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Abstract

CUBE is a three-dimensional, visual, statically typed, in-
herently concurrent, higher-order logic programming lan-
guage, aimed towards a virtual-reality-based programming
environment. This paper describes a prototype implemen-
tation of CUBE.

1 Introduction

CUBE [7, 9] is a new programming language which com-
bines several innovative features, namely

� a visual, three-dimensional syntax, which shall even-
tually make it possible to edit programs in a virtual-
reality-based programming environment.

� a static, polymorphic type system, as used by many
functional languages

� an inherently concurrent, higher-order Horn logic
based semantics

CUBE was strongly influenced by Show and Tell [4], a visual
functional language based on data flow, completion and
consistency. CUBE’s type system and higher-order aspects
were inspired by ESTL [8]. Other visual logic languages
include the Transparent Prolog Machine [2], Senay’s and
Lazzeri’s system [10], pictorial Janus [3], and VLP [5].
Three-dimensional pictures have been used by Lieberman
to visualize the execution of Lisp programs [6].

2 System Overview

The CUBE prototype system reads the description of a
CUBE program from a file, renders it, and allows the user to
“move around” in the program (see Fig.2). Upon request,
it type-checks the program, renders the program together
with the inferred types, and again allows the user to move
around in it (see Fig.3). Upon further request, it evaluates
the program, and allows the user to move around in the
result (see Fig.4). The largest deficiency of the system is
that it does not yet contain an editor; programs are supplied
in form of hand-written text files.

The system consists of two programs: the Front-End, a
C program responsible for rendering and user interaction,
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(a) Wireframe rendering

(b) High-quality rendering (original in color)

Figure 1: Renderings of the factorial predicate



Rendering of the program for computing the factorial of 3. Meaning
of the buttons, from top to bottom: turn left/right, turn up/down, rotate
counterclockwise/clockwise around view-axis, move forward/backward,
zoom in/out, typecheck, evaluate, change rendering quality, and exit.

Figure 2: The factorial program before typechecking

and the Back-End, a Lazy ML program responsible for
everything else. These two programs run concurrently, and
communicate over Unix streams.

The system was implemented in such a way in order to
combine fast rendering with rapid prototyping. The ren-
dering step is presently the performance bottleneck, so it
was mandatory to implement it in a fast, low-level language
such as C. On the other hand, the rendering routines com-
prise just a small portionof the system, the less time-critical
parts could still be implemented in a high-level language
such as Lazy ML.

2.1 The Front-End

The Front-End of the CUBE system performs two tasks:
it renders three-dimensional pictures transmitted from the
Back-End onto an X window, and it detects mouse events,
and either forwards them to the Back-End, or changes the
viewpoint of the picture.

The picture description transmitted from the Back-End is
on a fairly low level: polygons in three-space with attached
color- and transparency-values.

The Front-End displays a CUBEprogram either as a wire-
frame rendering, or it will use a more complex technique,
which performs hidden-surface removal, and also handles
transparent surfaces (see Fig.1). This technique combines
concepts of z-buffering and �-channels, and delivers very
realistic pictures, but unfortunately is very slow without
hardware support.

The right holder cube contains the inferred result type, Int. Every
initially empty holder cube is filled with its inferred type.

Figure 3: The factorial program after typechecking

2.2 The Back-End

The Back-End of the system performs three major tasks:
typechecking of programs, evaluation of programs, and
visualization of programs, types, and results, i.e. translation
of highly structured objects into polygons, which are then
forwarded to the Front-End.

CUBE uses Hindley-Milner style type inference [1]. In
order to infer the types of the subexpressions of a program,
it is first translated into a simpler textual form, upon which
fairly conventional type inference rules are applied. Details
can be found in [7].

Semantically, CUBE is a higher-order Horn logic lan-
guage. Predicates are viewed as special kinds of terms,
and variables may range over predicates. However, we
use normal first-order unification. Two predicates unify
not if they describe the same relation (which is in general
undecidable), but rather if they have unifying definitions.

CUBE is inherently concurrent. Our interpreter simulates
a concurrent execution by maintaining a queue of processes
(called a configuration), and by allowing each process a cer-
tain time-slice. In our terminology, a process consists of a
store and a set of threads. A thread is a “lightweight pro-
cess”, which shares a store with other concurrent threads
within the same process. Associated with each logic vari-
able is a location. A store maps locations to values. A
value can either be a term (the variable is “instantiated”),
or be undefined (the variable is “uninstantiated”). Attached
to each undefined value is a set of wait-tokens.

A thread corresponds to a goal to be proven, a set of
threads within a process to a conjunction of subgoals, a



The right holder cube contains the result, namely 6.

Figure 4: The factorial program after evaluation

process to a particular proof attempt, and a configuration to
different proof attempts.

One evaluation step consists of picking one thread out
of a process, and resolving it. But not every thread (ev-
ery goal) can be resolved right away. For instance, the
goal “plus � x y” cannot be resolved, as long as both
x and y are unknown. In such a case, the thread is sus-
pended, and wait-tokens identifying it are attached to x and
y. When a variable is instantiated with a value, all of the
suspended threads with wait-tokens attached to the variable
are resumed.

Before resolution, predicate applications have to be re-
duced to a normal form, which entails the binding of actual
to formal parameters for applications.

CUBE is a higher-order language, which means that pred-
icate and constructor applications may have variables in
functor positions. If the functor is an uninstantiated vari-
able, the reduction cannot be performed. The current thread
is suspended, and a wait-token identifying it is attached to
the variable.

A goal may be a unification of two expressions. Such a
goal is resolved by first reducing both expressions to normal
forms, and then unifying these.

A goal might also be reduced to the body of a predicate
definition, i.e. a disjunction e1 � � � � � em, where each ei
is in turn a conjunction e i1 � � � � � eini

. In this case, the
current process P is replaced by m duplicates P1� � � � � Pm,
and to each processPi, new threads ei1� � � � � eini

are added.
CUBE has a primitive negation predicate, which is

cleaner than Prolog negation, as it suspends until the goal
to be negated is completely ground. Evaluating a nega-

tion involves establishing a – again concurrent – sub-
configuration, and determining if all its processes fail (i.e.
the negation succeeds), or if at least one process succeeds
(i.e. the negation fails).

3 Future Work

The prototype system demonstrates the feasibility of a
CUBE implementation. In order to provide a useful system,
three basic improvements have to be made:

� A visual editor for CUBE programs is needed. This
editor should be structural and be context-sensitive,
i.e. it should not allow the construction of ill-formed
or ill-typed programs.

� In order to provide a truly interactive environment, the
system’s performance has to be increased. We hope
to achieve this by porting our system onto a Silicon
Graphics workstation.

� Our long-term goal is to port CUBE to a virtual reality
environment to provide a better support to interact with
its three-dimensional pictures than a mouse-based in-
terface can provide.
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