
Specifying Visual Languages with Conditional Set Rewrite Systems

Marc A. Najork� Simon M. Kaplan

Department of Computer Science
University of Illinois

1304 West Springfield Avenue
Urbana, IL 61801, U. S. A.
fnajork,kaplang@cs.uiuc.edu

Abstract

We propose Conditional Set Rewriting as a general
mechanism for describing the syntax of multidimensional
languages. We compare the approach with other existing
methods, and give a number of examples that illustrate its
strengths.

1 Introduction

This paper introduces the notion of a Conditional Set
Rewrite System (CSRS). Conditional Set Rewrite Systems
are a generalization of Conditional Term Rewrite Sys-
tems [10]. Conditional Term Rewrite Systems deal with
rewriting a single term, whereas Conditional Set Rewrite
systems deal with rewriting a set of terms. Each conditional
set rewrite rule specifies how to replace a subset of the set
of terms by another set.

We suggest two uses for CSRS: they can be used to
describe the set of all legal phrases (pictures) of a mul-
tidimensional (visual) language, and they can be used to
translate a phrase from one language (e.g. a visual one)
into another language (e.g. a textual one).

The ability of CSRS to translate visual programs into
textual ones allows us to utilize many results from the
semantics of textual languages. We can formalize the se-
mantics of a visual language by giving a translation from
the visual language to a textual one, and then give type in-
ference rules and an operational or denotational semantics
for the textual language.

There are a variety of grammar-based specification tech-
niques for visual languages, among them Picture Pro-
cessing Grammars [1], Relation Grammars [3], Positional
Grammars [2], Fringe Relational Grammars [11], and Pic-
ture Layout Grammars.

Picture Layout Grammars [6, 5] are one of the most flex-
ible of these grammars. They are based on Attributed Mul-

�Supported by the National Science Foundation under grant CCR-
9007195

tiset Grammars [4], which are similar to textual context-free
grammars, except that the right-hand side of a production
is an unordered collection of symbols rather than a string.
Picture Layout Grammars have been widely used to de-
scribe the syntax of two-dimensional visual languages.

Helm and Marriott [8, 9] have introduced a declarative
specification technique for visual languages, based on the
constraint logic programming language CLP(R) [7]. For
lack of a better term, we will refer to their framework as to
“Logic Grammars”.

The remainder of this paper consists of three parts: first,
we will define CSRS; then, we will argue that CSRS are a
generalization of Picture Layout Grammars and of Logic
Grammars; and finally, we will give a number of examples
that demonstrate their expressiveness.

2 Conditional Set Rewrite Systems

Informally, a CSRS consists of an ordered sequence of
rewrite rules, which are guarded by a condition. Conditions
are predicate applications, closed over conjunction and dis-
junction. Predicates are defined through Horn clauses. The
syntax of CSRS is as follows:

t ::= x j k�t1� � � � � tn� (term)
� ::= P �t1� � � � � tn� j �1 � �2 j �1 � �2 (formula)
� ::= P �t1� � � � � tn�� � (pred. def.)
� ::= t1� � � � � tm � t�1� � � � � t

�

n if � (rule)
Σ ::= ��1 � � ��m� �1 � � ��n� (system)

A term is either a variable or a constructor applied to
some terms. A formula is either a predicate symbol applied
to some terms, or the conjunction or disjunction of two
formulas. A predicate definition defines P �t1� � � � � tn� to
hold if the formula � holds. A rewrite rule replaces the
terms t1� � � � � tm in a set � by terms t�1� � � � � t

�

n
if � holds.

A conditional set rewrite system consists of an ordered
sequence of rewrite rules, and a set of predicate definitions.



2 4 6 8

2

4

6

8

Figure 1: Triangles

Given a set of terms � and a rewrite rule t1� � � � � tm �
t�1� � � � � t

�

n
if �, the rule is applicable if � contains terms

matching t1� � � � � tm, and � holds. Applying an applicable
rewrite rule means replacing t1� � � � � tm in � by t�1� � � � � t

�

n
.

A rewrite step � � �� results from applying the first
applicable rewrite rule to �. We say that �0 rewrites
to �n (�0���n) if there is a sequence of rewrite steps
�0 � �1 � � � � � �n. We say that � is in normal form if
there is no �� s.t. � � ��.

We allow for two notational simplifications: First,
instead of P �t1� � � � � tn� � true, we simply
write P �t1� � � � � tn� (and similar for t1� � � � � tm �
t�1� � � � � t

�

n
if true). Second, we allow an argument to be

a simple function application instead of a term. For in-
stance, we allow t(n)� t(n�1), which could be expanded
to t(n) � t(n�) if plus(n,1,n�).

Example 1: The following CSRS describes a 2D visual
language where all the legal pictures contain only triangles:

Rewrite Rules�

line�u�v�� line�w�x�� line�y�z� � tri�a�b�c�

if connected�line�u�v��line�w�x��a�

� connected�line�u�v��line�y�z��b�

� connected�line�w�x��line�y�z��c�

tri�a�b�c� �

Predicate De�nitions�

connected�line�x�y��line�x�z��x�

connected�line�y�x��line�x�z��x�

connected�line�x�y��line�z�x��x�

connected�line�y�x��line�z�x��x�

In this particular CSRS, a picture is legal (belongs to the
language) if it (or, more precisely, its set representation)
can be rewritten to the empty set.

The picture shown in Fig. 1 is represented by the set of
terms

2 4 6 8

2

4

6

8

Figure 2: Ambiguous picture

f line�pt������pt�	�	��� line�pt�	�	��pt�
�����

line�pt�
����pt������� line�pt�
����pt�	�
���

line�pt�	�
��pt���	��� line�pt���	��pt�
���� g

One possible rewrite sequence is
f line�pt������pt�	�	��� line�pt�	�	��pt�
�����

line�pt�
����pt������� line�pt�
����pt�	�
���

line�pt�	�
��pt���	��� line�pt���	��pt�
���� g �
f tri�pt������pt�	�	��pt�
����� line�pt�
����pt�	�
���

line�pt�	�
��pt���	��� line�pt���	��pt�
���� g �
f tri�pt������pt�	�	��pt�
����� tri�pt�
����pt�	�
��pt���	�� g �
f tri�pt�
����pt�	�
��pt���	�� g � f g

But note that there are three other sequences which also
lead to the empty set. This leads us to

Observation 1: CSRS can be non-deterministic.

In the previous example, there were 4 different reduction
sequences leading to a normal form, but they all led to the
same normal form. The next example shows that this is not
always the case:

Example 2: Consider a visual language where a legal
picture contains one triangle and one V-shape.

Rewrite Rules�

line�u�v�� line�w�x�� line�y�z� � tri�a�b�c�

if connected�line�u�v��line�w�x��a�

� connected�line�u�v��line�y�z��b�

� connected�line�w�x��line�y�z��c�

line�u�v�� line�w�x� � vee�a�b�c�

if connected�line�u�v��line�w�x��a�

� ��a�u � b�v� � �a�v � b�u��

� ��a�w � c�x� � �a�x � c�w��

tri�a�b�c�� vee�d�e�f�� pic�tri�a�b�c�� vee�d�e�f��

and connected defined as in Example 1

In this CSRS, a picture is legal if it can be rewritten to
the set fpic(tri(a,b,c),vee(d,e,f))g.



Now consider the picture shown in Fig. 2, whose set
representation is
f line�pt������pt������� line�pt������pt���	���

line�pt���	��pt������� line�pt������pt�������

line�pt������pt���	�� g

This set can be rewritten to two distinct normal forms,

fpic�tri�pt������pt������pt���	���vee�pt������pt������pt���	���g

and

fpic�tri�pt������pt������pt���	���vee�pt������pt������pt���	���g,

each one identifying the picture as being legal. This leads
us to

Observation 2: CSRS can be non-confluent.

In this respect, CSRS are similar to Picture Layout
Grammars and to Logic Grammars, which both allow for
ambiguous grammars. In all three frameworks, it is up
to the user to ensure nonambiguity by carefully choos-
ing and arranging the productions or rewrite rules. There
are no known mechanical procedures to decide whether
or not a given grammar or rewrite system is nonambigu-
ous (such decision procedures exist for context-free textual
languages!).

3 Generality of CSRS

In the following, we argue that CSRS can be viewed as
a generalization of

� textual context-free grammars

� Picture Layout Grammars

� Logic Grammars

Claim1: CSRS are at least as expressive as textual context-
free grammars.

Proof Sketch: Any context-free grammar can be trans-
formed into an equivalent grammar in Chomsky Normal
Form (CNF). Each production of a grammar in CNF has
the form A � BC or A � t, where A�B�C are nonter-
minal symbols and t is a terminal symbol.

We replace each production of the form A � BC by a
rewrite rule B�b�� C�c� � A�a� if interval�a� b� c� and
each production of the form A � t by a rewrite rule
t�a� � A�a�. We also introduce the predicate definition
interval(iv(a,c),iv(a,b),iv(b� 1,c)).

A string t1t2 � � � tn in the textual grammar framework
corresponds to the set

ft1(iv(1,1)),t2(iv(2,2)),� � �,tn(iv(n,n))g

in our framework. �

Claim 2: CSRS are at least as expressive as Picture Layout
Grammars.

Proof Sketch: Picture Layout Grammars use productions
of the form

A� op�B1� � � � � Bm� Bm�1� � � � � Bn�
A�attr � func�B1�attr� � � � � Bn�attr�

where
pred�B1�attr� � � � � Bn�attr�

...

A is a nonterminal symbol, theBi are terminal or nontermi-
nal symbols. op is a production operator, which expresses
a spatial relationship between the Bi (such as over, left of,
...). Underlined symbols, called remote symbols, are not
actually part of the production, but must occur somewhere
else in the parse tree. Attached to each symbol are at-
tributes. func computes a new attribute for A from the
attributes of the Bi. Attached to each production is a list of
predicates that have to be met in order for the production
to be applicable.

Each PLG production can be replaced by a rewrite rule

B1�b1�� � � � � Bn�bn� � A

�func�b1� � � � � bn��� Bm�1�bm�1�� � � � � Bn�bn� if
pred�b1� � � � � bn�

... �

Picture Layout Grammars are very flexible for describ-
ing the syntax of 2D visual languages. The production
operators, however, are “hardwired” into the formalism,
whereas CSRS allow the definition of arbitrary predicates
for describing spatial relationships. Moreover, Picture Lay-
out Grammars are currently restricted to 2D languages,
whereas CSRS also allow the definition of 3D languages
(see examples 4 – 6).

Claim 3: CSRS are at least as expressive as “Logic Gram-
mars”.

Proof Sketch: A “Logic Grammar” rule has the form

P �s�� R1 � � � � �Rm �� P1�s1� & � � �& Pn�sn�

P �s� is a complex picture, the Pi�si� are its less complex
components. R1� � � � � Rm are additional constraints relat-
ing the pictures.

Each Logic Grammar rule can be replaced by a rewrite
rule

P1�s1� & � � �& Pn�sn� � P �s� if R1 � � � � �Rm

�

We see that CSRS and Logic Grammars are very similar.
There is, however, one key difference: Logic Grammars
can have only one symbol on the left-hand side of a pro-
duction. This means that they lack the “remote-symbol”
feature of Picture Layout Grammars. It would be quite
hard to use Logic Grammars to describe directed graph



2 3+

2 4 6 8

2

4

6

8

0 10

0

10

Figure 3: Dataflow diagram

structures (such as data flow languages or state charts).
CSRS, on the other hand, allow for an arbitrary number of
terms on either side of the rewrite rule.

4 More Examples

Example 3: Consider a 2D visual language based on di-
rected data flow diagrams. A picture belonging to this
language consists of a set of boxes, either empty or filled
with a number or an operator, and a set of arcs connecting
the boxes. Any number of arcs may leave a box. Each box
must be

1. filled with a number and having no incoming arc, or

2. empty and having one incoming arc, or

3. containing an operator and having two incoming arcs

For simplicity, let us assume that + is the only legal operator.
Fig. 3 shows a picture belonging to this language.

First, let’s assume we simply want to decide whether
or not a given picture belongs to the language. This is
accomplished by the following CSRS:

Rewrite Rules�

box�b�� num�n�p� � fbox�b� if inside�p�b�

box�b1�� plusop�p�� fbox�b2�� fbox�b3�� arc�p1�p2�� arc�p
�

1�p
�

2��

fbox�b1�� fbox�b2�� fbox�b3�

if inside�p�b1� � attached�p1�b2� � attached�p2�b1�

� attached�p�1 �b3� � attached�p�2�b1�

box�b1�� fbox�b2�� arc�p1�p2� � fbox�b1�� fbox�b2�

if attached�p1�b2� � attached�p2�b1�

fbox�b� �

Predicate De�nitions�

inside�pt�x�y��bb�x1 �y1�x2�y2�� �

x1 � x � x � x2 � y1 � y � y � y2

attached�p�b� � inside�p�b�

An initial picture is represented by a set of terms using
the constructor symbols box, num, op, and arc. The

rewrite rules 1, 2, and 3 handle the three different kinds of
boxes. They remove the num, op, and arc terms from the
set, and replace the box by an fbox (a “finished box”). Rule
4 then removes all fboxes. Under this CSRS, a picture is
legal if it can be rewritten to the empty set. For instance,
the picture shown in Fig. 3 is legal, so it can be rewritten
as shown in Table 1.

Now, let’s assume we want to translate pictures from this
visual language into a textual one. Defining a translation
function from a visual to a textual language is extremely
useful, as it allows us to use the existing methods for de-
scribing the semantics of a language. We can formally
define a visual language by describing it through a CSRS,
thereby defining its syntax and providing a translation to a
textual language, and then by giving type rules and an oper-
ational or denotational semantics for the textual language.

In this particular example, the textual target language
has an assignment statement set(v,e) (which we abbrevi-
ate to v := e), a block statement block(s1,s2) (which we
abbreviate to s1; s2), and a null statement noop. An ex-
pression e can be a (target language) variable v, an integer
constant, or an addition add(e1,e2) (or e1 � e2 for short).
id(t) (where t is a CSRS term) denotes a variable in the
target language.

We assume that the set describing the initial picture
contains one extra term, target(noop), which is then used
to build up the target expression.

The following CSRS performs the desired translation:

Rewrite Rules�

box�b� � nbox�id�box�b���b�

nbox�v�b�� num�n�p�� target�e�� fbox�v�b�� target�e � v��n�

if inside�p�b�

nbox�v1�b1�� plusop�p�� fbox�v2�b2�� fbox�v3�b3�� arc�p1�p2��

arc�p�1�p
�

2�� target�e� �

fbox�v1�b1�� fbox�v2�b2�� fbox�v3�b3�� target�e � v1��v2�v3�

if inside�p�b1 � � attached�p1�b2� � attached�p2�b1�

� attached�p�1�b3� � attached�p�2�b1�

nbox�v1�b1�� fbox�v2�b2�� arc�p1�p2�� target�e��

fbox�v1�b1�� fbox�v2�b2�� target�e; v1 :� v2�

if attached�p1�b2� � attached�p2�b1�

fbox�v�b� �

and attached and inside defined as before

Under this CSRS, a picture is legal if it can be rewritten
to the empty set.

Table 2 shows the rewriting of the set representing the
picture shown in Fig. 3. This process translates the picture
into the textual program s := 2; u := 3; t := s+u; v := t.

CSRS are expressive enough to allow for the specifica-
tion of three-dimensional visual languages.



a b

cd

e f

gh

i j
k

l
m n

op

q
r

s

t

Figure 4: 3D filesystem representation

Example 4: Consider the 3D visual language consisting
of all the pictures which contain only tetrahedrons. This
language can be described by the following CSRS (we use
a Prolog-like notation for lists):

Rewrite Rules�

pgon�a�� pgon�b�� pgon�c�� pgon�d�� tetr�w�x�y�z�

if perm�a��w�x�y�� � perm�b��w�x�z��

� perm�c��w�y�z�� � perm�d��x�y�z��

Predicate De�nitions�

perm�� ��� ��

perm�l1�a�l3� � select�a�l1 �l2� � perm�l2�l3�

select�a�a�l�l�

select�x�a�l1�a�l2� � select�x�l1 �l2�

A tetrahedron can be described by its 4 corners. Clearly,
there are 4 three-element subsets of those corners. Each
of the four triangles which make up the tetrahedron can be
identified with one of those subsets. In order to decide if
two sets are equal, we have to see if the list-representation
of the first set unifies with any permutation of the list-
representation of the second set. perm(l,l�) is a predicate
which holds if the list l � is a permutation of l.

Example 5: Consider the 3D visual language in which
all legal pictures contain only axis-aligned parallelopipeds
(boxes). This language is specified by the followingCSRS:

Rewrite Rules�

pgon�a�� pgon�b�� pgon�c�� pgon�d�� pgon�e�� pgon�f� �

box�lll�uuu�
if aaa � pt�x1�y1�z1� � aab � pt�x1�y1�z2�

� aba � pt�x1�y2�z1� � abb � pt�x1�y2�z2�

� baa � pt�x2�y1�z1� � bab � pt�x2�y1�z2�

� bba � pt�x2�y2�z1� � bbb � pt�x2�y2�z2�

� �iprot�a��aaa�aab�abb�aba�� � �iprot�b��baa�bab�bbb�bba��
� �iprot�c��aaa�aab�bab�baa�� � �iprot�d��aba�abb�bbb�bba��
� �iprot�e��aaa�aba�bba�baa��� �iprot�f ��aab�abb�bbb�bab��

Predicate De�nitions�

�iprot�a�b� � �iprot��a�� ��b�

�iprot��a�b�c� � reverse�b�b�� � append�a�b� �c�

�iprot��a�b�c� � reverse�a�a�� � append�a��b�c�

�iprot��x�a�b�c� � �iprot��a�x�b�c�

reverse�� ��� ��

reverse�a�l�n�� reverse�l�m� � append�m��a��n�

append�� ��l�l�

append�a�l�m�a�n� � append�l�m�n�

Tetrahedrons are composed of triangles, so it was suffi-
cient to simply permute the corner vertices of each triangle
in order to fit them together. The situation is slightly more
complicated for rectangles, where not every permutation
describes a valid “rotation” or “flip” of the rectangle (both
pgon([b,c,d,a]) and pgon([d,c,b,a]) are valid transforma-
tions of pgon([a,b,c,d]), but pgon([b,a,c,d]) isn’t!). The
predicate fliprot(l,l�) holds if the list of corner vertices l� is
a valid transformation of l.

Example 6: Finally, consider a (fictional) 3D visual lan-
guage for describing Unix file systems. A file is shown as
a tetrahedron, a directory is shown as a box, which may
contain tetrahedrons and other boxes. A legal picture con-
tains one box (the root directory), which may contain other
objects. The following CSRS describes this language:

Rewrite Rules�

box�a�b� � dir�a�b�� ��

tetr�p1�p2 �p3�p4�� dir�a�b�f� � dir�a�b�tetr�p1 �p2�p3�p4��f�

if inside�p1 �a�b� � inside�p2 �a�b�

� inside�p3 �a�b� � inside�p4 �a�b�

dir�a�b�f�� dir�c�d�f �� � dir�a�b�dir�c�d�f ���f�

if inside�c�a�b� � inside�d�a�b�

Predicate De�nitions�

inside�pt�x1 �y1�z1��pt�x2�y2�z2��pt�x3�y3�z3�� �

between�x1�x2�x3� � between�y1�y2�y3� � between�z1�z2�z3�

between�a�b�c� � �b � a � a � c� � �c � a � a � b�

box and tetr are defined in example 4 and 5, respectively

A picture is legal if it can be rewritten to a set of the
form dir(a,b,f). For example, the picture shown in Fig. 4
is legal as it can be rewritten as shown in Table 3.

5 Conclusion

We have introduced the notion of Conditional Set
Rewrite Systems, and argued that they provide a very ex-
pressive medium for specifying the syntax of two- and



threedimensional visual languages, and for translating pic-
tures belonging to a visual language into strings belonging
to a textual one.

We have shown CSRS to be more expressive than Pic-
ture Layout Grammars and “Logic Grammars”, as far as
language specification is concerned. They are unique in
their ability for language translation.

Finally, we have given a number of example CSRS to
specify various 2D and 3D visual languages, and to perform
a translation from a visual to a textual language.

References

[1] Shi-Kuo Chang, Picture Processing Grammar and its
Applications, Information Sciences 3 (1971), pp. 121
– 148.

[2] Gennaro Costagliola, Masaru Tomita, and Shi-Kuo
Chang, A Generalized Parser for 2-D Languages,
1991 IEEE Workshop on Visual Languages, pp. 98
– 104.

[3] C. Crimi, A. Guercio, G. Nota, G. Pacini, G. Tortora,
and M. Tucci, Relation Grammars and their Applica-
tion to Multidimensional Languages, Journal of Vi-
sual Languages and Computing 2 (1991), pp. 333 –
346.

[4] Eric J. Golin. A Method for the Specification and
Parsing of Visual Languages, Ph. D. thesis, Brown
University, 1990.

[5] Eric J. Golin, Parsing Visual Languages with Picture
Layout Grammars, Journal of Visual Languages and
Computing 2 (1991), pp. 371 – 393.

[6] Eric J. Golin and Steven P. Reiss, The specification of
visual language syntax, Journal of Visual Languages
and Computing 1 (1990), pp. 141 – 157.

[7] Nevin Heintze, Joxan Jaffar, Spiro Michaylov, Peter
Stuckey, and Roland Yap, The CLP(R) Programmer’s
Manual, Monash University, Australia, 1987.

[8] Richard Helm and Kim Marriott, Declarative Specifi-
cation of Visual Languages, 1990 IEEE Workshop on
Visual Languages, pp. 98 – 103.

[9] Richard Helm and Kim Marriott, A Declarative Spec-
ification and Semantics of Visual Languages, Journal
of Visual Languages and Computing2 (1991), pp. 311
– 331.

[10] Stéphane Kaplan, Conditional Rewrite Rules, Theo-
retical Computer Science 33 (1984), pp. 175 – 193.

[11] Kent Wittenburg, Earley-style Parsing for Relational
Grammars, 1992 IEEE Workshop on Visual Lan-
guages, pp. 192 – 199.



f box�bb����������� num���pt�	�
��� box�bb����������� plusop�pt���
��� box�bb�����	������ num�
�pt���
��� box�bb����������� arc�pt���
��pt���
���
arc�pt���
��pt���
��� arc�pt������pt������ g �

f fbox�bb����������� box�bb����������� plusop�pt���
��� box�bb�����	������ num�
�pt���
��� box�bb����������� arc�pt���
��pt���
���
arc�pt���
��pt���
��� arc�pt������pt������ g �

f fbox�bb����������� box�bb����������� plusop�pt���
��� fbox�bb�����	������ box�bb����������� arc�pt���
��pt���
��� arc�pt���
��pt���
���
arc�pt������pt������ g �

f fbox�bb����������� fbox�bb����������� fbox�bb�����	������ box�bb����������� arc�pt������pt������ g �
f fbox�bb����������� fbox�bb����������� fbox�bb�����	������ fbox�bb���������� g �
f fbox�bb����������� fbox�bb�����	������ fbox�bb���������� g �
f fbox�bb�����	������ fbox�bb���������� g �
f fbox�bb���������� g � f g

Table 1: Parsing of Fig. 3

f box�bb����������� num���pt�	�
��� box�bb����������� plusop�pt���
��� box�bb�����	������ num�
�pt���
��� box�bb����������� arc�pt���
��pt���
���
arc�pt���
��pt���
��� arc�pt������pt������� target�noop� g �

f nbox�s�bb����������� num���pt�	�
��� box�bb����������� plusop�pt���
��� box�bb�����	������ num�
�pt���
��� box�bb�����������
arc�pt���
��pt���
��� arc�pt���
��pt���
��� arc�pt������pt������� target�noop� g �

f nbox�s�bb����������� num���pt�	�
��� nbox�t�bb����������� plusop�pt���
��� box�bb�����	������ num�
�pt���
��� box�bb�����������
arc�pt���
��pt���
��� arc�pt���
��pt���
��� arc�pt������pt������� target�noop� g �

f nbox�s�bb����������� num���pt�	�
��� nbox�t�bb����������� plusop�pt���
��� nbox�u�bb�����	������ num�
�pt���
��� box�bb�����������
arc�pt���
��pt���
��� arc�pt���
��pt���
��� arc�pt������pt������� target�noop� g �

f nbox�s�bb����������� num���pt�	�
��� nbox�t�bb����������� plusop�pt���
��� nbox�u�bb�����	������ num�
�pt���
��� nbox�v�bb�����������
arc�pt���
��pt���
��� arc�pt���
��pt���
��� arc�pt������pt������� target�noop� g �

f fbox�s�bb����������� nbox�t�bb����������� plusop�pt���
��� nbox�u�bb�����	������ num�
�pt���
��� nbox�v�bb����������� arc�pt���
��pt���
���
arc�pt���
��pt���
��� arc�pt������pt������� target�noop� s �� �� g �

f fbox�s�bb����������� nbox�t�bb����������� plusop�pt���
��� fbox�u�bb�����	������ nbox�v�bb����������� arc�pt���
��pt���
��� arc�pt���
��pt���
���
arc�pt������pt������� target�noop� s �� �� u �� 
� g �

f fbox�s�bb����������� fbox�t�bb����������� fbox�u�bb�����	������ nbox�v�bb����������� arc�pt������pt�������
target�noop� s �� �� u �� 
� t �� s�u� g �

f fbox�s�bb����������� fbox�t�bb����������� fbox�u�bb�����	������ fbox�v�bb����������� target�noop� s �� �� u �� 
� t �� s�u� v �� t� g �
f fbox�t�bb����������� fbox�u�bb�����	������ fbox�v�bb����������� target�noop� s �� �� u �� 
� t �� s�u� v �� t� g �
f fbox�u�bb�����	������ fbox�v�bb����������� target�noop� s �� �� u �� 
� t �� s�u� v �� t� g �
f fbox�v�bb����������� target�noop� s �� �� u �� 
� t �� s�u� v �� t� g �
f target�noop� s �� �� u �� 
� t �� s�u� v �� t� g

where s � id�bb����������, t � id�bb����������, u � id�bb�����	�����, and v � id�bb����������

Table 2: Translation of Fig. 3

a � pt������� k � pt�������
b � pt�	������ l � pt�������
c � pt�	������ m � pt�������
d � pt������� n � pt�������
e � pt������� o � pt�������
f � pt�	������ p � pt�������
g � pt�	������ q � pt�������
h � pt������� r � pt�
�����
i � pt������� s � pt�������
j � pt������� t � pt�
�
���

f pgon��a�b�c�d��� pgon��e�f �g�h��� pgon��a�e�h�d��� pgon��b�f �g�c��� pgon��a�b�f �e��� pgon��d�c�g�h���
pgon��i�j�k�l��� pgon��m�n�o�p��� pgon��i�m�p�l��� pgon��j�n�o�k��� pgon��i�j�n�m��� pgon��l�k�o�p���
pgon��q�s�t��� pgon��s�r�t��� pgon��q�r�t��� pgon��q�s�r�� g �

f box�a�g�� pgon��i�j�k�l��� pgon��m�n�o�p��� pgon��i�m�p�l��� pgon��j�n�o�k��� pgon��i�j�n�m���
pgon��l�k�o�p��� pgon��q�s�t��� pgon��s�r�t��� pgon��q�r�t��� pgon��q�s�r�� g �

f box�a�g�� box�i�o�� pgon��q�s�t��� pgon��s�r�t��� pgon��q�r�t��� pgon��q�s�r�� g �
f box�a�g�� box�i�o�� tetr�q�s�r�t� g �
f dir�a�g�� ��� box�i�o�� tetr�q�s�r�t� g �
f dir�a�g�� ��� dir�i�o�� ��� tetr�q�s�r�t� g �
f dir�a�g��tetr�q�s�r�t���� dir�i�o�� �� g �
f dir�a�g��dir�i�o�� ���tetr�q�s�r�t��� g

Table 3: Rewrite of Fig. 4


