Enhancing Show-and-Tell with a
and higher-order

Marc A. Najork

olymorphic type system
unctions

Eric Golin

Department of Computer Science
University of lllinois
Urbana, IL 61801

Abstract

We describe enhancements to the visual dataflow
language Show-and-Tell (STL). These enhancements
enrich STL by a polymorphic type system similar to
the one used in ML, and they introduce user-definable
higher-order functions.

1 Introduction

Show-and-Tell (abbrev. STL) [1] is a visual
programming language based on dataflow and
completion. It was primarily targeted at elementary
school children. We believe that a visual syntax is a
powerful way of communicating the meaning of a
program, and that the benefits of visual programming
can be realized by a wide range of users. We have
enhanced STL by introducing features oriented to the
sophisticated programmer. Our new language is called
ESTL, for Enhanced-Show-and-Tell.

The first objective of this paper is to introduce a
strong, polymorphic type system for STL that allows
static type checking. The type system includes related
functions (e.g. constructors and selectors), and
visualization of typed objects. Our second objective is
provide a more convenient and intuitive mechanism for
handling higher-order functions.

In the following sections, we first give a short
overview of Show-and-Tell, and then describe our
enhancements to the language. These enhancements fall
into four categories:

(1) A polymorphic type system for STL that stems
from ideas incorporated into a multitude of today's
functional languages, like ML or Miranda.

The application of our typing mechanism to the
definition of (first-order) functions. We introduce a
number of primitive functions and show how to
define derived functions.

A notation for functions with variable arity.

An elegant visualization for higher-order functions
that improves STL's Lisp-style capabilities of
quoting functions.

The final section summarizes the findings of this paper
and gives an outlook on future research.

@

3
@

The Show-and-Tell language

Show-and-Tell, developed by Kimura et al. [1] [2], is
a visual language based on the dataflow paradigm and
the completion principle [3].

TH0330-1/90/0000/0215$01.00 © 1990 IEEE

215

Constants, variables and operations are shown as
boxes. Data flows from boxes to other boxes through
pipes depicted as arrows. In this paper, we will refer to
the interface between a box and a pipe as a port (this is
a slightly more general notion of a port than the one
used by Kimura). A picture composed of boxes and
pipes is called a puzzle. STL tries to complete this
puzzle by performing every possible dataflow.

If data flows into a box already containing a different
value, the box becomes inconsistent. Inconsistency can
be limited to a simple box, or it can "flow out" of this
box and turn its spatial environment inconsistent as
well. Inconsistent areas are shaded grey and are
considered to be removed from the diagram. If a pipe
leads through an inconsistent area, no data can pass
through it. This novel notion of inconsistency can be
utilized in many ways, in particular, it fulfills the same
purposes as a conditional or selection function in
traditional languages.

Function diagrams in STL can be associated with
user-defined icons, which provides named functions.
These functions may be recursive. Conditionals,
recursion, and variable-sized data structures guarantee
that STL is as powerful as Turing machines, the lambda
calculus or other models of computation.

In addition, STL allows iteration through the Iterator
construct. STL distinguishes between sequential
iterators, parallel iterators, and combinations thereof.
An iterator is visualized by an icon with fat borderlines
containing a function diagram.

Sequential iterators have a number of input ports,
shown as inward pointing triangles located on one side
of the iterator, and an equal number of output ports,
depicted as outward pointing triangles located at the
opposite side of the iterator. The iteration process,
termed unfolding of the iterator, goes as follows: The
function diagram within the iterator is evaluated, using
the data provided by the input ports. If it becomes
inconsistent, the data flows directly from the input
ports to the output ports. Otherwise the output of this
function diagram is connected to the input ports of an
identical iterator.

Parallel iterators can import or export data through
parallel ports. If a list data item with n elements
provides the input for a parallel port, the corresponding
iterator will be unfolded into n similar function
diagrams. If an iterator outputs one item through a
parallel port during each of n iterations, the overall
result will be a list with n elements.

Fig. 1 shows an example STL program containing a
sequential and parallel iterator. After its execution, the
two upper empty variable boxes will contain a 6, the
lower one will contain the list {1,2,3,4,5), and the area
of the iterator will be shaded in order to indicate that it
turned inconsistent.

1.2,

+1

Fig. 1 : Example STL program

Iterators are an example of higher-order functions.
Sequential iterators act as while-loops (or as fixed-point
operators for tail-recursive functions), parallel iterators
share many features with various map functions. In
section 4, we will introduce a syntactic enhancement
that allows the user to define iterators as higher-order
functions.

2 A static polymorphic type system for STL

Type Definitions

ESTL is based on the type system proposed by
Milner [4] for functional languages. This type system
has been incorporated into a multitude of modern typed
functional languages, like ML, Miranda, or Haskell.

Types are visualized by grey type icons. ESTL has
four predefined base types: Integers, Reals, Characters,
and Booleans (ESTL differs in this respect from STL,
which does not have a boolean type, but handles all
uses of booleans through the concept of consistency).
Fig. 2 shows the representations of these predefined

types.

Real Character
Predefined simple types

Integer Boolean

Fig. 2 :

ESTL offers two families of typemakers that compose
simpler types into higher ones:

* atypemaker family for tuple (record) types

¢ atypemaker family for union rypes
Typemakers are spatial arrangements of types. The top-
level typemaker is enclosed by a grey box. A tuple

216

typemaker is an area enclosing zero or more other type
icons or type diagrams. A union typemaker is an area,
divided into several non-overlaying subareas by broken
lines. Each area represents one alternative and can
contain zero or more other type icons or type diagrams.
Fig. 3 shows examples of these typemakers.

Structure type char X int X int

X

€

Union type int U real U bool
Fig. 3 : Typemakers

A type diagram or type formula is a set of types
composed into one type by using typemakers. Type
diagrams can be associated with a new type icon, i.e.
they can be named. The type icon and its corresponding
diagram constitute a type definition. As was the case
with function definitions, type definitions can be
recursive, so the name of a type can appear in its type
diagram.

In addition to the predefined types discussed before,
ESTL provides the void type. The void type is defined
as a zero-tuple (which means that there is only one void
value). The void type icon is an all-grey box, it names
the empty diagram. Fig. 4 shows the definition of the
void type.

definition

name

Fig. 4 : The void type

Using the union typemaker, the type naming
mechanism, and O-tuples, we can easily define enumera-
tion types. For example, Fig. 5 shows an enumeration
type t={day,night}. Each of the enumerants is first
defined as a constant type (i.e. having an empty
definition), and the enumeration is simply their union.

Union types together with a type naming mechanism
also allow us to construct recursive types, like lists or
trees. Trees, lists, stacks, queues, etc. are examples of
polymorphic data types. We would like to be able to
define a tree of T, where T is an arbitrary type, and

-~ anw WA s o o

definition
Enumeration type definition

name
Fig. 5 :

then use this polymorphic tree type by simply
"plugging in" an appropriate type for T, instead of
defining instances of the tree type (or, more correctly,
tree type scheme) from scratch.

A type variable is a placeholder for a type that can be
used in a type diagram wherever a type icon could be
used. Fig. 6 shows the predefined icon for a type
variable. If a type definition involves more than one
type variable, the T will have appropriate subscripts.

Fig. 6 : Type variable

To provide a mechanism for specifying the variables in
a type definition, we have generalized the notion of type
icon: an icon can be a simple icon (like those shown in
Fig. 2) or a structured type icon. A structured type icon
is a grey icon that consists of a pictorial part identifying
the icon and one or more slots that can be filled with
type variables (when naming a polymorphic type) or
type icons (when creating an instance of a polymorphic
type). All the type variables used in a type definition
must also appear in the type's name. Fig. 7 shows the
definition of a polymorphic tree type, and an instance of
this polymorphic type, a tree of characters. Fig. 8

shows a polymorphic list type.

use

name

definition

Polymorphic tree type

Fig. 7 :

%

name

T

definition

Fig. 8 : Polymorphic list type

These components — a few primitive types, tuple and
union typemakers, type variables and a type naming
mechanism — give us a type system equivalent in its
expressive power to the one described by Milner [4],
modulo mappings. In fact, our type system may be
viewed as a visual syntax for Milner's. This type
definition system can be used to type the arguments and
the results of an ESTL function (represented by an
operation icon). ESTL is a strongly typed language and
does not provide automatic type coercion. Therefore the
types of variables, arguments, and function results can
be inferred automatically; type declarations are optional.
Within a function diagram, the type of a variable box is
shown by filling the black variable box with a grey
type representation, which may be either a type icon or
a type diagram. Fig. 9 shows the name and the
definition of a recursively defined factorial function,

with types specified.

217

1 t =
I I
name definition
Fig. 9 : Typing of the factorial function

Constructors, Selectors, and Filters
There are two families of functions related to the
type system. For every record type, there is an

associated record constructor/selector function, and for
every union type there is a type filter.

A record constructor/selector "function” (RCS) is a
relation between a tuple type and its constituents types.
An RCS for some n-tuple T=T1x..XT, has ports on
two sides: the structure side has one port with type T;
the element side has n ports typed T, through T,. An
n-tuple input on the structure side will return its
elements on the element side. Data items input into the
element side will output an n-tuple on the structure
side. Ports on the element side which have not received
any data will lead to uninstantiated elements in the n-
tuple. If both the structure and the element side receive
data items, conflicts will lead to inconsistency.

T.
"E.

T

= =l]

@
Fig. 10 :

(®)

Record constructors/selectors

Fig. 10 shows two variations of RCS's. The RCS in
Fig. 10.a constructs anonymous record types. Fig. 10.b
visualizes the type of the elements of the tuple as well
as the name of the resulting tuple type, T in this case.

Like an RCS, a type filter is a relation, in this case
between a union type and its constituent types. A type
filter for the union type T=T;u..UT,, also has ports on
two sides: the union side with one port of type T, and
the element side with n ports of type T to T,,. A data
item flowing in on the element side goes out on the
union side tagged with its subtype Ty,. If more than one
port on the element side receives data, the type filter
becomes inconsistent. Data flowing into the union side
comes out on the port of the element side with the
compatible type. Fig. 11 shows two variations of type
filters, similar to the two variations of RCS.

Record constructors and type filters can be both
combined in one icon, much as a single type diagram
can both contain records and unions. Fig. 12 shows an
example program using a combined record constructor/
selector and type filter. This program takes a data item
of type list of int and sums the elements of this
list. The incoming list is either empty or nonempty. In
the first case, the void part of the type filter remains
consistent, while the other part turns inconsistent. A
nil value flows out of the type filter and into a variable
box. This variable box is grouped together with a box
containing the constant 0. As there are no more empty

218

o o

=]

w

@
Fig. 11

®
: Type filters

variable boxes in this group, the 0 flows out of the
group and is returned as a result of the function call. If
the incoming list is nonempty, the void-part of the type
filter becomes inconsistent and the upper part of the
type filter remains consistent. The tail of the list is
forwarded to a recursive occurrence of the sum function,
the result of which is added to the head of the list,
producing the final result.

name

N

definition
Summation of integer list

Fig. 12 :

3 Functions with variable number of Ports

It is often convenient to allow functions with a
variable number of arguments and results. Examples of
these include:
¢ a preferrer function that takes n ordered inputs and
returns the first input which receives consistent data
(this construct resembles a case statement)

a list composer that takes n objects of type T as ar-
guments and returns a 1ist of T containing those n
objects, together with its corresponding decomposer
an STL sequential iterator [1] with n sequential
ports.

We have extended the syntax of STL to permit function
icons with a variable number of ports. This extension
generalizes a function to the notion of a function
schema. A function schema is an abstraction of a set of
similar functions which differ only by the number of
ports they have. A concrete function belonging to this
set is said to be an instance of the function schema.
Like ordinary functions, function schemas have a
name, visualized by a function schema name icon
(FSNI), and a definition. An FSNI can have any number
of ordinary ports, each one connected to an ordinary pipe
and receiving one argument or returning one result. In
addition, however, it can have any number of
multiports, each one connecting to a multipipe. A
multipipe is the abstraction of a bundle of n pipes,
where n is variable. Fig. 13.a shows a multipipe
abstracting zero or more pipes, Fig. 13.b a multipipe
for one or more pipes. In an instance of a function
schema, a multiport is connected to n ordinary pipes.

(a) bundles 0 or more pipes

Fig. 13 :

(b) bundles 1 or more pipes
Multipipes

An ordinary pipe is associated with a type by a function
definition. A multipipe can be associated with a type,
but does not have to be. If it is not, type inference is
done only when a concrete instance of the function
schema is used (Note that this is still at program
creation time, so that typing remains static). Fig. 14.a
shows the name of a family of preferrer functions.

N\,

(a) name

(b) definition: base case

2

(c) use: first input consistent first input inconsistent

Fig. 14 : Preferrer function schema

219

A function schema is defined recursively. While the
recursive part uses the multiport of the function
schema, the base case replaces those multiports with
ordinary ports. Fig. 14.b shows the definition of the
preferrer function family. The base case arises when
only one pipe (or a multipipe consisting of one pipe) is
connected to the multiport. The recursive case arises
when the multiport is connected to n (n > 2) pipes (or a
multipipe composed of n pipes). In this case, the
preferrer function schema instance taking n - 1 ports at
this multiport is called.

Fig. 15 shows the naming and the definition of a
family of list composers. Unlike the preferrer, the list
composer uses typed inputs and outputs.

THiE:

definition base case

-
>

T 2"

definition recursive case

-
-

Fig. 15 : List composer function schema

4 Higher-Order Functions

A higher-order function is a function which takes
other functions as arguments and/or returns functions as
results. STL provides a quote/unquote mechanism
similar to that in Lisp, for defining and using higher-
order functions. Although this approach is powerful,
syntactically it is not very elegant.

ESTL improves on this mechanism by introducing
the concept of a function slot. A function slot is an
empty (parameter) box in a function name icon. A
function slot takes function icons or function boxgraphs

as arguments ("the function is slotted in"). Each slot in
a function name icon is associated with one or more
variable boxes (referred to as slot receivers) in the
boxgraph by means of slot variables (analogous to type
variables). A lower-order function slotted into a slot of a
higher-order function will appear in the variable box
associated with the slot. Function slots are an alterna-
tive visual syntax for higher-order functions. They can
be easily reduced to an equivalent quote and unguote.
Fig. 16 shows an example of higher-order functions
using function slots. The functional defined in Fig. 16
performs an inorder traversal on a polymorphic binary
tree. The function F slotted in will be called for each
leaf node in the tree, it will use the leaf and the result of
the traversal so far, and will return a new result. The
functional takes both the tree and an initial value as
arguments, and it returns the overall result of the
traversal. Fig. 16.c shows a possible use of the
functional. The addition function is slotted in. If a tree
of integers and an initial value of 0 is provided, the
functional will return the sum of the leaves of the tree.

§ Conclusion and Outlook

We described a number of extensions of the visual
dataflow language Show-and-Tell. These extensions
include

¢ a static polymorphic type system and its associated
constructor and accessor functions,
* multiports and multipipes for describing functions
with variable arities and
¢ function slots to ease the construction of higher-
order functions.
We have implemented an editor and a type inference
system for the type system described above.

6 References

{1] Takayuki Dan Kimura, Julie W. Choi, Jane M. Mack, A
Visual Language for Keyboardless Programming,
Tech. Rep. WUCS-86-6, Dept. of Computer Science,
Washington Univ., St. Louis, MO, March 1986

[2] Takayuki Dan Kimura, Show and Tell Sample
Programs, Dept. of Computer Science, Washington
Univ., St. Louis, MO, January 1986

[3] Takayuki Dan Kimura, Determinancy of Hierarchical
Dataflow Model -- a computation model for visual
programming, Tech. Rep. WUCS-86-5, Dept. of
Computer Science, Washington Univ., St. Louis, MO,
March 1986

[4] Robin Milner, A Theory of Type Polymorphism in
Programming, in: Journal of Computer and System
Sciences, Vol. 17, 1978, pp. 348-375

220

(b) definition

R
4@]

(c) use

Fig. 16 : Preorder Tree Traversal Functional

