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ABSTRACT

Previous research has suggested that people who are in the
same social circle exhibit similar behaviors and tastes. The
rise of social networks gives us insights into the social cir-
cles of web users, and recommendation services (including
search engines, advertisement engines, and collaborative fil-
tering engines) provide a motivation to adapt recommenda-
tions to the interests of the audience. An important primi-
tive for supporting these applications is the ability to quan-
tify how connected two users are in a social network. The
shortest-path distance between a pair of users is an obvious
candidate measure. This paper introduces a new measure
of “affinity” in social networks that takes into account not
only the distance between two users, but also the number of
edge-disjoint paths between them, i.e. the “robustness” of
their connection. Our measure is based on a sketch-based
approach, and affinity queries can be answered extremely
efficiently (at the expense of a one-time offline sketch com-
putation). We compare this affinity measure against the
“approximate shortest-path distance”, a sketch-based dis-
tance measure with similar efficiency characteristics. Our
empirical study is based on a Hotmail email exchange graph
combined with demographic information and Bing query his-
tory, and a T'witter mention-graph together with the text of
the underlying tweets. We found that users who are close
to each other — either in terms of distance or affinity — have
a higher similarity in terms of demographics, queries, and
tweets.
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G.2.2 [Graph Theory]|: Graph algorithms, path and circuit
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1. INTRODUCTION

Are the activities and preferences of people correlated to
or influenced by their position in a social network? Do two
users that are “nearby” in the network tend to have similar
preferences, browse the same web sites, or speak the same
language? If so, exactly what is the right measure of “so-
cial affinity”? While a natural choice may the shortest-path
distance, this doesn’t capture the number of paths between
the pair of users. An alternate choice is the min-cut or the
connectivity, which is also the number of edge-disjoint paths
between two users. Furthermore, an affinity measure should
preferably be robust — it should not change much with a
small change in the edges of the network.

This paper introduces a social affinity measure that can
be viewed as an intermediate measure between the shortest-
path distance and the number of paths connecting a pair
of nodes. Such a notion of affinity is not only useful for
studying user behavior, but it has commercial applications
in web search, targeted advertising, and collaborative filter-
ing. For example, on a web search query, it may be desirable
to bias the results towards documents that are authored by
or preferred by nearby users (such as the Facebook “liked”
documents). For this reason it is important that the distance
measure should be easy to compute in an online fashion at
run-time. Our affinity measure not only takes into account
the lengths and the number of paths between two users, but
is also efficient in the sense that it can be easily computed
online (with some one-time offline precomputation).

The second contribution of this paper consists of two em-
pirical studies of the relationship between social affinity and
user characteristics and behavior, and a comparison of so-
cial affinity to approximate shortest path (ASP) distance,
another efficiently computable measure. The first study is
based on the email exchange graph between Hotmail users,
their self-declared demographic information, and queries they
issued to the Bing search engine. We found that users who
are nearby in the email exchange graph tend to have simi-
lar demographic characteristics, and more interestingly, that
their queries were more similar to each other than those of
far-apart users. Moreover, we found that both ASP distance
and social affinity between two users are correlated to their
profile and query similarity. While ASP had a higher corre-
lation for most user properties, affinity was better in one that
changes over short distances. This suggests that the affinity
measure may be better-suited for capturing short-distance



effects in a social graph, whereas ASP may be preferable for
capturing long-distance effects. The second study is based
on the graph induced by two Twitter users mutually men-
tioning each other in their tweets, using the textual simi-
larities between their collected tweets as ground truth. We
found that the affinity between two users is strongly cor-
related with the similarity between their tweets, while ASP
distance in the mention-graph is less strongly correlated. We
speculate that textual similarity between tweets is high in
a short range of distances, and that affinity captures this
better than ASP does.

There is a growing body of work on the impact of social
influence on consumer preferences. Domingos and Richard-
son [10] proposed to model markets as social networks of
consumers, and derived how to optimize profit by focusing
on the most influential consumers, validating their model
against a movie recommendation database; others (for ex-
ample, Kempe et al. [14] and Leskovec et al. [17]) expanded
on this work. Crandall et al. [8] studied the interplay be-
tween social influence and selection (individuals forming as-
sociations with like-minded people) based on a edit history
of Wikipedia articles. Kossinets et al. [15] proposed a tem-
poral notion of distance in social graphs, by quantifying how
long it takes for information to propagate along a given edge.
Cosley et al. [9] subsequently proposed a model of how influ-
ence propagates through a social network. The topic has also
attracted much interest from disciplines other than Com-
puter Science. For example, the medical community has
investigated the correlation between social connections and
public-health issues such as obesity [6], smoking [7], and al-
cohol consumption [20], as well as positive factors such as
happiness [12].

Similarly, there is a large body of work on using sketching
for estimating distances in graphs. Bourgain [3] showed how
any graph can be embedded into a Euclidean space while
preserving distances to a factor of O(logn); Matousek [19]
obtained a tighter analysis of Bourgain’s result. Thorup
and Zwick [24] gave an alternate algorithm for estimating
distances to within a factor of 2k — 1 by using sketches of
size O(nl/k). Sketching is also commonly used in comparing
documents, see for example work by Broder et al. [5, 4].
Spielman and Teng [23] showed how a method known as
graph sparsification can be used to estimate resistance across
edges; improved in follow-on work [22, 1, 16]. Von Luxburg
et al. [18] argued that resistance may not be a good measure
of distance in large graphs.

2. MEASURES OF SOCIAL AFFINITY

As stated earlier, a good social affinity measure should
take into account not only the length of the shortest path
between two nodes (users) but also the number of paths and
their lengths. Some candidate measures are:

1. Max flow (or min cut) between the pair of nodes

2. Commute time (or effective resistance) between the
pair in a random walk

3. Using probabilities of reaching one node from another
in a random walk

Unfortunately, all the above measures are very difficult to
compute efficiently online. An alternative approach is to em-
ploy sketching. It involves a one-time precomputation that
produces a compact “sketch” for each node in the graph (user

in the social network). During the online phase, given a pair
of users, it suffices to read the sketches stored for these users
and perform some simple computation on these sketches. In
the context of this paper, this computation produces the so-
cial distance between two users, or an approximation of it.
Not all distance measures are sketchable. For example, the
shortest-path distance cannot be sketched unless one is will-
ing to make use of a gross approximation. On a graph with
n nodes, if one is willing to obtain a 2k — 1-approximation to
the shortest-path distance, then this can be achieved with a
sketching algorithm that stores a sketch of size O(nl/k) per
node. In recent years, theoretical algorithms research has
produced sketching algorithms for computing the commute-
time between a pair of nodes [23; 16] — however, despite a
low asymptotic time complexity, these algorithms are very
complicated and perhaps have large constants hidden in the
asymptotics. The social affinity measure introduced in this
paper employs sketching to approximate the probability that
the pair of nodes remain connected when a certain fraction
of the edges are removed randomly. We compare this mea-
sure to the approximate shortest-path (ASP) measure [11],
another sketch-based technique for estimating the shortest-
path distance in a graph; ASP has been observed to have
small additive error for certain real-world graphs.

2.1 Affinity based distance measure

The affinity measure introduced in this paper is essentially
a quantification of the probability that a given pair of nodes
remain connected when a certain fraction of the edges are
removed randomly. For example, if 50% of the edges are
removed randomly, then it is reasonable to conclude that
pairs of nodes remaining in the same connected component
have a higher affinity than the ones that got separated. If
there is only one path of a certain length between a pair it
is less likely to survive sampling as compared to a case when
there are many paths of that length. Also, longer paths are
less likely to survive than shorter paths. Thus, our measure
accounts for both length and breadth of the set of paths.
We formalize this intuition below.

Given a graph G, let GG, denote the graph obtained by
sampling the edges of the graph with probability p (so G1 =
G). The affinity, parameterized by p, between a pair of nodes
is defined as follows

DEFINITION 1. Ap(u,v) = probability that uw and v are
connected in Gyp.

One method to get a parameter-free version of affinity is
to look at the mean (or expected) value when p is chosen
from a distribution D such as the uniform distribution on
the range [0, 1].

DEFINITION 2. A(u,v) = Epep[Ap(u,v)]
The above definition captures the mean of A, over a distri-

bution. Alternatively, we could capture the median, or more
generally a percentile quantified by a threshold 6. Formally,

DEFINITION 3. A%(u,v) = 1 —min{p : Ap(u,v) > 0}
Thus A’(u,v) measures the fraction of edges from the

graph that must be removed so that the probability of the
two points being connected is no more than 6.



2.2 Relation to other measures

The following theorems show the connection between the
affinity measure and other connectivity and distance mea-
sures. It has some relations to the shortest-path distance,
to the minimum cut and to strong-connectivity, which is a
variant of minimum cut. Assume that A(u,v) is computed
by drawing p uniformly from [0, 1].

We will use d(u,v) to denote the shortest-path distance
measure between u and v.

DEFINITION 4. (Connectivity) A pair of nodes u,v is k-
connected if there are k edge-disjoint paths between u and v.
The connectivity C(u,v) between a pair u,v is the mazimum
value of k for which the pair is k-connected. It is also equal
to the minimum cut between the pair (by the maz-flow min-
cut theorem).

DEFINITION 5. (Strong Connectivity [2]) A pair u,v is
k-strongly connected if it lies in a subset U of nodes, so
that every pair of nodes in the subgraph induced by U is k-
connected. The strong-connectivity S(u,v) between a pair
u,v is the maximum value of k for which the pair of k-
strongly-connected.

Use Ap(u,v) to denote 1 — Ap(u,v). Similarly for A(u,v)
and A’ (u,v).

THEOREM 6.

S(u,v) 1
Q< logn ) = 1— A(u,v) S1+Cw)

limp—o log ii?;(;)h v) _ d(u,v)
limp—1 log(1 — A,(u,v)) = C(u,v).

04% (u,0) < Afu,v) < 54°(u,0)

PROOF. Look at the minimum cut of size C'(u, v) between
u and v. At sampling probability p, the probability that
none of the edges of the cut are chosen resulting in a dis-
connection is (1 — QD)C(“’”)7 implying that 1 — Ap(u,v) >
(1 — p)©@¥) . Therefore if p is chosen uniformly from [0, 1]
then 1 — A(u,v) = Ep[l — Ap(u,v)] > E[(1 — p)¢®¥)] >

S = p)C D dp =

It is known that if you sample edges with probability p =
Q(log n/S(u,v)) then the pair (u,v) remains connected with
high probability, which means that A, (u,v) is close to 1 for
such p [2, 13]. This implies 1 — A(u,v) < O(logn/S(u,v)).

Note that in the lim,—_0, the probability that all the edges
on the shortest path between u and v are sampled is pd(“’”),
and this is the least set of edges that need to be sampled
and hence is a dominating factor in the probability of staying
connected.

Ap(u,v) =37 N(i).p"(1—p)™ " where N (i) is the num-
ber of edge subsets of size ¢ in which v and v are connected.
Asp — 0, loEdzten)

og p
N () is non-zero which is d(u,v).

A similar argument holds when p — 1. In this case

the smallest set of edges that disconnects u and v has size

is equal to the minimum ¢ for which

C(u,v). So (1 —p)°™?) is a dominating factor in the prob-
ability of disconnection.

At sampling probability h = A% (u,v), An(u,v) = 6. So at
any probability p < h, Ap(u,v) > 6 implying that A(u,v) =
Ep[Ay(u,v)] > h8 = 0A°% (u,v).

Recall that G, denotes a subgraph of G where each edge is
sampled with probability p. Note that for any integer x, Gp.
stochastically dominates the union of x independently sam-
pled graphs G, because the union will contain each edge
with probability at most pz implying that Ap.(u,v) is at
most the probability that © and v are disconnected in all the

copies, which happens with probability (Ap(u,v))*. Since
Ap(u,v) is decreasing in p, we have A(u,v) = E, [A (u,v)] <
f_71 (Apz(u,v) d:r<f_71 1— H)Q”dxge (“U) |

2.3 Affinity Sketching Algorithm

We now show that the affinity measure is easily sketchable.
The algorithm computes a short sketch (a summary) per
node as a precomputation offline. At runtime the sketch of
two nodes is used to estimate their affinity A(u,v).

The rough idea of the off-line sketch generation phase is to
sample the edges of the graph at different probabilities and
record the connected component a node belongs to. The
probabilities could be values chosen geometrically such as
1, ;7 T 87 -+ or from some other discrete set of values be-
tween 0 and 1. For each value of probability we can sample
the edges of the graph and record the connected component
of each node (e.g. the ID of a canonical “representative”
node in the connected component). We repeat this for all
probabilities, a few times for each value. The sketch C(u)
is simply the vector (or matrix) of component IDs for this
node u over all these sampling experiments.

At runtime, to estimate A’(u,v) we retrieve C(u) and
C(v). For each sampling probability find the fraction of
times they were in the same component. We find the two
consecutive sampling probabilities p and p’ that cross over
the threshold 6 (one can ensure that these fractions are
monotonically decreasing in the sampling probability by mak-
ing the sampled sets as a telescoping sequence of sets one
contained in the next one). A?(u,v) is concentrated between
pand p'.

Now, let us give a formal definition of an affinity sketch.
Let (V, E) be a social graph with vertex (user) set V and
edge (relationship) set E, such that E C V x V. For sim-
plicity, we assume that the graph is undirected and that the
edge set reflects this, i.e. (u,v) € E = (v,u) € E.

We write Conn(v,v’,V, E) to denote that v and v’ are
connected in graph (V,E). We define a partitioning of a
(sub)graph (V, E) into connected components as follows:

Part(V, E) = {V4,---, V4} such that

. iu---uV, =V

2.V, Vist. Vi £V : VinV; =10

3. VViVu,v" € V; : Conn(v,v’,V, E)

4. YV, Vist. Vi £ V; : Yo € Vi, 0" € V; : =Conn(v,v',V, E)
We define the component of a vertex v given a partitioning
of a (sub)graph (V, E) as follows:

Comp(v,V, E) = V; where V; € Part(V, E) Av € V;

The sketch construction phase of our algorithm takes three
parameters: integers ¢ and r and a sampling probability



vector p1,--- ,pr. Given these parameters, we generate a
matrix of edge subsets

Eiqhw - By

Eq1 -+ Eqr

such that £ C E; ;1 C --- C FE;, (i.e. each row of the matrix
is a telescoping sequence of subsets) and |E; ;| = p;|E| (the
cardinality of E; ; is p; that of the cardinality of the full
edge set E). Using this definition, we define the sketch C' of
a vertex v to be the matrix

ci,1 0 Cipr

Cq,1 "7 Cgpr

where ¢; ; = Comp(v,V, E; ;), i.e. based on the graph par-
titioning induced by the edge subset matrix defined above.

In order to describe how sketches are used to estimate
the affinity between two vertices, we employ Iverson bracket
notation: [a = 0] is 1 if a = b and 0 otherwise, and [a < b]
is 1if a < b and 0 otherwise. Using this notation, we define
the affinity estimates A and AY of two vertices v and v’ with
sketch matrices C' and C’ to be as follows:

T q
Av, ') = L D> Jleis =iyl
qr

j=1i=1
fle(vv/)—li 9<li[c-—c/—-]
5 = r 1,5 — Ci,j

j=1 i=1

By setting the sampling probabilities p1, - - - , pr to the val-
ues 1, (1 —¢), (1 —¢€)?, ...(1 — )" where r = O(logm/¢) one
can obtain a 1 4 € approximation to the affinity between a
pair of nodes.

THEOREM 7. There is an algorithm that estimates A° (u,v)
between any pair of nodes (u,v), for any constant 0 within
a 1+ € factor with high probability. using sketches of size
O(logmlogn/e?) per node. The sketches can be computed
in time O(m/€?).

PROOF. Let h = A%(u,v) be the sampling probability at
which the probability that u and v are connected is 6. If a
sampling probability p is more than h(1 + €) then we will
argue that A,(u,v) > 6(1 + Q(e)): Note that the graph G,
stochastically dominates the union of the graph G, and Gep,
as the sampling probability in the former is no lower than
the sampling probability in the union. So A,(u,v) is at least
the probability that u and v are connected in either of G}, or
G, which is 1 — (A (u, v))(Aen(u,v)). But again the union
of (1 + ¢)/e independent copies of Gep stochastically domi-
nates GGy, as the sampling probability in the union is no lower.
So Ap(u,v) > (Acn(u,v)) 9/ This gives, Ap(u,v) >
1 — (An(u,0) /049 > Ay (u,0)(1 4 Q(e) > (1 + Q(e)).
Since each sampling probability is repeated ¢ = ©(logn/e?)
times, by Chernoff bounds, the observed fraction of times the
pair stays connected will be more than 6 with high proba-
bility. Similarly we can argue that if p < h(1 — €) then the
observed fraction will be less than 6. Therefore our sam-
pling probability vector will contain two probability values
that sandwich h within a 1 + O(e¢) factor. By appropriately
adjusting the constants in the O(.) notation, we get the the-
orem statement. []

2.4 Affinity Implementation

We built single-machine implementations of both the off-
line and the on-line phase of the affinity sketch algorithm.
The off-line phase consists of several steps: First, we map
user IDs into a dense integer space suitable as array indices.
Second, we load the edge set of the graph into an in-memory
array and permute this array, either uniformly at random
or biased by the weight of each edge. Third, we perform
q iterations, each computing one row of the sketch matrix
C(v) for each vertex v. Each iteration starts with an empty
edge set, and consumes the content of the permuted edge
array in order, adding each new edge to a union-find forest.
Whenever a sampling threshold as specified by the vector
p1,--- ,pr is crossed, we write the connected-component 1D
of each node v (which corresponds to a cell ¢;,; in C(v))
to disk, eventually producing ¢ X r streams of connected
component IDs. Fourth, we merge these ¢ X r streams into
a single stream of sketches, each sketch being a matrix of
q X r component IDs. The online phase, given a pair of user
IDs, simply converts them into two integers using the same
mapping as the off-line phase, and uses each integer to seek
to the right position of the sketch file and to read the sketch
from disk.

2.5 Approximate Shortest Path

In Section 3, we will compare the effectiveness of the affin-
ity measure to that of the approximate shortest path mea-
sure, another sketch-based measure of distances in graphs
[11]. The ASP measure is a variant of the algorithm intro-
duced by Thorup and Zwick [24].

The idea behind the approximate shortest path (ASP) al-
gorithm is to sample, in the off-line phase, a small number
of sets of “seed” nodes in the graph. Then, for each node in
the graph, find the closest seed node in each of these seed
sets. The sketch for a node simply consists of the closest
seeds (one per seed set), and the distance to each closest
seed. Then, in the online computation, one can use the dis-
tance to these closest seeds to estimate the distance between
a given pair of nodes by checking for a common seed between
the two sketches. Given a pair of nodes u and v one can es-
timate the distance between them by looking for a common
seed in their sketches. If w is a common seed in the sketch
of v and v then the distance can be estimated by adding up
the distances to the common seed w.

3. EXPERIMENTS

We performed two studies to evaluate the effectiveness of
the Affinity measure and to compare it to ASP distance. The
first study was conducted on the Hotmail email exchange
graph, and used user-supplied demographic information as
well as Bing query history as its ground truth; the second
study was conducted on the Twitter mention-graph, and
used the text of tweets as its ground truth.

3.1 The Hotmail experiment

Our first experiment is based on three data sets:

1. An anonymized data set containing a pair of user ID
hashes for any two email users (at least one of which
is a Hotmail user) that had a mutual email exchange
(that is, both users sent email to one another). This
data set induces a graph with 312,548,443 nodes and
574,434,516 undirected edges, implying an average de-
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gree of about 3.676. The graph is highly-connected,
with 309,065,428 of the nodes (close to 99%) being
part of a giant connected component. The data was
collected between October 2007 and April 2010, and
represents a sample of the email traffic (condensed to
a hash of the sender’s and receiver’s email address) go-
ing through Hotmail during that timeframe. Assuming
that user u sent a messages to user v and v sent b mes-
sages to u, the edge (u,v) in the graph has a weight of
min{u, v} associated with it.

2. A data set containing basic, self-reported demographic
information (including country of residence, primary
language, and age) for a subset of 151,265,301 Hotmail
users in the first dataset.

3. A data set containing the Bing query history for a
subset of 32,212,592 users in the second data set.

We furthermore restricted this set of 32,212,592 users cov-
ered by all three data sets (that is, for whom we have email
exchange history, demographic information, and Bing query
history) to contain only users who had issued at least five
queries so as to be able to make meaningful comparisons be-
tween two users’ query histories, and we restrict who had a
minimum of two email partners in order to compensate for
the vagaries of email traffic sampling. This left us with a set
of 10,974,103 “candidate” users.

Figure 1 shows the distribution of the top twenty coun-
tries of residence of Hotmail users (the top twenty countries
being those with at least 1% of users in the overall data set).
The horizontal axis shows the country, ordered by decreas-
ing frequency in the overall data set; the vertical axis shows
the percentage of users from a given country. The blue curve
plots the distribution of the 151 million users for whom we
have demographic information; the green curve shows the
distribution of the 32 million users for which we also have
queries; and the red curve shows the distribution of the
11 million “candidate” users from which we sampled pairs.
While the largest portion of Hotmail users resides in the
United States, a surprisingly large portion resides in Latin
America (Mexico, Brazil, Argentina, Columbia, Venezuela,
Peru, and Chile). It is also worth noting that users from
the US are overrepresented in the users-with-queries set rel-
ative to their representation in the overall data set. This
is due the fact that Bing is particularly popular in the US.
Users from the US and Mexico yet more overrepresented in
the candidate set, suggesting that they either issue more
queries or maintain a larger set of email partners.

Figure 2: Language distribution of
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Figure 3: Age distribution of Hot-
mail users

Figure 2 shows the distribution of the top ten primary
languages of Hotmail users (the top ten languages being
those with at least 1% of users in the overall data set), us-
ing the same encoding as the previous figure. The largest
portion of users in the overall set are Spanish-speakers (con-
sistent with the popularity of Hotmail in Latin America and
Spain), while the users-with-queries and candidate sets are
dominated by English-speakers. We attribute this to the
overrepresentation of US users in the candidate set.

Figure 3 shows the distribution of (self-declared) ages of
Hotmail users, using the same encoding as the previous two
figures. The graph shows only ages from 10 to 90 years,
which accounts for 98.4% of the overall user base. The over-
all user base is dominated by people in their early twenties,
users in the users-with-queries and candidate sets are slightly
older. Notice the peaks at ages that are a multiple of ten,
and minor peaks at multiples of five, which suggests that
users round their ages before reporting.

We used the implementation described in section 2.4 to
compute sketches for each node in the email exchange graph,
using a machine with a dual-core AMD Opteron 285 proces-
sor clocked at 2.6 GHz, 16 GB of RAM, and a RAID-5 ar-
ray composed of eight 1 TB, 7200 RPM Seagate Barracuda
SATA drives. We set ¢ to 10 and r to 100, yielding sketches
of 4000 bytes per node. We computed three sets of sketches:
one where edges were permuted uniformly at random, one
where edges were permuted biased by their weight (the count
of email exchanges), and one where edges were permuted
biased by the log of their weight. The computation took
14 days. Most of the time was spent on disk I/O; indeed,
the final merge phase (which merged a thousand files into
a single 1.13 TB file) took 11 days. We also ran a variant
of this program that performs the same computation, but
records statistics instead of writing out sketches. Running
this variant over the same input data took slightly less than
22 hours.

Instead of choosing a geometric progression for the sam-
pling probability vector pi,--- ,p, as suggested in in Theo-
rem 7, we calibrated it such that the affinity value between
a random pair of nodes is uniformly distributed in the range
[0,1].

We randomly sampled 5 million pairs of users from the
set of 10,974,103 candidate users, and computed the ASP
distances and affinities between each pair. Using the hard-
ware described above and the 1.13 TB sketch file produced
by the off-line phase, computing the affinity value for each
pair of Hotmail user IDs takes about 17 milliseconds; this
time is dominated by the cost of performing two disk seeks.



900,000

800,000

700,000

600,000

500,000

400,000 -

300,000 -

200,000 -

100,000 -

O m

2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 4: Distribution of ASP distances for the sam-
pled 5 million pairs of users

1.0 0.8 0.6 0.4 0.2 0.0
0.15 : . :
—ASP measure
—Affinity measure
0.10 \
0.05
0.00 T T T
0 5 10 15 20 25

Figure 6: Fraction of pairs of users in same country
as a function of ASP or affinity measure
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Figure 8: Average age difference between pairs of
users as a function of ASP or affinity measure
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Figure 7: Fraction of pairs of users speaking same
language as a function of ASP or affinity measure
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Figure 9: Average cosine similarity of queries of
users as a function of ASP or affinity measure



negative A° A A° A A A
ASP distance | unweighted | unweighted | weighted | weighted | log-weighted | log-weighted
Country similarity 0.0828 0.0020 0.0020 0.0255 0.0258 0.0179 0.0181
Language similarity 0.1794 0.0324 0.0329 0.0430 0.0439 0.0424 0.0432
Age similarity -0.0290 0.0241 0.0242 -0.0110 -0.0110 -0.0015 -0.0011
Query similarity 0.0616 0.0200 0.0205 0.0155 0.0161 0.0186 0.0191

Table 1: Correlation coefficient between similarity of pairs of users and their proximity in the email exchange

graph.

Figure 4 shows the distribution of ASP distances. The mode
of the distribution is at distance 10, and the bulk is between
5 and 15. It should be pointed out that in earlier work we
found ASP to overestimate distance by a constant additive
amount (about 2 to 3 in the case of undirected web graphs),
so we assume the distribution of true distances to be shifted
accordingly. Figure 5 shows the distribution of A% affinity
values (for 6 = 0.5) of the sketches for the graph with un-
weighted edges. The mode of the distribution is at 0.82.
Given that the sampling probability vector pi1,--- ,p, was
calibrated to produce a uniform distribution of affinity val-
ues across the entire set of 312 million users in the email
exchange graph, the non-uniformity of the distribution in
Figure 5 indicates that our set of candidate users is biased
towards users with affinity towards each other.

Figure 6 shows the fraction of pairs of users (drawn from
the candidate set) residing in the same country, as a func-
tion of the distance and affinity between the pair of users.
The vertical axis shows the fraction of pairs coming from
the same country; the bottom scale of the horizontal axis
shows ASP distance values (in increasing order) whose dis-
tribution is plotted by the blue curve; the top scale shows
the estimated A? affinity values (in decreasing order, for
6 = 0.5 and based on the sketches formed using unweighted
edges) whose distribution is plotted by the red curve. Each
(z,y) point of a curve shows the fraction y of all pairs at
distance/affinity « who reside in the same country. In order
to reduce noise, we restricted the curves to only those dis-
tance and affinity values with at least 1000 (out of 5 million)
pairs of users. Both distance and affinity measures are dis-
crete, but since the set of possible distance values is smaller
than the set of possible affinity values, the affinity curve ap-
pears smoother. The ASP curve is far more slanted than the
affinity curve, suggesting that the correlation between ASP
and country of residence is far stronger than between affin-
ity and country. Indeed, this is borne out by the correlation
coefficients shown in Table 1.

Figure 7 shows the fraction of pairs of users speaking the
same language, using the same encoding as the previous fig-
ure. Again, we restricted the curve to points with at least
1000 pairs of users. As in the previous figure, the ASP
curve is far more slanted than the affinity curve, suggesting
stronger correlation between distance and language than be-
tween affinity and language. This is also borne out by the
correlation coefficients in the second row of Table 1.

Figure 8 shows the age difference between pairs of users
as a function of the distance and affinity between the pair
of users. The vertical axis plots the age difference, the hor-
izontal axis plots distance and affinity as it did in Figures 6
and 7. Each (z,y) point of a curve shows the average age dif-
ference y of all pairs at distance/affinity z. Again, the curve

only shows points with at least 1000 pairs of users so as to
reduce noise. The graph has several features worth pointing
out: First, note that the vertical axis does not start at 0, but
rather at 14 years — the average age difference between pairs
of users is ranges between about 15 and 18 years regardless
of distance or affinity. Putting it differently, email is a social
medium that connects generations. Second, age difference
and affinity are negatively correlated — users with high affin-
ity are on average closer in age. Third, the distance curve is
non-monotonic — there is no clear relationship between the
ASP distance of two users in the email graph and their age
difference. Referring to the third row of Table 1, the corre-
lation coefficients of ASP distance and age vs. affinity and
age are quite low and fairly close to each other, with ASP
having a slight edge.

The previous three figures examined the connection be-
tween two users’ demographic background (namely country,
language and age) and their distance and affinity in the email
exchange graph. Next, we examine whether the distance or
affinity between two users is predictive of shared interests.
To that end, we aggregate all the queries issued by a given
user into a bag of terms, and we weigh each term in the bag
by its tf-idf value [21]. We compute the cosine similarity
between the tf-idf weighted queries for each of the 5 million
pairs of users, and we treat this similarity as a proxy of the
similarity of their interests. Figure 9 depicts the results of
this experiment. The vertical axis plots the similarity be-
tween a pair’s queries, the horizontal axis plots distance and
affinity as it did in the previous three figures. Each (z,y)
point of a curve shows the average similarity y of all pairs
at distance/affinity . As in Figures 6 and 7, the ASP curve
is more slanted than the affinity curve, suggesting stronger
correlation between distance and query similarity than be-
tween affinity and query similarity. This is also borne out
by the correlation coefficients in the fourth row of Table 1.

Table 1 shows the correlation coefficient between user de-
mographic and interest profiles and the different types of so-
cial proximity measures we are considering in this study. In
addition to the approximate shortest path distance, we are
considering six different variants of the affinity measure: A°
(for @ = 0.5) and A, computed on the email exchange graph
with unweighted edges, edges weighted (and sampled) by the
number of reciprocal email exchanges, and edges weighted by
the logarithm of that number. Consistent with Figures 6-9,
we find that the correlation coefficients of the ASP measure
are higher than those of A? and A for all user characteristics.
The weighted versions of affinity also have a higher correla-
tion than the unweighted ones for all characteristics except
age. This might indicate that age changes differently over
the network than language or country. Language and coun-
try probably change over long distances, whereas age per-



negative A° A A° A A A
ASP distance | unweighted | unweighted | weighted | weighted | log-weighted | log-weighted
Country similarity 75.27 6.67 10.00 15.00 15.18 16.27 15.08
Language similarity 81.55 13.50 13.71 12.29 12.19 11.46 11.68
Age similarity 13.81 7.09 7.33 7.86 8.46 15.00 11.00
Query similarity 23.69 6.90 7.32 10.33 9.47 7.15 7.64

Table 2: Statistical significance of the correlations: Ratio of correlation for the same pair to correlation for

random pairs.

haps changes more quickly; that is, the ball around a point
with similar age is probably smaller than the ball around
a point with the same language or country. This could be
an indication that the unweighted variants of affinity are
better measures to capture “small” social distances whereas
ASP is better for “large” social distances. This is consistent
with our earlier observation that ASP has a higher percent-
age error on shorter distances [11]. It is an open question
of how well precise shortest-path distance would perform,;
unfortunately we do not know how to perform five million
precise shortest-path computations within a reasonable time
frame.

While it may seem that the correlation coefficients in Ta-
ble 1 are small, we show that they are much higher than the
values we would expect if the properties were completely
uncorrelated. In Table 2, we compare the correlation coef-
ficients computed in Table 1 to the correlation coefficients
between the same properties for two independently chosen
sequences of 5 million pairs. For example, to compute the
correlation coefficient between affinity and cosine similarity
(Ca,es), we computed it between the vector of cosine sim-
ilarities and affinities on the same set of 5 million pairs.
Now we compute it between the vector of cosine similari-
ties for one random set of pairs and vector of affinities for
another random set of pairs (C7 .,). We compute the ratio
|Ca,cs|/|Ch,cs|- If this ratio is high it means that the values
of affinity and cosine similarities for the same pair are much
more correlated than for two random pairs. Table 2 shows
this ratio for the different pairs of properties. As can be
seen, the ratio is about 7 to 16 for the affinity variants and
about 13 to 80 for the ASP measure, which means that the
statistical significance of the correlations is not negligible.

3.2 The Twitter experiment

Our second experiment is based on one month worth of
Twitter postings (tweets), 1,475,522,405 in total. Twitter is
a popular micro-blogging service that allows users to post
messages up to 140 characters in length. The Twitter com-
munity follows a number of stylistic conventions when com-
posing tweets, one of them the convention of mentioning
other Twitter users by prefixing their Twitter user IDs with
the @ character. A single mention in itself does not indicate
a social connection between the mentioner and the men-
tioned, but we assert that if two users mutually mention
each other, a social bond does indeed exist.

We first ran an initial data extraction process on our col-
lection of tweets that identified all pairs of (distinct) users
mutually mentioning each other at least once during August
2011, and extracted all tweets (whether containing mentions
or not) authored by these users. This extracted 1,265,660,845
tweets authored by 10,410,144 users.

Next, we constructed the mention-graph using the follow-
ing process: First, we constructed an intermediate weighted
directed graph containing a vertex for each user whose tweets
we extracted during the data extraction phase, and an edge
(u,v) with weight w if user v mentioning user v a total of
w times. Next, we constructed the actual mention graph,
an undirected weighted graph, by taking the vertex set of
the directed graph, and introducing an edge between v and
v with weight mean (w1, w2) if the directed graph contained
an edge (u,v) with positive weight w; and an edge (v,u)
with positive weight w2. We constructed one variant of the
mention graph using the arithmetic mean of weights, and an-
other variant using the geometric mean. The mention-graph
contained 10,410,144 vertices and 176,551,621 edges.

As in the previous experiment, we drew a random sample
of 5 million pairs of users, and computed affinity values and
ASP distances between each pair of users in the mention
graph. We also computed the cosine similarity between the
tf-idf vectors of the collected tweets of each pair of users,
and we computed correlation coefficients between the graph-
based measures and the text-based ground truth. 880,564 of
the 5,000,000 pairs (or 17.6% of all sampled pairs) were in
separate connected components of the mention-graph, with
no path between them. These pairs have an affinity value of
0 and an ASP distance of co.

In computing affinity values and ASP distances, we exper-
imented with different transform functions for edge weights.
In the case of affinity, where heavier edges are more likely
to be included in G}, and thus denote closeness, we tried the
constant transform T'(w) = 1 (effectively ignoring weights),
the identity transform 7'(w) = w (directly using the mean
of the mention frequency), and the logarithmic transform
T(w) = logw (discounting excessive “mutual admiration”).
In the case of ASP distance, where edge weight denote social
distance, we tried the constant transform T'(w) = 1 (effec-
tively ignoring weights), the reciprocal transform T'(w) = 1,
and the reciprocal logarithmic transform T'(w) = %

Figure 10 shows the distribution of ASP distances com-
puted using the constant edge weight transform (i.e. an
unweighted graph); Figure 11 shows the distribution of A°
affinity values (for & = 0.5) of the sketches for the graph
with unweighted edges. In both figures, we do not show
the 880,564 disconnected pairs of users in the sample. The
mode of the ASP distance distribution is at distance 9, and
the bulk is between 6 and 12.

Figure 12 is the analogous version of Figure 9 for the T'wit-
ter mention graph. We compute the cosine similarity be-
tween the tf-idf weighted tweets of each of the 5 million pairs
of users, and we treat this similarity as a proxy of the simi-
larity of their interests. The vertical axis plots the similarity
between a pair’s queries, the horizontal axis plots distance
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Figure 10: Distribution of ASP distances for the
sampled 5 million pairs of users in the Twitter graph
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Figure 11: Distribution of affinities for the sampled
5 million pairs of users in the Twitter graph
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Figure 12: Average cosine similarity of queries of
users as a function of ASP or affinity measure

and affinity. Each (z,y) point of a curve shows the average
similarity y of all pairs at distance/affinity x. Unlike what
we observed for the Hotmail graph, the affinity curve is more
slanted than the ASP curve, suggesting stronger correlation
between affinity and tweet similarity than between distance
and tweet similarity. This is also borne out by the corre-
lation coefficients in Table 3. The table shows correlation
coefficients between textual cosine similarity (our ground
truth) and different variants of our graph-distance measures.
Specifically, it explores the impact of using an arithmetic vs.
a geometric mean when combining edge weights during the
mapping from a directed to an undirected graph; the im-
pact of multiple edge weight transforms; and of course the
distance measure itself — negated ASP distance, A? affinity,
and A affinity. We can draw several conclusions from the
data presented in this table:

e Similarity is much more highly correlated to affinity
than to ASP distance.

e For affinity measures, the identity transform performs
slightly better than the other transforms.

arithmetic mean | geometric mean
ASP, T(w) =1 0.216 0.216
ASP, T(w) = £ 0.206 0.207
ASP, T(w) = 70 0.209 0.210
A T(w) =1 0.472 0.468
A% T(w) =w 0.489 0.487
A% T(w) = logw 0.488 0.484
A T(w) =1 0.472 0.469
A, T(w)=w 0.492 0.490
A, T(w) = logw 0.489 0.486

Table 3: Correlation coefficient between similarity
of pairs of users and their proximity in the Twitter
mention graph.

e In the context of the affinity measures, combining edge
weights using their arithmetic mean is slightly better
than using their geometric mean.

e The A affinity measure performs slightly better than
the AY affinity measure.

4. CONCLUSION

In this paper, we introduced “social affinity” as a new mea-
sure of how robustly two users are connected within a social
network. Intuitively, affinity captures how robust the con-
nection between a pair of users is to random deletion of
edges in the graph. The affinity value can be efficiently es-
timated through a sketch-based algorithm, which requires
only two table lookups to retrieve the sketch for each user,
plus a simple computation on the pair of sketches. We com-
pare this new affinity measure against “approximate short-
est path” distance, another sketch-based measure estimating
the shortest-path distance between two nodes in a graph.
We evaluated our measure on two social graphs. First, we
used a sampling of the Hotmail email exchange graph as our
social network, and user profiles and query history as in-
dependent measures of user similarity. We found that both
ASP distance and social affinity between two users are corre-
lated to their profile and query similarity. While ASP had a
higher correlation for most user properties, affinity was bet-



ter in one that changes over short distances. This suggests
that the affinity measure may be better-suited for capturing
short-distance effects in a social graph, whereas ASP may
be preferable for capturing long-distance effects. Second,
we constructed a Twitter mention graph from one month
worth of tweets, and the collection of tweets written by a
given user as the ground truth. We found that the textual
similarity between two users’ tweets was strongly correlated
to their affinity, and somewhat more weakly correlated to
their approximate distance in the mention-graph.

We hypothesize that some of the weaknesses we observed
for ASP are due to the fact that ASP is an approximation of
the true distance. We are still investigating whether it is rea-
sonably feasible to compute precise shortest path distances
for the five million pairs we used to compare our measures.
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