Less is More: Sampling the Neighborhood Graph Makes
SALSA Better and Faster

Marc Najork
Microsoft Research
Mountain View, CA, USA
najork@microsoft.com

ABSTRACT

In this paper, we attempt to improve the effectiveness and
the efficiency of query-dependent link-based ranking algo-
rithms such as HITS, MAX and SALSA. All these ranking
algorithms view the results of a query as nodes in the web
graph, expand the result set to include neighboring nodes,
and compute scores on the induced neighborhood graph. In
previous work it was shown that SALSA in particular is sub-
stantially more effective than query-independent link-based
ranking algorithms such as PageRank. In this work, we show
that whittling down the neighborhood graph through con-
sistent sampling of nodes and edges makes SALSA and its
cousins both faster (more efficient) and better (more effec-
tive). We offer a hypothesis as to why “less is more”, i.e.
why using a reduced graph improves performance.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process, selection process

General Terms

Algorithms, Measurement, Experimentation

Keywords

HITS, MAX, SALSA, link-based ranking, retrieval perfor-
mance, web search

INTRODUCTION

One of the fundamental problems in Information Retrieval
is the ranking problem: how to arrange the documents that
satisfy a query into an order such that the documents most
relevant to the query rank first. Traditional ranking algo-
rithms proposed by the pre-web IR community were mostly
based on similarity measures between the terms (words) in
the query and the documents satisfying the query.

In addition to structured text, web pages also contain hy-
perlinks between web pages, which can be thought of as

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSDM 2009 Barcelona, Spain

Copyright 2009 ACM 978-1-60558-390-7 ...$5.00.

Sreenivas Gollapudi
Microsoft Research
Mountain View, CA, USA
sreenig@microsoft.com

242

Rina Panigrahy
Microsoft Research
Mountain View, CA, USA
rina@microsoft.com

peer endorsements between content providers. Marchiori
suggested early on to leverage incoming hyperlinks as an-
other feature in ranking algorithms [12], and the simplistic
idea of merely counting in-links quickly evolved into more
sophisticated link-based ranking algorithms that take the
quality of an endorsing web page into account.

Link-based ranking algorithms can be grouped into two
classes: query-independent ones such as in-link count or
Google’s famous PageRank [17], and query-dependent ones
such as Kleinberg’s HITS [7, 8] and Lempel & Moran’s
SALSA [9, 10]. The aforementioned algorithms were de-
scribed in seminal papers that inspired a great deal of sub-
sequent work; however, there has been little published work
on the effectiveness (that is, the accuracy of the ranking)
of these algorithms. A recent study [15] using a 17-billion
edge web graph and a set of 28,043 queries with partially
judged results concluded that SALSA, a query-dependent
link-based ranking algorithm, is substantially more effective
than HITS, PageRank and in-degree, although it is not as
effective as the state-of-the-art textual ranking algorithm.

HITS, SALSA and similar algorithms extend the result set
of a query to a neighborhood graph, and then compute scores
on that graph. In this paper, we study how the method for
selecting the vertices and edges in the neighborhood graph
affects the effectiveness of the ranking algorithm. In par-
ticular, we study the effect of using consistent sampling to
reduce both the number of vertices and of edges in the graph.
We find that reducing the size of the graph in this way not
only improves efficiency (which is to be expected, since the
graph is smaller), but also effectiveness. Our experiments
were performed on the same data set that was used in pre-
vious studies [14, 15, 5, 16].

The remainder of this paper is structured as follows: sec-
tion 2 describes the data sets and effectiveness measure used
in this study; section 3 reviews the HITS, MAX and SALSA
algorithms; section 4 introduces a method for fixing neigh-
borhood graphs using consistent sampling of the neighboring
vertices of each result. Section 5 describes a space-efficient
representation of the approximate neighborhood of each ver-
tex in the web graph, which can be computed off-line and
then used at query time to compute scores. SALSA com-
puted on the approximate neighborhood graph is more effec-
tive than SALSA computed on the neighborhood graph defi-
nitions of sections 3 and 4. We investigate this phenomenon
in section 6, resulting in two new definitions of neighbor-
hood graphs. Section 7 offers a hypothesis as to why “less is
more”; i.e. why sampling the neighborhood graph improves
effectiveness. Finally, section 8 offers concluding remarks.

2. DATA SETS AND EFFECTIVENESS MEA-

SURE

The experimental evaluations of the algorithms described
in this paper are based on the two data sets used in previous
work [14, 15]: a large web graph and a substantial set of
queries with associated results, some of which were labeled
by human judges.

The web graph was obtained by performing a breadth-first
search web crawl that retrieved 463,685,607 pages. These
pages contain 17,672,011,890 hyperlinks (after eliminating
duplicate links embedded in the same web page), which refer
to a total of 2,897,671,002 distinct URLs. The mean out-
degree of a crawled web page is 38.11; the mean in-degree of
discovered pages (whether crawled or not) is 6.10. The graph
was not “cleaned up” in any way; in particular, no attempts
were made to identify and remove spam web pages.

Our query set was produced by sampling 28,043 queries
from the Live Search query log, and retrieving a total of
66,846,214 result URLs for these queries, or about 2,838 re-
sults per query on average. It should be pointed out that
our web graph covers only 9,525,566 pages or 14.25% of the
result set. 485,656 of the results in the query set (about 17.3
results per query) were rated by human judges as to their
relevance to the given query using a six point scale, the rat-
ings being “definitive”, “excellent”, “good”, “fair”, “bad”, and
“detrimental”. Results were selected for judgment based on
their commercial search engine placement; in other words,
the subset of labeled results is biased towards documents
considered relevant by pre-existing ranking algorithms. Our
performance measure treats unlabeled results as “detrimen-
tal”. Spot-checking the set of unlabeled results suggests that
this assumption is indeed reasonable. In the following, given
a rank-ordered vector of n results, let rat(i) be the rating
of the result at rank ¢, with 5 being “definitive” and 0 being
“detrimental” or “unlabeled”.

We use the normalized discounted cumulative gain [6] as
a measure of ranking effectiveness.! NDCG is a non-binary,
graded measure that considers all documents in the result
set, but discounts the contribution of low-ranking docu-
ments. It is normalized to range between 0 and 1; higher
values indicate better performance. NDCG is actually a
family of performance measures. In this study, we used the
following instantiation: We define the discounted cumulative
gain at document cut-off value k£ to be:

k
_ 1 rat(i) _
beGak = ; log(1 + 1) (2 t 1)

The normalized discounted cumulative gain NDCGQFk of a
scored result set is defined to be the DCGQF of the result set
rank-ordered according to the scores divided by the DCGQk
of the result set rank-ordered by an “ideal” scoring function,
one that rank-orders results according to their rating. The
interested reader is referred to [15, 13] for more detailed
definitions of NDCG and other measures.

'In addition to NDCG, we also evaluated all the algorithms
described in this paper using the average precision and the
reciprocal rank measures. We did not include these results
for reasons of space, and using these alternative measures
would not lead to any qualitatively different conclusions.

243

3. AREVIEW OF HITS-LIKE RANKING AL-
GORITHMS

The World Wide Web consists of web pages intercon-
nected by hyperlinks. Web pages can be viewed as vertices
in a graph, and hyperlinks as directed edges from one page
to another. Marchiori [12] suggested that a hyperlink point-
ing to a page may be viewed as an endorsement of that page,
and that one could therefore use the in-degree of a web page
(the number of hyperlinks referring to it) as an estimate of
its quality. Page et al. [17] refined this very basic notion
of link-based endorsement to take both the out-degree and
the quality of referring pages into account — referrals from
high-quality pages provide stronger endorsement, and pages
split their endorsement ability among the pages they refer
to.

Both in-link count and PageRank are query-independent
features: Their value is independent of any particular query,
and they are estimates of page quality. In contrast, Jon
Kleinberg’s Hypertext Induced Topic Selection (HITS) algo-
rithm computes an estimate of the relevance of a web page
to a given query; in other words, it is a query-dependent fea-
ture. HITS (and the many algorithms that sprang from it)
takes the set of documents that satisfy a query (the result
set) as input, extracts a neighborhood graph from the full
web graph consisting of the result set vertices and (some
of) their immediate neighbors, and (some of) the edges that
connect them, and computes relevance scores for the results
based on the neighborhood graph.

Putting it more succinctly, given a web graph (V, E) with
vertex set V and edge set £ C V xV and aresult set R C V'
of vertices (web pages or documents) that satisfy the query,
algorithms in the HITS family perform two steps:

1. Fix a neighborhood graph (Vg, Er) with vertex set Vg
where R C Vg C V) and edge set Er where Er C E
and E C Vg x Vg.

2. Compute relevance scores for the vertices in R using
the neighborhood graph (Vr, ERr).

In order to describe steps (1) and (2) of HITS and its
cousins MAX and SALSA more formally, it is helpful to
introduce some notation first:

Predecessor and successor sets: Given a vertex v €
V', we define its predecessor (or “in-linker”) set to be the set
of vertices that link to v:

Iv)={ueV:(uv) € E}

Likewise, we define v’s successor (or “out-linker”) set to be
the set of vertices that v links to:

O(w)={ueV:(vu) € E}

Uniform random sampling: Given a set X, we write
Un(X) to denote a set of n elements drawn uniformly at
random from X; U, (X) = X if | X| < n.

In Kleinberg’s original formulation of HITS, step (1) of the
above meta-algorithm (fixing the neighborhood graph) was
defined by the following method, which we will call UR(a)
(“Uniform random sampling”):

Ve = |J {u} W a(I(w)UO(u)

u€ER

Er={(u,v) € E:u€VrAvEVgr}

Kleinberg also suggested to only include “transverse edges”
into Er, i.e. hyperlinks referring to web pages on a different
web site. In previous work [14, 15], we explored how different
definitions of what constitutes a transverse edge affect the
effectiveness of HITS and SALSA. In this paper, we consider
an edge to be transverse if the hyperlink refers to a web page
in a different domain than the referring page, and we assume
that the edge set E only contains transverse edges.

In the above definition, the neighborhood vertex set Vg
depends not only on the result set R, but also on the sam-
pling parameter a. Kleinberg’s original motivation for sam-
pling the predecessor set was to limit the size of the neigh-
borhood graph: highly popular web pages may have mil-
lions of hyperlinks pointing to them, which would lead to
very large neighborhood graphs. By the same line of rea-
soning, Kleinberg did not consider sampling the successor
set, since typical web pages have a fairly manageable num-
ber of embedded hyperlinks. In the experiments described
in the HITS paper [8], a was set to 50.

In step (2), the HITS algorithm computes two scores for
each page v in the result set R: an authority score estimating
the relevance of v with respect to the query that gave rise
to R, and a hub score estimating whether v is a good hub: a
page that links to many highly relevant pages. Convention-
ally, the equations for authority and hub score are presented
in a mutually recursive fashion (and the algorithm is some-
times called a mutual reinforcement algorithm). However,
it is possible to define the two scores independently of each
other. In previous work [14, 15], we showed that HITS and
SALSA hub scores are not useful for ranking purposes; there-
fore, we only define authority scores. Given a neighborhood
graph (Vr, Er), HITS computes an authority score s(v) for

each v € Vg as follows:
_1
V IVel®

2. Repeat until score vector s converges:

1. For all u € Vg do s(u) :

(a) For all u € Vg do
S/(U) = Z(v,u)EER Z(v,w)EER S(U))
(b) For all u € Vg do s(u) := ms’(u)

where ||s||2 denotes the £* (euclidean) norm of the score
vector s.

MAX [18] uses the same definition of neighborhood graph
as HITS does, but modifies the recurrence relation for hub
and authority scores as follows:

1. For all u € Vg do s(u) := 1.

2. Repeat until score vector s converges:

(a) For all u € Vg do
S/(U) = Z(v,u)GER Max(v,w)eEp S(’LU)

(b) For all uw € Vg do s(u) := ms’(u)

where ||s]|oc denotes the £°° norm of the score vector s.

SALSA [9] uses the same definition of neighborhood graph
as HITS and MAX, but computes authority scores by per-
forming a random walk on the graph. The authority walk
commences on a node with in-degree greater than 0; each
step in the walk consists of following an edge in the back-
ward direction and then following an edge in the forward
direction (this transition may return to the starting vertex).

244

221

.196
.196

NDCG@10

5 o [Ty = o 3 © = £
& =] = 8 d ¥ e g 5 K]
= o S X %3 = o) x o c
o =} =] 1 3 S [} ©
* <8 <« = o ' 7 o &
ne ungo w J < £ %2 © *
J% 49 ' < 1% ¥ = a
9 IS« @ 2 I
neo 0 %] i} < b
g 9o 3 5 90
== g F o
i g @
) <
Figure 1: Effectiveness in terms of NDCG@10 of

BM25F, PageRank, web page in-degree, ‘“classic”
HITS, and SALSA using various different definitions
of neighborhood graph.

The authority score vector s is the stationary probability
distribution of the authority walk. This leads us to the fol-
lowing algorithm:

0. Let V&' be {u € Vg : in(u) > 0}

- ifue VA
1. For all u € Vg do s(u) :=<¢ V& n B
0 otherwise
2. Repeat until s converges:
(a) For all uw € V4 do
s(w)

/(1) = 3, wyeN Do(v,w)eN T TR
(b) For all u € V4 do s(u) := s'(u)

In previous work [14, 15], we used the data sets described
above in section 2 to evaluate the effectiveness of the HITS
and SALSA scoring functions using Kleinberg’s original def-
inition of neighborhood graph, and compared their effective-
ness to web page in-degree (ignoring all intra-domain links)
and PageRank. In this paper, we take the algorithm for
computing scores on the neighborhood graph as a given, and
instead explore different definitions of neighborhood graphs.
Figure 1 reviews the findings of these earlier papers (the
starred bars), and previews the results of this paper. While
SALSA using the original definition of neighborhood graph
outperformed “classic” HITS as well as web page in-degree
and PageRank, SALSA using our improved definitions of
neighborhood graph leads to another substantial improve-
ment, making it by far the best link-based feature we are
aware of, and coming quite close to BM25F [19], the state-
of-the-art textual feature.

4. FIXING THE NEIGHBORHOOD VERTEX
SET USING CONSISTENT SAMPLING

HITS, MAX and SALSA authority scores expose a “co-
citation” relationship: scores are propagated from a vertex
w to a vertex u by virtue of a third vertex v that links
to (“co-cites”) both u and w. We postulate that a “good”
method for sampling vertices into the neighborhood graph

Table 1: Effectiveness of SALSA-CS(a,b) in terms of NDCG@10, varying a and b between 0 and 10

a\b 0 1 2 3 4 5 6 7 8 9 10
0 0.1707 0.1715 0.1717 0.1710 0.1701 0.1692 0.1681 0.1672 0.1662 0.1652 0.1645
1 0.1728 0.1800 0.1800 0.1793 0.1789 0.1784 0.1778 0.1771 0.1764 0.1758 0.1752
2 0.1762 0.1816 0.1813 0.1807 0.1801 0.1797 0.1795 0.1791 0.1787 0.1783 0.1778
3 0.1751 0.1807 0.1805 0.1803 0.1799 0.1798 0.1795 0.1794 0.1793 0.1789 0.1787
4 0.1733 0.1798 0.1798 0.1797 0.1795 0.1793 0.1793 0.1791 0.1790 0.1790 0.1787
5 0.1718 0.1791 0.1796 0.1795 0.1792 0.1791 0.1793 0.1791 0.1791 0.1789 0.1789
6 0.1702 0.1788 0.1790 0.1789 0.1789 0.1788 0.1790 0.1789 0.1788 0.1785 0.1785
7 0.1688 0.1785 0.1788 0.1789 0.1788 0.1788 0.1790 0.1790 0.1789 0.1789 0.1787
8 0.1674 0.1782 0.1786 0.1788 0.1787 0.1786 0.1788 0.1788 0.1787 0.1786 0.1784
9 0.1659 0.1774 0.1784 0.1785 0.1785 0.1784 0.1785 0.1785 0.1783 0.1783 0.1782
10 | 0.1648 0.1771 0.1778 0.1779 0.1780 0.1779 0.1779 0.1780 0.1779 0.1778 0.1777

should preserve existing co-citation relationships. In order
to preserve co-citation relationships, that sampling method
must preserve set similarity. The similarity between two
sets A and B can be expressed in terms of their similarity
(Jaccard) coefficient, defined to be the cardinality of their
intersection divided by the cardinality of their union:

_|AnB|
- |AuB]

Note that (A, B) is 0 if the two sets are completely disjoint,
and 1 if they are identical.

Unfortunately, the uniform random sampling used by the
original HITS, MAX and SALSA algorithms does not pre-
serve set similarity: o(Un(A),Un(B)) is typically smaller
than o(A, B). Therefore, we investigated another sampling
technique that has the desired property of preserving set
similarity: consistent unbiased sampling [2]. Consistent un-
biased sampling is deterministic; that is, when sampling n
elements from a set X, we will always draw the same n el-
ements. Moreover, any element z that is sampled from set
A is also sampled from subset B C A if z € B. We write
Cn(X) to denote a consistent unbiased sample of n elements
from set X, where C,(X) = X if |X| < n. One method to
compute a consistent sample is min-hashing [2].

Definition: Let U denote the universal set. Given a
set A C U and a permutation 7 : [|U|]] — [|U]|], we de-
fine the min-hash MH,(A) to be argmin,{m(z)|z € A}.
Essentially, MH,(A) is the element in A whose value in
the permutation 7 is the minimum. Alternatively, let f
be a hash function that maps elements from the universe
U to a real number randomly and uniformly in the interval
[0,1]. Then MH;(A) = argmin.{f(z)|x € A}. Therefore,
MH¢(A) is the element in A whose hash value into the in-
terval [0,1] is minimum. Under the above definition of a
min-hash, one can show that similar sets are likely to pro-
duce the same consistent sample. Formally, given two sets
A and B, Pr[MH-(A) = MH.(B)] = o(A, B) [2].

Note that we can use min-hashing multiple (say, n) times
by using different independent permutations 1,...,m» (or
different independent hash functions fi, ..., f») each time to
produce n samples. Thus, we can realize consistent sampling
as follows:

o(A,B)

Cn(A) = {MHx, (A),..., MH,, (A)}

Alternately, we could pick the elements corresponding to
the n smallest hash values from a single permutation. Under
either realization, Cr(A) C Cyn(A) for all m < n.

245

Using consistent unbiased sampling, we now define a method
CS(a, b) (“consistent sampling”) for performing step 1 of our
meta-algorithm for query-dependent ranking;:

Ve = |J {u} UCa(I(u) UCy(O(u))

u€ER

Er={(u,v) € E:u€VrAveEVr}

Table 1 shows the effectiveness (in terms of NDCG@10)
of using CS for step 1 (fixing the neighborhood graph) and
SALSA for step 2 (computing scores on that graph). Three
points are worth noting: First, SALSA-CS performs sub-
stantially better than SALSA-UR (as evaluated in [15]).
Second, effectiveness does not increase monotonically as we
increase the number a of sampled predecessors per result,
but rather peaks at fairly low values of a. Third, the same
is true for the number b of sampled successors per result. In
fact, performance is maximal for ¢ = 2 and b = 1.

The idea of consistently sampling the neighbors of each
vertex in the web graph has been used in other contexts, for
example in discovering dense subgraphs of the web graph [4].

5. APPROXIMATING NEIGHBORHOOD
GRAPHS USING BLOOM FILTERS

When performed on a web-scale corpus, HITS, MAX and
SALSA require a substantial amount of query time process-
ing. Much of this processing is attributable to the computa-
tion of the neighborhood graph. The reason for this is that
the entire web graph is enormous. A document collection
of five billion web pages induces a set of about a quarter of
a trillion hyperlinks. Storing this web graph on disk would
make lookup operations unacceptably slow due to the in-
herent seek time limitations of hard drives. On the other
hand, the graph is too big to be stored in the main mem-
ory of any single machine; therefore, it has to be partitioned
across many machines. In such a setup, the cost of a link
lookup is governed by the cost of a remote procedure call
(RPC). A sophisticated implementation of HITS-like algo-
rithms against a distributed link database will batch many
lookup operations into a single RPC request to reduce la-
tency and will query all link servers in parallel, but even so
it will require two rounds of concurrent requests: the first
round to extend the result set to a base set by sampling
predecessors and successors of each result; and the second
round to determine the edges induced by the base set. The

implementation used to perform the experiments described
in [15] required 235 milliseconds per query for computing
SALSA-UR(3). Over 90% of the time spent was spent on
performing the RPC calls to the link servers in order to as-
semble the neighborhood graph, as opposed to computing
scores on that graph.

The fact that HITS-like algorithms incur substantial com-
putational cost at query-time puts them at a crippling disad-
vantage to query-independent algorithms such as PageRank:
according to Marissa Mayer, Google’s VP of Search Prod-
ucts & User Experience, delaying Google’s response time by
half a second led to a 20% drop in query traffic (and revenue)
from the user population subjected to the delay [11].

In earlier work, we presented a technique to substantially
lower the query-time cost of HITS-like algorithms [5]. We do
so by moving the most expensive part of the computation
off-line. At index-construction time, we build a database
mapping web page URLs to summaries of their neighbor-
hoods. At query time, we rank the results satisfying a query
by looking up each result in the summary database (an op-
eration that requires only one round of RPCs, as opposed to
two), approximating the neighborhood graph of the result
set based on the neighborhood summaries of the constituent
results, and computing authority scores using that approx-
imation of the neighborhood graph. As we will see, this
approximation has no detrimental effect on the quality of
the ranking; in fact, surprisingly the approximation-based
algorithms are more effective than the original ones. As
we will show later, this is because the neighborhood graph
constructed from the summaries differs from the graph ac-
cording to the CS method in two aspects, and each of these
aspects impacts ranking effectiveness.

Our summarization technique employs Bloom filters. A
Bloom filter [1] is a space-efficient probabilistic data struc-
ture that can be used to test the membership of an element
in a given set; the test may yield a false positive but never a
false negative. A Bloom filter represents a set using an array
A of m bits (where A[i] denotes the ith bit), and uses k hash
functions hy to hx to manipulate the array, each h; mapping
some element of the set to a value in [1,m]. To add an ele-
ment e to the set, we set Afhi(e)] to 1 for each 1 <4 < k;
to test whether e is in the set, we verify that A[h;(e)] is 1
for all 1 <7 < k. Given a Bloom filter size m and a set size
n, the optimal (false-positive minimizing) number of hash
functions k£ is 7*In2; in this case, the probability of false
positives is (%)]C For an in-depth description of Bloom fil-
ters, the reader is referred to [3]. In the following, we will
write BF[X] to denote the Bloom filter representing the set
X and using k£ hash functions.

At index construction time, we compute an approximate
summary of each web page in our corpus and store it in a
summary server. The summary of web page u consists of tu-
ple (EI(u), EO(u), BI(u), BO(u)), where EI(u) = Co(I(u))
(an explicitly stored set of a consistently sampled predeces-
sors of u), EO(u) = Cp(O(u)) (an explicitly stored set of b
consistently sampled successors of u), BI(u) = BF[Cc(I(w))]
(a Bloom filter containing ¢ consistently sampled predeces-
sors of u), and BO(u) = BFy[Ca(O(u))] (a second Bloom
filter containing d consistently sampled successors of u). We
represent the explicitly stored predecessors and successors
using 64-bit numbers that uniquely identify a URL. We re-
fer to this approximation as method AP(a,b,c,d,k).

At query time, given a result set R, we first look up the

246

0.20
0.15
?_ M
® P @ coerssns o000 0s >4
A 0.10
gL
=z
0.05
—--HITS-UR
- HITS-CS
——HITS-AP
0.00 T T T T
0 10 20 30 40 50
Number of samples per result
0.20
015 7%
= \;:;;fr“‘
® 00— -~ e teeseets
00.10
[
[a]
=
0.05
-+ MAX-UR
-+ MAX-CS
-+ MAX-AP
0.00 : T T T
0 10 20 30 40 50
Number of samples per result
0.30
0.25 —M
0.20 jﬁmwr
e
90.15 1
o
=
0.10
-+ SALSA-UR
0.05
- SALSA-CS
- SALSA-AP
0.00 : T T T
0 10 20 30 40 50

Number of samples per result

Figure 2: Effectiveness of HITS, MAX, and SALSA
authority scores in terms of NDCG@10, using
UR(n), CS(n,n) and AP(n,n,1000,1000,10) neighbor-
hoods and varying n between 0 and 50.

Table 2: Effectiveness of SALSA-AP(a,b,1000,1000,10) in terms of NDCG®@10, varying a and b between 0 and

10
a\b 0 1 2 3 4 5 6 7 8 9 10
0 0.1408 0.1541 0.1546 0.1536 0.1523 0.1510 0.1498 0.1484 0.1472 0.1464 0.1453
1 0.1676 0.1731 0.1733 0.1723 0.1714 0.1700 0.1689 0.1677 0.1666 0.1656 0.1646
2 0.1748 0.1793 0.1794 0.178 0.1779 0.1770 0.1761 0.1753 0.1744 0.1735 0.1727
3 0.1776 0.1816 0.1817 0.1812 0.1807 0.1800 0.1793 0.1785 0.1779 0.1773 0.1767
4 0.1784 0.1822 0.1827 0.1824 0.1821 0.1815 0.1810 0.1805 0.1800 0.1796 0.1791
5 0.1787 0.1827 0.1830 0.1827 0.1824 0.1821 0.1817 0.1812 0.1809 0.1805 0.1803
6 0.1783 0.1822 0.1831 0.1828 0.1826 0.1823 0.1819 0.1816 0.1812 0.1811 0.1809
7 0.1777 0.1819 0.1828 0.1827 0.1826 0.1823 0.1822 0.1820 0.1819 0.1816 0.1813
8 0.1773 0.1813 0.1823 0.1822 0.1821 0.1821 0.1820 0.1817 0.1816 0.1814 0.1811
9 0.1768 0.1804 0.1814 0.1814 0.1814 0.1813 0.1815 0.1812 0.1811 0.1810 0.1809
10 | 0.1764 0.1800 0.1809 0.1811 0.1813 0.1812 0.1813 0.1811 0.1811 0.1809 0.1808

summaries for all the results in R. Having done so, we fix
the neighborhood vertex set as follows:

Ve = | J {u} UEI(u) U EO(u)
u€ER
Then, we compute the neighborhood edge set Er as follows:
For each vertex u € R and each vertex v € Vg, we perform
two tests: If BI(u) contains v, we add an edge (v, u) to the
graph; if BO(u) contains v, we add an edge (u,v) to the
graph. More formally:

U {(u,v) :v € BO(u)} U{ (v,u) : v € BI(u)]}
u€ER,vEVR

Observe that the AP neighborhood graph differs from the
CS neighborhood graph in three ways:

Er

e We do not use exact set representations for C.(I(u))
and Cq4(O(u)), but approximate them by using Bloom
filters. This introduces additional edges whose num-
ber depends on the false positive probability of the
Bloom filter. Using k hash functions, we add about
271 V|| R| spurious edges in the graph.

The graph determined by the CS method may contain
edges where neither endpoint is part of R; the graph
determined by AP contains no such edges.

Furthermore, the AP graph only contains edges from
Ve NCc(I(u)) to u € R and from u € R to Ve N
Ca(O(u)), as opposed to all edges between vertices in
R and VR.

Our first goal was to show that AP neighborhood sum-
marizations are indeed suitable for HITS-like link analysis
algorithms. To this end, we conducted a series of experi-
ments where we compared the AP method to UR and CS.
In order to reduce the dimensionality of AP’s parameter
space, we fixed three of them and set the remaining two
to equal values. Specifically, we used £ = 10 Bloom filter
hash functions, and we fixed the parameters ¢ and d at 1000
(that is, we included a sample of up to 1000 predecessors or
successors into each Bloom filter), and we varied a and set
b=a.

We measured the effectiveness of the HITS, MAX and
SALSA scoring methods for the UR, CS and AP meth-
ods of determining the neighborhood graph. Figure 2 de-
picts the results. The figure contains three graphs, one

247

for each method of computing scores (HITS, MAX, and
SALSA). The horizontal axis shows a sampling parameter n
(ranging from 0 to 50); the vertical axis shows the retrieval
performance in terms of NDCG@10. Each graph contains
three curves; the blue (dark) curve showing the performance
of UR(n); the green (medium) curve showing the perfor-
mance of CS(n,n); and the red (light) curve showing that
of AP(n,n,1000,1000,10). Using CS instead of UR neighbor-
hood graphs substantially improves the performance. How-
ever, using the AP method outperforms both UR and CS.
Furthermore, we can make the following observations:

e HITS-UR and HITS-CS perform best when no back-
links are sampled. They drop off sharply when one
backlink per result is sampled, and then improve grad-
ually as more backlinks are sampled, leveling out at
about 10 samples per result. HITS-AP performs best
for a = b = 0; effectiveness decreases gradually as a
and b are increased.

MAX-UR and MAX-CS resemble HITS in that they
perform best when no backlinks are sampled. They
drop off when one backlink is sampled (but less so than
HITS), improve gradually as more backlinks are sam-
pled per result, peaking at around 8 samples per result
and then dropping off again. However, the efficiency
of MAX-AP does not decrease monotonically as more
samples are drawn (as is the case for HITS-AP), but
rather peaks at between 5 and 7 samples per result.

SALSA-UR and SALSA-CS perform best for around
7 to 8 sampled backlinks per result; they do not show
the same unexpected spike at 0 samples that is evident
for HITS and MAX. SALSA-AP performs best for a
and b between 4 and 5.

Table 3: Effectiveness of SALSA-AP(6,2,¢,d,10) in
terms of NDCG@10, varying ¢ and d between 600
and 1000

c\d 600 700 800 900 1000
600 | 0.1814 0.1814 0.1814 0.1814 0.1814
700 | 0.1819 0.1819 0.1820 0.1820 0.1819
800 [0.1823 0.1823 0.1824 0.1823 0.1823
900 | 0.1825 0.1825 0.1826 0.1825 0.1825
1000 | 0.1831 0.1831 0.1831 0.1831 0.1831

Table 4: Effectiveness of SALSA-AP(a,b,1000,800,15) in terms of NDCG@10, varying a and b between 0 and

10
a\b 0 1 2 3 4 5 6 7 8 9 10
0 0.1651 0.1723 0.1730 0.1731 0.1730 0.1725 0.1723 0.1721 0.1718 0.1715 0.1713
1 0.1743 0.1870 0.1896 0.1905 0.1907 0.1906 0.1905 0.1904 0.1902 0.1899 0.1896
2 0.1798 0.1914 0.1941 0.1946 0.1949 0.1949 0.1947 0.1947 0.1945 0.1942 0.1940
3 0.1806 0.1920 0.1948 0.1952 0.1955 0.1956 0.1955 0.1954 0.1952 0.1951 0.1948
4 0.1807 0.1919 0.1947 0.1951 0.1954 0.1954 0.1954 0.1954 0.1954 0.1951 0.1950
5 0.1801 0.1915 0.1942 0.1948 0.1951 0.1951 0.1951 0.1949 0.1947 0.1946 0.1947
6 0.1795 0.1907 0.1935 0.1943 0.1946 0.1946 0.1945 0.1946 0.1944 0.1942 0.1942
7 0.1787 0.1902 0.1928 0.1938 0.1938 0.1940 0.1940 0.1940 0.1940 0.1939 0.1937
8 0.1778 0.1894 0.1921 0.1929 0.1931 0.1931 0.1932 0.1934 0.1933 0.1931 0.1930
9 0.1769 0.1886 0.1913 0.1923 0.1925 0.1925 0.1925 0.1927 0.1925 0.1924 0.1924
10 | 0.1762 0.1879 0.1907 0.1919 0.1920 0.1921 0.1921 0.1921 0.1922 0.1920 0.1920

On our web graph, computing neighborhood graph sum-
maries using AP(5,5,1000,1000,10) leads to summaries with
an average size of 379 bytes in size (40 bytes for EI, 40 bytes
for EO, 227 bytes for BI, and 72 bytes for BO).

Next, we focused on SALSA, which performed best among
the three scoring methods, and we explored which param-
eter settings yield the highest effectiveness. First, we ex-
plored the impact of the number of predecessors and suc-
cessors stored explicitly. We fixed ¢ and d (the number of
samples included in each Bloom filter) at 1000, k& (the num-
ber of Bloom filter hash functions) at 10, and we varied a
and b (the number of explicitly stored neighbors) between 0
and 10. Table 2 shows the effectiveness of these parameter-
izations in terms of NDCG@10. Given the choices of ¢, d,
and k, performance is maximal at ¢ = 6 and b = 2 with an
NDCG@10 value of 0.1831.

Second, we explored the impact of the number of neigh-
bors included in each Bloom filter. We kept k at 10, fixed
the parameters a and b at 6 and 2 (the choices correspond-
ing to the highest NDCG values in the previous experi-
ment) and varied ¢ and d between 600 and 1000. Table 3
shows the effectiveness of these parameterizations in terms
of NDCG@10. We observed the highest NDCG value for
¢ = 1000 and d = 800; however, the difference between the
NDCG values in the bottom row of the table is not statisti-

0.20 -
0.18 -
0.16 -
0.14 -
20.12 |
§o.1o 1
20.08 -
0.06 -
0.04 -
0.02 -
0.00

17234567 8 91011121314151617181
Number of Bloom filter hash functions

920

Figure 3: Relationship between k (the number of
Bloom filter hash functions) and effectiveness.

248

cally significant, and it appears that performance improves
as ¢ and d increase.

Third, we explored the impact of the number of Bloom
filter hash functions on the ranking effectiveness. Figure 3
shows the outcome of these experiments. As the figure il-
lustrates, our previous choice of Kk = 10 was not optimal;
the NDCG values continue to increase for higher values of
k, asymptotically converging at around k = 15.

Having established that using 15 Bloom filter hash func-
tions leads to higher NDCG values, we repeated the set of
experiments corresponding to table 2. We fixed k£ at 15, ¢
at 1000, and d at 800; and we varied a and b between 0
and 10. Table 4 shows the effectiveness of these parame-
terizations in terms of NDCG@10. Given the choices of c,
d, and k, performance is maximal at a = 3 and b = 5 (i.e.
different values than the optimal choices in table 2) with an
NDCG@10 value of 0.1956.

Finally, we repeated the experiments described in table 3
using the improved settings of k, a and b. We kept k at 15,
fixed the parameters a and b at 3 and 5 (the parameters lead-
ing to the highest NDCG@10 in the previous experiment)
and varied ¢ and d between 800 and 1200. Table 5 shows
the results. We observed the highest NDCG@10, at 0.1960,
for ¢ = 1000 and d = 1200. However, as in table 3, the
difference between the NDCG values in the bottom row of
the table is not statistically significant, and it appears that
performance improves as ¢ and d increase.

In a production setting, neighborhood summaries would
be computed offline (at index construction time) and re-
trieved online (at query time). In order to achieve accept-
able query time performance, summaries would need to be
kept in main memory, possibly in a distributed setting. The
number of servers required could be substantial. For exam-

Table 5: Effectiveness of SALSA-AP(3,5,c,d,15) in
terms of NDCG@10, varying ¢ and d between 800
and 1200

c\d 800 900 1000 1100 1200
800 [0.1953 0.1953 0.1954 0.1954 0.1953
900 [0.1954 0.1954 0.1954 0.1954 0.1954
1000 | 0.1956 0.1955 0.1956 0.1955 0.1955
1100 | 0.1958 0.1958 0.1959 0.1958 0.1958
1200 | 0.1959 0.1959 0.1960 0.1959 0.1959

0.20
" »
0.18 ":z’“ 132

2 0.16 d

% 0.14

s) Vd

8 0.12 |

z f

o 0.10

g 0.08 - AP(6,2,1000,800,k) H

2 0.06 - AP(a,b,1000,1000,10) ||

é - AP(6,2,c,d,10)

i 0-04 7 AP(a,b,1000,800,15)
0.02 = + AP(3,5,c,d,15) H
0.00 ; ; ; |

0 200 400 600 800
Summary size (bytes)
Figure 4: Relationship between effectiveness (in

terms of NDCG@10) and feature vector size for var-
ious parameterizations of approximate SALSA.

ple, if one summary consumed 400 bytes, then a summary
database covering a web corpus of 10 billion pages would re-
quire over 250 servers with 16 GB of RAM each. Therefore,
it is interesting to explore the trade-off between summary
size and ranking effectiveness.

Figure 4 shows the relationship between memory con-
sumption and effectiveness. Each point in the graph corre-
sponds to one parameterization of SALSA-AP; its horizontal
position indicates the size of each summary vector (in bytes),
its vertical position indicates the effectiveness measured as
NDCG@10. As we saw above, the dominant factor govern-
ing the effectiveness of SALSA-AP is the number of Bloom
filter hash functions. The set of green points connected by
a line shows the impact of varying £ from 1 to 20. The
blue clouds of points visualizes various choices of a and b for
k =10 and ¢ = d = 1000 (dark blue points) and for k = 15,
¢ = 1000 and d = 800 (light blue points). Note that the
choice of a and b not only affects the summary size, but also
has a noticeable impact on effectiveness. By contrast, vary-
ing ¢ and d (shown by the red and maroon point clouds)
affects the memory consumption, but has little impact on
effectiveness.

Our current implementation of these summarization-based
algorithms does not yet employ a distributed summary server;
we use our distributed link server (the Scalable Hyperlink
Store) to compute summaries. However, since a summary
server is similar to, and indeed simpler than, a link server,
we can draw on our experiences with the latter to estimate
what the query-time performance of a production system
would be. To this end, we measured the performance of
our current implementation, subtracted the time required
to compute the summaries, and added the time we have
observed for retrieving a vector of links of the size of an av-
erage summary from our link server. These measurements
suggest that it would take us an average of 96 milliseconds
per query to compute SALSA-AP authority scores. This
compares favorably to the 235 milliseconds per query of our
implementation of the original SALSA algorithm. Moreover,
we have not spent any time on optimizing the code for con-
structing AP neighborhood graphs, and believe that further
speedups are possible.

249

6. OMITTING NON-RESULT EDGES

As mentioned in the previous section, the neighborhood
graphs extracted by the AP method differ from those ex-
tracted by the CS method in three ways. It is reasonable
to assume that one or more of these differences are respon-
sible for SALSA-AP being more effective than SALSA-CS.
Figure 3 suggests that the first difference — the probabilistic
nature of Bloom filters — is not the cause, since the effective-
ness of SALSA-AP increases as the number of Bloom filter
hash functions is increased and thereby the false-positive
rate is decreased.

The second difference concerns the edge set. The CS
method will include any edge (u,v) € E as long as both
u and v are part of the neighborhood vertex set Vr. The
AP method is more selective: At least one of the endpoints
u and v must be in the result set R.

This leads us to the ETR (“edges touch result”) method
of computing the neighborhood graph:

Vi = (J {u} UC a(I(u)) U Co(O(u))

u€ER

Er={(u,v) e E: (ueVrAvER)V(uE RAvEVR)}

Table 6 shows the effectiveness of the ETR method com-
bined with the SALSA scoring algorithm. The NDCG@10
is maximal at 0.1920 for a = 3 and b = 5, and the effec-
tiveness is higher than SALSA-CS (maximal NDCG@10 of
0.1816; see table 1), but not as high as SALSA-AP (max-
imal NDCG@10 of 0.1956; see table 4). In other words,
much but not all of the difference between SALSA-CS and
SALSA-AP can be attributed to the latter omitting edges
that don’t touch results.

The third difference distinguishing ETR neighborhood graphs

from AP neighborhood graphs is that the former method ad-
mits any edge that connects a vertex in R and a vertex in
VR, whereas the latter method samples the edges. To test
whether the superior performance of SALSA-AP can be at-
tributed to this edge sampling, we define a method SETR
(“sampled edges touch result”) for determining the neigh-
borhood graph:

Vi = | {u) UCa(I() UCH(O(u))

u€ER

Er={(u,v) € E
V

(veRAu€eVrAUEC(I(v)))
(ue RAveVrAvECy(O(u)))}

Table 7 shows the effectiveness of the SETR method com-
bined with the SALSA scoring algorithm. The NDCG@10
is maximal at 0.1961 for a = 4 and b = 5, and the effective-
ness slightly surpasses that of SALSA-AP. In other words,
SALSA-AP approximates SALSA-SETR, and slightly suf-
fers from the false positives due to the probabilistic nature
of Bloom filters.

It is worth noting that SALSA-SETR is not only effective,
but also very efficient. Our implementation (which uses the
Scalable Hyperlink Store, a distributed system that parti-
tions the web graph across many SHS servers, with each
server maintaining a portion of the graph in main memory)
requires about 78 milliseconds to score a query, and we be-
lieve that we could reduce this cost further by reducing the
number of rounds of RPC calls down to one.

Table 6: Effectiveness of SALSA-ETR(a,b) in terms of NDCG@10, varying a and b between 0 and 10

a\b 0 1 2 3 4 5 6 7 8 9 10
0 0.1707 0.1713 0.1714 0.1709 0.1705 0.1700 0.1696 0.1688 0.1684 0.1678 0.1675
1 0.1728 0.1814 0.1845 0.1859 0.1864 0.1864 0.1863 0.1863 0.1861 0.1859 0.1858
2 0.1765 0.1860 0.1894 0.1905 0.1911 0.1911 0.1911 0.1911 0.1909 0.1908 0.1907
3 0.1766 0.1868 0.1902 0.1914 0.1919 0.1920 0.1919 0.1919 0.1917 0.1916 0.1915
4 0.1763 0.1865 0.1900 0.1912 0.1916 0.1915 0.1915 0.1913 0.1914 0.1913 0.1911
5 0.1760 0.1863 0.1898 0.1910 0.1916 0.1916 0.1915 0.1915 0.1915 0.1914 0.1913
6 0.1755 0.1860 0.1890 0.1901 0.1909 0.1910 0.1909 0.1911 0.1910 0.1909 0.1909
7 0.1751 0.1858 0.1889 0.1902 0.1908 0.1910 0.1909 0.1912 0.1911 0.1910 0.1907
8 0.1749 0.1855 0.1887 0.1900 0.1903 0.1906 0.1906 0.1907 0.1907 0.1906 0.1905
9 0.1743 0.1849 0.1882 0.1893 0.1897 0.1900 0.1900 0.1902 0.1902 0.1900 0.1900
10 | 0.1740 0.1849 0.1876 0.1892 0.1894 0.1899 0.1898 0.1900 0.1900 0.1898 0.1899

Table 7: Effectiveness of SALSA-SETR(a,b,1000,800) in terms

of NDCG@10, varying a and b between 0 and

10
a\b 0 1 2 3 4 5 6 7 8 9 10
0 0.1686 0.1726 0.1736 0.1738 0.1737 0.1736 0.1732 0.1730 0.1726 0.1724 0.1722
1 0.1742 0.1865 0.1897 0.1907 0.1909 0.1909 0.1908 0.1906 0.1904 0.1901 0.1900
2 0.1797 0.1911 0.1939 0.1947 0.1950 0.1950 0.1949 0.1948 0.1945 0.1944 0.1942
3 0.1804 0.1920 0.1948 0.1958 0.1960 0.1961 0.1960 0.1959 0.1959 0.1957 0.1955
4 0.1804 0.1920 0.1947 0.1956 0.1960 0.1961 0.1960 0.1960 0.1958 0.1956 0.1954
5 0.1802 0.1916 0.1946 0.1954 0.1958 0.1958 0.1959 0.1958 0.1958 0.1956 0.1955
6 0.1794 0.1911 0.1938 0.1948 0.1953 0.1953 0.1952 0.1954 0.1953 0.1951 0.1952
7 0.1786 0.1905 0.1936 0.1945 0.1947 0.1949 0.1949 0.1950 0.1950 0.1947 0.1946
8 0.1783 0.1899 0.1930 0.1939 0.1940 0.1942 0.1941 0.1944 0.1942 0.1941 0.1941
9 0.1776 0.1893 0.1926 0.1934 0.1937 0.1937 0.1938 0.1940 0.1939 0.1938 0.1938
10 | 0.1769 0.1890 0.1919 0.1931 0.1932 0.1935 0.1934 0.1936 0.1936 0.1933 0.1934

7. WHY LESS IS MORE

In the previous sections, we showed that SALSA is more
effective if we do not consider the entire distance-one neigh-
borhood graph of the result set, but instead use consistent
sampling to limit both the number of vertices and the num-
ber of edges in the neighborhood graph. It is surprising and
somewhat counterintuitive that sampling some vertices and
edges should be better than considering them all. In order
to understand this seeming paradox, it is helpful to consider
what vertices and edges are more likely to be sampled.

The CS, AP, ETR and SETR methods all determine the
neighborhood vertex set in the same way:

Vi = |J {u} UCa(I(u)) UC(O(u))

uER

Given a result vertex v, the probability that a particu-
lar predecessor u of v is selected as one of the a samples in
Ca(I(u)) is iy (or 1if @ > [I(u)]). So, the chances of
v being sampled are inversely proportional to the in-degree
(popularity) of u. Moreover, a vertex v that links to several
vertices in R has multiple chances of being sampled as an
predecessor. The sampling parameter a controls how pro-
nounced this effect is. In the extreme case of a — oo, all
predecessors u of each result v will be in the neighborhood
vertex set; the fact that v has low in-degree (is unpopular)
or that u links to multiple v € R has no impact on the
selection. At the other extreme, if a is very low, linking to
multiple unpopular results greatly increases an predecessor’s
chances of being selected.

250

Similarly, the chances of a successor v of a result u be-
ing sampled are inversely proportional to the out-degree of
u (its selectivity), and v’s chances improve if it is linked to
by multiple results. A vertex v that is being linked to by
multiple selective results has better chances of being sam-
pled as a successor. The sampling parameter b controls how
pronounced this effect is; it is pronounced for low values of
b and diminishes as b increases.

As we just remarked, CS, AP, ETR and SETR all compute
the neighborhood vertex set in the same way; moreover, as
we showed in this paper, they are most effective when pa-
rameterized with low values of a and b (between 1 and 6).
So, web pages that link to many unpopular pages or are be-
ing linked to by many selective pages are much more likely
to be part of the neighborhood graph than other pages. It is
easy to understand why receiving a link from a selective (low
out-degree) web page is more meaningful than a link from a
nonselective (high out-degree) page. We postulate that links
to unpopular pages are also more meaningful: the referring
web page endorses something that is not globally popular,
and endorsements of things outside of the mainstream are
more meaningful.

The ETR method, which is substantially more effective
than CS, differs from CS only in its edge section policy:
The neighborhood edge set of CS includes all edges in E
that are covered by Vr X Vg, while the ETR policy restricts
the set to edges in E that are covered by (Vg x R)U(R X VRg)
— in other words, it discards edges that are not connected
to the result set. We explain this phenomenon as follows:
Web pages in the result set are likely to be topically related

to one another, since they by definition are the results to a
query, i.e. contain the query terms. So, edges that touch
the result set are likely to also be topically related to the
query. Edges between vertices in Vg \ R, on the other hand,
are less likely to be topical, since neither of their endpoints
contains the query terms. Discarding such off-topic edges
improves the efficiency of SALSA-ETR.

Finally, SALSA is yet more efficient if the graph was fixed
using the SETR instead of the ETR method. SETR dif-
fers from ETR in that for every result vertex v, it sam-
ples ¢ of the incoming and d of the outgoing edges, and in-
cludes those sampled edges that connect to another vertex
in Vr. So, one can think of ETR as an instance of SETR:
ETR(a,b) is the same as SETR(a,b,00,00). As we showed,

SETR(3,5,1000,800) outperforms ETR(3,5), so sampling edges

instead of admitting them all is indeed beneficial.

The likelihood that an edge (u,v) from u € Vg to v € R is
included in the graph is ﬁ So, edges leading to unpop-
ular results are more likely to be sampled. Likewise, edges
from selective results are more likely to be included as well.
This effect is more pronounced for lower values of ¢ and
d. As the results of the previous section show, a moderate
bias towards such edges improves ranking effectiveness. Our
explanation for this phenomenon is along the same line as
the argument for why CS works better for low sampling val-
ues: endorsements by selective web pages are obviously more
meaningful, and endorsements of unpopular web pages are
also more meaningful since they go against the mainstream
opinion.

8. CONCLUSION

In this paper, we propose several definitions of neighbor-
hood graphs for query-dependent link-based ranking algo-
rithms such as HITS, MAX and SALSA, and study their
impact on the effectiveness of these algorithms. Specifically,
we observe that one can improve the effectiveness of such
ranking algorithms by incorporating only a small subset of
the neighbors of each result into the neighborhood graph,
using consistent sampling as the vertex selection method.
Effectiveness is improved even further by avoiding edges that
do not touch result vertices, and using consistent sampling
to select a subset of the remaining eligible edges. Using
a sampled down and thus smaller neighborhood graph not
only improves the effective of HITS-like ranking algorithms,
but also their efficiency, primarily because less data needs
to be transmitted by our distributed hyperlink server. We
offer a hypothesis as to why “less is more”, i.e. why using a
sampled-down graph provides better ranking effectiveness.

9. REFERENCES

[1] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM
13(7):422-426, 1970.

A. Broder, M. Charikar, A. Frieze, M. Mitzenmacher.
Min-Wise Independent Permutations. Journal of
Computer and System Sciences 60(3):630-659, 2000.
A. Broder and M. Mitzenmacher. Network
Applications of Bloom Filters: A Survey. Internet
Mathematics 1(4):485-509, 2005.

2]

251

[4] D. Gibson, R. Kumar, A. Tomkins. Discovering Large
Dense Subgraphs in Massive Graphs. In 31st
International Conference On Very Large Data Bases,
pages 721-732, 2005.

S. Gollapudi, M. Najork and R. Panigrahy. Using
Bloom Filters to Speed Up HITS-like Ranking
Algorithms. In 5th Workshop on Algorithms and
Models for the Web Graph, pages 195-201, 2007.

K. Jarvelin and J. Kekéldinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422-446, 2002.

J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. In 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 668677,
1998.

J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604-632, 1999.

R. Lempel and S. Moran. The stochastic approach for
link-structure analysis (SALSA) and the TKC effect.
Computer Networks and ISDN Systems,
33(1-6):387-401, 2000.

R. Lempel and S. Moran. SALSA: The stochastic
approach for link-structure analysis. ACM
Transactions on Information Systems, 19(2):131-160,
2001.

G. Linden. Marissa Mayer at Web 2.0. Online at:
http://glinden.blogspot.com/2006/11 /marissa-mayer-at-
web-20.html

M. Marchiori. The quest for correct information on the
Web: Hyper search engines. In Computer Networks
and ISDN Systems, 29(8-13):1225-1236, 1997.

F. McSherry and M. Najork. Computing Information
Retrieval Performance Measures Efficiently in the
Presence of Tied Scores. In 30th European Conference
on Information Retrieval, pages 414—421, 2008.

M. Najork, H. Zaragoza and M. Taylor. HITS on the
Web: How does it Compare? In 30th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
471-478, 2007.

M. Najork. Comparing the Effectiveness of HITS and
SALSA In 16th ACM Conference on Information and
Knowledge Management, pages 157-164, 2007.

M. Najork and N. Craswell. Efficient and Effective
Link Analysis with Precomputed SALSA Maps. In
17th ACM Conference on Information and Knowledge
Management, pages 53-61, 2008.

L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. Technical report, Stanford Digital Library
Technologies Project, 1998.

P. Tsaparas. Using Non-Linear Dynamical Systems for
Web Searching and Ranking. In 23rd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 59-70, 2004.

H. Zaragoza, N. Craswell, M. Taylor, S. Saria, and

S. Robertson. Microsoft Cambridge at TREC-13:
Web and HARD tracks. In 18th Text Retrieval
Conference, 2004.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

