
Computer Networks and ISDN Systems 28 (1996) 1037-1052

COMPUTER
NETWORKS
and
ISDN SYSTEMS

Distributed active objects

Marc H. Brown l, Marc A. Najork *
DEC Systems Research Center, 130 Lytton Ave., Palo Alto, CA 94301, USA

Abstract

Many Web browsers now offer some form of active objects, written in a variety of languages, and the number and types
of active objects are growing daily in interesting and innovative ways. This paper describes our work on Oblets, active
objects that are distributed over multiple machines. Oblets are written in Obliq, an object-oriented scripting language for
distributed computation. The high-level support provided by Oblets makes it easy to write collaborative and distributed
applications.

Keywords: Active objects; Mobile code; Distributed computation; Groupware; CSCW; Java; Browsers

1. O v e r v i e w

One of the most exciting recent developments in
Web-browser technology is active objects, where the
browser downloads a program, executes it, and dis-
plays the program's user interface in a Web page.
Sun's HotJava browser with Java applets pioneered
active objects, showing Web pages with a wide
range of content, from bouncing balls to spreadsheets
to simulated science experiments. Most browsers
now offer some form of active objects, written in a
variety of languages.

This paper describes distributed active objects,
that is, active objects that can communicate with
other active objects located on different machines
across the Internet. High-level support for distributed
computation makes it easy to write groupware, corn-

* Corresponding author. Email: najork@pa.dec.com,
http://www.research.digital.com/people/najork

i Email: mhb@pa.dec.com, http://www.research.digital.com/
people/mhb

puter-supported cooperative work (CSCW) applica-
tions, and multi-player games as active objects.

Our environment for writing distributed active
objects is based on Obliq [9], an objected-oriented
scripting language that was specifically designed for
constructing distributed applications in a heteroge-
neous environment. We call active objects written in
Obliq Oblets (Obliq applets). We have also built a
family of Web browsers (DeckScape [6], WebCard
[7], and WebScape) capable of running Oblets.

Obliq supports distributed computation by imple-
menting all objects as network objects [4]. The meth-
ods of a network object can be invoked by other
processes, in addition to the process that created the
object. The initial connection between two processes
occurs when one process registers an object with a
name server under a unique name, and another pro-
cess subsequently imports the object from that name
server. Once the connection is established, network
objects can be passed to other processes just as
simply as passing any other type of data.

For network objects, method calls and field ac-
cesses have the same syntax regardless of where the

0169-7552/96/$15.00 © 1996 Published by Elsevier Science B.V. All rights reserved
PII S0169-7552(96)00033-5

1038 M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052

object resides. It might reside in the same address
space as the caller, or in a different address space
either on the caller's machine or on some other
(possibly different type of) machine. Thus, from a
programmer's perspective, there is no difference be-
tween local and remote objects. As a result, network
objects provide a uniform way for communication
among Oblets, regardless of whether the Oblets are
on the same Web page or on different Web pages
displayed by different browsers on different ma-
chines. Moreover, network objects communicate di-
rectly, without server intervention. Thus, Oblets do
not impose any load on an H T r P server, nor does a
heavily-loaded server affect their performance.

The rest of this paper consists of four sections
with increasingly complex examples, followed by a
review of related work. The next section introduces
fundamental concepts by showing a simple, non-dis-
tributed Oblet for adding two numbers. Section 3
shows the basics of distribution by developing a
two-person game of tic-tac-toe. Section 4 shows a
prototypical CSCW application - - a chat room. The
chat room allows an arbitrary number participants.
The final example, Section 5, shows how to coordi-
nate several different Oblets by developing a multi-
view animation of an algorithm.

2. A simple Oblet

An Oblet is an Obliq program that defines a
variable named oblet. This variable must contain
an Obliq object with at least two fields: v b t and
run . The v b t field is bound to a widget that will be
installed on the screen when the page containing the
Oblet is loaded. The r u n field is bound to a method
that is invoked just after the v b t field is evaluated.

Oblets are placed into HTML documents via i n -
s e r t , an HTML tag proposed by the World Wide
Web Consortium (W3C) for inserting multimedia
objects into HTML3 pages [ll]. The markup for
putting the Oblet at URL f o o . o b l into a document
is:

<insert code =" foo. obl" type =

"applica tion/x- oblet "> </insert>

The insert tag also supports a variety of standard
attributes, such as suggested dimensions, border size,

._Back] Forward Hom....e..j Relo_._. ,,,~ad] O~p.e~ ~ t o ~
Loc.tion: ~ ~ : p

A Simple Oblet ,,,

A Simple Oblet
Below is an Oblet for adding two numbers.

. ~] . _ _ r] , ~] ÷ =..] ~] . .~. i= ~2

Fig. 1. A simple Oblet for adding two numbers.

and alignment. If suggested dimensions are not spec-
ified, the preferred dimensions of the widget con-
tained in the Oblet's v b t field are used.

The following screen dump (Fig. 1) shows a
simple Oblet for adding two numbers:

The user interface for that Oblet, defined by a
FormsVBT s-expression [1], is stored in the file
adder, fv:

(Rim (Pen 20)

(HBox

(Numeric %numl)

(Text "+")

(Numeric %hum2)

(Text "=")

(Text %sum "0"))

A user interface in FormsVBT is a hierarchical
arrangement of components. These include passive
visual elements (e.g., Tex t) , basic interactors (e.g.,
Numer ic) , modifiers that add interactive behavior
to other components (e.g., B u t t o n) , and layout
operators that organize other components geometri-
cally (e.g., HBox). Components can be further cate-
gorized as a split, filter, or leaf, based on the number
of child components they support. A split can have
any number of children (e.g., HBOX), a filter has
exactly one child (e.g., B o r d e r) , and a leaf has no
children (e.g., Tex t) .

A component in FormsVBT can be given a name
so that its attributes can be queried and modified at
runtime. Names are also used for attaching callback
procedures to interactors. In this Oblet, the two
Numeric interactors are named numl and hum2,
and the T e x t component where the sum will be
displayed is named sum.

M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052 1039

(a)

BackJ Forway~! Home] Reloadj.Open.., ' S t o p ' ~

Location: i http:f/src-www,pa.dec.com:80/-najo~HStsp-ttt/ t
Single-Site Tic-Tac-Toe

Single-Site Tic-Tac-Toe
Below is an Oblet for playing Tic-Tac-Toe. It is meant to be
played by two plwyers sitting in front of the same computer mad
taking ttn'm with the mouse.

X is next

RESET I

(b)

Single-Site Tic-Tac-Toe

Single-Site Tic-Tac-Toe
Below is an Oblet for playing Tic-Tac-Toe. It is meant to be
played by two players sitting in front of the same computer and
taking turns with the mouse,

o is next

RESET

(c)

Location: t ~ t ~ , t s r c ~ p ~ t a e ~ e o m ~ ' - n ~ ~ p - ~ I

Single-Site Tic-Tac-Toe
Below is ~ Oblet for playing Tk~-Tee-Toe. l~ ts memt to be
played ~ t,~,~ playen s a t ~ in ~oot of tt~ u ~ ~ p ~ e T

X t tne~

xl i

RES~':T I

Fig. 2. First three moves in the Single-Site Game.

1040 M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052

The source for this Oblet is as follows:

let doAdd =

proc (fv)

let nl = form_getInt (fv, "numl");

let n2 = form_getInt (fv, "num2");

form putText (fv, "sum", fmt_int (nl+n2))

end;

let oblet = [

vbt => form_fromURL (BaseURL &

"adder.fv"),

run =>

meth (self)

form_attach (self.vbt, "numl",

doAdd);

form_attach (self.vbt, "num2",

doAdd);

end
];

This Obliq program defines two variables: doAdd
and oblet. Variable doAdd is a procedure that
retrieves the values of both numeric interactors, and
stores their sum in the component named sum.

Variable o b l e t is an object with two fields, v b t
and r u n . The v b t field is bound to a form, a
widget that displays a FormsVBT s-expression. The
procedure form_fromURL takes a URL as an argu-
ment and returns a form whose description is stored
at this URL. The global variable B a s e O R L is the
Oble t ' s absolute URL up through the last slash. The
r u n method in this Oblet just attaches the callback
procedure d o A d d to the two numeric interactors.

This procedure will be invoked whenever the user
clicks on the plus or minus buttons of either interac-
tor, or types a number into the editing field between
the buttons. The form in which the event occurred is
passed as an argument to the callback procedure.
Recall that when the Web page containing this Oblet
is loaded, the v b t field will be evaluated and the
result displayed on the page, the r u n method will be
invoked, and finally the page will become visible.

3. A distributed game Oblet

This section describes an Oblet for playing tic-
tac-toe. W e ' l l first develop a single-site game; then,
we ' l l show how to extend this game to two sites. The
following screen dumps (Fig. 2) show the first three
moves in the single-site game:

The FormsVBT description for this Oblet contains
a message line that indicates whose turn it is, a game
grid consisting of nine squares, and a " R E S E T "
button at the bottom that is used to clear the squares.
The message line is a T e x t component named
status. Each square of the game grid consists of a
B u t t o n and a T e x t component. The B u t t o n
components are named b t n l b t n 9 , and the
T e x t components are named l a b l , l a b 9 . The
" R E S E T " button is named r e s e t . Finally, the
form's top-level component has the name b o a r d .

The code for the Oblet is as follows:

let otherPlayer =

proc (p)

if p is "X" then "O" else "X" end

end;

let oblet={

vbt => form fromURL (BaseURL & "tic-tac-toe.fv"),

a => ok,

reset =>

meth (self)

for i=l to 9 do

form_putText (self.vbt, "lab" & fmt_int(i), "");

end;
end,

move ->

meth (self, label, player)

form_putText (self.vbt, label, player);

form_putText (self.vbt, "status", otherPlayer(player) & " is next");

end,

nextTurn =>

meth (self)

M.H. Brown, M,A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-10-52 1041

self.c := otherPlayer(self.c);

end,

run =>

meth (self)

self.c := "X";

let doReset=

proc(fv)

self.reset ();

end7

let doPress =

proc (m)

let label="lab" & fmt_int(m);

if form getText (self.vbt, label) is "" then

self.move (label, self.c);

self.nextTurn ();

end;

end;

form_attach (self.vbt, "reset", doReset);

for i=l to 9 do

let p=proc(fv) doPress(i) end;

form attach (self.vbt, "btn"& fmt int(i), p)

end;

end

(a)

Location: t http://src-www.pt~dec.com:80/- najork/WWWS/mp-ttV {

Distributed Version of Tic-Tac-Toe

A Distributed Version of
Tic-Tac-Toe
Below is an Oblet for playing Tic-Tac-Toe, It is memat to be
played by two players, using two different computers.

X ts next

@

(b)

File-- { Degks- I !

A Distributed Version
of Tic-Tac-Toe
Below is an Oblet for pl~,yir~ Tic-Tac-Toe. It
is meant to be played by two playe~, uatng two
different computers,

X is next

RESET I

Sy

Center,

Fig. 3. Distributed Tic-Tac-Toe.

1042 M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052

This Oblet, in addition to the required v b t field
and r u n method, also has a field c, and methods
r e s e t , move , and n e x t T u r n . The field c will be
a string indicating the player about to move, either
" X " or " O " . The r e s e t method clears the label
displayed in each square of the game grid. The move
method stores the string p l a y e r into the T e x t
component whose name is l a b e l , and also updates
the message line to indicate whose turn is next. The
n e x t T u r n method changes whose turn it is, that is,
it changes the value of the field c. The last two
methods use the procedure o t h e r P l a y e r , which
takes one player's symbol and returns his opponent 's
symbol.

The body of the r u n method initializes field c,
and then attaches callback procedures to the various
interactors on the board. Procedure d o R e s e t is
attached to the " R E S E T " button; it will invoke the
r e s e t method of the object o b l e t . A procedure p
is attached to each of the nine buttons,
b t n l b t n 9 . This procedure effectively cap-
tures the value of i , the index of each square on the
game grid. When p is invoked (in response to a user
cl icking in a square), it calls procedure

d o P r e s s (i) , which checks that the square is
empty, and if so, invokes the Oblet 's move and
n e x t T u r n methods.

We now convert the single-site version of tic-tac-
toe into a two-site, distributed version. Fig. 3 shows
a snapshot of a two-site game in progress. The left
image shows the browser (WebScape) used by player
" O " , the right image shows the browser (De-
ckScape) used by player " X " . The message line
indicates that player " X " is next, and the Oblet of
player " O " is greyed out, indicating that is is non-
responsive for the time being.

The changes to the Oblet code are remarkably
simple. First, we extend the o b l e t to include an
extra field, opp , which is the o b l e t of the oppo-
nent. Second, we use the field c in a slightly differ-
ent way: in the single-site version, c was a string
that indicated whose turn it was, it changed after
each turn. In the two-site version, it is also a string,
but never changes. Rather it is initialized to the
player in whose browser the Oblet is run. Finally,
there are changes to the n e x t T u r n and r u n meth-
ods. Here is the entire Oblet, with unchanged parts
elided:

let otherPlayer = ...;

let oblet = [

vbt => ...

c => ok,

opp => ok,

reset => ...

move => ...

nextTurn =>

meth (self)

if form getReactivity(self.vbt, "board") is "active" then

form_putReactivity(self.vbt, "board", "dormant");

else

form_putReactivity(self.vbt, "board", "active");

end;

end,

run =>

meth (self)

try

self.opp: = net_import ("TicTacToe", "ash.pa.dec.com");

self.opp, opp: = self;

self.c: = "X";

except net_failure =>

net_export ("TicTacToe", "ash.pa.dec.com", self);

form_putReactivity (self.vbt, "board", "dormant");

self.c: = "0";

end;

let doReset =

M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052 1043

proc (fv)

self. reset () ;

self.opp, reset ();

end ;

let doPress =

proc (m)

let label = "lab" & fmt_int(m) ;

if form_getText (self.vbt, label) is "" then

self.move (label, self.c);

self.opp, move (label, self.c);

self. nextTurn () ;

self.opp, nextTurn ();

end;

end ;

form_attach (self.vbt, "reset ", doReset);

for i =i to 9 do

let p=proc (fv) doPress (i) end;

form_attach (self.vbt, "btn" & fmt_int(i), p)

end;

end
];

We start a game by visiting the tic-tac-toe Web page,
which causes the tic-tac-toe Oblet to be loaded and
its run method to be invoked. The first part of the
r u n method attempts to import an object called
TieTacToe from the name server at machine
a s h . p a . d e c . com. This call succeeds if there al-
ready is a player waiting for a game to begin. In this
case, the opponent 's o b l e t is stored in our o p p
field, our o b l e t is stored in our opponent 's o p p
field, and we choose " X " to be our symbol. If the
attempt to import TicTacToe fails, then we export
o u r o b l e t to the n a m e s e r v e r at
a s h . p a . d e e . com, make our game board dormant
(i.e., grayed-out and unresponsive to mouse activity),
and choose " O " as our symbol. For the sake of
simplicity, we ignore the race condition of more than
one player executing this code simultaneously.

The change to the d o R e s e t callback is simple:
we invoke the r e s e t method not only on our
o b l e t , but also on our opponent 's o b l e t . The
change to the d o P r e s s callback is similar: rather
than invoking move and nextTurn only on our
o b l e t , we also invoke these methods on our oppo-
nent 's o b l e t . The rest of the r u n method is un-
changed: callbacks are attached to the interactors.

The final change in the Oblet is to the nextTurn
method. In the single-site version, we changed the
value of field c from " X " to " O " and vice versa.
Here, we change the reactivity of the game board,
from active to dormant and vice versa. Therefore,

each player can press a button only when it is his
turn to move.

It is worth emphasizing that s e l f . o p p denotes
an object that resides on the opponent 's machine.
This implies that the assignment to s e l f . o p p .
opp and the execution of the s e l f . o p p . r e s e t ,
self.opp, move, and self.opp, nextTurn

method calls take place on this other machine.

4. A distributed chat room Oblet

Oblets are flexible enough to allow distributed
computations to have arbitrary topologies. In the
tic-tac-toe example, we had two o b l e t objects per-
forming peer-to-peer communication with each other.
In this example, we use a star topology to implement
a multi-person chat room. At the center of the star,
we have a conference manager object; at the periph-
ery are the Oblets belonging to the participants.
When a user types into his chat room Oblet, it
informs the conference manager of the new text,
which then relays the update to all the participating
Oblets; in other words, Oblets do not communicate
with other Oblets directly. Our chat room also pro-
vides a mechanism for floor control.

The following three images (Fig. 4) show the chat
room Oblet running in different browsers (Web-
Scape, WebCard, and DeckScape, from left to right).
Each browser is running on a different machine. The

1044 M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052

(a)

Loca t ion : ~htt p J/s r c ~ ,p a de c,co rn/-n ~ o ' - - - --- ' - - ' - rkNWWV~chat r oo rd [

ChaIRoom

A Chat Room Oblet
The Oblet below implements a "chat too m". a text editing window that
is ~ among m ssbitr~T number o[users on diffe~n~ m~chine~,
~ype your name into the type-in field at the bottom of the Oblet,
Preying the "Grab floor" button gives you exclusive control over the
mare editir~ window, The statt~ line at the top irdicatea who ctm~nt ly
h ~ eorgrol oxer the editing window.

I h e floor is with Moe

Ye~. Hoe , . .

Yes~ I'~ here,

L i ~ t(~at I here to se~:

Your Name: i°~ . Grab FloorJ

(b)

ll~J.0 ru~Ata~ ~1: J~.~ c0¢~fet'lff¢~ at. ~ ~.gt'ag~hle~.oPe¢lgl
68 II/Io/o:rustan Re: Ja~a C~Fererce at Sur co~.ir#o~t, e m s . a ~
g~ 11/lo 9nelso~ Re: J~a Co~er~ce ~¢¢ Sur *co~o.l~9.O~

~.L/10 To:~elson Re; Java Cord:erence ~t ~ tco~p.l~9o~odula~
1L,'1~ ~hb ob le t ,~ .h t rd<< ls o~t, (~o~p.lal~:j.vig~,~l

7"2 1~J,5 To:naJc~k <4,P(I: I i~ade a cov@lo of ~cclm.c~.ws-~indc~s.p~

Chat F

A Chat Room Oblet
The Oblet below Imp leme l~ s."chat lx)cm", ~, text editing window that
is ~ ~ ~r~ ~'bi~rssy t~mher of users on diE.rent m~chiw~,
T ~ e y~ur name into the type-ln field at the bottom of the Oblet.
Pressing the '!Grab flo¢¢" butt~l g]~,~s youexcl~lve ~ I crier the
n'~ain editing w l ~ . The atau~ line a t the top indicates who currently
h ~ control o ~ r the editing ~ o w ,

The f loor is'with Moo

kart'~, C..¢I~, ape Bou Lh~Pe?

Y~, }lee .o.

Your Name: II.~'-~'~ Grab Floori

(c)

the Oblet belo'~r |raplemet2ts ~, "chat room", a text editing wJr,z~w
that iz ~ ~X~a't g an ~a'b~tr ssy rcxmber of u s e s on different
m~htr'as, Type your name tmo the type-in field at the bottom of
the Oblet, Preying the "Grab floor" button gives you exclusive
:o~rot over the main editing window. The status l ice at the top
[~leates who cugre~ly h ~ control over the edit:ing "~indow.

The f loor is wi th Moe

Lzn-r~, f, url~, we tjou thee?

Yen, g<~ ...

Yes, I'~ here.

Liet, e~ ~ I ~ to z~y:

Your Name: I ~ Grab Floor~

Fig. 4. Chat room running in different browsers.

M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052 1045

participants in the chat room are Moe, Larry, and
Curly. Currently the floor is with Moe, as indicated
by the status line over the editing region and by the
color of the editing area in Moe's browser.

Here is the FormsVBT s-expression for the chat
room Oblet:

(Rim (Pen I0)

(VBox

(Text %floorWith "The floor is free right

now")

(Glue i0)

(Shape (Width 300) (Height 200)

(Frame Lowered

(Filter Passive

(TextEdit (BgColor "white")

%mainEditor))))

(Glue i0)

(HBox

(Text "Your Name:")

(Frame Lowered (TypeIn (BgColor

"White") %myName))

Fill

(Button %grab

Floor "Grab Floor"))))

The floorWith component is the message line
above the large editing region; it will contain a
message indicating who owns the floor. The
m a i n E d i t o r is the large (300 × 200) editing re-
gion. The F i l t e r component surrounding the re-
gion is used to set the reactivity of the region; in the
passive state, the region is unresponsive to mouse
and keyboard activity, but it is not grayed-out, as it
would be in the dormant state. The type-in field
where each participant identifies himself is named
myName. Finally, the "Grab Floor" button has been
given the name g r a b F l o o r .

As we shall see, callback procedures will be
attached to the "Grab Floor" button and to the large
editing region. When the user clicks on the "Grab
Floor" button, the message line on all participating
Oblets will indicate who owns the floor (using the
content of the type-in field of the Oblet now owning
the floor), the editing region on all Oblets (other than
the one owning the floor) will become passive, and
the editing region in the Oblet owning the floor will
become active and its color will change to pink.
When the user who owns the floor types a keystroke
into the editing region, all of the participating Oblets
will be notified of the updated text.

Recall that Oblets do not communicate with other
Oblets directly. Rather, they use a conference control
object to report the changes, and this object then
relays the changes to the other Oblets. Here is the
definition of the conference control object:

let ProtoConfControl = {

oblets => [],

onFloor => ok,

contents => "",

register =>

meth (self, oblet)

self.oblets: = self.oblets @ [ob-

let];

oblet.updateText (self.con-

tents);

if self.onFloor isnot ok then

oblet.transferFloor

(self.onFloor);

end;

end,

transferFloor =>

meth (self, name)

self.onFloor: = name;

foreach o in self.oblets do

o.transferFloor (name);

end;

end,

updateText =>

meth (self, contents)

self.contents: = contents;

foreach o in self.oblets do

o.updateText (contents);

end;

end
];

The oblets data field is an array of the Oblets that
have registered themselves with the conference con-
trol object. Each element of this array is an o b l e t
that typically resides on a different machine. The
o n F l o o r data field is the name of the user who
currently has the floor, and the c o n t e n t s data field
contains the current contents of the editing area.
These two fields are needed in order to initialize the
display of a new participant entering the chat room.

The r e g i s t e r method will be called by a new
Oblet o b l e t when it is initialized, as part of its r u n
method. The new Oblet is appended to the o b l e t s
array, and then it is notified both of the current
contents of the editing area and of the owner of the
floor, if there is one.

The t r a n s f e r F l o o r method will be called by

1046 M.H. Brown, M.A. Najork/ Computer Networks and ISDN Systems 28 (1996) 1037-1052

an Oblet when the user clicks on the "Grab Floor"
button. This method stores in o n F l o o r the name of
the user that now owns the floor, and then iterates
through all of the Oblets in the conference, invoking
the t r a n s f e r F l o o r method on each Oblet to
inform it of the new floor owner.

Finally, the u p d a t e T e x t method will be called
on each keystroke by the Oblet that owns the floor,
passing in the current contents of the editing area.

(Passing just the keystroke is not sufficient, since a
single character could result in various editing ac-
tions, depending on the key bindings used by the
Oblet.) The u p d a t e T e x t method stores in con-
t e n t s the new contents of the editing region and
then updates all of the Oblets in the chat room by
invoking the u p d a t e T e x t method on each one.

We are now ready to examine the code for the
Oblet:

let oblet = [

vbt => form fromURL (BaseURL & "chatroom.fv"),

transferFloor =>

meth (self, name)

form_putReactivity (self.vbt, "mainEditor", "passive");

form_putBgColor (self.vbt, "mainEditor", color_named("white"));

form_putText (self.vbt, "floorWith", "The floor is with" & name);

end,

updateText =>
meth (self, contents)

form_putText (self.vbt, "mainEditor", contents);

end,

run =>

meth (self)

var confControl = ok;

try

confControl: = net_import("ConfControl", "ash.pa.dec.com")

except net_failure =>

confControl: = ProtoConfControl;

net_export("ConfControl", "ash.pa.dec.com", confControl);
end;

let doGrabFloor =

proc (fv)

confControl.transferFloor (form_getText (fv, "myName"));

form_putReactivity (fv, "mainEditor", "active");

form_putBgColor (fv, "mainEditor", color_named("pink"));

end;

let doKeyEvent =

proc (fv)

confControl.updateText (form_getText (fv, "mainEditor"));

end;

confControl.register (self);

form_attach (self.vbt, "grabFloor", doGrabFloor);

form_attach (self.vbt, "mainEditor", doKeyEvent);

end
];

The Oblet defines two methods, t r a n s f e r F l o o r
and u p d a t e T e x t , as we just saw, these methods
will be invoked by the conference control object, in
response to a user in an arbitrary Oblet in the chat
room grabbing the floor or typing into the editing
region, respectively. These methods are straightfor-
ward: the transferFloor method makes the edit-

ing region passive and sets its background to be
white, and then updates the message line. The up-
d a t e T e x t message changes the contents of the
editing region.

The Oblet's run method first contacts the name
server on the machine a s h . pa . d e c . cora to obtain
a conference control object registered under the name

M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052 1047

ConfControl. If there is such an object, it is
stored in the variable confControl. Otherwise, a
new conference control object is registered with the
name server and also stored in c o n f C o n t r o l . As
in the tic-tac-toe example, we do not show the code
necessary for preventing the race condition of sev-
eral users executing the t r y - e x c e p t statement
simultaneously. After defining callback procedures
doGrabFloor and doKeyEvent, this Oblet regis-
ters itself with the conference controller, and finally
attaches the callback procedures to the "Grab Floor"
button and the editing region.

The doGrabFloor callback procedure invokes
the t r a n s f e r F l o o r method on the c o n f C o n -
t r o l object (which then calls the t r a n s f e r -
F l o o r method on all Oblets in the chat room,
including this one), and then makes its own editing
region active and colored pink. The d o K e y E v e n t
callback procedure simply invokes the u p d a t e -
T e x t method on the c o n f C o n t r o l object, passing
to it the text in the editing region.

Again, it is important to point out that invoking a
method m on the c o n f C o n t r o l object is done just
by calling c o n f C o n t r o l . In() , regardless of where
the c o n f C o n t r o l object resides. In this example,
the conference control object will be local to the
Oblet that creates it, and remote to all other Oblets,

There are many features that could be added to
the chat room in a fairly straightforward way. For
example, it would be nice to be able to prevent
another user from taking away the floor, to allow
users to leave the chat room, to create new chat
rooms, to see existing chat rooms, to handle excep-
tions that might result from network partitions, and
so on. In addition, one can easily imagine more
efficient implementations, such as reporting only
changes to the editing region rather than reporting
the region's entire contents after each keystroke.

5. Oblets for algorithm animation

Obliq's network objects provide a uniform and
elegant way for objects to communicate, regardless
of the address space they exist in and the machine
they reside on. The two previous examples showed
the obvious use for network objects: to communicate
among objects on different machines. The example

in this section uses network objects to allow Oblets
running in the same browser (on the same Web page
or on different Web pages) to communicate. This
could be achieved through simpler mechanisms; after
all, all Oblets on the same browser are in the same
address space. However, network objects minimize
the number of concepts needed by a programmer,
since they handle this case in the exact same way as
the distributed case. Moreover, network objects make
it easy to reuse Oblets in distributed settings without
any code changes.

This example uses network objects to coordinate
multiple Oblets in the domain of algorithm anima-
tion [5]. A typical algorithm animation system has a
control panel and a collection of views, each in its
own window. The control panel is used for specify-
ing data, starting the algorithm, controlling the ani-
mation speed, and so on. In order to animate an
algorithm, strategically important points of its code
are annotated with procedure calls that generate in-

teresting events. These events are reported to the
algorithm animation system, which in turn forwards
them to all interested views. Each view responds to
interesting events by updating its display appropri-
ately.

The following screen dump (Fig. 5) shows an
animation of first-fit binpacking. The control panel
and the views are implemented by separate Oblets.

We use an event manager object, similar to the
conference control object in the chat room example,
to relay interesting events from the algorithm to the
views. For each interesting event there is a corre-
sponding method both in the event manager and in
each view Oblet. When an interesting event occurs,
the algorithm Oblet invokes the corresponding
method of the event manager object, which in turn
relays the event to each view. Typically, views react
by showing some animation reflecting the changes in
the program. In order for the animation in the views
to happen simultaneously, the event manager forks a
thread for each registered view, the thread calls the
view's method corresponding to the interesting event,
and the event manager waits until all of the threads
have completed before returning to the algorithm.

For example, when the binpacking algorithm is
trying to insert a particular weight w into a bin b that
already contains a number of weights totaling up to
amt, it calls z.probe(w,b,amt). The probe

1048 M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052

Location: [http~/src-v,~v.p~.dec, corn/-najark/~M~Jb~npac.kt/]
Animation of Binpackin 9 - Integrated Version

Animation of Binpacking
This page shows an animation of the first- fit binpacking algorithm. It cont al~ three Oblets: a control panel, a trar~cript
view, and a graphics view, The Oblets communicate via Network Objects.

The Control Panel

The control panel allows the user to adjust the raunber of bim ~ the number of weights, to start the animatio~ and to
adjust its speed.

Numberofweights: -=l_- ~..J~--J

The Views
The t r ~ i p t view shows a log o f the interesting events generated by the algorithm, The "cleat" b~ton clears the log, The
graphlc~ view shows a graphical representation of the bir~ and the w~ights contained th~ei~ A new weight that ~ about to
be added appears on the left side of the view, a~d then jumps from bin to bin, probing f~r the first bin that is sufficiently
empty,

~obe (S.71dO, 5, O. S~40)
:a-she (O.?ZdO,S,O.51dO)
~obe (0.71dO, 7,0. OdO)
:~ack (O.71dO,7,O.71dO)
net~4ei~t (II,0.54~0)
~rdae (0.54d0,0;0.S6a0)

wdae (0.5440,2,0.)
w~ m.E440,3,0.8~)

Clear

Fig . 5. A n i m a t i o n o f F i r s t -F i t B i n p a c k i n g .

method of the event manager object z is imple-
mented as follows:

let z = [

views => [],

probe =>

meth (self,w,b,amt)

let threads =

foreach v in self.views map

let closure = proc()

v.probe(w,b,amt) end;

thread_fork(closure)

end;

foreach t in threads do

thread_join(t)

end;

end;

};

The screen dump above showed the Oblets for the
control panel and each view all on the same Web

page. However, there is no need for the Oblets to be

located on the same page. In fact, if we put each

Oblet on a separate page, the user can dynamically

select the set of views visible (or even have more
than one copy of any view) visible. In the following
screen dump (Fig. 6), the Web page containing the
control panel has links for pages containing the
various views. Clicking on such a link brings up a

M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052 1049

- o,~,- [

~! V j Home Deck I Merge 2'2 ,B,l,~'i ~' T

Binpacking - Main Control Page
This page connt~ns the control pro%el £or the anlmat ion of first-fit
binpackill~ It a~eo ox~t ares llnl~ tO p~es with varioL~ viex~ of
binpacting:

• Gr~h~,~ View"
Only one imt ante o f this page ~ o u l d be open at ~ given ~ime,
However, you c~ open up an erbitr ary number of view page&

' i

G O ,.,b.ro, hi,~: .:j__~ J~i
!t Binpacking-Graphics View

The gr~hlc~ vlew shows a graphical represent ation Of the
him mad the weights contained t~ereirt A new weight that
iS about tO be added appe~s on the left ~ide o[tile view,
then j~mpa £rom bin to bin, probittg [or the fir~ bin that I~
sufficiently empty.

Binpacking - Transcript View
TI~ trar~cr ipt view ~ h o ~ ~ l~g o f the l~eregting even~
get:st ated by the algorithm, The "clear" l~.~R~n clear~ the log.

l
~-d~ (.L~,IO.5.0.72dO>
pre,~ (0.3~a~,B:>.(~)

r,~,~ight (Io.¢.a'3do>

orate (0 . 8 8 4 ~ , 1 , o , ~ >

(o.~,3,o.~7ao>
prabe (a.~,.t,a.75aO)

~obe <0.4~,CO,¢,O.BgeO)

probe (0.45~),2,0 3 ~)
probe (0.4.~,dO. 3.0.$7d0)
pra~ (oA~a%4,o.~)

... cJ~r

Fig. 6. Dynamical view selection.

page for the view, which the DeckScape browser can
optionally display in a separate window.

At first blush, it would appear that this example
uses network objects merely for the coding elegance
they offer, rather than for any of their distributed
aspects. That is, in the two screen dumps above, all
of the Oblets exist in the same address space, namely
that of the browser. However, because Oblets are
network objects, we have far more flexibility. For
instance, we can use the Oblets - without any

changes - in an Electronic Classroom setting. In
such a setting, the instructor and all students run
Deckscape on their individual machine (using the
same name server). The instructor uses the control
page Oblet to drive the animation, and each student
sees a set of views portraying the workings of the

algorithm. This scenario is explored in depth else-
where [8]

6. Related work

Oblets bring together active objects and dis-
tributed computaUon.

The best known language for active objects is
Java [13]. HotJava was the first browser to support
Java applets; in the meantime support for Java ap-
plets has been integrated into Netscape Navigator.
Most major commercial browser vendors have sub-
sequently announced intended support for Java ap-
plets.

1 0 5 0 M.H. Brown, M,A. Najork / Computer Networks and 1SDN Systems 28 f1996) 1037-1052

The most serious potential competitor to Java-
based browsers is probably Microsoft's Internet Ex-
plorer, which plans to integrate support for active
objects written in Visual Basic (as well as for those
written in Java) [14]. However, the current version of
Internet Explorer does not support active objects.

In the research community, a number of browsers
have been developed that support other languages for
writing active objects. Most of these browsers are
written in interpreted languages and support active
objects written in the same language. Examples in-
clude Hush [18] and Surflt! [16], implemented in
Tcl/Tk; MMM [15], implemented in CAML/Tk;
and Grail [10] (Python).

None of the browsers and languages mentioned
above has any high-level support for distributed pro-

gramming. However, the HORB system [12] adds
the equivalent of network objects to Java. It consists
of a name server and a compiler that creates network
object classes based on Java interface specifications.
Unlike Obliq, HORB is a first-order language, mean-
ing that only data, but not computations, can be
migrated over the network. Also, HORB does not
provide distributed garbage collection.

Obliq [9] is a lexically-scoped language that sup-
ports distributed object-oriented computation. It has
been integrated into commercial Web browsers by
defining an Obliq MIME type and configuring the
browser to use the Obliq interpreter as an external
viewer [3]. Many other distributed languages exist
commercially (e.g., General Magic's Telescript [17])
and in academia (e.g., Orca [2]). However, we are

A Virtual TV Oblet
Ob~q ~s i a ~ i ~ t ~ t ia Modnla-3, m~t it ~ives the p'te ~ e~ces~ to much of d~
t t l d e ~ g Me dele-3 libreti~. One of ~aese libtmries is Trestle+ ~ object-one.ted
vra~do~' w/stem that p~vide+ ab~ac6ons for e v~i~ty of m~'~e.dia objects, tto~a
~oOttml~ viewers ~o ~d~ u-Sxtger~.

The Oblmt below mapl=m~r~ a "+ircoeJ TV" wiCt a ~p©-~ field t+ sd~¢t new ~zads,
mad a set o~ buttons to flip betwe~t e'ns~ o~s+

PostScript - - HTML

M a r c H . B r o w n a n d R o b e r t A . S

Me~+.h !, !~5

Thi+ r~on d+a~e+ I~el~cape, in ~ezimmat
m~r~lu<+ A deck cmas~ ¢~ a c¢~erio~ ~ W+
oa~t, Ae ~e user ~ a v ~ U]~,s+ n~w p~g~s
asi~ ~t b ~ k O o ~ r~e~d, so ell visible pages i
cop/pages bet~eea d.~lts, ~d decks o~at be m
as ~t]ists+ qmmy x'+~, ~md bxe+edd~-f~st e ~

NeSt: ++aerial .Ims+d~. c<m
Mare H. Brown m,.d Robert A- ShUlner
Thne: 7 mmbmles

Fig. 7. Virtual TV Oblet and Binpacking Oblet running inside DeckScape Oblet running inside WebScape Oblet.

M.H. Brown, M.A. Najork / Computer Networks and ISDN Systems 28 (1996) 1037-1052

:tcation: Ihttp://src-www,pa.dec~c~m/~neJo~tded<scape/ " "
Web Browser Oblel

A Web Browser Oblet
0bliq lz expte~iw et'~qgh to ¢ 0 1 ~ , ~ t web '~'o~'~et oblet~. The Oblet below implement~ a'4.,eb b r o , ~ r with the ~ame look and feel

1 0 5 1

t M I i u
. C l e ~ _ _.J -

Fig. 7 (continued).

1

not aware of any such language having been inte-
grated with a Web browser.

7. Conclusion

The example Oblets shown in this paper have
been small, for didactic reasons. However, Obliq is a
full-strength programming language with access to a
rich set of libraries, including multimedia objects and
Web pages.

The DeckScape browser on the left in Fig. 7
shows a "Virtual TV" Oblet; the main screen and
each of the buttons show live video streams. New
video streams can be added by typing the IP address
of a video server into the type-in field.

The WebScape browser on the right shows an

Oblet that implements the look-and-feel of
DeckScape, but uses a different color for the main
canvas. Within this Oblet, we are visiting Web pages
containing the various binpacking animation Oblets
we saw before. This Oblet consists of about 500
lines of Obliq code and 200 lines of FormsVBT
user-interface specification.

We have not explored the issues of security and
fault tolerance, both very important and very real
problems. In the area of security, Web browsers
should be able to authenticate the origin of an Oblet
and to protect the user against malicious Oblets. In
the area of fault tolerance, Oblets should be able to
gracefully handle disruption of network services and
nonavailability of network resources.

Many analysts feel that two of the most important
technology themes for the remainder of the decade

1052 M.H. Brown, M.A. Najork / Computer Networks and 1SDN Systems 28 (1996) 1037-1052

are the Web and using computers for collaboration.
Oblets provide an elegant programming framework
for bringing colloborative and distributed applica-
tions to the Web.

References

[1] Gideon Avrahami, Kenneth P. Brooks and Marc H. Brown,
A two-view approach to constructing user interfaces, Com-
puter Graphics 23 (3) (1989) 137-146.

[2] H.E. Bal, M.F. Kaashoek and A.S. Tanenbaum, Orca: A
language for parallel programming of distributed systems,
IEEE Trans. Software Engineering 18 (3) (1992) 190-205.

[3] Krishna Bharat and Luca Cardelli, Distributed applications in
a hypermedia setting, in: Proc. 1st lnternat. Workshop on
Hypermedia Design, Montpelier, France (1995) 185-192.

[4] Andrew D. Birrell, Greg Nelson, Susan Owicki and Edward
P. Wobber, Network objects, in: Proc. 14th ACM Symp. on
Operating System Principles (1993) 217-230.

[5] Marc H. Brown and Robert Sedgwick, A system for algo-
rithm animation, Computer Graphics 18 (3)(1984) 177-186.

[6] Marc H. Brown and Robert A. Shillner, DeckScape: An
experimental Web browser, Computer Networks and ISDN
Systems, 27 (1995) 1097-1104.

[7] Marc H. Brown, Browsing the Web with a mail /news
reader, in: Proc. 8th ACM Symp. on User Interface Software
and Technology (1995) 197-198.

[8] Marc H. Brown and Marc A. Najork, Collaborative active
textbooks: a web-based algorithm animation system for an
electronic classroom, Research Report # 142, Digital Equip-
ment Corporation Systems Research Center, Palo Alto, CA
(May 1996).

[9] Luca Cardelli, A language with distributed scope, Computing
Systems 8 (1) (1995) 27-59.

[10] Grail home page. http://monty.cnri.reston.va.us/grail-0.2/
[11] HTML3 linking and embedding model, h t tp : / /www.

w3.org/hypertext/WWW/TR/WD-insert-95 1221 .html
[12] HORB home page. ht tp: / / r ing.et l .go. jp/openlab/horb/

[13] Java: Programming for the Intemet. ht tp: / / java.sun.com/
[14] Intemet development toolbox, ht tp: / /www.microsofl .

com / INTDEV /
[15] MMM browser home page. ht tp: / /pauil lac. inria .fr /~

roua ix /mmm/
[16] Surflt! ht tp:/ /pastime.anu.edu.au/Surfl t /
[17] Telescript. ht tp: / /www.genmagic.com/Telescript / index.

html
[18] Matthijs van Doom and Anton Eli~ns, Integrating applica-

tions and the World-Wide Web, Computer Networks and
ISDN Systems 27 (1995) 1105-1110.

Marc H. Brown has been a member of
the research staff at Digital Equipment
Corporation's Systems Research Center
since receiving his PhD in Computer
Science from Brown University in 1987,
where he worked with Andries van Dam
and Robert Sedgewick on the "Elec-
tronic Classroom" project. Dr. Brown
was primarily responsible for the
BALSA system, the courseware envi-
ronment used in the classroom for inter-
active animation of computer programs.

This led to his dissertation, Algorithm Animation, which was
selected as a 1987 ACM Distinguished Dissertation. His current
research focuses on algorithm animation and auralization, user
interface toolkits and techniques, Web browsing, and computer
science education.

Marc A. Najork is a member of the
research staff at Digital Equipment Cor-
poration's Systems Research Center. His
current research focuses on 3D anima-
tion, information visualization, algo-
rithm animation, and the World-Wide
Web. Dr. Najork received his PhD in
Computer Science from the University
of Illinois at Urbana-Champaign in 1994,
where he developed Cube, a three-di-

- - mensional visual programming lan-
guage.

