 200 terms, the set of annotations
that each term is a part of, and the XPath that each term resides
at. Figure 2 denotes the features corresponding to three terms –
"Shop", "ORDER" and "#XXXX" from the email in Figure 1. The
terms "Shop" and "ORDER" do not contain any annotation, but
"#XXXX" has two annotations: Confirmation Number and Alphabet-
Number. The bottom row contains the XPath in the DOM tree at
which each of these terms appear.

We describe the architecture that combines these three features
in Section 3 below, and explore the utility of different combinations
of these features in Section 4.

Shop ORDER #XXXX Word

{} {}
{Alphabet-Number,

Confirmation
Number}

Annotations

/html/body/table
/tbody/tr/td/h1/

text

/html/body/table
/tbody/tr/td/
span/text

/html/body/table
/tbody/tr/td/
span/text

XPath

Figure 2: Feature sets of three terms "Shop", "ORDER" and
"#XXXX" from the top of the email in Figure 1.

3 MODEL ARCHITECTURE
In this section, we present our email representation framework
– RiSER. The proposed model consists of two main components:
an XPath encoder and a word encoder. At a high level, the XPath
encoder models an email’s DOM structure by encoding the tags
along the XPath to a leaf node using an LSTM layer [21] while the
word encoder combines word embeddings with the correspond-
ing XPath encodings and additional features to learn an enhanced
representation of the email. The enhanced email representation is
then used as a feature for email classification. Figure 3 shows an
overview of the model architecture. We describe the details of the
framework and its components in the following sections.

3.1 XPath Encoder
Recall from Section 2 that an XPath is a sequence of HTML tags from
root to leaf of an email’s DOM tree. The proposed XPath encoder

WWW ’19, May 13–17, 2019, San Francisco, CA, USA F. Kocayusufoglu et al.

LSTMLSTM LSTM LSTM LSTM. . .

. . .XPathi

XPath
Attention

LSTM

Word
Attention

LSTM LSTM LSTM LSTM

Annotation
Features

Word
Embedding

ri,1 ri,2 ri,3 ri,4 ri,T

𝒗

𝑤1 𝑤2 𝑤3 𝑤i 𝑤L

XPath
Encoder

Word
Encoder

HTML Tag
Embedding

. . .

𝑥i

𝑒i

𝑎i

. . .

Figure 3: Overview of the RiSER architecture. The XPath Encoder iteratively encodes the tags in the XPath to each term in the
email’s DOM tree. Later, each XPath encoding (xi) is combined with the corresponding word embedding (ei) and annotation
features (ai) of the term to form a word representation (wi). The Word Encoder then processes these word representations
({w1,w2, · · · ,wL}) to learn an enhanced email representation (v). (best viewed in color)

in Figure 3 summarizes this sequence with a vector of fixed length.
In this work, we use an LSTM encoder with an additional attention
mechanism [48] to represent the sequential elements (HTML tags),
however, one is free to choose any standard sequence encoder to
model the sequential input. More precisely, let the XPathi be a
sequence of HTML tags with embeddings [ri1, · · · , riT]. In practice,
we randomly initialize these embeddings and update them during
training. We pass these embeddings through an LSTM layer to
produce output vectors:

hit =
−−−−→
LSTM(rit), t ∈ [1,T] (1)

Typical practices for extracting a final output representation
from an LSTM layer include selecting the final output or averaging
across all outputs. However, we observe that XPath sequences can
be very long and highly repetitive. Furthermore, not all HTML
tags may contribute equally to the email structure. For instance,
HTML tags such as strong, em or big can be more informative
than other much more common tags, such as div. Hence, we apply
an attention mechanism [48] over the outputs of the LSTM layer
in order to (1) extract such informative tags from long sequences
and reward their contributions to the XPath representation, and (2)
simultaneously reduce the impact of highly repetitive tags.

The final XPath encoding vector is computed as follows. First,
we feed the LSTM output hit through a fully connected layer with
trainable weight matrixWr and bias vector br , as well as a tanh
activation function to produce the hidden vector uit :

uit = tanh(Wrhit + br) (2)
Next we calculate an importance weight αit for each HTML tag

rit in the sequence as a normalized similarity score between the
hidden vector uit and a trainable structure vector ur :

αit =
exp(uTitur)∑
i exp(uTitur)

(3)

Finally, we compute the XPath encoding vector xi as a weighted
sum of all the LSTM outputs:

xi =
∑
t
αithit (4)

The proposed XPath encoder has the following two desirable
properties. First, as we show in Section 4.5, the XPath encoding
vectors capture information that is highly valuable for an email
classifier. Second, the XPath encoder captures the relative hierarchy
of an email’s structure, i.e. two XPath sequences will have similar
embeddings in the vector space if they correspond to closer leaf
nodes in the DOM tree since they share long common subsequences.
In the next section, we explain how the XPath encoder interacts
with the word encoder.

3.2 Word Encoder
The word encoder is responsible for learning a rich representation
of the email which not only summarizes the email’s content but also
encodes its HTML structure. In order to accomplish this goal, we go

RiSER: Learning Better Representations for Richly Structured Emails WWW ’19, May 13–17, 2019, San Francisco, CA, USA

beyond the word-embeddings-based representations and capture
additional features with structural information from the email. We
create our rich word representation vector wi by leveraging the
following three components:

• Word embeddings. We construct our vocabulary with the
most frequent 20,000 words in our data. Each word in the vo-
cabulary is mapped to a word embedding vector through an
embedding look-up matrix. Out-of-vocabulary (OOV) words
are mapped to an unknown vector. In this work, we randomly
initialize the word embeddings and jointly train them with
the model. One can also use pre-trained word embeddings
such as Word2Vec [35], Glove [38], or fastText [9].

• XPath encodings. The corresponding XPath of each word
is passed through the XPath encoder to produce an XPath
encoding. These XPath encodings implicitly capture the posi-
tion of the word in the DOM tree. Since XPath sequences can
be very long, we only keep the first T tags of the sequence
and omit the rest. Note that T is a hyper-parameter in our
framework.

• Annotation vectors. We represent the annotations a word
corresponds to as a 10-D binary vector. Each dimension (0/1)
indicates whether aword is annotated by a particularmarkup
shown in Table 1. These features turn out to be very helpful,
as we will show in Section 4.4.

To form improved word representations, the word embeddings,
XPath encodings, and annotation vectors are concatenated for each
term and fed into a fully connected layer with tanh non-linearity.
Formally, given an email with L words, we represent each word in
the sequence as:

wi = tanh(Ws [ei ,xi ,ai]), i ∈ [1,L] (5)

where ei ∈ Rk is the word embedding vector, xi ∈ Rl is the corre-
sponding XPath encoding calculated in Equation (4), and ai is the
10-dimensional binary vector representing the annotations men-
tioned in Section 2.Ws ∈ Rm∗m is a trainable weight matrix, where
m = k + l + 10.

With [w1,w2, · · · ,wL] we can now compute an email represen-
tation vector by using another LSTM layer to encode the sequence
and apply an additional attention mechanism [48] over that layer:

hi =
−−−−→
LSTM(wi), i ∈ [1,L] (6)

ui = tanh(Wwhi + bw) (7)

αi =
exp(uTi uw)∑
i exp(uTi uw)

(8)

v =
∑
i
αihi (9)

wherev is the email representation vector that summarizes both
the email structure and semantics.

3.3 Email Classification
We use the email representation computed above as a feature in
email classification. More specifically, we use a linear layer to con-
vert the email representation vector to a real-valued vector of size

|C |, where C is the set of classes to predict. A final softmax layer is
applied to obtain the normalized probabilities over the labels:

p = softmax(Wcv + bc) (10)
The training objective of our framework is cross-entropy loss:

loss = −
∑
d ∈D

∑
c ∈C

p
д
c (d) · loд(pc (d)) (11)

where D is the set of training emails, C is the collection of email
classes, pc (d) is the probability of predicting email d as class c , and
p
д
c (d) is a binary value indicating whether c is the correct label. The
entire model is trained through back-propagation with respect to
all parameters. Training details are further explained in Section 4.3.

4 EXPERIMENTS
This section presents the results from several experiments on data
from a large Gmail corpus to illustrate the effectiveness of the RiSER
architecture. We focus on two binary classification tasks for this
purpose. The first task is one of detecting if an email contains a bill.
This model is used by the email service to determine if it wants
to proactively remind the user when a bill is due. The second task
is one of detecting if an email contains a hotel reservation confir-
mation. This model is also used to support intelligent applications
such as travel planning. We refer to these two as the Bill and Hotel
tasks. We pick these two tasks for illustrative purposes. The overall
system that these classifiers are a part of includes several other clas-
sifiers (and extractors) for flights, calendar appointments, shipping
confirmations, etc.

The experiments are designed to compare the performance of
different RiSER variants (introduced in Section 4.2) against a strong
baseline and to understand the incremental advantage of incorpo-
rating the annotations and XPath embeddings. Before describing
the experimental setting, we first describe how the datasets are con-
structed including the source for the labels and sampling techniques
used to deal with biases.

4.1 Dataset
The training and testing datasets are constructed by sampling from
the Gmail corpus. During the course of this work, user privacy
was protected through strict data access controls and data pre-
processing to avoid training on sensitive data. Nobody involved
with this project had access to visually inspect any of the data. Only
terms matching the dictionary of top 20,000 terms are used, while
the rest are replaced by an unknown identifier. Any text spans that
contain potentially private data (such as addresses, dates, and phone
numbers) are denoted by the corresponding annotation feature, and
the underlying terms are replaced by the unknown identifier.

4.1.1 Labels. Ground truth labels for this dataset are derived from
three sources: Microdata [20], manually defined parsers, and rule-
based extractors. Microdata is a standard that enables senders to
explicitly label and mark up their outgoing emails with structured
information. For example, when sending a confirmation email to a
customer, hotels can include markup to indicate that their emails
are reservation confirmations, and even specify details such as
confirmation numbers, addresses, check-in and check-out out dates
and times, etc. While Microdata markup is precise, it is not widely

WWW ’19, May 13–17, 2019, San Francisco, CA, USA F. Kocayusufoglu et al.

adopted by all email senders, so the volume of annotations tends to
be low.

Manually defined parsers are designed to extract category-specific
fields from emails in lieu of Microdata. These are created on a per-
sender basis and hand-crafted based on several instances of emails
donated by users for this very purpose. For the purposes of email
classification, we use the presence of a successful extraction from
an email as a positive label for the category.

Note that we prioritize construction of parsers for high volume
senders, since (a) parser construction is laborious, thus focusing
on larger senders yields more labeled samples, and (b) the donated
corpus is relatively small and thus contains a limited number of
samples from low volume senders. Manually defined parsers tend
to be highly precise but brittle, since small changes to the emails
can often break the parsers, requiring human involvement and new
donated emails to fix them.

Rule-based extractors consist of a manually engineered set of
traditional information extraction techniques, such as dictionary
lookups and regular expressions, that operate across senders. These
are also constructed by leveraging the donated email corpus for
both development and validation. These tend to have higher recall
than the approaches above, but often at the cost of lower precision.
Similar to the manually defined parsers, we use the presence of a
successful extraction of an email as a positive label for the email.

4.1.2 Sampling. Despite drawing labeled examples from the three
sources of ground truth mentioned above, the vast majority of
emails remain unlabeled, and even among those that are labeled,
the distribution is skewed towards higher volume senders. Thus,
training classifiers using a uniformly random sample of data often
leads to overfitting and poor generalization to smaller senders.

Domain-based sampling attenuates this issue by limiting the
number of samples observed from high volume senders and boost-
ing those from smaller senders, however this method can be too
coarse for larger senders that have their own internal skew—e.g. the
majority of amazon.com email might be classified as purchase orders,
while a small fraction are account memberships or bill reminders.

We find a balance between these two methods by stratifying
emails by the templates from which they are instantiated. This
ensures that an even number of emails are represented from the
purchase order, account membership, and bill reminder templates,
along with emails from much smaller senders.

These templates are inferred through a one-time template gener-
ation process that clusters similarly structured emails into groups
that are likely to have been instantiated from a single template.
These techniques range from clustering on the sender and subject
of an email [3] to clustering on the structure of the email body [2, 4].
In this work, we use structural clustering techniques based on a
locality sensitive hash of the email body similar to the technique
described in [41].

We split the data into train and test sets with a ratio of 9:1 while
ensuring that samples belonging to the same sender domain appear
in only one of these sets to prevent the effects of memorization. For
the training data, we downsample the negative examples to yield a
positive-to-negative ratio of about 1:100. We keep the original ratio
in the test set. To put this into perspective, the resulting training

sets have approximately 150M total samples for the Bill task and
31M samples for the Hotel task.

4.2 Experiment Configuration
We train and evaluate four variants of the RiSER architecture, each
incorporating a different combination of the textual, annotation,
and structural features described in Section 3.2.

RiSER-W uses the Word Encoder only and represents words
using the word embeddings component only. That is, in Equa-
tion 5, the word representationwi is represented by the word
embedding ei only.

RiSER-WA uses the Word Encoder and represents words with
the word embeddings and annotation features.

RiSER-WX uses both the Word Encoder and the Xpath En-
coder and represents words with the word embeddings and
XPath encodings.

RiSER-WXA uses both the Word Encoder and the XPath En-
coder and represents words with theword embeddings, XPath
encodings, and annotation features. This variant is the one
displayed in Figure 3.

The RiSER-W variant is simply an LSTM-based recurrent model
with an attention mechanism, as it only includes word embeddings
in its input layer. Recent studies in the literature have shown that
attention-based LSTM models [29, 48] are excellent for modeling
text documents and achieve state-of-the-art performance in doc-
ument classification tasks by outperforming linear models, SVMs,
and feed-forward neural networks. Therefore we consider RiSER-
W as a baseline model to compare against the remaining RiSER
variants.

Note that one can employ more complex neural architectures
than just the RiSER-W architecture to improve email classifica-
tion performance. However the focus of this work is to demon-
strate the advantages of exploiting the rich formatting structure
of emails through our proposed XPath Encoder and overall archi-
tecture. Moreover, we aim to demonstrate that textual content can
be better utilized when combined with structural information for
learning email representations.

We compare the performance of the RiSER-WA, RiSER-WX and
RiSER-WXA variants against the baseline RiSER-W model to de-
termine whether structural information and annotation features
can improve the learned representations. We test this hypothesis
by classifying emails into two semantic categories, Bills and Ho-
tels. While we could have posed this as a multi-class classification
problem, practical convenience of improving one model without
affecting any other models motivated us to pose these as separate
binary classification tasks. The general idea of leveraging structure
to learn a better representation holds for multi-class, multi-label,
or even regression tasks.

4.3 Hyper-parameters and Training
For all four variants, we perform grid search over the word em-
bedding dimension ({50, 100, 200}), the word encoder LSTM output
(hidden state) dimension ({64, 128, 256}), the initial learning rate
({0.01, 0.001, 0.0001}), the batch size ({50, 100, 200}), the word encoder
dropout rate ({0, 0.25, 0.5}), and the optimizer type (AdaGrad [16]
and Adam [24]). For the Adam optimizer, we use the default settings
suggested by the authors (β1 = 0.9, β2 = 0.999, ϵ = 10−8).

RiSER: Learning Better Representations for Richly Structured Emails WWW ’19, May 13–17, 2019, San Francisco, CA, USA

For the RiSER-WX and RiSER-WXA models we also search over
the following additional hyper-parameters: the HTML tag embed-
ding dimension ({25, 50, 100}), the XPath encoder LSTM output
dimension ({16, 32, 64}), the XPath encoder dropout rate ({0, 0.25,
0.5}), and the maximum XPath length ({20, 30, 40}).

We use the norm clipping trick with a threshold of 5.0 in all four
models to avoid the exploding gradient problem.

For each model, we use the Vizier [17] platform to select the
best combination of hyper-parameters based on AUC-PR after a
maximum of 1M training steps. The selected hyper-parameters
for each model are shown in Table 2. We later continue training
the selected models until they converge and report their highest
numbers on the test data in the next section.

BILL
Hyper-parameter RiSER-W RiSER-WA RiSER-WX RiSER-WXA

batch size 200 200 200 200
learning rate 0.001 0.0001 0.0001 0.001
optimizer type Adam Adam Adam Adam

word embedding dim 200 100 100 100
WE LSTM output dim 128 128 128 128

WE dropout rate 0 0.25 0.25 0
tag embedding dim N/A N/A 25 25
max XPath length N/A N/A 20 20

XE LSTM output dim N/A N/A 64 16
XE dropout rate N/A N/A 0.5 0.25

HOTEL
Hyper-parameter RiSER-W RiSER-WA RiSER-WX RiSER-WXA

batch size 200 100 200 200
learning rate 0.001 0.0001 0.0001 0.001
optimizer type Adam Adam Adam Adam

word embedding dim 200 100 100 200
WE LSTM output dim 128 64 64 128

WE dropout rate 0.5 0.25 0.25 0.25
tag embedding dim N/A N/A 50 25
max XPath length N/A N/A 20 30

XE LSTM output dim N/A N/A 16 64
XE dropout rate N/A N/A 0.5 0.25

Table 2: Selected hyper-parameters for the RiSER variants
for the Bill and Hotel classification tasks. WE stands for
Word Encoder and XE stands for XPath Encoder.

4.4 Results and Discussion
Classifier performance is often measured using area under the
receiver operating characteristic curve (AUC-ROC). However, when
dealing in datasets with high class skew—which is often the case for
email—the area under the precision-recall curve (AUC-PR) provides
a much fairer representation of model performance. In practice,
even the AUC-PR metric is inadequate given that applications for
email generally require extremely high precision. For example,
misclassifying an important email as spam is an incredibly bad user
experience.

Thus, we evaluate our models based on their recall at a fixed level
of high precision. By requiring that all models reach a prespecified
precision threshold, we minimize bad user experiences. Fixing the
precision then allows us to evaluate different models by the extent
of their coverage at that level of precision. That being said, we also

BILL
Model R@P=0.85 R@P=0.90 R@P=0.95 AUC-PR

RiSER-W 76.4 71.5 57.4 85.4
RiSER-WA 76.8 73.0 63.1 85.9
RiSER-WX 76.6 73.5 64.1 86.2
RiSER-WXA 78.0 73.7 66.0 85.6

HOTEL
Model R@P=0.85 R@P=0.90 R@P=0.95 AUC-PR

RiSER-W 95.9 95.0 92.4 97.1
RiSER-WA 97.3 95.7 93.2 98.0
RiSER-WX 96.3 95.5 93.5 97.2
RiSER-WXA 97.4 96.3 92.9 97.7

Table 3: Recall at a fixed level of precision and AUC-PR per-
formance metrics for four RiSER variants trained for the
Bill and Hotel classification tasks.

report the AUC-PR metric for clarity. The experimental results on
both datasets are summarized in Table 3.

4.4.1 Recall-at-fixed-precision (R@P). Results show that our
RiSER-WXA variant overall gives the best performance across both
datasets. The improvement in performance depends on the data
type. For more complex dataset, such as Bill, the RiSER-WXA vari-
ant outperforms the baseline model (RiSER-W) by 2.2% on R@P(0.9),
and by 8.6% on R@P(0.95) metrics. Note that recall tends to decrease
drastically for the baseline model as the precision threshold in-
creases, while RiSER-WXA demonstrates more robust performance.
This leads to a larger gap between both models’ recall at higher
precision thresholds. On the other hand, improvements in the Ho-
tel task are smaller compared to the Bill task, leading to 1.3% on
R@P(0.9), and by 0.5% on R@P(0.95) metrics. We also report the
experimental results of RiSER-WA and RiSER-WX variants in order
to better evaluate the effects of each component.

Effect of annotation features. Our experiments show that us-
ing crafted annotation features on top of word embeddings provides
important performance gains over the baseline. With respect to the
R@P(0.95) metric, the RiSER-WA variant outperforms the RiSER-W
variant by 5.7% on the Bill task, and 0.8% on the Hotel task. Similarly,
the gap between recall is smaller (1.5% and 0.7%) as we decrease
the precision threshold.

We believe the reason behind the performance boost that comes
with the annotation features is that they allow us to recover mean-
ings in words that cannot be captured with the defined vocabulary.
To be more specific, emails include dates, numbers, addresses such
that most of these terms are anonymized due to privacy constraints
and are embedded with the unknown vector. Thus, including the an-
notation features allows our framework to capture these additional
signals, which intuitively improves the model’s ability to correctly
classify an email. As a toy example, an email without a date is most
likely not a hotel reservation.

Effect of email structure. Combining XPath encodings with
word embeddings leads to an improvement of 6.7% in the Bill task,
and 1.1% in the Hotel task with respect to the R@P(0.95) metric.
More importantly, by comparing the performance of RiSER-W and
RiSER-WX, we verify that incorporating the HTML structure into
the learning process leads to improved email representations. In

WWW ’19, May 13–17, 2019, San Francisco, CA, USA F. Kocayusufoglu et al.

Figure 4: Word attention weights on an example donated Hotel email using the RiSER-W and RiSER-WX variants. Brighter
red highlighting indicates a higher attention weight for the corresponding term relative to the other terms in the email.

Section 4.5, we illustrate this with some example emails in which
the inclusion of HTML structure results in better classification.

While improvements of the order of 5% to 10% may seem small,
they represent a significant reduction in “bad experiences” for users
of Gmail. Consider, for example, a service that extracts structured
data from these emails to remind people when their bills are due
or answers questions about their hotel reservations. The improved
models directly translate to improved recall for both these assistive
experiences.

4.4.2 AUC-PR. TheAUC-PRmetric generally improves for RiSER-
WA, RiSER-WX and RiSER-WXA variants compared to the baseline
variant on both classification tasks. However, the improvements
are not always in line with the improvements to the recall-at-fixed-
precision metric. Surprisingly, unlike the R@P metric, the RiSER-
WXA variant does not have the highest AUC-PR for either task. For
the Bill task, the RiSER-WX variant performs the best (86.2%), while
for the Hotel task, the RiSER-WA variant has the highest AUC-PR
(98.0%).

4.5 Qualitative Analysis
In order to get an intuition into how RiSER utilizes the HTML struc-
ture of an email, we visualize and compare the attention weights of
two architecture variants: one that excludes the XPath encodings
and one that includes the XPath encodings. Here, we use the RiSER-
W and RiSER-WX variants trained for the Hotel classification task.
We illustrate the resulting attention weights of the two models
applied to a single donated email example in Figure 4. Note that we
obfuscate key information for privacy reasons.

In comparing the term attention weights of the RiSER-W and
RiSER-WX models, we find that the latter is much better at at-
tending to terms that are semantically relevant to the hotel reser-
vation class. For example, terms such as ‘stay’, ‘reservation’,
‘confirmation’, and ‘guest’ are attended to while the RiSER-W
model attends to nearly all words. In fact, it attends more to those
that are less semantically relevant in this example.

To get an intuition as to why structural information helps these
models attend differently to these terms, we inspect the attention
weights of the XPath tags in addition to the term attention weights.
We visualize these weights for a donated email example in Figure 5.
Red highlighting indicates term attention weights while yellow
highlighting indicates the XPath’s HTML tag attention weights.

Our first observation is that the use of structure helps the model
understand the boundaries of different parts of the email. In this
particular example the model attends to terms that belong to the

subject more than the remainder of the text stream. Note that the
word attentionweights drop suddenly at the boundary of the subject
and the beginning of the message body. We observed this pattern
across many donated examples.

Our second observation is that the model also attends more to
HTML tags that are often used to highlight important text. In this
example, the model pays particular attention to meaningful tags
such as strong (which indicates if a word is bold-ed), h1/h2/h3
(which indicate headers), and ul and li (which indicate list items).
These types of markup are generally used to draw the user’s atten-
tion to specific text in a rendered email, often containing important
information. Similarly, note that the center tag, which aligns all
inner HTML to the center of the display, is also highly attended to.

In summary, from inspecting the attention weights of the RiSER
architecture with and without XPath encodings, we observe that
including structural information improves attention at the term

Figure 5: Term and XPath attention weights. Red high-
lighting indicates the term attention weights. Yellow high-
lighting indicates the XPath’s HTML tag attention weights
(row normalized). Brighter colors indicate higher attention
weights.

RiSER: Learning Better Representations for Richly Structured Emails WWW ’19, May 13–17, 2019, San Francisco, CA, USA

level by helping the model learn about boundaries in documents
(e.g. subject vs. message body), as well as learn to focus on parts
that the original sender intended to draw the user’s attention to
(e.g. strong, center, etc.).

5 RELATEDWORK
Our work builds on contributions from several research areas in-
cluding natural language processing, data mining, web mining, and
deep learning. Here we discuss related work in two main categories:
text representation and email representation.

There is a rich history of work in text representation [33, 47]
for various tasks like sentiment classification [37] (e.g. positive or
negative reviews) and genre detection (e.g. sports, news, entertain-
ment, etc.). More recently, the availability of large amounts of text
data has led to unsupervised approaches for learning a good dis-
tributed representation for words. Techniques like Word2Vec [34]
and Glove [38] have produced pre-trained embeddings for words
that can be combined with more complex neural approaches.

The success of these approaches are later combined with the
power of recurrent neural networks (RNNs) which led others to
learn distributed representations of a larger piece of text like sen-
tences [26], paragraphs [28], and documents [25]. Several variants
of RNNs like convolutional-gated RNN [45], tree-LSTM [44] and
Quasi-RNN [10] are proposed as alternative architectures. Apart
from recurrent neural networks, methods employing convolutional
networks [23, 49] have also produced compelling results for text
classification tasks.

Recently, authors in [48] have argued that the hierarchical struc-
ture of documents helps to learn better representations. Acknowl-
edging that the importance of words or sentences may vary de-
pending on the context, they use an attention mechanism [5] while
hierarchically encoding words into sentences and sentences into
documents. In addition to the hierarchical structure, discourse struc-
ture [32] in the text, which represents the linguistic organization
of a text as a tree, has also been studied in recent document repre-
sentation work [8, 22, 29].

Each of these lines of research are based solely on the textual
content assuming that the documents are plain-text. In this paper,
we focus on machine-generated emails which have a rich HTML
structure. In addition to leveraging the textual context, we encode
the structural markup to learn a better representation. Note that in
our work, the term “structure” corresponds to a formatting structure
of an email, rather than the linguistic structure mentioned above.
Combining our framework with the aforementioned architectures
is possible and makes for promising future work.

Learning good email representations has been an area of interest
for multiple research groups [2, 14, 41]. In addition to information
extraction, email classifiers are useful for other applications like
automatic foldering [6, 19], spam classification [13], and message
priority ranking [1].

Lastly, systems like Fonduer [46] tackle richly formatted docu-
ments for the task of Knowledge Base Construction (KBC). Fonduer
shows that augmenting textual features with structural and visual
features produced by a library that parses the HTML markup and
providing it to a strong baseline like a bi-directional LSTM with
attention can indeed provide a significant improvement over just

using the text features. Our results agree with the findings in Fon-
duer – formatting information does indeed help us learn a better
representation for an email. In contrast to the approach of engi-
neering a set of structural features (examples from Fonduer include
HTML tag of the term, HTML tag of the parent, tabular features
like row number, column number, n-grams from all the cells in
the same row) our approach simply relies on learning an encoding
using the sequence of HTML tags that appear in the path from the
root to the node containing the term. Our results show that this
is a powerful approach when combined with well-known building
blocks like LSTMs and an attention mechanism. While we do not
implement the nearly 40 structural, tabular, and visual features
implemented in Fonduer, an interesting piece of future work is to
study if XPath encodings as learned by our model can be as effective
as the sophisticated features manually engineered in Fonduer.

6 CONCLUSION
In this paper, we study the problem of learning representations for
richly structured emails. Considering the fact that most of today’s
emails are machine generated, we argue the rich formatting used
in these emails contains highly valuable information that can be
used to learn better representations. To address this gap in the
literature, we proposed a novel framework called RiSER. Our frame-
work combines three components from the email in order to learn
an enhanced email representation: 1) textual content, 2) HTML
structure, 3) manual annotation features. We show the effective-
ness of our approach by evaluating the individual components as
well as the full framework on email classification task across two
datasets from a large email service. The experimental results and
visualizations further indicate that our framework is learning an
improved representation for emails and is capable of capturing
valuable information buried in the email’s HTML structure.

We are exploring multiple avenues of future research. We expect
that leveraging structure will be valuable for other challenging
tasks like information extraction from emails and web pages. We
are considering ways to extend the RiSER framework to other types
of documents with rich structure. For instance, PDFs and scanned
images contain many informative layout and structural signals.
However such documents do not contain XPath-style markup. We
are exploring alternative ways to represent the layout and format-
ting information from such documents.

REFERENCES
[1] Douglas Aberdeen, Ondrej Pacovsky, and Andrew Slater. 2010. The learning

behind Gmail priority inbox. In LCCC: NIPS 2010 Workshop on Learning on Cores,
Clusters and Clouds.

[2] Manoj K Agarwal and Jitendra Singh. 2018. Template Trees: Extracting Action-
able Information from Machine Generated Emails. In Proceedings of the 30th
International Conference on Database and Expert Systems Applications (DEXA).
3–18.

[3] Nir Ailon, Zohar S Karnin, Edo Liberty, and Yoelle Maarek. 2013. Threading
machine generated email. In Proceedings of the 6th ACM International Conference
on Web Search and Data Mining (WSDM). 405–414.

[4] Noa Avigdor-Elgrabli, Mark Cwalinski, Dotan Di Castro, Iftah Gamzu, Irena
Grabovitch-Zuyev, Liane Lewin-Eytan, and Yoelle Maarek. 2016. Structural
clustering ofmachine-generatedmail. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management (CIKM). 217–226.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

WWW ’19, May 13–17, 2019, San Francisco, CA, USA F. Kocayusufoglu et al.

[6] Ron Bekkerman, Andrew McCallum, and Gary Huang. 2005. Automatic Catego-
rization of Email into Folders: Benchmark Experiments on Enron and SRI Corpora.
Center for Intelligent Information Retrieval report IR-418. University of Mas-
sachusetts.

[7] Anders Berglund, Scott Boag, Don Chamberlin, Mary F Fernández, Michael Kay,
Jonathan Robie, and Jérôme Siméon. 2007. XML Path Language (XPath). World
Wide Web Consortium (W3C) (2007).

[8] Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein. 2015. Better Document-
level Sentiment Analysis from RST Discourse Parsing. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. 2212–2218.

[9] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. En-
riching Word Vectors with Subword Information. arXiv preprint arXiv:1607.04606
(2016).

[10] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. 2016.
Quasi-recurrent neural networks. arXiv preprint arXiv:1611.01576 (2016).

[11] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. Extracting content
structure for web pages based on visual representation. In Asia-Pacific Web
Conference. Springer, 406–417.

[12] Godwin Caruana and Maozhen Li. 2012. A survey of emerging approaches to
spam filtering. ACM Computing Surveys (CSUR) 44, 2 (2012), 9.

[13] Gordon V Cormack. 2008. Email spam filtering: A systematic review. Foundations
and Trends® in Information Retrieval 1, 4 (2008), 335–455.

[14] Dotan Di Castro, Iftah Gamzu, Irena Grabovitch-Zuyev, Liane Lewin-Eytan,
Abhinav Pundir, Nil Ratan Sahoo, and Michael Viderman. 2018. Automated
Extractions for Machine Generated Mail. In Companion Proceedings of the The
Web Conference 2018 (WWW). 655–662.

[15] Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan, and Yoelle Maarek. 2016.
You’ve got mail, and here is what you could do with it!: Analyzing and predicting
actions on email messages. In Proceedings of the 9th ACM International Conference
on Web Search and Data Mining (WSDM). 307–316.

[16] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research (JMLR) 12, Jul (2011), 2121–2159.

[17] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google Vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 1487–1495.

[18] Google. 2019. Analyzing Entities. https://cloud.google.com/natural-language/
docs/analyzing-entities.

[19] Mihajlo Grbovic, Guy Halawi, Zohar Karnin, and Yoelle Maarek. 2014. Howmany
folders do you really need?: Classifying email into a handful of categories. In
Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management (CIKM). 869–878.

[20] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. 2016. Schema. org:
evolution of structured data on the web. Commun. ACM 59, 2 (2016), 44–51.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[22] Yangfeng Ji and Noah Smith. 2017. Neural discourse structure for text catego-
rization. arXiv preprint arXiv:1702.01829 (2017).

[23] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[24] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[25] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional Neu-
ral Networks for Text Classification. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI). 2267–2273.

[26] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences
and documents. In Proceedings of the 31st International Conference on Machine
Learning (ICML). 1188–1196.

[27] Philippe Le Hégaret, Ray Whitmer, and Lauren Wood. 2005. Document Object
Model (DOM). http://www.w3.org/DOM.

[28] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015. A hierarchical neural
autoencoder for paragraphs and documents. arXiv preprint arXiv:1506.01057
(2015).

[29] Yang Liu and Mirella Lapata. 2018. Learning structured text representations.
Transactions of the Association of Computational Linguistics 6 (2018), 63–75.

[30] Yoelle Maarek. 2016. Is Mail The Next Frontier In Search And Data Mining?.
In Proceedings of the 9th ACM International Conference on Web Search and Data
Mining (WSDM). 203–203.

[31] Yoelle Maarek. 2017. Web Mail is not Dead!: It’s Just Not Human Anymore. In
Proceedings of the 26th International Conference on World Wide Web (WWW). 5–5.

[32] William C Mann and Sandra A Thompson. 1988. Rhetorical structure theory:
Toward a functional theory of text organization. Text-Interdisciplinary Journal
for the Study of Discourse 8, 3 (1988), 243–281.

[33] Andrew McCallum, Kamal Nigam, et al. 1998. A comparison of event models
for naive bayes text classification. In AAAI-98 Workshop on Learning for Text
Categorization, Vol. 752. 41–48.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[35] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems (NIPS). 3111–3119.

[36] Marc Najork. 2009. Web spam detection. In Encyclopedia of Database Systems.
Springer, 3520–3523.

[37] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: sen-
timent classification using machine learning techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural Language Processing (EMNLP).
79–86.

[38] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 1532–1543.

[39] Xiaoguang Qi and Brian D Davison. 2009. Web page classification: Features and
algorithms. ACM Computing Surveys (CSUR) 41, 2 (2009), 12.

[40] Herbert L Roitblat, Anne Kershaw, and Patrick Oot. 2010. Document catego-
rization in legal electronic discovery: computer classification vs. manual review.
Journal of the American Society for Information Science and Technology (JASIST)
61, 1 (2010), 70–80.

[41] Ying Sheng, Sandeep Tata, James B Wendt, Jing Xie, Qi Zhao, and Marc Najork.
2018. Anatomy of a Privacy-Safe Large-Scale Information Extraction System
Over Email. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD). 734–743.

[42] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news
detection on social media: A data mining perspective. ACM SIGKDD Explorations
Newsletter 19, 1 (2017), 22–36.

[43] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 1631–1642.

[44] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved
semantic representations from tree-structured long short-termmemory networks.
arXiv preprint arXiv:1503.00075 (2015).

[45] Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated
recurrent neural network for sentiment classification. In Proceedings of the 2015
conference on empirical methods in natural language processing. 1422–1432.

[46] Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip
Levis, and Christopher Ré. 2018. Fonduer: Knowledge base construction from
richly formatted data. In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD). 1301–1316.

[47] Yiming Yang and Xin Liu. 1999. A re-examination of text categorization methods.
In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR). 42–49.

[48] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT). 1480–
1489.

[49] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In Proceedings of the 28th International Conference
on Neural Information Processing Systems (NIPS). 649–657.

https://cloud.google.com/natural-language/docs/analyzing-entities
https://cloud.google.com/natural-language/docs/analyzing-entities
http://www.w3.org/DOM

	Abstract
	1 Introduction
	2 Email Structure
	3 Model Architecture
	3.1 XPath Encoder
	3.2 Word Encoder
	3.3 Email Classification

	4 Experiments
	4.1 Dataset
	4.2 Experiment Configuration
	4.3 Hyper-parameters and Training
	4.4 Results and Discussion
	4.5 Qualitative Analysis

	5 Related Work
	6 Conclusion
	References

