
Detecting Quilted Web Pages at Scale

Marc Najork
Microsoft Research

1065 La Avenida
Mountain View, CA 94043, USA

najork@microsoft.com

ABSTRACT
Web-based advertising and electronic commerce, combined
with the key role of search engines in driving visitors to
ad-monetized and e-commerce web sites, has given rise to
the phenomenon of web spam: web pages that are of lit-
tle value to visitors, but that are created mainly to mislead
search engines into driving traffic to target web sites. A large
fraction of spam web pages is automatically generated, and
some portion of these pages is generated by stitching to-
gether parts (sentences or paragraphs) of other web pages.
This paper presents a scalable algorithm for detecting such
“quilted” web pages. Previous work by the author and his
collaborators introduced a sampling-based algorithm that
was capable of detecting some, but by far not all quilted web
pages in a collection. By contrast, the algorithm presented
in this work identifies all quilted web pages, and it is scal-
able to very large corpora. We tested the algorithm on the
half-billion page English-language subset of the ClueWeb09
collection, and evaluated its effectiveness in detecting web
spam by manually inspecting small samples of the detected
quilted pages. This manual inspection guided us in itera-
tively refining the algorithm to be more efficient in detecting
real-world spam.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Information Filtering

General Terms
Algorithm, Experimentation, Measurement

Keywords
Web spam detection, phrase-level duplication, scalable algo-
rithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

1. INTRODUCTION
Over the past 20 years, the World Wide Web has evolved

from a way for scientists to exchange data and ideas to be-
come the general population’s medium of choice for informa-
tion, communication, entertainment, and commercial trans-
actions. Web-mediated electronic commerce in the United
States is projected to reach close to $ 200 billion in 2011 [1].
Search engines such as Google and Bing form a key compo-
nent of this web-based ecosystem, in that they enable users
to locate content and services. The explosive rise in the
popularity of the web and the volume of e-commerce, to-
gether with the key role of search engines, has given rise to
the phenomenon of web spam: web content that is of little
value to users, but created mainly to drive search engine
traffic to particular target sites. Web spam creates a neg-
ative experience for search users, lowering the utility they
derive from the search service. Consequently, web spam de-
tection is an active area of research, both in search engines
and in academia.

A substantial fraction of spam web pages is automatically
generated, and some of that content is constructed out of
all or parts of other web pages. In this paper, we introduce
a technique for detecting all such web pages in a given col-
lection, exhaustively and at large scale, using data-parallel
infrastructure. We coin the term quilted web page to refer
to a page that is “stitched” together out of “patches” taken
from multiple other web pages. Figure 1 shows an example
of such a quilted page (though arguably not spammy in na-
ture) together with three of the source web pages that each
donated a patch of words. The notion of quilted web page
is congruent with our an earlier notion of phrase-level repli-
cation [9], but more constrained than the notion of local text
reuse [15] introduced by Seo and Croft, which refers to por-
tions of text shared between two documents, but does not
insist on a large fraction of a document consisting of patches
of multiple other documents.

The notion of textual similarity is at the heart of Informa-
tion Retrieval, and there is a wide gamut of similarity-based
problems, ranging from the retrieval problem (finding those
documents in a collection that contain the – typically few –
terms of a query) over local text reuse detection to the other
extreme of near-duplicate detection (clustering a collection
into classes of highly similar documents). The problem ad-
dressed in this paper is situated in the middle of the gamut
(along with local text reuse detection), but it borrows ideas
from the extreme end of the gamut, namely near-duplicate
detection, and in particular shingling.

Figure 1: At the top left, a quilted web page, and around it, three of its source web pages.

The core idea of the seminal shingling algorithm, due to
Broder et al., is to segment each document into overlap-
ping k-grams called shingles (drawing on the image of the
overlapping shingles of a roof), to compact the shingles by
hashing them, and to draw a consistent sample from the
set of hashed shingles. In an early version of the algo-
rithm [6], this was achieved by retaining all hash values
h of a document where h mod p = 0 (with p fixed in ad-
vance), resulting in a variable-length vector of shingleprints.
A refined version [5] employed randomly selected permu-
tations and retained for each document those hash values
that are minimal among all the document’s hashes under
a permutation, resulting in a fixed-sized shingleprint. Ei-
ther scheme greatly reduces the amount of data required to
represent each document, but neither addresses the time-
complexity issues of document clustering, naive pair-wise
comparison having quadratic complexity. A subsequent re-
finement (see [8] for a detailed description) combines groups

of shingles into megashingles such that any two documents
sharing a megashingle are with high probability near-dupli-
cates of one another, thereby making it possible to clus-
ter a set of documents into near-duplicate sets in linear
time. Shingling is a purely syntactic technique; it does not
presume any knowledge of the semantics of the document,
and does not involve any language models. A competing
approach to shingling, Charikar’s locality-sensitive hashing
scheme [7], is similarly syntactic in nature: Documents are
tokenized through some extraneous mechanism (e.g. simple
word-breaking or segmentation into overlapping k-grams),
resulting in feature vectors that are viewed as points in a
very high-dimensional space. A set of k hyperplanes in that
high-dimensional space is fixed ahead of time. The algo-
rithm determines for each point (document) and each hy-
perplane, what side of the hyperplane the point falls on,
producing a bit per hyperplane and resulting in a k-bit hash
value. Near-duplicate documents have, with high proba-

bility, highly similar hash values. The interested reader
is referred to Henzinger’s experimental comparison [10] of
Broder’s and Charikar’s algorithms. Like these two algo-
rithms, the algorithm described in this paper is purely syn-
tactic. Moreover, it uses Broder’s idea of segmenting each
document into a sequence of overlapping k-grams.

There are multiple works addressing the middle portion
of the gamut, detecting phrase-level replication. Fetterly,
Manasse and Najork [9] attacked the problem by using core
ideas of shingling – segmenting each document into over-
lapping k-grams and then performing a sequence of data
reduction steps: hashing k-grams, collapsing near-duplicate
documents (through shingling proper), eliminating popular
k-grams, sampling the hashed k-grams of each document,
and finally constructing sets of documents covering the sur-
viving hashes of each document. Due to the sampling-based
approach, their algorithm identifies some, but by no means
all of the quilted pages in a collection, and some but not
all of the “patch sources” of each quilted page. The algo-
rithm described in this paper resembles our earlier attempt
in many ways, but it is not probabilistic: given a collection,
it will identify all quilted pages and all their source pages.

Baeza-Yates, Pereira and Ziviani [2] attacked the related
problem of constructing a genealogical tree of web pages –
deducing which web pages are derived from which other web
pages – by segmenting pages into three-sentence shingles (as
opposed to the more common work-level shingling), collaps-
ing duplicate documents in a pre-processing stage, and fi-
nally deducing parent-child relationships between pages us-
ing a greedy algorithm. Their work is similar to ours in
that it is not sampling-based, but differs in the choice of
fingerprinting unit (three-sentence units vs. k-word units),
the corpus size it was applied to (14 million vs. 503 million
pages), and the underlying motivation.

Seo and Croft [15] describe an algorithm for detecting lo-
cal text reuse, a document containing a patch of text taken
from another document. Their algorithm (like both our ear-
lier [9] and our current algorithm) is purely syntactic; docu-
ments are viewed as simple sequences of terms. It segments
each document into non-overlapping sequences of terms us-
ing a technique called hash-breaking, and uses another tech-
nique called DCT (discrete-cosine transform) fingerprinting
to make the algorithm less sensitive to small modifications
of text. The algorithm outputs pairs of documents shar-
ing a patch of text; unlike our algorithm it is not aimed at
identifying quilted documents incorporating portions from
multiple sources. Seo and Croft evaluated their algorithm
empirically, and found precision and recall of text reuse to
be good. It is difficult to ascertain the scalability of their
approach. Their largest experiment processed a corpus of
about 3 million blog posts; by comparison, the algorithm
proposed in this paper was tested on a collection of over
half a billion web pages.

More recently, Bendersky and Croft took [3] took another
stab at the problem of detecting text reuse. Their approach
is aimed at finding reuse in web-scale collections, and it as-
sumes the existence of a retrieval system for that collection
(say, a search engine). The algorithm does not aim to detect
all instances of text reuse; rather, it takes a set of topical
statements as input and aims to find all instances of text
reuse related to these topics (leveraging the search engine to
retrieve candidate documents for each topic). Another im-
portant difference to the previously described approaches is

that theirs is not purely syntactic – it does involve language
models, query likelihoods, and temporal information.

Another related line of work is that of Kolak and Schilit,
who studied the problem of identifying quotations (short
pieces of text excerpted from other documents) in a large
collection of documents, namely the Google Books corpus.
The underlying objective was to treat quotations as a form
of “link” from the quoting to the quoted document. Like our
past and present work, their algorithm borrows key ideas
from shingling: documents are segmented into overlapping
k-grams which are then hashed (core ideas of shingling),
and hashes are added to an index to build up a collection
of repeated text sequences. Their algorithm has been im-
plemented in the MapReduce framework and appears to be
highly scalable. While Kolak and Schilit’s algorithm has
many commonalities with the algorithm described in this
paper, the two algorithms do compute different things: their
algorithm identifies quotations (portions of text shared be-
tween documents) while ours identifies quilted web pages
(web pages that consist largely of portions of other web
pages).

Finally, it is worth pointing out that the problem of iden-
tifying quilted web pages is quite similar to that of identi-
fying plagiarism. There exists a large body of work on pla-
giarism detection; two exemplary systems include COPS [4]
and SCAM [16]. The interested reader is further referred to
a study by Hoad and Zobel [11] comparing the effectiveness
of various algorithmic approaches to plagiarism detection.

The remainder of the paper is structured as follows: Sec-
tion 2 introduces a new algorithm for detecting quilted web
pages, first by providing an intuitive explanation, then by
framing the algorithm in a set-theoretic setting, and finally
by sketching its implementation in DryadLINQ [17], a plat-
form for data-parallel cluster computing that leverages LINQ,
Microsoft’s “language-integrated query”extension to the C#
programming language. LINQ is based on list comprehen-
sions, which in turn are closely related to set comprehen-
sions, making the leap from specification to implementation
quite small. Section 3 describes the experimental validation
of our algorithm. It provides details on the data set and
the computational infrastructure used in this study, and
describes the runs we performed. We measured the effec-
tiveness of the quilt detection algorithm in identifying spam
web pages by manually inspecting a small sample of detected
quilted pages (together with the source pages that provided
the “patches” for each “quilt”). While (per definition) ev-
ery detected page was indeed a quilt, only a small fraction
of these pages was considered spam. Analyzing the nature
of these false-positives guided us in refining our algorithm
with several heuristics, which greatly reduced the rate of
false positives. Finally, section 4 offers some concluding re-
marks and avenues for future research.

2. A SCALABLE QUILT DETECTION AL-
GORITHM

Our quilt detection algorithm takes a corpus of web pages
as input, and outputs the set of all “quilted” web pages,
together with the source web pages providing the textual
“patches” that went into the quilt. Rather than consider-
ing only proper phrases as potential patches, we segment
each n-word document into n− k + 1 overlapping k-grams.
Discarding common k-grams that occur in more than m doc-

uments as well as unique ones that occur in only one doc-
ument leaves us with a set of candidate patch grams. We
consider a page to be quilted iff at least a θ fraction of its
k-grams are patch grams, and if the minimum cover set of
documents from which the patch grams are drawn contains
at least c documents. So, our definition of quilted page in-
volves the four parameters k, m, c and θ. The choice of these
parameters impacts both the effectiveness (what fraction of
quilted pages would be considered spam by human judges)
and the efficiency (how long it takes to process the corpus)
of the detection algorithm.

More formally, we consider a corpus D of documents (web
pages). Each document d ∈ D is a sequence of terms (words)
〈t1 · · · tn〉, which can be grouped into n− k + 1 overlapping
k-grams, with g1 = 〈t1 · · · tk〉, g2 = 〈t2 · · · tk+1〉, etc. We
write gramsk(d) to denote the k-gram-set of document d,
and docsk(g) to denote {d ∈ D : g ∈ gramsk(d)}, the set of
documents containing k-gram g. We define the patch gram
set of a document d (those k-grams of d that co-occur in at
least one but fewer than m other documents) as follows:

pgramsk,m(d) = {g ∈ gramsk(d) : 1 < |docsk(g)| ≤ m}
Obviously, pgramsk,m(d) ⊆ gramsk(d) for all d, k and m.
We define the patch-fraction of a document d as the fraction
of patch grams in the document’s gram set:

patchfrack,m(d) =
|pgramsk,m(d)|
|gramsk(d)|

Moreover, we define sourcesk,m(d), the source documents
contributing patch grams to a document d, as follows:

sourcesk,m(d) = minimal set D′ ⊆ D such that

pgramsk,m(d) ⊆
[

d′∈D′
pgramsk,m(d′)

In other words, sourcesk,m(d) is a (not necessarily unique)
minimal set of documents whose combined patch grams cover
all the patch grams of d. The set cover problem is NP-
hard [12], but there is a well-known greedy approximation
algorithm, detailed below. Using this notation, we define
quilted web pages as follows:

Definition: A document d is said to be (k, m, c, θ)-quilted
iff patchfrack,m(d) ≥ θ and |sourcesk,m(d)| ≥ c.

Before describing the approximation algorithm for comput-
ing sourcesk,m(d), we first provide a few theorems concern-
ing the role of the parameters in the definition of quiltedness:

Theorem 1 (Monotonicity in θ): A document that is
(k, m, c, θ)-quilted is also (k, m, c, θ′)-quilted for any θ′ ≤ θ.

Proof: Straightforward. For any document d, d is (k, m, c, θ)-
quilted implies |sourcesk,m(d)| ≥ c and patchfrack,m(d) ≥ θ,

which implies patchfrack,m(d) ≥ θ′ since θ ≥ θ′, which im-

plies d is (k, m, c, θ′)-quilted.

Theorem 2 (Monotonicity in c): A document that is
(k, m, c, θ)-quilted is also (k, m, c′, θ)-quilted for any c′ ≤ c.

Proof: Straightforward. For any document d, d is (k, m, c, θ)-
quilted implies patchfrack,m(d) ≥ θ and |sourcesk,m(d)| ≥ c,

which implies |sourcesk,m(d)| ≥ c′ since c ≥ c′, which im-
plies d is (k, m, c′, θ)-quilted.

Theorem 3 (Monotonicity in m): A document that is
(k, m, c, θ)-quilted is also (k, m′, c, θ)-quilted for any m′ ≥ m.

Proof: Assume m′ ≥ m, and consider a (k, m, c, θ)-quilted
document d, so patchfrack,m(d) ≥ θ and |sourcesk,m(d)| ≥ c.
It is easy to see that pgramsk,m′(d) ⊇ pgramsk,m(d), which
implies that patchfrack,m′(d) ≥ patchfrack,m(d) ≥ θ. Fur-
thermore, since pgramsk,m′(d) ⊇ pgramsk,m(d), and since
sourcesk,m(d) is the minimal set of documents whose patch-
grams cover pgramsk,m(d), the minimality property implies
that |sourcesk,m′(d)| ≥ |sourcesk,m(d)| ≥ c. Taken together,
this implies that d is (k, m′, c, θ)-quilted.

The attentive reader will notice that there is no Theorem 4
– (k, m, c, θ)-quiltedness is not monotonic in k. It is fairly
easy to see why: choosing a very small value of k may render
most k-grams common, i.e. occurring in more than m doc-
uments, while choosing a very large value of k may render
most k-grams unique, i.e. occurring in only a single docu-
ment. At either extreme, the average document will tend
to have a smaller patch gram set, and hence a lower patch
fraction, thereby reducing the number of documents d for
which patchfrack,m(d) ≥ θ.

As mentioned above, the set cover problem is NP-hard.
We compute sourcesk,m(d), the source documents contribut-
ing patch-grams to a document d, through the following
greedy approximation algorithm:

C ← {(d′, g) : d′ ∈ D \ {d} ∧ g ∈ gramsk(d) ∩ gramsk(d′) ∧
1 < |docsk(g)| ≤ m}

sourcesk,m(d)← ∅
while C
= ∅ do

find a d′ that maximizes |{g : (d′, g) ∈ C}|
sourcesk,m(d)← sourcesk,m(d) ∪ {d′}
C ← C \ {(d′′, g′) ∈ C : g′ ∈ {g : (d′, g) ∈ C}}

It should be pointed out that Theorem 3 does not necessarily
hold when sourcesk,m(d) is approximated rather than com-
puted precisely. Nonetheless, even when using the above
greedy approximation, we expect the set of quilted docu-
ments in a large collection to increase “mostly” monotoni-
cally as m increases.

We implemented the above set-theoretic definition of quilt-
edness using DryadLINQ [17], a data-parallel cluster com-
puting platform that leverages LINQ, Microsoft’s “language
integrated query” extension to the C# programming lan-
guage. LINQ is based on list comprehensions, a concept that
originated in the functional programming community and
that in turn is related to mathematical set notation (some-
times called set comprehensions). Because of the fairly close
relationship between LINQ and set notations, it is reason-
ably straightforward to cast the above definitions in LINQ
and C#. The entire implementation, shown in Figure 5
is just 74 lines of C# and LINQ, not counting utility li-
braries for hashing and mapping between textual and nu-
meric ClueWeb09 document identifiers.

Functional programs in general and list comprehensions
in particular can be efficiently evaluated in a data-parallel
fashion, and DryadLINQ exploits that fact by executing any
LINQ query on many machines in parallel. A DryadLINQ
program is started on a single machine. Whenever the con-
trol flow encounters a LINQ query, DryadLINQ ships that
query to available machines in a compute cluster, which

Figure 2: Data flow graph of the DryadLINQ imple-
mentation of our quilt detection algorithm.

also store the data (in our case, the corpus of documents)
in a distributed fashion. Data is organized into streams
segmented into multiple partitions, and the partitions of a
stream are distributed across the cluster. A query is de-
composed into multiple stages, each stage consisting of the
maximal pipeline of operators (e.g. Select, Where, GroupBy,
Join, Partition and Merge) that can be executed locally by
reading and writing items in a streaming fashion. Each stage
is executed in parallel, with the degree of parallelism deter-
mined by the partitioning of the input streams, and spread
over the available machines in the cluster. A DryadLINQ
computation can be characterized by a directed acyclic graph,
with the nodes corresponding to stages and the edges cor-
responding to data flowing from one stage to the next. Fig-
ure 2 shows the data flow graph of the DryadLINQ imple-
mentation of our quilt detection algorithm. It contains 14
stages (represented as ovals), and completing each stage in-
volves running 1000 processes distributed over the machines
in the cluster. The processes in each stage are indepen-
dent from each other and thus parallelizable; in practice,
the DryadLINQ runtime runs just one such process per ma-
chine at any given time.

3. EXPERIMENTAL VALIDATION
The experiments described in this section were performed

on a cluster of about 220 computers, each running the Win-
dows Server 2003 64-bit operating system. Each machine
had two dual-core AMD Opteron 2218 HE CPUs clocked at
2.6 GHz, 16 GB of DDR2 RAM, four 750 GB SATA drives,
and a 1 Gbit/sec Ethernet NIC. Groups of about 25 com-
puters were connected to a Blade RackSwitch G8052 48-port
full-crossbar local switch; and the nine local switches were
interconnected through a Blade RackSwitch G8264 switch,

with 30 Gbit/sec full-duplex inter-switch bandwidth achieved
via port aggregation.

For our experiments, we used the English-language subset
of ClueWeb09 [14]. The collection was assembled through
a web crawl conducted in 2009. The full collection con-
sists of over a billion web pages, while the English-language
subset is comprised of 503,898,901 pages. We segmented
each page into individual words by embedding the Bing
HTML parser into DryadLINQ and performing the parsing
and word-breaking on our compute cluster. We subsequently
performed several runs of the DryadLINQ implementation
of our quilt detection algorithm, exploring various choices of
the parameters k, m, c and θ. Typical runs took between
18 and 48 hours depending on parameter combinations as
well as job competition. Since our compute cluster is shared
among multiple users and a job’s individual processes are
routinely aborted by the cluster scheduler to accommodate
other users, the aforementioned running times should only
be viewed as upper bounds.

k m c θ # quilted # sources
2 50 4 0.5 562,450 1114.78
3 50 4 0.5 4,865,307 27.75
4 50 4 0.5 33,904,401 21.58
5 50 4 0.5 58,002,718 22.35
6 50 4 0.5 58,526,481 16.49
7 50 4 0.5 52,926,434 12.14
8 50 4 0.5 47,158,399 9.78
9 50 4 0.5 42,278,205 8.53

10 50 4 0.5 38,479,113 7.82
5 50 2 0.5 82,832,986 16.37
5 50 3 0.5 68,103,596 19.48
5 50 4 0.5 58,002,718 22.35
5 50 5 0.5 50,251,757 25.18
5 50 6 0.5 44,206,465 27.94
5 50 7 0.5 39,444,093 30.59
5 50 8 0.5 35,611,760 33.12
5 50 9 0.5 32,453,725 35.57
5 50 10 0.5 29,797,202 37.94
5 10 4 0.5 16,924,347 15.16
5 20 4 0.5 31,492,573 17.87
5 30 4 0.5 42,267,988 19.85
5 40 4 0.5 50,849,031 21.32
5 50 4 0.5 58,002,718 22.35
5 60 4 0.5 64,145,058 23.16
5 70 4 0.5 69,434,726 23.84
5 80 4 0.5 74,062,259 24.41
5 50 4 0.4 93,141,485 28.68
5 50 4 0.5 58,002,718 22.35
5 50 4 0.6 33,040,377 16.79
5 50 4 0.7 15,700,171 12.71
5 50 4 0.8 4,650,478 9.38
5 50 4 0.9 439,044 6.95
5 50 4 1.0 209 4.75

Table 1: Percentage of (k, m, c, θ)-quilted pages in
ClueWeb09 and average number of source pages, for
various choices of k, m, c and θ.

The output of each quilt detection run is a stream con-
taining the ClueWeb09 document IDs of all detected quilted

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

0 1 2 3 4 5 6 7 8 9 10
k

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90 100
m

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

0 1 2 3 4 5 6 7 8 9 10
c

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ

Figure 3: Number of quilted pages dependent on parameters setting. All plots have the common, highlighted
pivot point (k, m, c, θ) = (5, 50, 4, 0.5), and each plots sweeps the parameter space in one dimension around that
pivot point. From left to right, the parameters k, m, c and θ are varied.

pages, together with a minimal1 set of source documents.
We picked parameter combination (k, m, c, θ) = (5, 50, 4, 0.5)
as a pivot point and varied the parameters around that pivot
point, one dimension at a time. Table 1 shows the number
of quilted pages in our corpus and the average number of
source documents for each of the parameter combinations
we explored. Figure 3 plots the number of quilted pages
for each parameter sweep, giving credence to Theorems 1–3
stating the monotinicity in θ, c and m, as well as illustrating
the non-monotonicity in k. The pivot point is highlighted
in each plot.

In order to evaluate the effectiveness of our quilt detec-
tion algorithm at identifying spam web pages, we drew a
small sample from the set of detected quilts, and extracted
the words of each quilted page and their source documents
from the ClueWeb09 corpus (again leveraging DryadLINQ).
We then manually inspected each quilt and its sources and
labeled them as positive (i.e. spam) or negative (not spam).
Figure 4 shows a screen shot of the tool we used to perform
this labeling.

Table 2 shows the results of labeling five of the runs de-
scribed in Table 1,the first being the pivot point and the
other four extreme choices of k, m, c, and θ. For each run,
we sampled 100 (k, m, c, θ)-quilted pages and assessed them
using the judging tool.

k m c θ spam
5 50 4 0.5 27%

10 50 4 0.5 22%
5 10 4 0.5 17%
5 50 10 0.5 19%
5 50 4 1.0 27%

Table 2: Percentage of sampled (k, m, c, θ)-quilted
pages that are labeled as spam, for five choices of
k, m, c and θ.

Among the five runs, the parameter combination we chose
as the pivot point performed best. It is not clear how sig-
nificant the observed differences in effectiveness are. The
sample size is relatively small, but more importantly, our
spam judgments are truly that: judgment calls. It was of-
ten quite hard to determine whether a given quilted page
was spam or not. For one, a substantial fraction of web
pages in the ClueWeb09 collection no longer exists in the

1Or rather, approximately minimal, due to the greedy set
cover approximation algorithm.

wild; and often enough, the domain of the page either no
longer exists or has been taken over by a “domain parking”
service. In such cases, we had to judge the page solely based
on its textual content, without considering embedded im-
ages or other pages in the same domain – two important
cues in making spam judgments. Moreover, there is a fine
line between low-quality content with commercial intent and
outright spam. We might (somewhat arbitrarily) decide that
an Amazon reseller engaging in keyword stuffing is pursuing
a legitimate business, but a blog that is “reviewing” mira-
cle patent medicines and monetizing this through a referral
program is spam. It is hard to draw the line, and hard to
do so consistently.

We were disappointed by the low percentage of quilted
pages detected by our algorithm that would actually be con-
sidered spam by a human observer. By examining the many
false positives, it became quickly clear that our algorithm
identified the home pages of many blogs as quilted, with the
full articles of the blog posts being the source documents
contributing fragments to the blog home page. This obser-
vation guided us to add the following simple heuristic to our
quilt detection algorithm: each source document should re-
side on a different web server than the quilted document.
More formally, the initialization of C in the algorithm given
in Section 2 is replaced by:

C ← {(d′, g) : d′ ∈ D \ {d} ∧ g ∈ gramsk(d) ∩ gramsk(d′) ∧
1 < |docsk(g)| ≤ m ∧ server (d)
= server (d′)}

We refer to pages satisfying this refined definition of quilted-
ness as foreign-sourced quilted pages. There is some ambigu-
ity as to what constitutes a web server: it could be identified
by a symbolic host name, a paid domain name, an IP ad-
dress, or even a domain registrar record. In our experiments,
we treated paid domain names (such as microsoft.com or
cam.ac.uk) as the identifiers of servers, and we insisted on
source pages to originate from a different domain than the
quilted page.

We ran this variant of our quilt detection algorithm on the
same data set as before, with the parameters (k, m, c, θ) =
(5, 50, 4, 0.5) that we had chosen as a pivot point. This run
detected 20,576,548 quilted pages (a proper subset of about
35% of the pages detected by the unmodified quilt detection
algorithm), each one incorporating an average of 28.26 for-
eign source pages. We labeled 100 pages drawn uniformly at
random from the set of foreign-sourced quilted pages, and
judged 34 of them as spam. This significantly increase in
the fraction of quilted pages judged as spam provides some

Figure 4: Tool used to view each quilt and its sources and label the quilt as spam or not spam.

evidence that the heuristic of requiring each source page to
originate from a different server than the quilted page is
indeed effective at surfacing spam.

None of the pages in our sample were of the blatant machine-
generated variety we observed during our 2005 study, sug-
gesting that spammers have become more sophisticated. How-
ever, our algorithm was very effective in surfacing web sites
that appropriated semantically coherent parts of other web
sites (say, a short essay) and used this content as “bait” to
drive content to their own site, which was typically not top-
ically related to the essay. Another pattern we observed
repeatedly was “cookie-cutter” web sites, where apparently
independent entities would offer essentially the same digital
content, or sell the same products.

About two-thirds of the foreign-sourced quilted pages iden-
tified by our technique were not judged as spam. Within this
set, we observed two notable patterns:

1. Publicly available documents (such as technical docu-
ments, standards, song lyrics, government notices, and
biographic entries) are replicated on many sites, and
most users would consider this content to be useful.

2. Some organizations (for example, Hartnell College) uti-
lize multiple domains (hartnell.edu and hartnell.

cc.ca.us), and serve similar pages on these domains.

The second class of false-positives accounted for about
one-fifth of all false-positives. Spot-checking a few of them
showed that most of these domains resolve to the same
canonical IP address. For example, the symbolic host names
hartnell.edu and hartnell.cc.ca.us resolve to 198.189.

134.200; and the symbolic host names efinancialcareers.
com, efinancialcareers.ie, efinancialcareers.be resolve
to 74.115.248.70. Using IP addresses to represent web

servers fits well into the data-parallel implementation of our
algorithm. The alternative approach of leveraging the ap-
parent textual similarity between these domain names, while
feasible, is harder to shoe-horn into the DryadLINQ im-
plementation. We implemented the former approach and
tested it on the same data set as before, with the parame-
ters (k, m, c, θ) = (5, 50, 4, 0.5) that we had chosen as a pivot
point. This run detected 19,729,026 quilted pages, each one
incorporating an average of 29.22 source pages hosted on
web servers with different IP addresses than that of the
quilted page. In other words, using this stricter notion of
differing web servers has little impact on how many pages
are detected as quilted. Again, we sampled 100 pages from
this run and manually inspected them, finding 26 of them
to be spam, which is noticeably lower than the 34% spam
yield uncovered by the previous run. We attribute it to the
imprecise nature of the assessment process.

In the course of assessing 100 samples each from 7 runs,
we found that many quilted pages drew most of their patch-
grams from just a few source pages, while most of the source
pages contributed just one or a few patch grams. It would
be interesting to modify the quilt detection algorithm (and
the very definition of quiltedness) so as to ensure that each
source page contributes at least a fraction of φ of the patch-
grams in the quilted page. We leave this as an avenue for
future work.

4. CONCLUSION
This paper builds on our earlier work on detecting phrase-

level duplication on the web [9]. We give a formal definition
of what constitutes a quilted web page (a web page that is
stitched together out of textual patches taken from other
web pages) and prove a few properties of that definition; we

provide an algorithm for exhaustively detecting all quilted
web pages in a given collection; we describe a data-parallel
implementation of the algorithm that scales to very large
collections; we evaluate the effectiveness of the algorithm
in detecting web spam by applying it (with various param-
eterizations) to the half-billion page English-language sub-
set of the ClueWeb09 collection [14] and judging samples of
the detected quilted pages as to whether or not they indeed
constitute spam; and we suggest a few heuristics to improve
effectiveness.

A major area for future work will be to combine the syn-
tactic approach of our algorithm with semantic (and domain-
specific) techniques for spam detection. While the syntac-
tic technique described in this paper (by virtue of its ex-
haustiveness) is fully effective at detecting all quilted web
pages, the task of effectively identifying spam must ulti-
mately incorporate semantic information. Our algorithm
(correctly) identities news aggregation web sites to contain
quilted pages (pages that collate opening paragraphs of news
articles from other sources); but such news aggregation pages
are not spam – users derive a real value from them. A po-
tential semantic signal that distinguishes news aggregation
from spam is attribution – a link from each excerpt to the
underlying article.

The core ideas described in this paper are applicable not
only to spam suppression in search engines, but also (and
probably more so) to detecting plagiarism in web-scale cor-
pora. Here again, semantic information (such as proper at-
tribution) will be needed in addition to the purely syntactic
approach of our technique.

Acknowledgments
This work grew out of a 2004 collaboration with Mark Man-
asse and Dennis Fetterly, and benefited from our many dis-
cussions. Dennis played a crucial role in the work described
in this paper, by word-breaking the ClueWeb09 collection
using the Bing HTML parser, supplying me with IP ad-
dresses for the URLs in the ClueWeb09 collection, provid-
ing me with a judging tool to adapt for this project, and pa-
tiently answering my many questions related to DryadLINQ.
Thanks to the entire DryadLINQ team for building a system
to make cluster-scale computing easy and fun, and particu-
larly to Yuan Yu for being super-responsive in fixing bugs.
Finally, thanks to Jamie Callan and his team at CMU for
compiling the ClueWeb09 collection, which has arguably be-
come the reference data set for reproducible web corpus re-
search. I can hardly wait for ClueWeb12!

5. REFERENCES
[1] Jacqueline Anderson, Reineke Reitsma, Patti F.

Evans, Samantha Y. Jaddou. Understanding Online
Shopper Behaviors, US 2011. Forrester Research, 2011.

[2] Ricardo Baeza-Yates, Álvaro Pereira, and Nivio
Ziviani. Genealogical Trees on the Web: A Search
Engine User Perspective. In 17th International World
Wide Web Conference, 2008.

[3] Michael Bendersky and W. Bruce Croft. Finding Text
Reuse on the Web. In 2nd ACM International
Conference on Web Search and Data Mining, 2009.

[4] Sergey Brin, James Davis, and Hector Garcia-Molina.
Copy Detection Mechanisms for Digital Documents. In
ACM SIGMOD International Conference on
Management of Data, 1995.

[5] Andrei Z. Broder. On the Resemblance and
Containment of Documents. In Compression and
Complexity of Sequences, 1997.

[6] Andrei Z. Broder, Steven C. Glassmann, Mark S.
Manasse, and Geoffrey Zweig. Syntactic Clustering of
the Web. In 6th International World Wide Web
Conference, 1997.

[7] Moses S. Charikar. Similarity Estimation Techniques
from Rounding Algorithms. In 34th Annual ACM
Symposium on Theory of Computing, 2002.

[8] Dennis Fetterly, Mark Manasse and Marc Najork. On
the Evolution of Clusters of Near-Duplicate Web
Pages. 1st Latin American Web Congress, 2003.

[9] Dennis Fetterly, Mark Manasse and Marc Najork.
Detecting Phrase-Level Duplication on the World
Wide Web. In 28th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, 2005.

[10] Monika Henzinger. Finding Near-Duplicate Web
Pages: A Large-Scale Evaluation of Algorithms. In
29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
2006.

[11] Timothy C. Hoad and Justin Zobel. Methods for
Identifying Versioned and Plagiarised Documents.
Journal of the American Society for Information
Science and Technology, 54(3):203–215, 2003.

[12] Richard M. Karp. Reducibility Among Combinatorial
Problems. In Symposium on the Complexity of
Computer Computations, 1972.

[13] Okan Kolak and Bill N. Schilit. Generating Links by
Mining Quotations. In 19th ACM Conference on
Hypertext and Hypermedia, 2008.

[14] Lemur Project. The ClueWeb09 DataSet. Online at
http://lemurproject.org/clueweb09/

[15] Jangwon Seo and W. Bruce Croft. Local Text Reuse
Detection. In 31st Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, 2008.

[16] Narayanan Shivakumar and Hector Garcia-Molina.
SCAM: A Copy Detection Mechanism for Digital
Documents. In 2nd Annual Conference on the Theory
and Practice of Digital Libraries, 1995.

[17] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,

Úlfar Erlingsson, Pradeep Kumar Gundar, and Jon
Currey. DryadLINQ: a system for general-purpose
distributed data-parallel computing using a high-level
language. In 8th USENIX Conference on Operating
Systems Design and Implementation, 2008.

public class Doc : IEquatable<Doc> {
public string url;
public string docId;
public string[] words;
public override int GetHashCode() {

return docId.GetHashCode();
}
public bool Equals(Doc other) {

return docId.Equals(other.docId, StringComparison.Ordinal);
}

}
public class QuiltFinder {

public static ulong[] HashPatches(string[] words, int k) {
var res = new ulong[Math.Max(0, words.Length - k + 1)];
var sb = new StringBuilder();
for (int i = 0; i < res.Length; i++) {
for (int j = 0; j < k; j++) {

if (j > 0) sb.Append(" ");
sb.Append(words[i + j]);

}
res[i] = Hash(sb.ToString());
sb.Clear();

}
return res;

}
public static IEnumerable<Pair<ulong,Pair<ulong,ulong>>> MakeDocGramDocTriple(ulong gram, ulong[] ids) {

for (int i = 0; i < ids.Length; i++) {
for (int j = 0; j < ids.Length; j++) {

if (i != j) {
yield return new Pair<ulong, Pair<ulong, ulong>>(ids[i], new Pair<ulong, ulong>(gram, ids[j]));

}
}

}
}
public static ulong[] MinSourceDocSet(List<Pair<ulong, ulong>> gramIds) {

List<ulong> res = new List<ulong>();
while (gramIds.Count > 0) {
var bestDoc = gramIds.OrderBy(x => x.Value)

.GroupBy(x => x.Value, x => x.Key, (k, g) => new Pair<ulong, int>(k, g.Count()))

.OrderByDescending(x => x.Value)

.First()

.Key;
res.Add(bestDoc);
var coveredGrams = gramIds.Where(x => x.Value == bestDoc).Select(x => x.Key).ToList();
var dischargedGramDocs = gramIds.Join(coveredGrams, x => x.Key, y => y, (x,y) => x).ToList();
gramIds = gramIds.Except(dischargedGramDocs).ToList();

}
return res.ToArray();

}
public static void FindQuilts(string inputStream, string outputStream, int k, int m, int c, double theta) {

var docToGrams = PartitionedTable.Get<InitialParsedDocWithLinks>(inputStream)
.Select(x => new { id = DocIdToULong(x.docId), grams = HashPatches(x.words, k) });

var gramsPerDoc = docToGrams.Select(x => new { id = x.id, count = (double)x.grams.Length });
var patchGrams = docToGrams.SelectMany(x => x.grams.Distinct())

.GroupBy(x => x, x => true, (gram, group) => new {gram = gram, count = group.Count()})

.Where(x => x.count > 1 && x.count <= m)

.Select(x => x.gram);
var patchyDocs = docToGrams.SelectMany(x => x.grams.Select(y => new { id = x.id, gram = y }))

.Join(patchGrams, x => x.gram, y => y, (x, y) => x)

.GroupBy(x => x.id, x => x.gram, (id, group) => new { id = id, count = (double)group.Count() })

.Join(gramsPerDoc, x => x.id, y => y.id, (x, y) => new { id = x.id, frac = x.count / y.count })

.Where(x => x.frac >= theta)

.Select(x => x.id);
var quilts = docToGrams.SelectMany(x => x.grams.Select(y => new { gram = y, id = x.id }))

.Join(patchGrams, x => x.gram, y => y, (x, y) => x)

.GroupBy(x => x.gram, x => x.id, (gram, group) => new { gram = gram, ids = group.Distinct().ToArray() })

.SelectMany(x => MakeDocGramDocTriple(x.gram, x.ids))

.Join(patchyDocs, x => x.Key, y => y, (x,y) => x)

.GroupBy(x => x.Key, x => x.Value, (id, group) => new { id = id, ids = MinSourceDocSet(group.ToList()) })

.Where(x => x.ids.Length >= c)

.Select(x => new Pair<string,string[]>(ULongToDocId(x.id), x.ids.Select(y => ULongToDocId(y)).ToArray()))

.ToPartitionedTable(outputStream);
}

}

Figure 5: A DryadLINQ implementation of the quilt detection algorithm

