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ABSTRACT
Query rewriting algorithms can be used as a form of query
expansion, by combining the user’s original query with au-
tomatically generated rewrites. Rewriting algorithms bring
linguistic datasets to bear without the need for iterative rel-
evance feedback, but most studies of rewriting have used
proprietary datasets such as large-scale search logs. By
contrast this paper uses readily available data, particularly
ClueWeb09 link text with over 1.2 billion anchor phrases, to
generate rewrites. To avoid overfitting, our initial analysis is
performed using Million Query Track queries, leading us to
identify three algorithms which perform well. We then test
the algorithms on Web and newswire data. Results show
good properties in terms of robustness and early precision.

Categories and Subject Descriptors
H.3.3 [Information Retrieval]: Retrieval Models

General Terms
Algorithms, Experimentation

Keywords
Query rewriting, anchor text

1. INTRODUCTION
Web search is typified by fast light-weight interaction. In

a 2006 Web search log, the median query length was two
words, the median click count was one and the median rank
of clicked results was one [34]. These median values could
hardly be more extreme, compared to other IR applications
where significant time is spent on query reformulation and
viewing multiple relevant results, for example [2]. Given the
characteristics of Web search, it is natural that Web search
evaluation focuses on achieving good early precision given
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short user queries, while also focusing on scaling to large
collections [18].

Another characteristic of Web search that has attracted
less attention from the research community is the impor-
tance of query response time. Web search results are typ-
ically returned in under one second, and experiments that
introduce a delay of 100 to 400 milliseconds have demon-
strated a significant impact on user engagement [24, 8], with
users performing fewer queries and becoming less likely to
click. This creates a balancing act. Improving early preci-
sion is positive for users, but if this increases response time
by hundreds of milliseconds, the overall effect on users may
be negative.

Some algorithms have been developed and published which
translate, expand or adjust the query based on large-scale
linguistic resources such as search logs and document sets,
for example [12, 21, 16, 20]. Many of these rewriting meth-
ods can be run quickly, without requiring any extra search
against a document corpus, so they are suitable for applica-
tions where response time is critical. They may also rewrite
the query conservatively. An approach which adds fewer
terms to the query can be executed more efficiently.

This paper follows that approach, of using linguistic re-
sources to rewrite queries, with the goal of improving re-
trieval effectiveness. We follow the approach of Dang and
Croft [13], using a large anchor graph as a linguistic resource
for query rewriting. Despite its contribution in defining the
anchor graph, that paper took a semi-manual approach, as-
suming the user can choose the most effective formulation
from a set of automatically generated candidates. Here our
contribution is to introduce new algorithms that achieve sta-
tistically significant improvements in retrieval effectiveness
in a fully automatic setting. The new algorithms, which
adopt the random walk approach of [11], show good effec-
tiveness in early precision and robustness.

2. RELATED WORK
Query-document mismatch is a fundamental problem in

information retrieval, with one solution being pseudo-rele-
vance feedback (PRF), employing two rounds of retrieval.
The first uses the original query, then the top-k results are
mined for additional vocabulary terms. The second round
uses the expanded query, which typically is a mixture of the
original query terms and expansion query terms.

PRF can improve both precision and recall of web search
[32]. However, given the constraints on response time men-



tioned in the introduction, we note that PRF introduces a
significant extra delay to query processing. Query execution
may be massively parallel, accessing many index servers and
many document summarization servers [3]. However, cer-
tain parts of the process are sequential, with three major se-
quential phases being query expansion (if any), retrieval and
summarization. These must be sequential, since retrieval
can not commence until the query is finalized, and summa-
rization can not commence until the top-k results have been
identified.

To take expansion terms from the top-k documents, for ex-
ample building a relevance model [23], their content, or some
representation of their language model, must be processed.
Computationally this may have comparable cost to the doc-
ument summarization phase at the end of retrieval. There-
fore, to apply PRF an extra round of retrieval and summa-
rization is required during the initial query-expansion phase,
and this must be complete before retrieval of the user’s re-
sults can begin. This is even true for expansion against a
reduced corpus such as Wikipedia [33, 15, 29]. For example,
the Wikipedia-based expansion method of Elsas et al. [15]
retrieves the top 1000 documents for the user’s query from
Wikipedia.

Instead of PRF, or in addition to it, query rewriting may
be based on linguistic resources such as anchor text or query
logs. These resources can potentially be accessed with O(1)
lookups or with efficient data structures such as a trie [7].
The rewritten query can be a spelling correction, a sugges-
tion for the user, or a query that can be mixed with the
user’s query to improve retrieval effectiveness.

Jones et al. [21] take the user’s query and rewrite it to
form a modified query. Their application is an advertising
scenario where recall is important and documents have few
words. Papers on spelling correction [7, 16] assume that the
user’s query is ill-formed and attempt to correct it. Such
models operate at the character level, whereas algorithms
which introduce synonyms operate at the word level. De-
spite this difference, in other ways the algorithms are re-
lated, for example using a dataset of translation probabili-
ties. In general they use linguistic datasets, for example a
large-scale set of query reformulations from web searching
users [21], the text from a set of 50 million web pages [16]
or Wikipedia [30].

Cui et al. [12] carry out query expansion using a bipartite
click graph, connecting a query node to a URL node if a click
has been observed. They then extended the graph to encom-
pass words in queries and words in documents. Craswell and
Szummer [11] also use the click graph, performing a random
walk to find a probability distribution over nodes from any
given starting node.

Dang and Croft [13] induce a bipartite graph with similar
properties to the click graph, based on anchor text from
document hyperlinks. One advantage of this approach is
that web crawls and anchor data are more freely available
for academic and commercial purposes. For example, when
building an enterprise search engine it is unlikely that there
will ever be sufficient usage logs on that service to build
good language and translation models for query rewriting.
However, there is some chance that anchor text from the
corpus or from external corpora can be used to build a query
rewriting system.

While improved precision can be a good indication of the
usefulness of a system, another – related – aspect is relia-

bility: even if precision on average is greatly increased, the
results of an expansion method may be perceived to be worse
than that of a baseline system if for some queries precision is
markedly reduced. Smeaton and Van Rijsbergen [27] found
as early as 1982 that not all queries benefit from the same
expansion method. More recently this problem has gained
greater popularity amongst information retrievalists. For
instance, Harman and Buckley [17] confirm Smeaton’s and
Van Rijsbergen’s insight and a number of papers followed
their workshop, such as this by Collins-Thompson [10], who
defines query expansion as a risk/reward problem in a ma-
chine learning framework and achieves good robustness. Ro-
bust retrieval has also become a major focus of TREC [28]
and remains a widely studied problem.

Kraft and Zien [22] find in a user study that sourcing ex-
pansion terms from anchor text using rank aggregation over
the anchor frequency and lengths in word and characters is
superior than sourcing those terms from the document col-
lection. In this work, they find anchors for expansion that
contain the full query as an exact match.

Amitay et al. [1] use queries instead of anchors to aid
with retrieval. While acknowledging the practice to stuff a
document with keywords gained from in-links, they instead
pre-expand a document with queries that were used earlier
in a user session that eventually ended with a user visiting
the target page. They record modest improvements in preci-
sion measures, but decreased the number of query reformu-
lations needed by users to find pages markedly. In a sense,
this work inverts our approach by adding text to the target
documents and thus avoiding query expansion all together.
Similarly, [14] use session queries as implicit annotations,
but also add explicit annotations as well as anchor text to
target documents. They find that while difficult to obtain
explicit annotations are very useful, implicit annotation can
lead to an increase in early precision.

3. REWRITING ALGORITHMS ON THE
ANCHOR GRAPH

An anchor graph G = (A,U , E) represents the anchor text
descriptions in a hypertext corpus. It is a bipartite graph,
connecting anchors A and URLs U . An edge (a, u) exists in
E if there are one or more links to URL u with anchor text a.
This form of graph was introduced by Dang and Croft [13]
and is analogous to the bipartite click graph, so we will begin
with adapting click graph random walk algorithms [11].

Each edge in E has a weight, and we use those weights
to calculate transition probabilities of the random walk. In
the click graph work, the edge weight was a click count [12].
Here we weight (a, u) according to how often a was used
to describe u. A problem is that a single author can easily
create a large number of links, for example by putting the
same link at the bottom of every page on a large site. Hence
we count the number of unique linking hostnames that use
a to describe u.

We generate our anchor graph G from the ClueWeb09 cor-
pus, which has edges such as (facebook , http://facebook.
com) and (click here, http://trec.nist.gov). In the cases
where a ClueWeb09 page links to a document outside the
corpus, we still use that u and (a, u) data, since we do
not need any information about u other than its links from
ClueWeb09 documents. Overall our graph has |A| = 1.26
billion unique anchors and |U| = 4.82 billion unique URLs.



Output of Q2Q algorithm:
q = new york department of labor

1. P(new york state department of labor|q) = 0.115 [6,
0.08]
2. P(nys department of labor|q) = 0.039 [6,0.19]
3. P(department of labor|q) = 0.039 [5,0.01]
4. P(new york|q) = 0.037 [8,0.00]
5. P(new york labor department publications|q) = 0.018
[1,0.048]
...
208. P(job source|q) = 4.98E-04 [1,0.02]
209. P(employer information|q) = 4.98E-04 [1,0.01]
210. P(http://w|q) = 4.98E-04 [1,0.00]
211. P(employment resources|q) = 4.98E-04 [1,0.00]
212. P(employment|q) = 4.98E-04 [1,0.00]

Figure 1: Example output of the Q2Q algorithm, for
the query new york department of labor. The random
walk probability is indicated, as well as [I,J] being
URL set intersection size and Jaccard similarity.

We identify 27.4 billion links, which collapse to |E| = 5.96
billion edges once we identify the distinct (a, u) pairs.

In the remainder of this section we introduce three anchor-
driven query rewriting algorithms which we call query-to-
query, phrase-to-phrase, and hybrid.

3.1 Query-to-Query Translation
Our query-to-query (Q2Q) algorithm first identifies the

user’s query in the anchor data A, via an exact string match,
after case folding and removing punctuation. If there is no
match, then Q2Q produces no output. From the anchor
node, the algorithm identifies all anchors that can be reached
in two steps as candidate rewrite queries. For example, the
query new york department of labor appears as an anchor in
A, and has 21 edges in E . From the 21 URL nodes in U we
reach 212 anchor nodes in A.

Having identified all two-step candidates, we then calcu-
late features that indicate a good rewrite. Our primary fea-
ture is the random walk probability [11] from a two-step
forward random walk with no self-transition probability. As
in that paper, the transition probability is calculated based
on edge weights, with the probability of following an edge
being the edge’s weight divided by the total incident edge
weights of the node. Exploring other edge weighting and
random walk parameters is left for future work.

We calculate two additional Q2Q features based on the
URLs adjacent to q and q′. Let Uq and Uq′ be the set of
URL nodes adjacent to q and q′ respectively. One feature
is the number of URLs co-cited by q and q′, which is the
cardinality of the intersection |Uq ∩ Uq′ |. The other feature
is the Jaccard similarity of the URL sets, which is |Uq ∩
Uq′ |/|Uq ∪ Uq′ |. The Jaccard similarity is related to the
random walk probability, but is also affected by the degree
of q′. If we were to increase |Uq′ | purely by connecting q′

to URLs outside Uq, the random walk probability P (q′|q)
would be unaffected, but Jaccard similarity would decrease.

Figure 1 shows some examples of Q2Q feature values. The
highest-scoring rewrites under random walk probability and
Jaccard similarity are at positions 1 and 2 respectively, and
seem strongly related to the original query. The highest-
scoring rewrite on intersection size is new york, which misses
the Department of Labor aspect of the original query. There
are also a large number of rewrites with intersection size of 1
which tend to be of low quality. For the remainder of the pa-
per we post-filter the Q2Q results to remove candidates with

intersection size of only one or two, which greatly reduces
the set of rewrites we need to consider.

Using the Million Query Track queries, we noticed two
problematic patterns in the Q2Q rewrites. First, some re-
writes simply shorten the query, for example new york dmv
rewritten as new york. Second, some rewrites contain Web
noise words, for example adding the word site or replacing
the query with click here. Since only a small number of noise
words showed up in top rewrites, we found we could build
the list by hand with a small amount of manual effort: free,
wikipedia, www, click, here, com, org, site, website, more and
link. Under the assumption that removing words via query
shortening or adding noise words are unlikely to be helpful,
we removed all such rewrites from consideration. A more
comprehensive analysis of noise words is left as future work.

To implement the Q2Q rewriting algorithm, the Q2Q re-
writes can be calculated offline for each node in A. Then
online a single lookup in a hash table can be used to access
rewrites of the user’s query (if any). If we know ahead of
time the number of rewrites that will be used, we need store
only those in the table.

3.2 Phrase-to-Phrase Translation
The Q2Q algorithm relies on having a query which al-

ready appears in A. We can consider a broader range of
rewrites by translating parts of queries, as in [21]. Rather
than adapting the machine learning approach of this pa-
per to our setting, we attempt to identify algorithms with
no parameters that perform well. Such algorithms are eas-
ier to implement and reproduce since no training data and
parameter tuning are required. In a setting with sufficient
training data, our algorithms can be used as features in a
larger model.

Our algorithms P2P and HYB are somewhat related to
noisy channel models [26, 7] and statistical machine trans-
lation. A noisy channel model over search queries assumes
that the user has a well-formed query in mind, but acciden-
tally typed a noisy version of that query. Given the noisy
query sigir acomodation one part of the model tells us about
likely translations, that acomodation is a likely mistake for
a user who meant accommodation. The other part tells us
the likelihood of the target query sigir accommodation. In
the context of machine translation this is called the target
language model.

Our application differs from spelling correction models [7,
16], in that we operate over correctly spelled TREC queries.
Rather than suggesting a replacement of the user’s query,
we combine the original query with one or more rewrites,
with the goal of improving retrieval effectiveness. Unlike
spelling correction, where the suggested query is typically
much more likely than the query the user typed, we find
effectiveness can increase even if the rewrite is less likely
than the original.

For example, given the query rental cars, our translation
features suggest candidate translations for rental such as
hire and vacation. The target model tells us that rental
cars is the most likely formulation of the three, hire cars
is an order of magnitude less likely, and vacation cars is
extremely rare. We may then find that performing retrieval
with a weighted combination of rental cars and hire cars
can improve retrieval effectiveness. Allowing rewrites that
are less likely than the original query is appropriate because
we have not assumed that the original query was noisy.



For translation data we have two algorithms, called P2P
and HYB. The P2P (phrase-to-phrase) model is a substitu-
tion model as in [21], taking the translations from the pairs
used in the Q2Q data. For example, if the anchor tool rental
company is within two steps of the anchor tool hire company
(co-citing one or more URLs) this provides some phrase-to-
phrase evidence that p = rental and p′ = hire are related.
We use an alignment that drops shared words from one or
both ends of the queries (in this case tool and company),
then if something was removed and the remainder is non-
empty we have an alignment. The translation data is built
over all Q2Q pairs, such that P (hire|rental) = l/L, where
l counts how many times alignment produced (p, p′) and L
counts how many times p was aligned with anything (p, ∗).

P2P translation data:
p = rental

1. P(rentals|p) = 0.215
2. P(hire|p) = 0.123
3. P(rent|p) = 0.044
4. P(for rent|p) = 0.012
5. P(vacation|p) = 0.010
...
550. P(bracelet|p) = 3.12E-04
551. P(hub|p) = 3.12E-04
552. P(talent|p) = 3.12E-04
553. P(project|p) = 3.12E-04
554. P(web site|p) = 3.12E-04

Figure 2: Example translation data from the Q2Q
algorithm, for the phrase rental. The translation
probabilities for the 554 translated phrases sum to
1, and are proportional to how many Q2Q pairs pro-
duced each translation.

The HYB (hybrid) algorithm is a hybrid between the other
two. Q2Q translates the entire query using whole-anchor
data (Figure 1). P2P translates part of the query using data
from anchor substitutions (Figure 2). HYB translates part
of the query using whole-anchor data (Figure 1). Its transla-
tion probability is simply the random walk probability from
the Q2Q dataset. Using our ClueWeb09 anchor graph, the
difference between P2P and HYB translations can be quite
pronounced, as shown in the example data in Figure 2 and
Figure 3.

To use the P2P and HYB algorithms we also need to con-
sider target probability. This helps us choose whether rental

HYB translation data:
p = rental

1. rentals - 0.022 [99]
2. car rentals - 0.017 [70]
3. calendar - 0.003 [7]
4. luxury automobile rental - 0.002 [1]
5. netflix - 0.001 [6]
...
4475. company name - 9.43E-07 [1]
4476. passages of lorem ipsum - 9.43E-07 [1]
4477. pizhichilphoto gallery - 9.43E-07 [1]
4478. media - 9.43E-07 [1]
4479. booking - 9.43E-07 [1]
4480. if you want to advertise... - 9.43E-07 [1]

Figure 3: Example translation data from the HYB
algorithm, for the one-word phrase rental. The ran-
dom walk probability is indicated, as well as [I] the
URL set intersection size.

Anchor histogram data:
anchors ending in the word cars

1. used cars - 11426
2. new cars - 5396
3. find local rental cars - 2743
4. hybrid cars - 1832
5. rental cars - 1649
...
245461. zymol products for my cars - 1
245462. zz top bob seger cars - 1
245463. zz tops cars - 1
245464. zz+ used cars - 1
245465. zzz cars - 1

Figure 4: Example anchor histogram data, for all
anchors ending in the word cars. The frequency is
the total incident edge weight of that node in G.

should translate to hire or vacation, depending on the con-
text rental appears in. For example hire cars is more likely
than vacation cars, yet florida vacation properties is more
likely than florida hire properties. We use two target mod-
els. One is an anchor frequency histogram, in fact we use the
total incident edge weight for that node in A. Matching the
candidate rewrite against this histogram is sufficient to make
the target likelihood decisions described above, see Figure 4
for example data. The other target model we use is a lan-
guage model over a large set of Web data, made available
via API by Microsoft Research1, as described by Huang et
al. [19]. Other target models could also be considered, such
as one derived from the ClueWeb09 body text itself.

To implement P2P or HYB, we precompute translations
for each phrase in the anchor graph. Then given a k-word
query we do a hash table lookup for each phrase to find its
translations, and a further lookup of the target probability of
each translated query. We note that each of our candidates
is produced by applying exactly one translation. Adding
more translations can be achieved by incorporating multiple
single-translation rewrites into the expanded search.

Using the Million Query Track queries, we noticed some
translations to stopwords, so manually built a small list of
cases to avoid: about, an, and, are, as, at, be, but, by, com,
for, from, how, if, in, is, it, of, on, or, that, the, this, to,
was, what, when, where, which, who, will, with, would, www,
a, i and org. Building such a list requires a small amount
of manual effort, a more comprehensive study of translation
stopwords is left for future work.

4. ANALYSIS
The previous section introduced the rewriting algorithms

of Q2Q, P2P and HYB, but each algorithm has multiple
possible variants. This section explores various alternatives,
and finalizes the choice of algorithms before our experimen-
tal evaluation.

Dataset
To avoid overfitting, our analysis uses a queryset that is dis-
joint from our test sets. We choose the 2009 Million Query
(MQ) Track queries [9], minus the 50 shared with the Web
Track. Each of the 637 queries has very few judged docu-
ments, so we do not believe the results here are as reliable
as those of our main experiments. Our goal instead is to

1Microsoft Web N-gram Services - http://web-ngram.
research.microsoft.com/
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Figure 5: Differences in query log probability be-
tween rewrite and original, using Web language
model data. Rewrites of higher frequency than the
original are relatively rare, and do not seem to be
significantly more likely to be positive according to
our MQ judgments.

generate a very large number of rewrites for each query, and
get a general view of which rewriting methods look promis-
ing. Performing this preliminary analysis allows us to make
some decisions, and thus make fewer decisions on the test
set(s).

The unfiltered output of the three algorithms for 637 que-
ries is more than 1.3 million different query-rewrite pairs,
the vast majority of which score low on all our features. To
identify a more promising set of rewrites we apply the filters
described in the previous section, and also remove all HYB
and P2P rewrites with zero frequency in the anchor target
model. These filters allow us to identify 41,639 rewrites,
for which we gather target language model data via API.
For each rewrite we also retrieve results from ClueWeb09
category A, ranking according to BM25F using title, body,
anchor and URL fields.

Target Language Model
In introducing our algorithms we discussed the noisy channel
model, which would tend to rewrite from a less frequent to
a more frequent query. The rewrite should be more likely
because the original query is noisy, and noise would tend
to move from a likely query to a less likely one. We also
considered an alternative hypothesis that the user’s initial
query is well formed, so it can be beneficial to rewrite to a
less likely query, as in the rental/hire cars example.

To test this we identified a language model likelihood for
each of our queries and rewrites. Then in Figure 5, the dif-
ference in likelihood between the rewrite and original query
are the horizontal axis with one bin for each order of magni-
tude. We see that many rewrite candidates are as likely or
less likely than the original query, which is not surprising.
Using the MQ judgments, we then flag rewrites that had
at least one relevant document in the top-1000 as positive,
and plot the probability of drawing a positive rewrite from
each bin. Results show that there are many cases where a
less-frequent rewrite is positive. Generating the same graph
using the ClueWeb09 anchor text histogram instead of lan-
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Figure 6: ROC curves analyzing all Q2Q rewrites,
as indicated by the three different Q2Q features.

guage modeling probability showed a very similar pattern.
We therefore will consider rewriting algorithms that have
weak or no preference for more likely rewrites.

Q2Q Variants
The rewrites generated by Q2Q can be ordered by random
walk probability, intersection size or Jaccard coefficient. To
analyze these alternatives, we flag each Q2Q rewrite as pos-
itive if a document relevant to the original query occurs in
the top-1000, and negative otherwise. Under this relatively
weak definition of a positive rewrite, Q2Q produces 1,773
positive and 7,480 negative rewrites.

Figure 6 presents the results if we rank all Q2Q rewrites by
each of the three potential features. The intersection signal
is close to the diagonal, indicating there is little useful signal
left after having used the feature as a threshold to cut down
from our initial 1.3 million rewrites. The random walk prob-
ability and Jaccard similarity both seem like stronger sig-
nals, with random walk performing slightly better early on.
The performance of the Jaccard similarity later in the rank-
ing suggests that a combination of the two features could
be a good alternative, but for simplicity we choose to use
random walk scoring for Q2Q data in the remainder of this
study.

P2P and HYB Variants
The previous analysis used all 41,639 query-rewrite pairs.
We now consider several forms of our translation algorithms
intended to choose the best rewrite for each query. We will
also evaluate Q2Q as a reference point, using mean recip-
rocal rank (MRR) as our metric. Due to judgment sparsity
many rewrites return results lists that are largely unjudged,
so we chose MRR to give us an indication of where rele-
vant documents are returned instead of focusing on top-20
precision or on recall.

Given the target language model analysis in Figure 5, we
focus on comparing different target model variants. In one
variant HYB0 there is no target language model. Given a
query with w words, HYB0 finds all possible translations
of n-grams in the query of length up to w − 1, and applies
the most likely one according only to the HYB (random
walk) probability. HYB1 is the same, but rewrites which



Algo microsoft home my own background check
P2P0 ms home my own criminal records
P2P1 ms home personal background check
P2P2 windows home my own business
P2P3 microsoft website personal background check
HYB0 www.microsoft.com my h. david kotz named new

home inspector general at sec check
HYB1 microsoft corporation my own visit

home
HYB2 here home my own background
HYB3 microsoft website my own website
Q2Q microsoft frontpage –

Table 1: Rewrites for TREC Million Query Track
queries 20591 and 20110. Most algorithms find good
rewrites for microsoft home, while for query my own
background check many rewrites do not seem useful.

have zero frequency in the anchor histogram are eliminated.
HYB2 is like HYB1 but multiplies the HYB probability by
the language model likelihood of the rewrite query. HYB3 is
like HYB1, and comparable to HYB2, but instead multiplies
the HYB probability by the anchor histogram probability of
the rewrite query. If Figure 5 were incorrect, and we should
prefer higher-frequency queries all other things being equal,
then we would expect HYB2 or HYB3 to perform best.

The variants of P2P are the same as for HYB, with vari-
ants being: no filtering, filtering on existence in anchor, in-
corporating a language model probability and incorporating
anchor histogram probability.

Example query rewrites are given in Table 1, showing the
strongest rewrite for each algorithm. The examples show
some typical patterns, such as the relatively sparse Q2Q
having no output in one case, and HYB0 producing a non-
sensical rewrite. Table 2 presents the MRR results. In this
paper we present metrics multiplied by 100 for readability,
so MRR of 1.1 is actually 0.011. The MRR results are low
for this corpus due to the very small number of judgments
per topic and the relatively large corpus. Unlike Figures 6
and 5 which considered thousands of rewrites, this table con-
siders only the best rewrite for each query according to each
ranking, so is potentially the most susceptible to noise. How-
ever, the results are consistent with Figure 5. The variants
of types 2 and 3 perform not as well as the type 1 variants,
for both HYB and P2P. The type 0 variants perform worst,
indicating that some target model is necessary, but its most
useful function is to filter out nonsense rewrites such as va-
cation cars.

The table also presents the coverage of each approach,
since in some cases there are no possible rewrites. The 0
variants with no filter rewrite the most queries, although
the filtered variants still have better coverage than Q2Q.
Q2Q rewrites around a third of queries compared to the
translation approaches, but the MRR on the – relatively
few – rewritten queries is good.

5. RETRIEVAL EXPERIMENTS
Having finalized our rewriting algorithms, we test them on

the TREC robust04 test collection (250 topics), the TREC
GOV2 test collection (150 topics) and the ClueWeb09 ad-
hoc test collection (150 topics). To set parameters in each
case we use three-fold cross validation, choosing parameters
on two folds and testing on the third, then present overall
results for the three test folds.

Our unexpanded baseline is the default Indri language
model (LM) ranking, and our expansion baseline is the Indri

MRR Queries Affects Data
P2P0 1.1 602 Phrase P2P
P2P1 2.0 545 Phrase P2P-AnchorFilter
P2P2 1.6 545 Phrase P2P-LMProb
P2P3 1.9 545 Phrase P2P-AnchorProb
HYB0 1.4 570 Phrase Q2Q
HYB1 4.0 508 Phrase Q2Q-AnchorFilter
HYB2 2.8 508 Phrase Q2Q-LMProb
HYB3 2.6 508 Phrase Q2Q-AnchorProb
Q2Q 1.1 179 Query Q2Q

Table 2: MRR results on Million Query Track data.
P2P1 and HYB1 perform best. Filtering for exis-
tence in anchor data (AnchorFilter) performs bet-
ter than also multiplying by a target likelihood (LM-
Prob or AnchorProb). Q2Q has lower MRR, though
achieves this by rewriting only 179 queries.

P@5 P@10 P@20 MAP GMAP
LM nostem 46.1 40.2 33.5 22.4 12.2
RM nostem 45.9 40.6 34.5 26.5*† 12.3
QR nostem 46.8 41.7* 34.4* 23.3* 13.0*
LM stemmed 47.2 42.0 35.2 24.5 13.8
RM stemmed 47.4 42.7 36.4* 28.1*† 13.6
QR stemmed 47.4 42.8* 35.5 24.9* 14.1

Table 3: Overall results for robust04, with cross val-
idation optimizing for MAP. Annotations: (*) Sig-
nificantly better than LM with p < 0.05, (italics) nu-
merically worse than LM and (†) significant differ-
ence between RM and QR with p < 0.05.

implementation of Relevance Model (RM) relevance feed-
back [23]. The latter model has multiple parameters, in
our cross-validation we set three parameters: original query
weight, number of PRF documents and number of terms.
In all our Indri experiments we use Dirichlet smoothing
(µ = 2500).

For comparison with RM we incorporate our three best
rewriting algorithms (P2P1, HYB1, Q2Q) into algorithm
QR, which has two parameters. One parameter r is the
maximum number of rewrites to take from each algorithm.
The other parameter w is the total weight assigned to rewrite
queries. Our query formulation in Indri is a #weight com-
bination of queries, each in its own #combine. The original
query has weight 1.0, and each of k rewrites has weight w/k.
Since there are three rewriting algorithms that each produce
zero or more rewrites for a given input query, k ≤ 3r.

In our cross validation setting, it would have been pos-
sible to tune both parameters separately for each of the
three rewriting algorithms, and possibly use each algorithm’s
probability as a confidence score to further weight each re-
write. This would likely give a significant increase in effec-
tiveness, but restricting ourselves to two parameters makes
our approach more comparable with RM.

Overall results for robust04 are presented in Table 3, for
an index with no stemming and also an index with Porter
stemming. The cross validation optimization is towards
mean average precision (MAP), and RM achieves signifi-
cantly better MAP than QR and the language modeling
(LM) baselines. However, it is numerically worse than the
unexpanded baseline LM on some early precision measures
and on geometric mean average precision (GMAP) [25]. The
latter metric is intended to penalize a system for reducing



P@5 P@10 P@20 MAP GMAP
LM nostem 46.1 40.2 33.5 22.4 12.2
RM nostem 47.0 42.9* 35.5* 25.5*† 14.2*†
QR nostem 47.1 42.2* 34.5* 23.5* 13.2*
LM stemmed 47.2 42.0 35.2 24.5 13.8
RM stemmed 47.7 43.7* 36.7*† 26.9*† 14.8*†
QR stemmed 48.0 42.9* 35.4 24.9* 14.0

Table 4: Overall results for robust04 with cross val-
idation optimizing for GMAP.

P@5 P@10 P@20 MAP GMAP
LM nostem 56.8 55.5 52.6 27.0 19.0
RM nostem 54.9 54.5 51.3 28.2* 18.4
QR nostem 60.5*† 57.0† 55.0*† 28.7* 20.4*†
LM stemmed 57.8 54.5 51.0 29.4 21.0
RM stemmed 55.8 55.3 52.0 31.0*† 20.5
QR stemmed 58.5† 56.1* 52.7* 29.9* 21.5

Table 5: Overall results for GOV2 with cross vali-
dation optimizing for MAP.

average precision (AP) towards zero, for example a small
drop from AP=80 is penalized much less than a small drop
from AP=1.

Given that RM had a numerical reduction in GMAP when
optimizing for MAP, we conducted the same cross validation
targeting GMAP itself. With that target, RM no longer has
a loss in GMAP (Table 4) at the cost of losing about one
point of MAP in absolute terms.

Overall results for GOV2 are presented in Table 5 for
cross-validation optimizing for MAP and Table 6 for cross-
validation optimizing for GMAP. The results in both cases
are for an index with no stemming and also an index with
Porter stemming. Cross validation with target MAP yields
significant improvements over the baseline when stemming
is not applied. However, RM again has a numerical (not
significant) loss in GMAP, and QR is significantly better
than RM on that metric. Note that the t-test for GMAP is
conducted on log(AP) values.

When cross validation targets GMAP, QR reaches a very
similar solution in terms of our target metrics, possibly be-
cause it is restricted to a single parameter (rewrite weight).
The RM approach improves on GMAP but becomes worse
on all other metrics than it was in MAP optimization. The
next section analyzes this effect in more depth.

In Web collections, indexes typically allow unstemmed
queries, for example so that a search for david hawking is
not met with documents about a hawk or some hawks, or
even Tennessee politician David Hawk. Thus for ClueWeb09
experiments we do not apply Porter stemming, and thus
rely on RM and QR to introduce stem variants where ap-
propriate. We also fix the number of rewrites for QR to
1, exploring a one-dimensional parameter space, instead of
two-dimensional.

In our ClueWeb09 experiments, we did not build an Indri
index, due to the size of category A English subset. Instead
we ran the system from [6] and tested for significant gains
due to rewriting over a baseline with unexpanded queries.
Overall results are presented in Table 7, with cross valida-
tion optimized for NDCG@20. We found that optimizing for
NDCG@20 yielded marginally better results in terms of sta-
tistical significance, but having done so ERR@20 was more
likely to be the significant metric. Here we show just those

P@5 P@10 P@20 MAP GMAP
LM nostem 56.8 55.5 52.6 27.0 19.0
RM nostem 55.7 55.8 52.6 28.2* 19.2
QR nostem 60.5*† 57.0 54.6*† 28.5* 20.2*
LM stemmed 57.8 54.5 51.0 29.4 21.0
RM stemmed 56.5 55.8* 52.2* 30.5* 21.2
QR stemmed 58.1 55.6 52.5* 30.0* 21.5

Table 6: Overall results for GOV2 with cross vali-
dation optimizing for GMAP.

Rewrite Variant ERR@20 NDCG@20
NONE 14.3 24.1

QR HYB1 14.3 24.0
QR P2P1 14.7* 24.4*
QR Q2Q 14.7 24.3
QR ALL (1 param) 14.9* 24.4
QR ALL (3 param) 15.2* 24.5

Table 7: Overall results for ClueWeb09, with cross
validation optimizing for NDCG@20. Significant im-
provements are for P2P1, for all three algorithms
with a shared weight and for all three algorithms
with three separate weights.

Target P@5 P@10 P@20 MAP GMAP
RM P@5 46.3 42.2 35.9 27.3 14.0
RM P@10 45.9 43.1 36.4 26.6 14.7
RM P@20 46.4 42.9 36.5 27.1 14.6
RM MAP 47.4 42.7 36.4 28.1 13.6
RM GMAP 47.7 43.7 36.7 26.9 14.8

Range: 1.8 1.5 0.8 1.5 1.2
QR P@5 48.0 42.9 35.5 25.0 14.1
QR P@10 47.9 43.3 35.6 25.1 14.1
QR P@20 48.6 42.8 35.9 25.1 14.2
QR MAP 47.4 42.8 35.5 24.9 14.1
QR GMAP 48.0 42.9 35.4 24.9 14.0

Range: 1.2 0.5 0.5 0.2 0.2

Table 8: Optimizing for different target metrics on
robust04, with stemming. RM has a broader range
of possible outcomes.

results, targeting NDCG@20. Best results are obtained with
rewrites from three algorithms, and a marginal numerical
improvement from using one weight per algorithm rather
than a shared weight as in our robust04 and GOV2 experi-
ments.

5.1 Robustness and Parameter Settings
Our overall evaluation results indicated mixed results for

RM, that were very positive on MAP but sometimes nega-
tive on early precision and GMAP. The cause of this, and a
comparison to QR, can be seen in Figure 7. The impact of
QR on AP is small, yet it achieves consistent gains across
our metrics, many of which are statistically significant. The
GOV2 results also indicated that RM parameters optimized
for one metric may be sub-optimal on another. This section
studies these properties of RM, and compares to QR, with
some further analysis of parameter settings.

In our first analysis, we repeat the cross validation for each
of our five effectiveness measures. The goal is not to observe
a significant improvement, but to analyze the variability of
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Figure 8: Parameter sensitivity for RM and QR on robust04, with stemming. Note that the plots for RM
and QR can not be compared with each other, as they consider different parameters. Comparing the two
QR plots, the optimum for MAP has good GMAP, and vice versa. For the RM plots the optima differ more,
so there is a tradeoff between MAP and GMAP.

test performance under the different training targets. The
experiment is related to experiments on varying training tar-
gets in Learning to Rank [31].

The variability of RM performance under different param-
eter settings is somewhat greater than the variability of QR
(Table 8). This could be seen as a good property of RM,
that it is powerful enough to be optimized for different met-
rics. To increase the power of QR approaches, perhaps more
linguistic data could be incorporated, with exposure of more
weighting parameters and a more sophisticated construction
of the overall Indri query. RM’s variability could also be seen

as a disadvantage, since it has no parameter setting that is
optimal for all metrics. For example, training on MAP gives
the lowest GMAP, vice versa.

Comparing these results to the Learning to Rank results
in [31], we see the same pattern, that our best results for
a test metric are not always achieved when using the same
metric for training. However, unlike that study QR can
achieve good results when training on early precision.

Figure 8 presents an analysis of the difference between
MAP and GMAP for the two algorithms. The figure indi-
cates a parameter sweep rather than cross validation, though
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Figure 7: Robustness histogram for robust04 MAP,
corresponding to Table 3 and with stemming. Our
other experiments showed a similar pattern. RM
has more topics at the extremes, including more
with > 100% gain in MAP.

it uses the same full parameter grids as in our cross valida-
tion experiments. Note that due to the design of the algo-
rithms the horizontal axes are reversed: QR has more effect
as the rewrite weight increases (moving right), while RM has
more effect when the original query weight decreases (mov-
ing left). Note also that the scales of the plots are different,
and shown to the right in each case. Since RM has three pa-
rameters, for the purposes of this plot we hold the number
of terms constant at its best value (20).

The stability of results for QR may be explained by the
top two plots in Figure 8. The parameter settings for which
MAP is optimal are similar to the parameter settings where
GMAP is optimal. This is the likely explanation for the ro-
bustness of the algorithm. By contrast, the bottom two plots
show the parameter settings for RM. If the goal is to opti-
mize MAP, then the best parameter settings are with just
under 20 documents and 0.4 weight on the original query,
which means 0.6 weight on the relevance model. The pa-
rameter settings for optimal GMAP put much more weight
on the original query, and may use fewer pseudo-relevant
documents. This may explain the relatively poor GMAP
performance of RM, since any choice of parameter settings
is a tradeoff between MAP and GMAP.

Finally, we consider the parameter sensitivity of single
rewriting algorithms on ClueWeb09, including rewriting al-
gorithms that were evaluated in Table 2 on Million Query
Track data. The results on adhoc Web Track data in Fig-
ure 9 indicate that HYB1, P2P1 and Q2Q were indeed the
best algorithms, and are best applied at low weight.

6. CONCLUSIONS
We introduce several robust algorithms for query rewrit-

ing. Our general approach is to take a large linguistic dataset,
in this case the ClueWeb09 anchor data, and use these to
build translation and target models. We then apply these to
generate rewrites of robust04, GOV2 and ClueWeb09 Web
Track queries, and perform retrieval based on a mixture of
original and rewrite queries.
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Figure 9: Parameter sensitivity for the best rewrite
from each algorithm on ClueWeb09. Best ERR@20
is achieved at low weights for algorithms P2P1,
HYB1, and Q2Q.

Having introduced the general form of three algorithms,
we chose specific variants Q2Q, P2P1 and HYB1 based on
analysis of tens of thousands of rewrites. The analysis in-
dicated that a useful rewrite need not be more likely than
the user’s original query, consistent with the hypothesis that
query rewriting can be useful even if the user’s query was
not “noisy”.

Compared to a traditional PRF baseline, our QR algo-
rithms do not have higher average precision, but have better
early precision and are more robust. They yield significant
improvements over an unexpanded baseline, and avoid losses
in metrics that may be important to users such as early pre-
cision and geometric mean average precision. Under cross
validation training, the QR approach yields consistent gains
even if the target metric is changed, whereas the PRF base-
line is much less stable, forcing a choice between higher MAP
or higher GMAP.

Overall our results indicate our new QR approaches are
competitive with traditional PRF without the need for two
rounds of retrieval, making it a practical alternative for real-
world systems where users care about early precision, re-
sponse time and robustness. This can be achieved across
collections, applying algorithms based on ClueWeb09 data
to unrelated test collections robust04 and GOV2.

We note that approaches based on external linguistic re-
sources can potentially be improved simply by adding more
linguistic data. This suggests some promising follow-up work
would be to identify more such resources, in particular re-
sources that can provide within-language translations, in
this case English-to-English. A further promising avenue
would be to integrate such rewriting algorithms with query
weighting approaches such as [4, 5]. With large-scale lin-
guistic data for query rewriting, plus an integrated retrieval
model, significant further improvements in retrieval effec-
tiveness may be achievable.
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