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ABSTRACT
Learning-to-Rank is a branch of supervised machine learning that
seeks to produce an ordering of a list of items such that the utility
of the ranked list is maximized. Unlike most machine learning
techniques, however, the objective cannot be directly optimized
using gradient descent methods as it is either discontinuous or flat
everywhere. As such, learning-to-rank methods often optimize a
loss function that either is loosely related to or upper-bounds a
ranking utility instead. A notable exception is the approximation
framework originally proposed by Qin et al. [14] that facilitates a
more direct approach to ranking metric optimization. We revisit
that framework almost a decade later in light of recent advances
in neural networks and demonstrate its superiority empirically.
Through this study, we hope to show that the ideas from that work
are more relevant than ever and can lay the foundation of learning-
to-rank research in the age of deep neural networks.
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1 INTRODUCTION
Learning to rank (LTR) is a central problem in information retrieval
(IR), where the task is to devise a ranking scheme that reorders a list
of retrieved documents in response to a query such that the most
relevant results appear as close to the top of the list as possible. In
order to measure the quality of such ranked lists, many ranking
metrics have been proposed, including Normalized Discounted
Cumulative Gain (NDCG) and Mean Average Precision (MAP).
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Given the LTR task and the corresponding evaluationmetrics, the
first proposal would be to train a LTR model by directly optimizing
a metric like NDCG. As explained in Section 2, it is known, however,
that ranking metrics including NDCG are non-differentiable and
therefore impossible to optimize using gradient descent methods.
Moreover, in the regionswhere themetrics are smooth, infinitesimal
perturbations of our model parameters will almost surely leave
the ranked list unperturbed, which in turn implies that whatever
gradients we compute will be identically zero almost everywhere.
Facedwith this stumbling block, the LTR community has produced a
plethora of schemes to improvemetrics like NDCG, includingmetric
smoothing methods such as SoftRank [15] and indirect boosting
methods like LambdaMART [17].

A more direct approach to LTR metric optimization was pro-
posed by Qin et al. [14], where the rank variable in the definition of
metrics like NDCGwas approximated by a sum of sigmoids, thereby
allowing for gradient computations. However, this idea happened
to be proposed at a time when tree-based LTR models were mak-
ing great strides, as demonstrated for instance by LambdaMART’s
winning of the Yahoo! Learning to Rank Challenge [5], and since
regression trees cannot be optimized globally, such differentiable
approximations of the metrics offered no immediate advantage.
Recent hardware and software advances in the training of neural
networks, however, make the work in [14] relevant again and po-
tentially allow us to harvest the effectiveness and the scalability of
deep neural networks in LTR.

In this paper, we make the following contribution: we demon-
strate that directly optimizing NDCG, rather than a surrogate loss,
using deep neural networks can give results that are comparable
with those obtained using existing state-of-the-art LTR algorithms
such as LambdaMART. We give an overview of LTR and in particu-
lar [14] in Section 2. We discuss experimental results in Section 3
and conclude the paper in Section 4.

2 RELATEDWORK AND METHODOLOGY
In this section, we formulate the problem of LTR and provide an
overview of the literature. We also provide a self-contained sum-
mary of the core idea behind the ApproxNDCG [14] method.

2.1 Overview of Learning-to-Rank
LTR methods are supervised techniques and the story naturally
begins with a description of the training set. Consider a set of
training samples Ψ = {(x ,y) ∈ Xn × Rn+}, where x is a vector of n
items xi , 1 ≤ i ≤ n, y is a real vector of n nonnegative relevance
labels yi , 1 ≤ i ≤ n, and X is the space of all items. Each item xi
could generally take any form but throughout this paper we define
it to be a vector of features representing a query-document pair.
The objective is to learn a function that produces an ordering of
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items in any x in such a way that the utility of the ordered list is
maximized.

Most LTR algorithms reformulate the problem to that of learning
a scoring function that computes a score for every item. Scores
usually represent relevance—for some notion of relevance—and
induce an ordering of the items by sorting them in decreasing order
of relevance to form a ranked list. As such, the goal of LTR often
boils down to finding a parameterized ranking function f (·; Θ) :
Xn → Rn , where Θ denotes the set of parameters, that minimizes
the empirical loss:

L(f ) =
1
|Ψ|

∑
(x ,y)∈Ψ

ℓ(y, f (x)), (1)

where ℓ(·) is a local loss function. The function f is often univariate
and can be rewritten as follows:

f (x)|i = u(xi ), 1 ≤ i ≤ n, (2)

where f (·)|i denotes the ith dimension of f , and u : X → R com-
putes a relevance score for each item independently of other items.

LTR algorithms differ primarily in how they parameterize f
and how they define ℓ. Tried and tested parameterization methods
include linear functions [9], boosted weak learners [19], gradient-
boosted trees [3, 6], support vector machines [9], and neural net-
works [2]. In this paper, we model f using the latter.

The loss function, ℓ, is ideally derived from a utility of interest
such as NDCG [8], a popular rankingmetric. However, most ranking
metrics are either discontinuous or flat. Take NDCG as an example:

NDCG(πf ,y) =
DCG(πf ,y)

DCG(π∗,y)
, (3)

where πf is a ranked list induced by the ranking function f on
x , π∗ is the ideal ranked list (where x is sorted by y), and DCG is
defined as follows:

DCG(π ,y) =
n∑
i=1

2yi − 1
log2(1 + π (i))

, (4)

where π (i) is the rank of xi . In Eq. 4, small perturbations of the
scores would not change the ranks for generic scores, and therefore
NDCG is locally constant almost everywhere. Also, when the item
ranks do change, NDCG becomes discontinuous.

The non-differentiability of ranking metrics has given rise to
a body of research that attempts to find differentiable surrogate
losses that either are loosely related to or upper-bound ranking
metrics [2–4, 9, 18]. There exist a few notable exceptions that at-
tempt to directly maximize a ranking metric by using coordinate
ascent [11], smoothing scores [15], boosting [19], and approximat-
ing themetric [14]. It is the latter that can tightly bound any ranking
metric such as NDCG [14] and can be easily optimized with gradient
descent.

Surprisingly, despite its attractive theoretical properties, the
framework in [14] has received little attention in LTR studies in
the decade since the original publication. In this paper, we revisit
that work in light of recent advances in deep neural networks and
the availability of powerful optimizers. With significantly more
computing power at our disposal today, we set out to study the
hyperparameters of that work and reproduce experiments to opti-
mize NDCG—referred to as ApproxNDCG. Our results show that

−4 −2 0 2 4
∆

0.00

0.25

0.50

0.75

1.00

σ
(∆

)
=

1/
(1

+
e−

α
∆

)

Indicator

α = 1

α = 5

α = 10

Figure 1: Sigmoid approximation of the indicator function
with different values of hyperparameter α .

the theoretical guarantees in [14] materialize in practice. Before we
go any further, we give a brief overview of ApproxNDCG in the
next section for completeness.

2.2 Summary of ApproxNDCG
As shown in Equation 4, to compute DCG, all that is required is the
rank of items in the final ranked list as ordered by relevance scores.
Moreover, the rank of an item i can be computed as follows:

πf (i) ≜ 1 +
∑
j,i
If (x ) |i<f (x ) |j , (5)

where f (·) is the scoring function from Equation 2, and Is<t is the
indicator which is 1 if s < t and 0 otherwise.

Qin et al. propose in [14] a smooth approximation of Equation 5
where I is estimated by a sigmoid as follows:

Is<t = It−s>0 ≈ σ (t − s) ≜
1

1 + e−α (t−s)
, (6)

where α > 0 is a knob that controls how tightly the sigmoid fits
the indicator. As α becomes larger, σ approximates the indicator
more closely as shown in Figure 1.

Unlike the indicator function, the approximation in Equation 6 is
smooth and differentiable. Plugging this approximation into Equa-
tion 4 yields ApproxNDCG, an approximation of NDCG. Because
NDCG is a utility, we define the loss ℓ in Equation 1 to be negative
ApproxNDCG and minimize the loss using gradient descent.

3 EXPERIMENTS
We are largely interested in two research questions alluded to ear-
lier: (1) What is the impact of the hyperparameter α on the learned
model? (2) Can directly optimizing the ranking metric with deeper
networks and a much larger number of training iterations lead to
higher quality models? In this section, we describe the experiments
we designed to study those questions and analyze the results.

3.1 Datasets
We conduct exhaustive experiments on two publicly available LTR
datasets: MSLR-WEB30K [13] and Yahoo! LTR Challenge [5]. Both
datasets contain roughly 30,000 queries. Web30K has an average
of 120 documents per query, each represented by a vector of 136
numeric features. Yahoo! Set 1 has 24 documents per query and
519 features per document. Documents in both datasets are labeled
with graded relevance from 0 to 4 with larger labels indicating a
higher relevance. We report our findings on Fold 1 of Web30K and
Set 1 of the Yahoo! dataset. It is important to note that in both
datasets, queries with no relevant documents are discarded during
evaluation.
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Figure 2: Effect of the sigmoid exponent, α , on NDCG at dif-
ferent ranks on the Web30K validation set.

3.2 Models
We have compared our results with existing ranking models in-
cluding ListMLE [18], RankNet and LambdaMART [3]. To train
LambdaMART models, we used the recent open-source Light-
GBM [10] implementation (denoted by λMARTGBM). We also used
the legacy RankLib implementation (λMARTRankLib). We imple-
mented ListMLE and RankNet in Tensorflow [1], a deep learning
framework. In all of our experiments, we run 10 trials of each ex-
periment and report mean metrics and 95% confidence intervals.

The hyperparameters for LambdaMART models are based on
those reported in previous work (e.g., [16]) and further fine-tuned
on the validation set. Specifically, we train λMARTRankLib models
by setting the hyperparameter values as follows: number of leaves
per tree to 10, learning rate to 0.1, minimum leaf support to 1. We
were unable to train larger trees as larger parameter settings lead
to a substantial and prohibitive rise in memory usage and training
time. LightGBM, on the other hand, is an efficient implementation
and as such we set the hyperparameters for λMARTGBM as follows:
learning rate is 0.1, number of leaves is 200, min_data_in_leaf is 50,
and min_sum_hessian_in_leaf is set to 100. We use NDCG@5 as
the main metric to select the best models on validation sets.

Our proposed method is a fully-connected feedforward network
with ReLU activation (ReLU(t) = max(t , 0)) using ApproxNDCG as
the loss function: henceforth, we will also use ApproxNDCG to refer
to this type of model. The models are trained as follows: similar to
baseline models, the hyperparameters of the ApproxNDCG models
are selected based on NDCG@5 on the validation set; training
batch size is set to 128; and we use a learning rate of 0.005. We
further use batch normalization [7] between consecutive layers,
including over the input layer to, in effect, normalize input features.
We describe the architecture of our networks in more detail in
upcoming sections.

We have released our implementation of ApproxNDCG in Ten-
sorflow in the open-source Tensorflow Ranking library [12]. 1

3.3 Effect of the Sigmoid Exponent
As stated earlier, the first factor we examine in this work is the
effect of α in Equation 6 on the trained model. To that end, we

1Available at http://github.com/tensorflow/ranking
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Figure 3: Effect of network depth on quality as measured by
NDCG at different ranks on the Web30K validation set.

train networks with a single hidden layer to limit the parameter
space, but use different values of α . Figure 2 illustrates the results
on Web30K. Experiments on Yahoo! yield a similar trend.

The results are interesting but not surprising. When α is small,
the sigmoid approximates the indicator function less accurately
as shown in Figure 1. As such, the model optimizes a loss that is
only loosely related to NDCG. On the other hand, when α is too
large, the sigmoid becomes flatter closer to the origin. As a result,
the gradients tend to vanish which impedes learning. It appears,
however, that a relatively small value of α offers a compromise
between the two extremes: it is a close-enough approximation of
the indicator while also enabling gradient descent.

Note that the difference between models trained using α ∈

{5, 10, 20, 40} is not statistically significant. We choose α = 10
as the configuration of choice in the remainder of this paper purely
based on its relatively superior NDCG@5 on the validation set.

3.4 Effect of Deeper Networks
Now that we have found an optimal value for α , we focus on the
second question to study the effect of deeper networks on model
quality. We start with a small network with 3 hidden layers with
64, 32, and 16 hidden units each. We refer to that as B64. We then
construct progressively deeper models by adding layers that grow
by a factor of 2. As an example, B128 will have 128 units in the
first hidden layer, and 64, 32, and 16 units in subsequent layers. As
stated earlier, layers are fully connected with batch normalization
and ReLU nonlinearity in between.

Figure 3 plots model quality as measured by NDCG at various
ranks on the Web30K validation set. Results on Yahoo! exhibit a
similar trend. From Figure 3, it is clear that deeper models gen-
erally lead to improved quality. We note that the differences in
NDCG@1 are not statistically significant, but that adding more and
wider layers yield NDCG@5 and NDCG@10 measurements that
statistically significantly improve upon shallower networks. The
largest network exhibits signs of overfitting but we note that no
regularization was employed in these experiments.

3.5 Comparison with Baseline Models
Based on the experiments conducted in previous sections, we use
the B1024 model with α = 10 and compare its performance with



Table 1: A comparison of ranking models on the Web30K
and Yahoo! test sets. Web30K
Model NDCG@1 NDCG@5 NDCG@10
ListMLE 41.90 (±0.34) 42.56 (±0.20) 44.91 (±0.17)
RankNet 42.18 (±0.35) 43.23 (±0.14) 45.70 (±0.10)
λMARTRankLib 45.35 (±0.06) 44.59 (±0.04) 46.46 (±0.03)
λMARTGBM 50.33 (±0.22) 49.20 (±0.07) 51.05 (±0.02)
ApproxNDCG 46.64 (±0.22) 45.38 (±0.11) 47.31 (±0.10)

Yahoo! Set 1
λMARTRankLib 68.52 (±0.09) 70.27 (±0.05) 74.58 (±0.05)
λMARTGBM 72.07 (±0.22) 74.16 (±0.14) 78.40 (±0.10)
ApproxNDCG 69.63 (±0.17) 72.32 (±0.10) 76.77 (±0.06)

baseline methods on both Web30K and Yahoo! held-out test sets.
We further fine-tune the "momentum" hyperparameter of batch
normalization—used in the estimation of population statistics—and
set it to 0.8 and 0.99 in the Web30K and Yahoo! experiments respec-
tively. We use the same network architecture and hyperparameters
for ListMLE and RankNet methods to facilitate a fair comparison.
Table 1 summarizes our findings.

From Table 1, we observe that ApproxNDCG significantly out-
performs λMARTRankLib on both datasets, but does not do as well
as λMARTGBM. Note that our NDCG measurements for λMARTGBM
are lower than those reported in previous work (e.g., [16]). This is
because LightGBM computes an NDCG of 1.0 for queries with no
relevant documents. In this work, we exclude such queries from
the evaluation set to facilitate a fair comparison of scores.

By comparing ApproxNDCG with ListMLE and RankNet, we
conclude that the success of ApproxNDCG is not simply due to the
use of deeper networks: the loss function itself is a more appropri-
ate choice than the losses used in RankNet or ListMLE. We omit
RankNet and ListMLE results on Yahoo! due to space constraints,
but the findings are similar.

4 DISCUSSION AND FUTUREWORK
Deep neural networks have enabled a significant leap forward in
many applications of machine learning such as NLP and Image
Processing. Our ability to train scalable deep networks that handle
sparse features such as text are among the factors that place neural
networks at the vanguard of machine learning research. Harvesting
these abilities in LTR, however, remains a challenge due to the
discontinuous nature of ranking utility functions.

In this work, we set out to revisit the work of Qin et al. [14]
which formulates a smooth approximation to any ranking metric
such as NDCG. Unlike many other existing surrogate LTR losses,
the framework in [14] offers a way to directly optimize ranking
metrics. Because the objective is differentiable, it is also a good fit
for gradient descent algorithms.

We studied ApproxNDCG, an approximation to NDCG, and ex-
amined its hyperparameter. We demonstrated empirically that Ap-
proxNDCG greatly benefits from deep network architectures and,
despite the little attention it received in the LTR literature, is a
competitive algorithm for ranking.

Through this study, we hope to convey that (a) it is not just
plausible but more appropriate to directly optimize ranking metrics

rather than loosely related surrogate losses; and (b) that the approx-
imation framework in [14] could lay out the foundation of deep
neural networks in LTR. We wish to encourage research in this
direction by open sourcing our implementation of ApproxNDCG
in the Tensorflow Ranking library.
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