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ABSTRACT
Crawling the web is deceptively simple: the basic algorithm is (a)
Fetch a page (b) Parse it to extract all linked URLs (c) For all the
URLs not seen before, repeat (a)–(c). However, the size of the web
(estimated at over 4 billion pages) and its rate of change (estimated
at 7% per week) move this plan from a trivial programming exercise
to a serious algorithmic and system design challenge. Indeed, these
two factors alone imply that for a reasonably fresh and complete
crawl of the web, step (a) must be executed about a thousand times
per second, and thus the membership test (c) must be done well
over ten thousand times per second against a set too large to store
in main memory. This requires a distributed architecture, which
further complicates the membership test.

A crucial way to speed up the test is tocache, that is, to store in
main memory a (dynamic) subset of the “seen” URLs. The main
goal of this paper is to carefully investigate several URL caching
techniques for web crawling. We consider both practical algo-
rithms: random replacement, static cache, LRU, and CLOCK, and
theoretical limits: clairvoyant caching and infinite cache. We per-
formed about 1,800 simulations using these algorithms with vari-
ous cache sizes, using actual log data extracted from a massive 33
day web crawl that issued over one billion HTTP requests.

Our main conclusion is that caching is very effective – in our
setup, a cache of roughly 50,000 entries can achieve a hit rate of
almost 80%. Interestingly, this cache size falls at a critical point: a
substantially smaller cache is much less effective while a substan-
tially larger cache brings little additional benefit. We conjecture
that such critical points are inherent to our problem and venture an
explanation for this phenomenon.
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1. INTRODUCTION
A recent Pew Foundation study [31] states that “[s]earch engines

have become an indispensable utility for Internet users” and esti-
mates that as of mid-2002, slightly over 50% of all Americans have
used web search to find information. Hence, the technology that
powers web search is of enormous practical interest. In this pa-
per, we concentrate on one aspect of the search technology, namely
the process of collecting web pages that eventually constitute the
search engine corpus.

Search engines collect pages in many ways, among them direct
URL submission, paid inclusion, and URL extraction from non-
web sources, but the bulk of the corpus is obtained by recursively
exploring the web, a process known ascrawling or spidering. The
basic algorithm is

(a) Fetch a page

(b) Parse it to extract all linked URLs

(c) For all the URLs not seen before, repeat (a)–(c)

Crawling typically starts from a set ofseed URLs, made up of
URLs obtained by other means as described above and/or made up
of URLs collected during previous crawls. Sometimes crawls are
started from a single well connected page, or a directory such as
yahoo.com, but in this case a relatively large portion of the web
(estimated at over 20%) is never reached. See [9] for a discussion
of the graph structure of the web that leads to this phenomenon.

If we view web pages as nodes in a graph, and hyperlinks as di-
rected edges among these nodes, then crawling becomes a process
known in mathematical circles asgraph traversal. Various strate-
gies for graph traversal differ in their choice of which node among
the nodes not yet explored to explore next. Two standard strate-
gies for graph traversal areDepth First Search (DFS) andBreadth
First Search (BFS) – they are easy to implement and taught in many
introductory algorithms classes. (See for instance [34]).

However, crawling the web is not a trivial programming exercise
but a serious algorithmic and system design challenge because of
the following two factors.

1. The web is very large. Currently, Google [20] claims to have
indexed over 3 billion pages. Various studies [3, 27, 28] have
indicated that, historically, the web has doubled every 9-12
months.

2. Web pages are changing rapidly. If “change” means “any
change”, then about 40% of all web pages change weekly
[12]. Even if we consider only pages that change by a third
or more, about 7% of all web pages change weekly [17].

These two factors imply that to obtain a reasonably fresh and

679



complete snapshot of the web, a search engine must crawl at least
100 million pages per day. Therefore, step (a) must be executed
about 1,000 times per second, and the membership test in step (c)
must be done well over ten thousand times per second, against a
set of URLs that is too large to store in main memory. In addition,
crawlers typically use a distributed architecture to crawl more pages
in parallel, which further complicates the membership test: it is
possible that the membership question can only be answered by a
peer node, not locally.

A crucial way to speed up the membership test is tocache a (dy-
namic) subset of the “seen” URLs in main memory. The main goal
of this paper is to investigate in depth several URL caching tech-
niques for web crawling. We examined four practical techniques:
random replacement, static cache, LRU, and CLOCK, and com-
pared them against two theoretical limits: clairvoyant caching and
infinite cache when run against a trace of a web crawl that issued
over one billion HTTP requests. We found that simple caching
techniques are extremely effective even at relatively small cache
sizes such as 50,000 entries and show how these caches can be im-
plemented very efficiently.

The paper is organized as follows: Section 2 discusses the vari-
ous crawling solutions proposed in the literature and how caching
fits in their model. Section 3 presents an introduction to caching
techniques and describes several theoretical and practical algorithms
for caching. We implemented these algorithms under the experi-
mental setup described in Section 4. The results of our simulations
are depicted and discussed in Section 5, and our recommendations
for practical algorithms and data structures for URL caching are
presented in Section 6. Section 7 contains our conclusions and di-
rections for further research.

2. CRAWLING
Web crawlers are almost as old as the web itself, and numer-

ous crawling systems have been described in the literature. In this
section, we present a brief survey of these crawlers (in historical
order) and then discuss why most of these crawlers could benefit
from URL caching.

The crawler used by the Internet Archive [10] employs multiple
crawling processes, each of which performs an exhaustive crawl of
64 hosts at a time. The crawling processes save non-local URLs
to disk; at the end of a crawl, a batch job adds these URLs to the
per-host seed sets of the next crawl.

The original Google crawler, described in [7], implements the
different crawler components as different processes. A single URL
server process maintains the set of URLs to download; crawling
processes fetch pages; indexing processes extract words and links;
and URL resolver processes convert relative into absolute URLs,
which are then fed to the URL Server. The various processes com-
municate via the file system.

For the experiments described in this paper, we used theMer-
cator web crawler [22, 29]. Mercator uses a set of independent,
communicating web crawler processes. Each crawler process is re-
sponsible for a subset of all web servers; the assignment of URLs to
crawler processes is based on a hash of the URL’s host component.
A crawler that discovers an URL for which it is not responsible
sends this URL via TCP to the crawler that is responsible for it,
batching URLs together to minimize TCP overhead. We describe
Mercator in more detail in Section 4.

Cho and Garcia-Molina’s crawler [13] is similar to Mercator.
The system is composed of multiple independent, communicating
web crawler processes (called “C-procs”). Cho and Garcia-Molina
consider different schemes for partitioning the URL space, includ-
ing URL-based (assigning an URL to a C-proc based on a hash of

the entire URL), site-based (assigning an URL to a C-proc based
on a hash of the URL’s host part), and hierarchical (assigning an
URL to a C-proc based on some property of the URL, such as its
top-level domain).

The WebFountain crawler [16] is also composed of a set of in-
dependent, communicating crawling processes (the “ants”). An ant
that discovers an URL for which it is not responsible, sends this
URL to a dedicated process (the “controller”), which forwards the
URL to the appropriate ant.

UbiCrawler (formerly known asTrovatore) [4, 5] is again com-
posed of multiple independent, communicating web crawler pro-
cesses. It also employs a controller process which oversees the
crawling processes, detects process failures, and initiates fail-over
to other crawling processes.

Shkapenyuk and Suel’s crawler [35] is similar to Google’s; the
different crawler components are implemented as different pro-
cesses. A “crawling application” maintains the set of URLs to be
downloaded, and schedules the order in which to download them.
It sends download requests to a “crawl manager”, which forwards
them to a pool of “downloader” processes. The downloader pro-
cesses fetch the pages and save them to an NFS-mounted file sys-
tem. The crawling application reads those saved pages, extracts any
links contained within them, and adds them to the set of URLs to
be downloaded.

Any web crawler must maintain a collection of URLs that are
to be downloaded. Moreover, since it would be unacceptable to
download the same URL over and over, it must have a way to avoid
adding URLs to the collection more than once. Typically, avoid-
ance is achieved by maintaining a set of discovered URLs, cover-
ing the URLs in the frontier as well as those that have already been
downloaded. If this set is too large to fit in memory (which it often
is, given that there are billions of valid URLs), it is stored on disk
and caching popular URLs in memory is a win: Caching allows the
crawler to discard a large fraction of the URLs without having to
consult the disk-based set.

Many of the distributed web crawlers described above, namely
Mercator [29], WebFountain [16], UbiCrawler[4], and Cho and
Molina’s crawler [13], are comprised of cooperating crawling pro-
cesses, each of which downloads web pages, extracts their links,
and sends these links to the peer crawling process responsible for
it. However, there is no need to send a URL to a peer crawling pro-
cess more than once. Maintaining a cache of URLs and consulting
that cache before sending a URL to a peer crawler goes a long way
toward reducing transmissions to peer crawlers, as we show in the
remainder of this paper.

3. CACHING
In most computer systems, memory ishierarchical, that is, there

exist two or more levels of memory, representing different trade-
offs between size and speed. For instance, in a typical worksta-
tion there is a very small but very fast on-chip memory, a larger
but slower RAM memory, and a very large and much slower disk
memory. In a network environment, the hierarchy continues with
network accessible storage and so on.Caching is the idea of storing
frequently used items from a slower memory in a faster memory. In
the right circumstances, caching greatly improves the performance
of the overall system and hence it is a fundamental technique in the
design of operating systems, discussed at length in any standard
textbook [21, 37]. In the web context, caching is often mentioned
in the context of a web proxy caching web pages [26, Chapter 11].
In our web crawler context, since the number of visited URLs be-
comes too large to store in main memory, we store the collection of
visited URLs on disk, and cache a small portion in main memory.

680



Caching terminology is as follows: thecache is memory used to
store equal sized atomic items. A cache has sizek if it can store at
mostk items.1 At each unit of time, the cache receives arequest for
an item. If the requested item is in the cache, the situation is called
a hit and no further action is needed. Otherwise, the situation is
called amiss or a fault. If the cache has fewer thank items, the
missed item is added to the cache. Otherwise, the algorithm must
choose either to evict an item from the cache to make room for the
missed item, or not to add the missed item. Thecaching policy
or caching algorithm decides which item to evict. The goal of the
caching algorithm is to minimize the number of misses.

Clearly, the larger the cache, the easier it is to avoid misses.
Therefore, the performance of a caching algorithm is characterized
by the miss ratio for a given size cache.

In general, caching is successful for two reasons:

� Non-uniformity of requests. Some requests are much more
popular than others. In our context, for instance, a link to
yahoo.com is a much more common occurrence than a link
to the authors’ home pages.

� Temporal correlation or locality of reference. Current re-
quests are more likely to duplicate requests made in the re-
cent past than requests made long ago. The latter terminol-
ogy comes from the computer memory model – data needed
now is likely to be close in the address space to data recently
needed. In our context, temporal correlation occurs first be-
cause links tend to be repeated on the same page – we found
that on average about 30% are duplicates, cf. Section 4.2, and
second, because pages on a given host tend to be explored se-
quentially and they tend to share many links. For example,
many pages on a Computer Science department server are
likely to share links to other Computer Science departments
in the world, notorious papers, etc.

Because of these two factors, a cache that contains popular re-
quests and recent requests is likely to perform better than an ar-
bitrary cache. Caching algorithms try to capture this intuition in
various ways.

We now describe some standard caching algorithms, whose per-
formance we evaluate in Section 5.

3.1 Infinite cache (INFINITE)
This is a theoretical algorithm that assumes that the size of the

cache is larger than the number of distinct requests. Clearly, in
this case the number of misses is exactly the number of distinct
requests, so we might as well consider this cache infinite. In any
case, it is a simple bound on the performance of any algorithm.

3.2 Clairvoyant caching (MIN)
More than 35 years ago, L´aszló Belady [2] showed that if the

entire sequence of requests is known in advance (in other words,
the algorithm isclairvoyant), then the best strategy is to evict the
item whose next request is farthest away in time. This theoretical
algorithm is denoted MIN because it achieves the minimum number
of misses on any sequence and thus it provides a tight bound on
performance. Simulating MIN on a trace of the size we consider
requires some care – we explain how we did it in Section 4. In
Section 5 we compare the performance of the practical algorithms
described below both in absolute terms and relative to MIN.
1The items are often calledpages because caches were primarily
used to store virtual memory pages. We shun this term to avoid
confusion with web pages. Also, the requirement that all items
have the same size is not essential, but simplifies the exposition,
and it applies in our case.

3.3 Least recently used (LRU)
The LRU algorithm evicts the item in the cache that has not been

requested for the longest time. The intuition for LRU is that an item
that has not been needed for a long time in the past will likely not
be needed for a long time in the future, and therefore the number
of misses will be minimized in the spirit of Belady’s algorithm.

Despite the admonition that “past performance is no guarantee
of future results”, sadly verified by the current state of the stock
markets, in practice, LRU is generally very effective. However, it
requires maintaining a priority queue of requests. This queue has
a processing time cost and a memory cost. The latter is usually
ignored in caching situations where the items are large. However,
in our case, each item is only 8-10 bytes long, so the relative cost of
an additional pointer per item is substantial. Fortunately, we show
in Section 5 that the algorithm CLOCK, described below, performs
equally well for URL caching, and its memory cost is only one
extra bit per item. (See Section 6).

3.4 CLOCK
CLOCK is a popular approximation of LRU, invented in the late

sixties [15]. An array ofmark bitsM0;M1; : : : ;Mk corresponds
to the items currently in the cache of sizek. The array is viewed as
a circle, that is, the first location follows the last. Aclock handle
points to one item in the cache. When a requestX arrives, if the
itemX is in the cache, then its mark bit is turned on. Otherwise,
the handle moves sequentially through the array, turning the mark
bits off, until an unmarked location is found. The cache item cor-
responding to the unmarked location is evicted and replaced byX.
The clock handle then begins at the next sequential location on the
next cache miss.

3.5 Random replacement (RANDOM)
Random replacement (RANDOM) completely ignores the past.

If the item requested is not in the cache, then a random item from
the cache is evicted and replaced. This policy might seem a silly
idea, but if the evicted item is chosen uniformly at random, then
an item newly added to a cache of sizek is expected to survivek
subsequent evictions. Thus, a popular item will have the time to
contribute a fair number of hits during its life in the cache, and will
likely be reinstated soon. Note that the set of items in the cache at
a given time is not at all a random set: recently requested items are
much more likely to be in the cache than items last requested long
ago.

In most practical situations, random replacement performs worse
than CLOCK but not much worse. Our results exhibit a similar
pattern, as we show in Section 5. RANDOM can be implemented
without any extra space cost; see Section 6.

3.6 Static caching (STATIC)
If we assume that each item has a certain fixed probability of

being requested,independently of the previous history of requests,
then at any point in time the probability of a hit in a cache of sizek
is maximized if the cache contains thek items that have the highest
probability of being requested.

There are two issues with this approach: the first is that in general
these probabilities are not known in advance; the second is that
the independence of requests, although mathematically appealing,
is antithetical to the locality of reference present in most practical
situations.

In our case, the first issue can be finessed: we might assume that
the most populark URLs discovered in a previous crawl are pretty
much thek most popular URLs in the current crawl. (There are
also efficient techniques for discovering the most popular items in
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a stream of data [18, 1, 11]. Therefore, an on-line approach might
work as well.) Of course, for simulation purposes we can do a first
pass over our input to determine thek most popular URLs, and
then preload the cache with these URLs, which is what we did in
our experiments.

The second issue above is the very reason we decided to test
STATIC: if STATIC performs well, then the conclusion is that there
is little locality of reference. If STATIC performs relatively poorly,
then we can conclude that our data manifests substantial locality of
reference, that is, successive requests are highly correlated.

3.7 Theoretical analyses
Given the practical importance of caching it is not surprising that

caching algorithms have been the subject of considerable theoreti-
cal scrutiny. Two approaches have emerged for evaluating caching
algorithms:adversarial andaverage case analysis.

Adversarial analysis compares the performance of a given on-
line algorithm, such as LRU or CLOCK, against the optimal off-
line algorithm MIN [6]. The ratio between their respective numbers
of misses is called the competitive ratio. If this ratio is no larger
thanc for any possible sequence of requests then the algorithm is
calledc-competitive. If there is a sequence on which this ratio is
attained, the bound is said to betight. Unfortunately for the caching
problem, the competitive ratio is not very interesting in practice
because the worst case sequences are very artificial. For example,
LRU is k-competitive, and this bound is tight. (Recall thatk is the
size of the cache.) For a cache of size218, this bound tells us that
LRU will never produce more than218 times the number of misses
produced by MIN. However, for most cache sizes, we observed
ratios for LRU of less than 1.05 (see Figure 3), and for all cache
sizes, we observed ratios less than 2.

Average case analysis assumes a certain distribution on the se-
quence of requests. (See [23] and references therein, also [24].)
The math is not easy, and the analysis usually assumes that the
requests are independent, which means no locality of reference.
Without locality of reference, a static cache containing thek most
popular requests performs optimally on average and the issue is
how much worse other algorithms do. For instance, Jelenkovi´c [23]
shows that asymptotically, LRU performs at moste
 (� 1:78; 
 is
Euler’s constant = 0.577. . . .) times worse than STATIC when the
distribution of requests follows a Zipf law. However, such results
are not very useful in our case: our requests are highly correlated,
and in fact, STATIC performs worse than all the other algorithms,
as illustrated in Section 5.

4. EXPERIMENTAL SETUP
We now describe the experiment we conducted to generate the

crawl trace fed into our tests of the various algorithms. We con-
ducted a large web crawl using an instrumented version of the Mer-
cator web crawler [29]. We first describe the Mercator crawler ar-
chitecture, and then report on our crawl.

4.1 Mercator crawler architecture
A Mercator crawling system consists of a number of crawling

processes, usually running on separate machines. Each crawling
process is responsible for a subset of all web servers, and consists of
a number of worker threads (typically 500) responsible for down-
loading and processing pages from these servers.

Figure 1 illustrates the flow of URLs and pages through each
worker thread in a system with four crawling processes.

Each worker thread repeatedly performs the following opera-
tions: it obtains a URL from the URL Frontier, which is a disk-
based data structure maintaining the set of URLs to be downloaded;

downloads the corresponding page using HTTP into a buffer (called
a RewindInputStream or RIS for short); and, if the page is an HTML
page, extracts all links from the page. The stream of extracted links
is converted into absolute URLs and run through the URL Filter,
which discards some URLs based on syntactic properties. For ex-
ample, it discards all URLs belonging to web servers that contacted
us and asked not be crawled.

The URL stream then flows into the Host Splitter, which assigns
URLs to crawling processes using a hash of the URL’s host name.
Since most links are relative, most of the URLs (81.5% in our ex-
periment) will be assigned to the local crawling process; the others
are sent in batches via TCP to the appropriate peer crawling pro-
cesses.

Both the stream of local URLs and the stream of URLs received
from peer crawlers flow into the Duplicate URL Eliminator (DUE).
The DUE discards URLs that have been discovered previously. The
new URLs are forwarded to the URL Frontier for future download.

In order to eliminate duplicate URLs, the DUE must maintain the
set of all URLs discovered so far. Given that today’s web contains
several billion valid URLs, the memory requirements to maintain
such a set are significant. Mercator can be configured to maintain
this set as a distributed in-memory hash table (where each crawling
process maintains the subset of URLs assigned to it); however, this
DUE implementation (which reduces URLs to 8-byte checksums,
and uses the first 3 bytes of the checksum to index into the hash
table) requires about 5.2 bytes per URL, meaning that it takes over
5 GB of RAM per crawling machine to maintain a set of 1 billion
URLs per machine. These memory requirements are too steep in
many settings, and in fact, they exceeded the hardware available to
us for this experiment. Therefore, we used an alternative DUE im-
plementation that buffers incoming URLs in memory, but keeps the
bulk of URLs (or rather, their 8-byte checksums) in sorted order on
disk. Whenever the in-memory buffer fills up, it is merged into the
disk file (which is a very expensive operation due to disk latency)
and newly discovered URLs are passed on to the Frontier.

Both the disk-based DUE and the Host Splitter benefit from URL
caching. Adding a cache to the disk-based DUE makes it possible
to discard incoming URLs that hit in the cache (and thus are du-
plicates) instead of adding them to the in-memory buffer. As a
result, the in-memory buffer fills more slowly and is merged less
frequently into the disk file, thereby reducing the penalty imposed
by disk latency. Adding a cache to the Host Splitter makes it possi-
ble to discard incoming duplicate URLs instead of sending them to
the peer node, thereby reducing the amount of network traffic. This
reduction is particularly important in a scenario where the individ-
ual crawling machines are not connected via a high-speed LAN (as
they were in our experiment), but are instead globally distributed.
In such a setting, each crawler would be responsible for web servers
“close to it”.

Mercator performs an approximation of a breadth-first search
traversal of the web graph. Each of the (typically 500) threads
in each process operates in parallel, which introduces a certain
amount of non-determinism to the traversal. More importantly,
the scheduling of downloads is moderated by Mercator’spoliteness
policy, which limits the load placed by the crawler on any partic-
ular web server. Mercator’s politeness policy guarantees that no
server ever receives multiple requests from Mercator in parallel; in
addition, it guarantees that the next request to a server will only be
issued after a multiple (typically 10�) of the time it took to answer
the previous request has passed. Such a politeness policy is essen-
tial to any large-scale web crawler; otherwise the crawler’s operator
becomes inundated with complaints.
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Figure 1: The flow of URLs and pages through our Mercator setup

4.2 Our web crawl
Our crawling hardware consisted of four Compaq XP1000 work-

stations, each one equipped with a 667 MHz Alpha processor, 1.5
GB of RAM, 144 GB of disk2, and a 100 Mbit/sec Ethernet con-
nection. The machines were located at the Palo Alto Internet Ex-
change, quite close to the Internet’s backbone.

The crawl ran from July 12 until September 3, 2002, although
it was actively crawling only for 33 days: the downtimes were
due to various hardware and network failures. During the crawl,
the four machines performed 1.04 billion download attempts, 784
million of which resulted in successful downloads. 429 million of
the successfully downloaded documents were HTML pages. These
pages contained about 26.83 billion links, equivalent to an average
of 62.55 links per page; however, the median number of links per
page was only 23, suggesting that the average is inflated by some
pages with a very high number of links. Earlier studies reported
only an average of 8 links [9] or 17 links per page [33]. We offer
three explanations as to why we found more links per page. First,
we configured Mercator to not limit itself to URLs found in anchor
tags, but rather to extract URLs from all tags that may contain them
(e.g. image tags). This configuration increases both the mean and
the median number of links per page. Second, we configured it to
download pages up to 16 MB in size (a setting that is significantly
higher than usual), making it possible to encounter pages with tens

2144 GB of disk space was by far too small to hold both the URL
log generated by the host splitter and the crawl metadata, such as
the URL frontier. As the crawl progressed, we had to continuously
move data to other machines with more disk space.

of thousands of links. Third, most studies report the number of
unique links per page. The numbers above include duplicate copies
of a link on a page. If we only consider unique links3 per page, then
the average number of links is 42.74 and the median is 17.

The links extracted from these HTML pages, plus about 38 mil-
lion HTTP redirections that were encountered during the crawl,
flowed into the Host Splitter. In order to test the effectiveness
of various caching algorithms, we instrumented Mercator’s Host
Splitter component to log all incoming URLs to disk. The Host
Splitters on the four crawlers received and logged a total of 26.86
billion URLs.

After completion of the crawl, we condensed the Host Splitter
logs. We hashed each URL to a 64-bit fingerprint [32, 8]. Finger-
printing is a probabilistic technique; there is a small chance that
two URLs have the same fingerprint. We made sure there were
no such unintentional collisions by sorting the original URL logs
and counting the number of unique URLs. We then compared this

3Given that on average about 30% of the links on a page are du-
plicates of links on the same page, one might be tempted to elim-
inate these duplicates during link extraction. However, doing so
is costly and has little benefit. In order to eliminate all duplicates,
we have to either collect and then sort all the links on a page, or
build a hash table of all the links on a page and read it out again.
Given that some pages contain tens of thousands of links, such a
scheme would most likely require some form of dynamic memory
management. Alternatively, we could eliminate most duplicates by
maintaining a fixed-sized cache of URLs that are popular on that
page, but such a cache would just lower the hit-rate of the global
cache while inflating the overall memory requirements.
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number to the number of unique fingerprints, which we determined
using an in-memory hash table on a very-large-memory machine.
This data reduction step left us with four condensed host splitter
logs (one per crawling machine), ranging from 51 GB to 57 GB in
size and containing between 6.4 and 7.1 billion URLs.

In order to explore the effectiveness of caching with respect to
inter-process communication in a distributed crawler, we also ex-
tracted a sub-trace of the Host Splitter logs that contained only
those URLs that were sent to peer crawlers. These logs contained
4.92 billion URLs, or about 19.5% of all URLs. We condensed the
sub-trace logs in the same fashion. We then used the condensed
logs for our simulations.

5. SIMULATION RESULTS
We studied the effects of caching with respect to two streams of

URLs:

1. A trace of all URLs extracted from the pages assigned to a
particular machine. We refer to this as the full trace.

2. A trace of all URLs extracted from the pages assigned to
a particular machine that were sent to one of the other ma-
chines for processing. We refer to this trace as the cross sub-
trace, since it is a subset of the full trace.

The reason for exploring both these choices is that, depending
on other architectural decisions, it might make sense to cache only
the URLs to be sent to other machines or to use a separate cache
just for this purpose.

We fed each trace into implementations of each of the caching
algorithms described above, configured with a wide range of cache
sizes. We performed about 1,800 such experiments. We first de-
scribe the algorithm implementations, and then present our simula-
tion results.

5.1 Algorithm implementations
The implementation of each algorithm is straightforward. We

use a hash table to find each item in the cache. We also keep a
separate data structure of the cache items, so that we can choose
one for eviction. For RANDOM, this data structure is simply a
list. For CLOCK, it is a list and a clock handle, and the items also
contain “mark” bits. For LRU, it is a heap, organized by last access
time. STATIC needs no extra data structure, since it never evicts
items. MIN is more complicated since for each item in the cache,
MIN needs to know when the next request for that item will be. We
therefore describe MIN in more detail.

Let A be the trace or sequence of requests, that is, At is the item
requested at time t. We create a second sequence Nt containing the
time when At next appears in A. If there is no further request for
At after time t, we set Nt =1. Formally,

Nt =

�
minfs j s > t ^As = Atg; if 9s > t s.t. As = At

1; otherwise.

To generate the sequence Nt, we read the trace A backwards,
that is, from tmax down to 0, and use a hash table with key At and
value t. For each item At, we probe the hash table. If it is not
found, we set Nt =1 and store (At; t) in the table. If it is found,
we retrieve (At; t

0), set Nt = t0, and replace (At; t
0) by (At; t) in

the hash table.
Given Nt, implementing MIN is easy: we read At and Nt in

parallel, and hence for each item requested, we know when it will
be requested next. We tag each item in the cache with the time
when it will be requested next, and if necessary, evict the item with

the highest value for its next request, using a heap to identify it
quickly.

5.2 Results
We present the results for only one crawling host. The results for

the other three hosts are quasi-identical. Figure 2 shows the miss
rate over the entire trace (that is, the percentage of misses out of
all requests to the cache) as a function of the size of the cache. We
look at cache sizes from k = 20 to k = 225. In Figure 3 we present
the same data relative to the miss-rate of MIN, the optimum off-line
algorithm. The same simulations for the cross-trace are depicted in
Figures 4 and 5.

For both traces, LRU and CLOCK perform almost identically
and only slightly worse than the ideal MIN, except in the criti-
cal region discussed below. RANDOM is only slightly inferior to
CLOCK and LRU, while STATIC is generally much worse. There-
fore, we conclude that there is considerable locality of reference in
the trace, as explained in Section 3.6.

For very large caches, STATIC appears to do better than MIN.
However, this is just an artifact of our accounting scheme: we only
charge for misses and STATIC is not charged for the initial loading
of the cache. If STATIC were instead charged k misses for the
initial loading of its cache, then its miss rate would be of course
worse than MIN’s.

STATIC does relatively better for the cross trace than for the full
trace. We believe this difference is due to the following fact: in the
cross trace, we only see references from a page on one host to a
page on a different host. Such references usually are short, that is,
they do not go deep into a site and often they just refer to the home
page. Therefore, the intersection between the most popular URLs
and the cross-trace tends to be larger.

The most interesting fact is that as the cache grows, the miss rate
for all of the efficient algorithms is roughly constant at 70% until
the region from k = 214 to k = 218, which we call the critical
region. Above k = 218, the miss rate drops abruptly to 20% after
which we see only a slight improvement.

We conjecture that this critical region is due to the following
phenomenon. Assume that each crawler thread h produces URLs
as follows:

� With probability �, it produces URLs from a global set G,
which is common to all threads.

� With probability �, it produces URLs from a local setL. This
set is specific to a particular page p on a particular host h on
which the thread is currently working and is further divided
into L0(p), the union of a small set of very popular URLs
on the host h (e.g. home page, copyright notice, etc.) and a
larger set of URLs already encountered4 on the page p, and
L00(h), a larger set of less popular URLs on the host h.

� With probability 
 = 1 � � � �, it produces URLs chosen
at random over the entire set of URLs.

We know that � is small because STATIC does not perform well.
We also know that 
 is about 20% for the full trace because the
miss rate does not decrease substantially after the critical region.
Therefore, � is large and the key factor is the interplay between
L0 and L00. We conjecture that for small caches, all or most of L0

plus maybe the most popular fraction of G is in the cache. These
URLs account for 15-30% of the hits. If L00 is substantially larger
than L0, say ten times larger, increasing the cache has little benefit
4We are grateful to Torsten Suel for observing that L0 is dominated
by intra-page duplicate links [36].
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Figure 2: Miss rate as a function of cache size for the full trace Figure 3: Relative miss rate (MIN = 1) as a function of cache
size for the full trace
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Figure 4: Miss rate as a function of cache size for the cross sub-
trace

Figure 5: Relative miss rate (MIN = 1) as a function of cache
size for the cross sub-trace

until a substantial portion of L00 fits in the cache. Then the increase
will be linear until all of L00 is contained in the cache. After L fits
entirely in the cache, we have essentially exhausted the benefits of
caching, and increasing the cache size further is fruitless.

To test this hypothesis further, we performed two additional short
crawls: a half-day crawl using 100 threads per process and a two-
day crawl using 20 threads per process. Each crawl collected URL
traces from the Host Splitter of 53–75 million URLs, which we
condensed in the same manner as described earlier. We also iso-
lated the first 70 million URLs of the full crawl’s trace, which used
500 threads. Figures 6 and 7 compare the effectiveness of applying
CLOCK with various cache sizes to these three traces. As expected,
the critical region starts further to the left as the number of threads
decreases, because with fewer threads L0 is smaller and we start
having a substantial portion of L00 in the cache earlier.

This trend is seen even more clearly in Figures 8 and 9 where we
depict the miss rate as a function of the cache size divided by the
number of threads. In this case, the curves corresponding to various

number of threads almost coincide. Thus, for practical purposes the
controlling variable is the allocated cache size per thread.

Finally, we investigated how the miss rate varies over time. We
used a cache size 218, well past the critical region. As can be seen
in Figures 10 and 11, the differences are small and the miss rate
stabilizes about 1-2 billion URLs into the full trace. There is a
slight increase towards the end in the full trace, probably due to
the fact that by then the crawl is deep into various sites and most
URLs have not been seen before. (The infinite cache also suffers
an increase in miss rate.)
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Figure 6: Miss rate as a function of cache size for the full trace
for various numbers of threads (using CLOCK)

Figure 7: Miss rate as a function of cache size for the cross sub-
trace for various numbers of threads (using CLOCK)

0 100 200 300 400 500
Cache size / Number of threads

0

20

40

60

80

100

A
bs

ol
ut

e 
m

is
s 

ra
te

 (
pe

rc
en

t)

CLOCK-20 threads
CLOCK-100 threads
CLOCK-500 threads

0 20 40 60 80 100
Cache size / Number of threads

0

20

40

60

80

100

A
bs

ol
ut

e 
m

is
s 

ra
te

 (
pe

rc
en

t)

CLOCK-20 threads
CLOCK-100 threads
CLOCK-500 threads

Figure 8: Miss rate as a function of cache size per thread for
the full trace

Figure 9: Miss rate as a function of cache size per thread for
the cross sub-trace
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Figure 10: Miss rate as a function of time for the full trace
(Cache size = 218)

Figure 11: Miss rate as a function of time for the cross sub-trace
(Cache size = 218)
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6. CACHE IMPLEMENTATIONS
In this section, we discuss the practical implementation of URL

caching for web crawling.
To represent the cache, we need a dictionary, that is, a data struc-

ture that efficiently supports the basic operations insert, delete and
search. In addition, for efficiency reasons, we would like to support
the caching algorithms discussed above at minimal extra memory
cost5. In our case, the dictionary keys are URL fingerprints, typi-
cally 8-9 bytes long. Let l be the length of this fingerprint in bits.

We present two solutions that are quite economical for both space
and time: Direct circular chaining and Scatter tables with circular
lists. The latter is slightly more complicated but needs only l + 1
bits per entry to implement the cache and RANDOM together, and
l + 2 bits to implement the cache and CLOCK together.

For both structures, we use Lampson’s abbreviated keys tech-
nique (see [25, p. 518]). The idea is to have a hash function h(K)
and another function q(K) such that given h(K) and q(K), the
key K can be uniquely recovered. Since in our case the keys are
URL fingerprints which are already quite well distributed we can
proceed as follows: To hash into a table of size 2r we simply take
the most significant r bits of the fingerprint as the hash function
h and take the l � r least significant bits as the function q. Thus
instead of storing l bits per URL we store l � r bits per URL. We
will use the “saved” r bits for links among the keys that hash to the
same location.

URL

URL

URL

URL

URL

URL URL

URL

Figure 12: Hashing with direct chaining

To describe our structures it is useful to recall hashing with direct
chaining. (See e.g. [19, section 3.3.10] and references therein). In
this method, keys are hashed into a table. The keys are not stored
in the table but each table entry contains a pointer to a linked list
of all keys that hash to the same entry in the table as illustrated in
Figure 12.

Direct circular chaining (Figure 13) is derived from direct chain-
ing as follows: We store all the lists in one array of size k = 2r , so
instead of storing pointers we just store indices in the array, requir-
ing r bits each. This array will be the array of cache entries, and
RANDOM and CLOCK will be implemented on this array.

Observe that the size of the hash table can be smaller than k, say
2r�x, although in this case the average length of the chains is 2x.
Using Lampson’s scheme, for each entry in the array we will have
to store l�(r�x) bits to identify the key and r bits for the pointer,
that is, a total of l+ x bits.
5The issue is not so much the extra space, but the fact that a smaller
table offers faster access because a larger portion of the table fits in-
side a higher level of the memory hierarchy mentioned in Section 3.
Caching URLs can not ignore memory caching!

Figure 13: Hashing with direct circular chaining

But to implement RANDOM and CLOCK we need to be able
to delete an arbitrary entry in the table, without knowing to which
chain it belongs. To make this possible we add an extra bit per entry
which indicates the last entry in the chain, and furthermore, the last
entry points back to the hash table. Hence, to delete an entry we
follow the chain until we get back to the hash table header and then
follow the chain until we reach the entry again, but now we know
its predecessor in the list and we can delete it.

The total storage needed (in bits) becomes

2r�x � r + 2r � (l+ x+ 1):

For CLOCK, we need an extra bit for the clock mark bits. For
example, for a cache of size 216 , using a hash table with 214 entries
(x = 2), we need a total of l+7 bits per cached URL to implement
RANDOM and l + 8 bits per URL to implement CLOCK. (We
compute these numbers by dividing the total storage cost by the
size of the cache.) The average chain length, which determines
search and insertion time, is only 4.

Figure 14: Scatter table with circular lists

A scatter table with circular lists improves on direct circular
chaining by discarding the hash table entirely and hashing directly
into the array that stores the keys. This data structure is the object
of exercise 6.4.13 (rated 24) in Knuth’s “Art of Computer Program-
ming,” Volume III [25], and we illustrate it in Figure 14.

The last element is now linked to the first element in each chain
and it is more convenient for the extra bit to indicate the first el-
ement in the chain, rather than the last. Deletions are exactly as
before, but insertions are more complicated: To insert an element
in an empty chain starting at some location j, we first need to move
the element that currently occupies location j to a free location. In
the caching scenario, this is the location of the URL that has just
been evicted from the cache. Although slightly more complicated,
this method requires only l + 1 bits per cache entry to implement
RANDOM and l + 2 to implement CLOCK.
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7. CONCLUSIONS AND FUTURE DIREC-
TIONS

After running about 1,800 simulations over a trace containing
26.86 billion URLs, our main conclusion is that URL caching is
very effective – in our setup, a cache of roughly 50,000 entries
can achieve a hit rate of almost 80%. Interestingly, this size is a
critical point, that is, a substantially smaller cache is ineffectual
while a substantially larger cache brings little additional benefit.
For practical purposes our investigation is complete: In view of our
discussion in Section 5.2, we recommend a cache size of between
100 to 500 entries per crawling thread. All caching strategies per-
form roughly the same; we recommend using either CLOCK or
RANDOM, implemented using a scatter table with circular chains.
Thus, for 500 crawling threads, this cache will be about 2MB –
completely insignificant compared to other data structures needed
in a crawler. If the intent is only to reduce cross machine traffic in a
distributed crawler, then a slightly smaller cache could be used. In
either case, the goal should be to have a miss rate lower than 20%.

However, there are some open questions, worthy of further re-
search. The first open problem is to what extent the crawl order
strategy (graph traversal method) affects the caching performance.
Various strategies have been proposed [14], but there are indica-
tions [30] that after a short period from the beginning of the crawl
the general strategy does not matter much. Hence, we believe that
caching performance will be very similar for any alternative crawl-
ing strategy. We can try to implement other strategies ourselves, but
ideally we would use independent crawls. Unfortunately, crawling
on web scale is not a simple endeavor, and it is unlikely that we can
obtain crawl logs from commercial search engines.

In view of the observed fact that the size of the cache needed
to achieve top performance depends on the number of threads, the
second question is whether having a per-thread cache makes sense.
In general, but not always, a global cache performs better than a
collection of separate caches, because common items need to be
stored only once. However, this assertion needs to be verified in
the URL caching context.

The third open question concerns the explanation we propose in
Section 5 regarding the scope of the links encountered on a given
host. If our model is correct then it has certain implications regard-
ing the appropriate model for the web graph, a topic of consider-
able interest among a wide variety of scientists: mathematicians,
physicists, and computer scientists. We hope that our paper will
stimulate research to estimate the cache performance under various
models. Models where caching performs well due to correlation of
links on a given host are probably closer to reality. We are making
our URL traces available for this research by donating them to the
Internet Archive.
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