
A Library for Visualizing Combinatorial Structures

Marc A. Najork Marc H. Brown

DEC Systems Research Center
130 Lytton Ave.

Palo Alto, CA 94301
fnajork,mhbg@src.dec.com

Abstract

This paper describes ANIM3D, a 3D animation library
targeted at visualizing combinatorialstructures. In particular,
we are interested in algorithm animation. Constructing a
new view for an algorithm typically takes dozens of design
iterations, and can be very time-consuming. Our library eases
the programmer’s burden by providing high-level constructs
for performing animations, and by offering an interpretive
environment that eliminates the need for recompilations. This
paper also illustrates ANIM3D’s expressiveness by developing
a 3D animation of Dijkstra’s shortest-path algorithm in just
70 lines of code.

1 Background

Algorithm animation is concerned with visualizing the
internal operations of a running program in such a way that
the user gains some understanding of the workings of the algo-
rithm. Due to lack of adequate hardware, early algorithm ani-
mation systems were restricted to black-and-white animations
at low frame rates [6]. As hardware has improved, smooth
motion [11, 15], color [1], and sound [4] have been used to
increase the level of expressiveness of the visualizations.

Constructing an enlightening visualization of an algo-
rithm in action is a tricky proposition, involving both artis-
tic and pedagogical skills of the animator. Most successful
views undergo dozens of design iterations. Based on our ex-
periences in the 1992 and 1993 SRC Algorithm Animation
Festivals [2, 3] (20 SRC researchers participated each year),
we found that a high-level animation library, coupled with
an interpreted language, was instrumental in developing high-
quality views [12].

A high-level animation library allows users to focus on
what they want to animate, without having to spend too much
time on the how. An interpreted language significantly short-
ens the time needed for each iteration in the design cycle
because users do not need to recompile the view after mod-

ifying its code. In fact, in our algorithm animation system,
users just need to hit the “run” button in the control panel to
see their changes in action.

In 1992, we began to explore how 3D graphics could
be used to further increase the expressiveness of visualiza-
tions [5]. We identified three fundamental uses of 3D for
algorithm visualization: Expressing fundamental information
about structures that are inherently two-dimensional; uniting
multiple views of the underlying structures; and capturing a
history of a two-dimensional view. Fig. 1 shows snapshots of
some of the 3D animations we developed.

We found that building enlightening 3D views is even
harder than building good 2D views. One obvious reason is
that we (and most people) are much less used to designing in
3D than in 2D. But a more pragmatic problem was that our
3D software infrastructure was quite impoverished: We used
a small, object-oriented graphics library for displaying static
3D scenes. This library (like the rest of our algorithm ani-
mation system) was written in Modula-3 and used PEXlib as
its underlying graphics system. This architecture was limiting
both in terms of turnaround time and in terms of animation
support. Therefore, drawing on our prior experience in 2D
algorithm animation, we built ANIM3D, a 3D object-oriented
animation library.

ANIM3D supports several window systems (X and Tres-
tle [13]) and several graphics systems (PEX and OpenGL).
The base library is implemented in Modula-3; clients can
either directly call into this base library, or access it through
Obliq [7], an interpreted embedded language. Using ANIM3D,
the size of a prototypical 3D animation (Dijkstra’s shortest-
path algorithm) decreased from about 2000 lines of Modula-3
to 70 lines of Obliq, and the part of the design cycle time
devoted to compiling, linking, and restarting the application
from about 7 minutes to about 10 seconds of reloading by the
Obliq interpreter (on a DECstation 5000/200).

Although ANIM3D was designed with algorithm anima-
tion in mind, it is a general-purpose animation system. We
believe it to be particularly well-suited for visualizing and
animating combinatorial structures.



Figure 1: These snapshots are examples of the type of views for which ANIM3D is very well-suited. Each view requires from 50 to 200 lines of code to produce.
The first snapshot shows a divide-and-conquer algorithm for finding the closest pair of a set of points in the plane. The third dimension is used here to show the
recursive structure of the algorithm. The second snapshot shows a view of Heapsort. Each element of the array is displayed as a stick whose length and color is
proportional to its value. With clever placement, the tree structure of the heap is visible from the front and the the array implementation of the tree is revealed
from the side. The third snapshot shows a k-d tree, for k � 2. When viewed from the top, the walls reveal how the plane has been partitioned by the tree; when
viewed from the front or side, we see the tree. The last snapshot shows a view of Shakersort. The vertical sticks show the current values of elements in the array,
and the plane of “paint chips” underneath provides a history of the execution. The sticks stamp their color onto the chips plane, which is pulled forward as the
execution progresses.

The remainder of this paper is structured as follows. Af-
ter presenting an overview of ANIM3D, we show how to use
the library to construct a simple animation. The animation
is of a trivial solar system. We then build a 3D visualiza-
tion of Dijkstra’s algorithm for finding the shortest path in a
graph. This animation can also serve as an introduction to our
methodology for animating algorithms. Finally, we discuss
how ANIM3D compares with other general-purpose animation
systems and with other algorithm animation systems.

2 An Overview of Anim3D

ANIM3D is built upon three basic concepts: graphical
objects, properties, and callbacks.

A graphical object, or “GO”, can be a geometric primitive
such as a line, polygon, sphere, or cone, a light source, a
camera, or a group of other GOs. Graphical objects form a
directed acyclic graph; typically, the roots of the DAG are the
top-level windows, the internal nodes are groups of other GOs,
and the leaves are geometric primitives, lights, or cameras.
The GO class hierarchy is as follows:

RootGO

OrthoCameraGO
PerspCameraGO

AmbientLightGO
VectorLightGO
PointLightGO
SpotLightGO

LineGO
MarkerGO

PolygonGO
BoxGO
SphereGO
ConeGO
CylinderGO
DiskGO
TorusGO

GroupGO

CameraGO

LightGO

NonSurfaceGO

SurfaceGO

GO

A property consists of two parts, a name and a value.
Property names are constants, such as “Surface Color” or
“Sphere Radius.” Property values are objects (in an object-
oriented programming sense) representing colors, 3D points,
reals, etc. Because property values are objects, they are both
mutable and can be shared by several GOs. In addition, prop-
erty values are time-variant: the actual value encapsulated by
the property value depends on the current animation time, a
system-wide resource.

Associated with each graphical object o is a property
mapping, a partial function from property names to property
values. A property associated with o not only affects the ap-
pearance of o, but also the appearance of all those descendants
of o that do not explicitly override the property.

Although it is legal to associate any property with any
graphical object, the property does not necessarily affect the
object. For example, associating a “Sphere Radius” property
with an ambient light source does not affect the appearance or
behavior of the light. However, associating this property with
a group g potentially affects all spheres contained in g.

Graphical objects are reactive, that is, they can respond to
events. We distinguish three different kinds of events: mouse
events are triggered by pressing or releasing mouse buttons,
position events are triggered by moving the mouse, and key
events are triggered by pressing keyboard keys.

Events are handled by callbacks. There are three types
of callbacks, corresponding to the three kinds of events. As-
sociated with each graphical object are three callback stacks.
The client can define or redefine the reactive behavior of a
graphical object by pushing a new callback onto the appropri-
ate stack. The previous behavior of the graphical object can
easily be reestablished by popping the stack.

Consider a mouse event e that occurs within the extent of
a top-level windoww. Associated withw is a RootGO r. The



Figure 2: The ANIM3D Solar System

top callback on r’s mouse callback stack will be invoked (if
the callback stack is empty, the event will simply be dropped).
The callback might perform an action, such as starting to spin
the scene, or it might delegate the event to one of r’s children.

3 Using Anim3D

Both Modula-3 and Obliq support the concepts of mod-
ules and classes. (Obliq is based on prototypes and delegation,
not classes and inheritance; however, it is expressive enough
to simulate them.) For each kind of graphical object, there is a
Modula-3 module in ANIM3D. This module contains the class
of the graphical object, and a set of its associated functions and
variables. For each Modula-3 module, there is a “wrapper”
that makes it accessible as a module from Obliq.

The module GO contains the class of all graphical objects.
There are various methods associated with them: methods for
defining, undefining, and accessing properties in the property
mapping of a graphical object, and methods for pushing and
popping the three callback stacks of the graphical object as
well as for dispatching events to their top callback objects.
In addition, there is one property named GO_Transform,
which names the spatial transformation property and is mean-
ingful for all graphical objects. Unlike other properties, a
transformation property does not “override” other transforma-
tions that are closer to the root, but is rather composed with
them.

The module GroupGO contains the class of all graphical
object groups, i.e. graphical objects which are used to group
other graphical objects together. The GroupGO class has
methods for adding elements to a group and removing them
again. The module also contains a functionNew, which creates
a new group and returns it.

A 3D window is regarded as a special form of group,
which contains all the objects in a scene (we therefore call it
the “root” of the scene), and has some additional properties,
such as the color of the background, whether depth cueing is
in effect, etc. Also associated with each window is the camera
that is currently active, and a “graphics base,” an abstraction
of the underlying windows and graphics system. Finally, the

RootGO module contains functions New and NewStd. The
latter creates a new scene root object with reasonable default
elements, callbacks, and properties (a perspective camera, two
white light sources, top-level reactive behavior that allows
the user to rotate and move the scene, and various surface
properties).

Both PEX and OpenGL distinguish between lines and
surfaces: surfaces are affected by light sources, lines are not.
There are a variety of properties common to all surfaces: their
color, transparency, reflectivity, shading model, and so on. Al-
though it is legal to attach these properties to non-surfaces, it
will not affect them. In order to emphasize that these prop-
erties are meaningful only for surfaces, we provide a module
SurfaceGO, which contains the superclass of all graphical
objects composed of surfaces, along with their related proper-
ties. We are provide a NonSurfaceGOmodule for lines and
markers.

The module SphereGO contains the class of spheres,
which is a subclass of the SurfaceGO class, as spheres are
composed of triangles, i.e. surfaces. Apart from the definition
of the sphere class, it contains a functionNew for creating new
sphere objects, and property names Center and Radius,
which are used to identify the properties determining the center
and the radius of the sphere.

Here is a complete Obliq program to display a planet and
its moon. The user can control the camera using the mouse.
This scene is displayed in the left snapshot of Fig. 2.

let root = RootGO_NewStd();
let planet = SphereGO_New([0,0,0],1);
SurfaceGO_SetColor(planet,"lightblue");
root.add(planet);
let moon = SphereGO_New([3,0,0],0.5);
SurfaceGO_SetColor(moon,"offwhite");
root.add(moon);

Property values can be time-variant; that is, their value depends
on the time of the animation clock. Time-variant property
values can either be unsynchronized or synchronized.

An unsynchronized time-variant property value starts to
change at the moment it is created, and animates the graphical
object o as long as it is attached to o. The animation does not



need to be triggered by any special command. For instance,
unsynchronized property values can be used to rotate the scene
or some part of it for an indefinite period of time.

Synchronized property values, on the other hand, are used
to animate several aspects of a scene in a coordinated fashion.
Each synchronized property value is “tied” to an animation
handle, and many values can be tied to the same handle. A syn-
chronized property value object accepts animation requests,
messages that ask it to change its current value, beginning at
some starting time and lasting for a certain duration. When
a client sends an animation request to a property value, the
request is not immediately satisfied, but instead stored in a re-
quest queue local to the property value. Sending the message
animate to an animation handle causes all property values
controlled by this handle to be animated in synchrony. The
call to animate returns when all animations are completed.

When added to the above program, the following few
lines create a 25-second animation. The planet rotates six
times about its axis, while the moon revolves once around the
planet. In order to better show the rotation, we add a red torus
around the planet, aligned to the axis of rotation. See Fig. 2,
the three frames at the right.

let torus = TorusGO_New([0,0,0],[1,0,0],1,0.1);
root.add(torus);
SurfaceGO_SetColor(torus,"red");
let ah = AnimHandle_New();
let planettransform = TransformProp_NewSync(ah);
planet.setProp(GO_Transform,planettransform);
torus.setProp(GO_Transform,planettransform);
let moontransform = TransformProp_NewSync(ah);
moon.setProp(GO_Transform,moontransform);
moontransform.getBeh().rotateY(2*PI,0,25);
planettransform.getBeh().rotateY(12*PI,0,25);
ah.animate();

Note that we chose to attach the same transformation property
to both the torus and the planet. Alternatively, we could have
made a group containing both, and attached the transformation
property just to this group.

4 Case Study:
Shortest-Path Algorithm Animation

This section contains a case study of using ANIM3D with
the Zeus algorithm animation system [1] to develop an anima-
tion of Dijkstra’s shortest-path algorithm. We first describe
the algorithm, and then sketch the desired visualization of the
algorithm. Next, we present an overview of the Zeus method-
ology and finally, we present the actual implementation of the
animation.

The implementation consists of three elements. First, we
define a set of “interesting events,” used for communication
between the algorithm and the view. Second, we annotate the
algorithm with the events. And finally, we build a view, a
window that displays interesting events graphically.

4.1 The Algorithm

The single-source shortest-path problem can be stated as
follows: given a directed graph G � �V�E� with weighted
edges, and a designated vertex s, called the source, find the
shortest path from s to all other vertices. The length of a path
is defined to be the sum of the weights of the edges along the
path.

The following algorithm, due to Dijkstra [10], solves this
problem (assuming all edge weights are non-negative):

for all v � V do D�v� :��
D�s� :� 0; S :� �
while V n S �� � do

let u � V n S such that D�u� is minimal
S :� S � fug
for all neighbors v of u do
D�v� :� minfD�v�� D�u� �W �u� v�g

endfor
endwhile

In this pseudo-code,D�v� is the distance from s to v, W �u� v�
is the weight of the edge from u to v, and S is the set of
vertices that have been explored thus far. V n S denotes those
elements in V that are not also in S.

4.2 The Desired Visualization

An interesting 3D animation of this algorithm is shown
in Fig. 3. The vertices of the graph are displayed as white
disks in the xy plane. Above each vertex v is a green column
representingD�v�, the best distance from s to v known so far.
Initially, the columns above each vertex other than s will be
infinitely (or at least quite) high. An edge from u to v with
weightW �u� v� is shown by a white arrow which starts at the
column over u at height 0 and ends at the column over v at
heightW �u� v�.

Whenever a vertex u is selected to be added to S, the
color of the corresponding disk changes from white to red.
The additionD�u��W �u� v� is animated by highlighting the
arrow corresponding to the edge �u� v� and lifting it to the top
of the column (i.e. raising it by D�u�). If D�u� � W �u� v�
is smaller than D�v�, the end of the arrow will still touch the
green column over D�v�, otherwise, it will not. In the former
case, we shrink the column over v to heightD�u� �W �u� v�
to reflect the assignment of a new value toD�v�, and color the
arrow red, to indicate that it became part of the shortest-path
tree. Otherwise, the arrow simply disappears.

Upon completion, the 3D view shows a set of red arrows
which form the shortest-path tree, and a set of green columns
which represent the best distance D�v� from s to v.



Figure 3: These snapshots are from the animation of Dijkstra’s shortest-path algorithm described in section 4. The left snapshot shows the data just before entering
the main loop. The next snapshot shows the algorithm about one-third complete. In the third snapshot, the algorithm is about 2/3 complete, and the snapshot at
the right shows the algorithm upon completion.

4.3 Zeus Methodology

In the Zeus framework, strategically important points of
an algorithm are annotated with procedure calls that generate
“interesting events.” These events are reported to the Zeus
event manager, which in turn forwards them to all interested
views. Each view responds to interesting events by drawing
appropriate images. The advantages of this methodology are
described elsewhere [6].

4.4 The Interesting Events

The interesting events for Dijkstra’s shortest-path algo-
rithm (and many other shortest-path algorithms) are as follows:

� addVertex(u,x,y,d) adds a vertex u (where u is an
integer identifying the vertex) to the graph. The vertex
is shown at position �x� y� in the xy plane. In addition,
D�u� is declared to be d.

� addEdge(u,v,w) adds an edge from u to v with
weight w to the graph.

� selectVertex(u) indicates that u was added to S.

� raiseEdge(u,v,d) visualizes the addition D�u� �
W �u� v� by raising the edge �u� v� by d (where the caller
passes D�u� for d).

� lowerDist(u,d) indicates thatD�u� gets lowered to
d.

� promoteEdge(u,v) indicates that the edge �u� v� is
part of the shortest-path tree.

� demoteEdge(u,v) indicates that the edge �u� v� is not
part of the shortest-path tree.

In addition, we need another event for house keeping purposes:

� start(m) is called at the very beginning of an algo-
rithm’s execution; it initializes the view to hold up to m
vertices and up tom2 edges.

4.5 Annotating the Algorithm

Here is an annotated version of the algorithm we showed
before:

views.start(jV j)
for all v � V do D�v� :��
D�s� :� 0; S :� �
for all v � V do views.addVertex(v,vx,vy,D�v�)
for all �u� v� � E do views.addEdge(u,v,W �u� v�)
while V n S �� � do

let u � V n S such that D�u� is minimal
S :� S � fug
views.selectVertex(u)
for all neighbors v of u do
views.raiseEdge(u,v,D�u�)
ifD�v� � D�u� �W �u� v� then

views.demoteEdge(u,v)
else

D�v� :� D�u� �W �u� v�
views.promoteEdge(u,v)
views.lowerDist(v,D�v�)

endif
endfor

endwhile

In this pseudo-code, views is the dispatcher provided by
Zeus. The dispatcher will notify all views the user has selected
for the algorithm.

4.6 The View

A view is an object that has a method corresponding to
each interesting event, and a number of data fields. In this
view, the data fields are as follows: a RootGO object that
contains all graphical objects of the scene, together with a
camera and light sources; arrays of graphical objects holding
the disks (vertices), columns (distances), arrows (graph edges),
and shortest-path tree edges; and an “animation handle” for



w

b a

c

e

Figure 4: The structure of an arrow generated by the addEdge method.

triggering animations. This leads us to a skeletal view:

let view = {
scene => RootGO_NewStd(),
ah => AnimHandle_New(),
verts => ok, (* initialized by method start *)
dists => ok, (* initialized by method start *)
parent => ok, (* initialized by method start *)
edges => ok, (* initialized by method start *)
start => meth(self,m) ... end,
addVertex => meth(self,u,x,y) ... end,
addEdge => meth(self,u,v,w) ... end,
selectVertex => meth(self,u) ... end,
raiseEdge => meth(self,u,v,z) ... end,
lowerDist => meth(self,u,z) ... end,
promoteEdge => meth(self,u,v) ... end,
demoteEdge => meth(self,u,v) ... end,

};

The Zeus system has a control panel that allows the user to
select an algorithm and attach any number of views to it.
Whenever the user creates a new 3D view, a new Obliq inter-
preter is started, and reads the view definition. The algorithm
and all views run in the same process, but in different threads;
thread creation is very light-weight. The above expression
creates a new object view, and initializes view.scene to
be a RootGO, and view.ah to be an animation handle.

The remainder of this section fleshes out the 8 methods
of view, which correspond to the 8 interesting events:

� The start method is responsible for initializing
view.verts, view.dists, and view.parent to be
arrays of size m, and view.edges to be an m�m array.
The elements of the newly created arrays are initialized to
the dummy value ok. Here is the code:

start => meth(self,m)
self.verts := array_new(m, ok);
self.dists := array_new(m, ok);
self.parent := array_new(m, ok);
self.edges := array2_new(m, m, ok);

end

� The addVertex method adds a new vertex to the view.
Vertices are represented by white disks that lie in the xy
plane. Above each vertex, we also show a green column of
height d, provided that d is greater than 0. The location of
the cylinder’s base is constant, while its top is controlled by
an animatable point property value.

addVertex => meth(self,u,x,y,d)
self.verts[u] := DiskGO_New(

[x,y,0],
[0,0,1],
0.2);

self.scene.add(self.verts[u]);
if d > 0 then

let top = PointProp_NewSync(self.ah,[x,y,d]);
self.dists[u] := CylinderGO_New(

[x,y,0],
top,
0.1);

SurfaceGO_SetColor(self.dists[u],"green");
self.scene.add(self.dists[u]);

end;
end

� The addEdge method adds an edge (represented by an
arrow) from vertex u to vertex v. The arrow starts at the at
the disk representing u, and ends at the column over v at
height w. An arrow is composed of a cone, a cylinder, and
two disks; its geometry is computed based on the “Center”
property of the disks representing the vertices to which it is
attached. Figure 4 illustrates the relationship.

addEdge => meth(self,u,v,w)
let a = DiskGO_GetCenter(self.verts[u]).get();
let b = DiskGO_GetCenter(self.verts[v]).get();
let c = Point3_Plus(b,[0,0,w]);
let d = Point3_Minus(c,a);
let e = Point3_Minus(c,Point3_Scale(d,0.4));
let grp = GroupGO_New();
grp.setProp(GO_Transform,

TransformProp_NewSync(self.ah));
grp.add(DiskGO_New(a,d,0.1));
grp.add(CylinderGO_New(a,e,0.1));
grp.add(DiskGO_New(e,d,0.2));
grp.add(ConeGO_New(e,c,0.2));
self.edges[u][v] := grp;
self.scene.add(grp);

end

� The selectVertexmethod indicates that a vertex u has
been added to the set S by coloring u’s disk red:

selectVertex => meth(self,u)
SurfaceGO_SetColor(self.verts[u],"red");

end



� The raiseEdge method highlights the edge from u to v
by coloring it yellow, and then lifting it up by z. The arrow
is moved by sending a “translate” request to its transforma-
tion property. The translation is controlled by the animation
handle self.ah, and shall take 2 seconds to complete.
Calling self.ah.animate() causes all animation re-
quests controlled by self.ah to be processed.

raiseEdge => meth(self,u,v,z)
SurfaceGO_SetColor(self.edges[u][v],"yellow");
let pv = GO_GetTransform(self.edges[u][v]);
pv.getBeh().translate(0,0,z,0,2);
self.ah.animate();

end

� The method lowerDist indicates that the “cost” D�u� of
vertex u got lowered, by shrinking the green cylinder rep-
resenting D�u�. This is done by sending a linMoveTo
(“move over a linear path to”) request to the “Point2” prop-
erty of the cylinder.

lowerDist => meth(self,u,z)
let pv = CylinderGO_GetPoint2(self.dists[u]);
let p = pv.get();
pv.getBeh().linMoveTo([p[0], p[1], z], 0, 2);
self.ah.animate();

end

� The method promoteEdge indicates that �u� v�, the edge
that is currently highlighted, shall become part of the
shortest-path tree. This is indicated by coloring the edge
red. If there already was a red edge leading to v, it is
removed from the view.
promoteEdge => meth(self,u,v)

SurfaceGO_SetColor(self.edges[u][v],"red");
if self.parent[v] isnot ok then
self.demoteEdge(self.parent[v],v);

end;
self.parent[v] := u;

end

� Finally, the method demoteEdge removes the edge �u� v�
from the view:
demoteEdge => meth(self,u,v)

self.scene.remove(self.edges[u][v]);
end

This completes our example. The complete view is about
70 lines of code, compared to the roughly 2000 lines of the
PEXlib-based version that generated the animations presented
in [5]. This measure is fairly honest; we did not add any func-
tionality (such as a new class ArrowGO) to the base library in
order to optimize this example. Furthermore, turnaround time
during the design of this view was limited only by the design
process per se (and our typing speed), whereas compiling a
single file and relinking with the Zeus system takes several
minutes.

5 Related Work

There are two areas that have influenced ANIM3D:
general-purpose 3D animation libraries and algorithm anima-
tion systems that have been used for developing 3D views.

The most closely related general-purpose animation li-
brary is OpenInventor [17, 18], an object-oriented graphics
library with a C++ API. OpenInventor, like ANIM3D, repre-
sents a scene as a DAG of “nodes”. Geometric primitives,
cameras, lights, and groups are all special types of nodes.
However, there are three key differences between ANIM3D
and OpenInventor:

� ANIM3D includes an embedded interpretive language,
which is instrumental for achieving fast turnaround and
short design cycles.

� OpenInventor views properties (such as colors and trans-
formations) as ordinary nodes in the scene DAG. This
means that the order of nodes in a group becomes impor-
tant. In this respect, ANIM3D is more declarative than
OpenInventor: the order in which objects are added to a
group does not matter.

� In a number of aspects, OpenInventor requires the pro-
grammer to do more work than ANIM3D requires. For
example, OpenInventor clients have to explicitly redraw
a scene whereas ANIM3D uses a damage-repair model to
automatically redraw just those primitives that need to be
redrawn.

Nonetheless, OpenInventor is a very impressive commercial
product that greatly simplifies 3D graphics. Many of the
ideas of OpenInventor can be found in work done at Brown
University [16, 19].

There are three algorithm animation systems that have
been used for developing 3D views, Pavane, Polka3D, and
GASP.

In Pavane [8], the computational model is based on tuple-
spaces and mappings between them. Entering tuples into
the “animation tuple space” has the side-effect of updating the
view. A small collection of 3D primitives are available (points,
lines, polygons, circles, and spheres), and the only animation
primitives are to change the positions of the primitives.

Polka3D [14], like Zeus, follows the BALSA model for
animating algorithms. Algorithms communicate with views
using “interesting events,” and views draw on the screen in
response to the events. The graphics library is similar to
ANIM3D in goals and features, but it appears to be a bit slim-
mer and more focused on algorithm animations. Unlike our
system, views are not interpreted, so turnaround time is not
instantaneous.

The GASP [9] system is tuned for developing animations
of computational geometry algorithms involving three (and
two) dimensions. Because a primary goal of the system is to



isolate the user from details of how the graphics is done, a user
is limited to choosing from among a collection of animation
effects supplied by the system. The viewing choices are typi-
cally stored in a separate “style” file that is read by the system
at runtime; thus, GASP provides rapid turnaround. However,
it does not provide the flexibility to develop arbitrary views
with arbitrary animation effects.

6 Conclusion

The first part of this paper described ANIM3D, an object-
oriented 3D animation library targeted at visualizing combi-
natorial structures, and in particular at animating algorithms.
The second part presented a case study showing how to use
ANIM3D within the Zeus algorithm animation system for pro-
ducing a 3D visualization of a graph-traversal algorithm.

ANIM3D is based on three concepts: scenes are described
by DAGs of graphical objects, time-variant property values
are the basic animation mechanism, and callbacks are the
mechanism by which clients can specify reactive behavior.
These concepts provide a simple, yet powerful framework for
building animations.

ANIM3D provides fast turnaround by incorporating an
interpretive language that allows the user to modify the code
of a program even as it runs. Previous experience has shown
us that powerful animation facilities and fast turnaround time
are crucial for enabling non-expert users to construct new
algorithm animations.

7 Acknowledgments

We are grateful to Allan Heydon and Lucille Glassman
for helping to improve the quality of the presentation.

References

[1] Marc H. Brown. Zeus: A System for Algorithm Anima-
tion and Multi-View Editing. 1991 IEEE Workshop on
Visual Languages (October 1991), 4–9.

[2] Marc H. Brown. The 1992 SRC Algorithm Animation
Festival. 1993 IEEE Symposium on Visual Languages
(August 1993), 116–123.

[3] Marc H. Brown. The 1993 SRC Algorithm Animation
Festival. Research Report 126, Digital Equipment Corp.,
Systems Research Center, Palo Alto, CA (1994).

[4] Marc H. Brown and John Hershberger. Color and Sound
in Algorithm Animation. Computer, 25(12):52–63, De-
cember 1992.

[5] Marc H. Brown and Marc Najork. Algorithm Animation
Using 3D Interactive Graphics. ACM Symposium on User
Interface Software and Technology (November 1993),
93–100.

[6] Marc H. Brown and Robert Sedgewick. A System for
Algorithm Animation. Computer Graphics, 18(3):177–
186, July 1984.

[7] Luca Cardelli. Obliq: A language with distributedscope.
Research Report 122, Digital Equipment Corp., Systems
Research Center, Palo Alto, CA (April 1994).

[8] Gruia-Catalin Roman, Kenneth C. Cox, C. Donald
Wilcox, and Jerome Y. Plun. Pavane: A System for
Declarative Visualization of Concurrent Computations.
Journal of Visual Languages and Computing, 3(2):161–
193, June 1992.

[9] David Dobkin and Ayellet Tal. GASP—A System to Fa-
cilitate Animating Geometric Algorithms. Technical Re-
port, Department of Computer Science, Princeton Uni-
versity, 1994.

[10] E. W. Dijkstra. A note on two problems in connexion
with with graphs. Numerische Mathematik, 1:269–271,
1959.

[11] Robert A. Duisberg. Animated Graphical Interfaces Us-
ing Temporal Constraints. ACM CHI ’86 Conf. on Human
Factors in Computing (April 1986), 131–136.

[12] Steven C. Glassman. A Turbo Environment for Produc-
ing Algorithm Animations. 1993 IEEE Symp. on Visual
Languages (August 1993), 32–36.

[13] Mark S. Manasse and Greg Nelson. Trestle Reference
Manual. Research Report 68, Digital Equipment Corp.,
Systems Research Center, Palo Alto, CA, December
1991.

[14] John T. Stasko and Joseph F. Wehrli. Three-Dimensional
Computation Visualization. 1993 IEEE Symposium on
Visual Languages (August 1993), 100 – 107.

[15] John T. Stasko. TANGO: A Framework and System for
Algorithm Animation. Computer, 23(9):27–39, Septem-
ber 1990.

[16] Paul S. Strauss. BAGS: The Brown Animation Genera-
tion System. Technical Report CS–88–22, Brown Uni-
versity, May 1988.

[17] Paul S. Strauss. IRIS Inventor, a 3D Graphics Toolkit.
OOPSLA’93 Conf. Proc., (September 1993), 192–200.

[18] Paul S. Strauss and Rikk Carey. An Object-Oriented
3D Graphics Toolkit. ACM Computer Graphics (SIG-
GRAPH ’92) (July 1992), 341–349.

[19] Robert C. Zeleznik et al. An Object-Oriented Framework
for the Integration of Interactive Animation Techniques.
ACM Computer Graphics (SIGGRAPH ’91), (July 1991),
105–111.



Figure 1a: Closest-Pair Figure 1b: Heapsort

Figure 1c: k-d Tree Figure 1d: Shakersort

Figure 1e: Red-Black and 2-3-4 Trees Figure 3c: Shortest-Path


