
End-to-EndQuery TermWeighting
Karan Samel∗
Georgia Tech

ksamel@gatech.edu

Cheng Li
Google

chgli@google.com

Weize Kong
Google

weize@google.com

Tao Chen
Google

taochen@google.com

Mingyang Zhang
Google

mingyang@google.com

Shaleen Gupta
Google

shaleeng@google.com

Swaraj Khadanga
Google

khadanga@google.com

Wensong Xu
Google

asong@google.com

Xingyu Wang
Google

xingyuwang@google.com

Kashyap Kolipaka
Google

kashyapk@google.com

Michael Bendersky
Google

bemike@google.com

Marc Najork
Google

najork@google.com

ABSTRACT
Bag-of-words based lexical retrieval systems are still the most com-
monly used methods for real-world search applications. Recently
deep learning methods have shown promising results to improve
this retrieval performance but are expensive to run in an online
fashion, non-trivial to integrate into existing production systems,
and might not generalize well in out-of-domain retrieval scenarios.
Instead, we build on top of lexical retrievers by proposing a Term
Weighting BERT (TW-BERT) model. TW-BERT learns to predict the
weight for individual n-gram (e.g., uni-grams and bi-grams) query
input terms. These inferred weights and terms can be used directly
by a retrieval system to perform a query search. To optimize these
term weights, TW-BERT incorporates the scoring function used by
the search engine, such as BM25, to score query-document pairs.
Given sample query-document pairs we can compute a ranking
loss over these matching scores, optimizing the learned query term
weights in an end-to-end fashion. Aligning TW-BERT with search
engine scorers minimizes the changes needed to integrate it into
existing production applications, whereas existing deep learning
based search methods would require further infrastructure opti-
mization and hardware requirements. The learned weights can be
easily utilized by standard lexical retrievers and by other retrieval
techniques such as query expansion. We show that TW-BERT im-
proves retrieval performance over strong term weighting base-
lines within MSMARCO and in out-of-domain retrieval on TREC
datasets.

∗Work done during an internship at Google.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599815

CCS CONCEPTS
• Information systems→ Languagemodels;Query represen-
tation.

KEYWORDS
Information Retrieval, Query Weighting, Language Models

ACM Reference Format:
Karan Samel, Cheng Li, Weize Kong, Tao Chen, Mingyang Zhang, Shaleen
Gupta, Swaraj Khadanga, Wensong Xu, Xingyu Wang, Kashyap Kolipaka,
Michael Bendersky, andMarc Najork. 2023. End-to-End Query TermWeight-
ing. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3580305.3599815

1 INTRODUCTION
Lexical retrievers are themost commonly used information retrieval
(IR) systems used in production applications. These systems have
been built and refined over many decades to improve heuristic-
based search using word statistics occurring within the search
query, candidate document, and document corpus. These statistics-
based retrieval methods provide efficient search that scales up with
the corpus size and generalizes to new domains. However, the
terms are weighted independently and don’t consider the context
of the entire query. For this problem, deep learning models can
perform this contextualization over the query to provide better rep-
resentations for individual terms. We bridge these two paradigms
to determine which are the most relevant or non-relevant search
terms in the query, which can be n-grams spanning multiple words.
Then these terms can be up-weighted or down-weighted to allow
our retrieval system to produce more relevant results.

A motivating search query is “Nike running shoes”. The first
aspect to consider is how these terms will be weighted during
scoring. For example, the term “running” might be up-weighted
due to its term frequency in the document corpus. This might
provide other brand results while a customer intends to retain the
“Nike” brand. Therefore the challenge is that we must ensure that

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599815
https://doi.org/10.1145/3580305.3599815

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Karan Samel et al.

Document

Corpus

Doc Terms

(Weighted) Query Terms

Scoring Function (e.g. BM25)

Query-Document Score

Document

Doc Terms

(Weighted) Query Terms

Scoring Function (e.g. BM25)

Query-Document Score

Ranked Documents

Ranking Loss

BERT Corpusnike running shoes

nike running shoes

1.0 1.0 1.0

Ranked Documents

2.1 1.5 1.1

Standard Lexical Retrieval Term Weighted Retrieval

Figure 1: On the left we illustrate the traditional IR setup, which takes in a query with optional term weights (uniform by
default) and scores them against documents from a corpus. In our setup on the right, we insert a BERT model to perform the
weighting of the terms and train this model end-to-end by computing a ranking loss using the scored document positions.

“Nike” is weighted high enough while still providing running shoes
in the final returned results.

The second aspect is how to leverage more meaningful n-gram
terms during scoring. In our query, the terms “running” and “shoes”
are handled independently, which can equally match “running
socks” or “skate shoes”. In this case, we want our retriever to work
on an n-gram term level to indicate that “running shoes” should be
up-weighted when scoring.

The challenge of n-gram weighting has traditionally been ad-
dressed by token-level term dependency and proximity methods,
which identify salient n-grams to use for retrieval [5–7, 38]. How-
ever, using bag-of-words representations limits variations in the
query, such as “running shoe” versus “joggers”. Moreover, they
require computing the term dependency statistics on any datasets
used for testing, which limits their zero-shot capabilities. In contrast,
term expansion methods leverage the training corpus to directly
optimize term weights using auxiliary scoring functions [4, 8, 9].
However, these auxiliary scoring functions do not account for ad-
ditional weighting steps carried out by scoring functions used in
existing retrievers, such as query statistics, document statistics, and
hyperparameter values. This can alter the original distribution of
assigned term weights during final scoring and retrieval.

Beyond token-based statistics, deep learning models learn token
and text-level representations to optimize retrieval given a set of
queries and relevant documents. One class of models represents
the text in a dense fashion to match similar query and document
embeddings [17, 21, 26]. A second class of models sparsely output
term wordpiece weights and corresponding term expansions to
match the overlapping query and document terms [2, 15, 16, 16, 42].
These deep methods use pre-trained language models [13, 23, 40]
as text encoders, and have shown large improvements in retrieval
performance over traditional retrievers.

These gains from deep learning based search come with a few
trade-offs. The first consideration is the complexity of these models,

which incur challenges when deploying in a production use case.
These models have a large inference cost, requiring specialized
acceleration hardware and software [20, 32] to reduce latency. This
provides additional overhead when integrating these methods into
existing production systems. A second consideration is that most
deep models are black box. The result of this is unpredictable be-
havior when testing on new domains whose data varies from the
original training data [10, 39]. Correspondingly, a third considera-
tion is the difficulty to program behaviors befitting new production
use cases. Traditional retrievers in production can be adapted by
providing new scoring functions based on new search heuristics.
In contrast, implementing a similar behavior into deep retrieval is
non-trivial.

To bridge the gap, we leverage the robustness of existing lexi-
cal retrievers with the contextual text representations provided by
deep models. Lexical retrievers already provide the capability to
assign weights to query n-gram terms when performing retrieval.
We leverage a language model at this stage of the pipeline to pro-
vide appropriate weights to the query n-gram terms. This Term
Weighting BERT (TW-BERT) is optimized end-to-end using the
same scoring functions used within the retrieval pipeline to ensure
consistency between training and retrieval. This leads to retrieval
improvements when using the TW-BERT produced term weights
while keeping the IR infrastructure similar to its existing production
counterpart. We illustrate this augmentation of the lexical retrieval
pipeline in Figure 1.

Methodological Contributions. We define the TW-BERT model,
which provides n-gram weights given an input sequence of query
tokens. We describe how to provide a relevance score for a query-
document pair. This is done via a scoring mechanism that leverages
both the produced term weights as well as traditional term statistics
used by retrieval scoring functions. These relevance scores can be
used to train the query term weights end-to-end. This enables us

End-to-EndQuery Term Weighting KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Term Weights

Query Term Frequency Document Term Statistics

Document

BM25

Query-Document Score

BERT

[CLS] nike run ##ing shoes [SEP]

Masking

Pooling

Linear

Term Weights

nike running shoes

2.1 1.1 1.5

Term
Embeddings

2.1 1.1 1.5

Ranked Documents

Ranking Loss

Figure 2: An overview of our TW-BERT framework. On the left, we illustrate the process of obtaining n-gram term weights
from the original input wordpiece tokens. On the right, the termweights are used as statistics within our implemented scoring
function, BM25 in this case, to score candidate documents and compute a final ranking loss.

to directly deploy our term weights within an IR system during
retrieval. This differs from prior weighting methods which need to
further tune a retriever’s parameters to obtain optimal retrieval per-
formance since they optimize term weights obtained by heuristics
instead of optimizing end-to-end. We discuss TW-BERT’s optimiza-
tion design choices as well as the constraints that are needed to
leverage the inference results within an external IR system. An
overview of this process is presented in Figure 2.

Experimental Contributions. We leverage TW-BERT n-gramweights
within an established lexical retriever platform to evaluate our sys-
tem. We test our retrieval setup on in-domain tasks as well as in
the zero-shot setting. TW-BERT weighting outperforms traditional
retriever scoring for in-domain tasks while beating both traditional
and deep retrievers on zero-shot retrieval. We additionally test TW-
BERT weighting with query expansion methods available within
our IR engine, which shows further performance improvements on
zero-shot tasks.

2 RELATEDWORKS
Traditional lexical retrieval uses scoring functions to rate query-
document pairs. Methods such as TF-IDF or BM25 [36] are used
to score the relevance of a document given query term statistics,
document term statistics, and pre-computed term statistics from
the entire document corpus. Relevance models have been used
to compute the likelihood that a query term belongs to a set of
relevant documents, without any explicit training labels [22]. Con-
versely, non-parametric language models are built per document
where the probabilities of individual query terms can be inferred
[33]. To weight n-gram spans, existing classical works focus on
the interaction between the terms based on their text ordering and
occurrences in n-gram spans given query-document pairs [5, 6, 38].
In the supervised case, probabilistic models maximize the scores
for query terms given a related document [4, 9]. These in turn can
score the likelihood of a query given a document for ranking. All
aforementioned methods use co-occurrence probabilities at a term
level to compute scores, while we would also benefit from using
the query level information to weight the terms.

For this query contextualization, neural-based approaches DeepTR
[43] and DeepCT [12] leverage word vectors [28] and BERT [13]
encodings respectively to predict per term weights given the en-
coded query. They train the models to mimic term recall, which is
how often a term appears across related queries associated with a
relevant document. They can be similarly applied to weight and
expand document-side terms [11, 27]. One drawback is that term
recall is used as the ground truth weight for the model to mimic,
which may not be the most optimal for downstream IR scoring.
This is because the produced weight might not be compatible with
the scoring function of the search engine. Moreover, there are a
sparse number of queries associated with each document in most
supervised datasets, thus term recall will often provide a noisy esti-
mation of term weights. Instead of optimizing for an intermediate
term weight heuristic, we aim to replicate IR scoring and optimize
our term weights for end-to-end retrieval.

Beyond weight heuristic labels, other methods leverage pre-
trained language models themselves to infer term weights. BERT-
based models are used to compute independent query term scores
given a candidate document [29]. These query scores can be added
up to provide an overall query-document score. Transformer de-
coders can also take in the document to produce a probabilistic
query, which in turn can be used to score query-document pairs
[30, 31]. These methods produce more reliable similarity scores
for each pairwise query document, but they are too expensive for
retrieval.

Another promising line of work is to use sparse representations
to encode the texts, which can be precomputed. Within sparse
embeddings, SparTerm [2] uses the BERT masked language model
(MLM) head to predict the importance of each term in the text.
It learns to gate the term activations to enforce sparsity. Further
extensions are made by SPLADE to normalize weight activations
and improve sparse regularizations [16, 42]. These neural retrievers
are improved upon by additional distillation and hard-negative
mining techniques to generate higher quality training data [14,
15]. These methods pose challenges in integrating their wordpiece
level terms, expansions, and document side weights into traditional

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Karan Samel et al.

retrievers. Therefore, we focus on optimizing word-level query term
weights compatible with existing retrieval systems.

3 TERMWEIGHTING BERT
To efficiently integrate contextual text representations into IR sys-
tems, we design a BERT-based model to infer term weights for
n-grams in queries. These n-gram term weights are used to con-
struct a query representation that is used by the retrieval engine
to perform document ranking. This query representation is passed
through a standard retrieval scoring function, such as BM25, to
rank candidate documents. A ranking loss is computed after the
scoring function step, enabling the inferred TW-BERT termweights
to be optimized end-to-end. This end-to-end training allows the
term weights produced by TW-BERT to be used directly within
existing IR systems. Therefore, it is more practical to integrate and
deploy over pure deep learning approaches.

3.1 Model Architecture
We construct TW-BERT on top of the original BERT architecture but
makemodifications to support n-gram terms. In IR systemswewant
to provide weights for word-level terms, and not the wordpiece
representations that are commonly used during tokenization. To
this end, we define a term mask𝑀 that identifies which wordpiece
token𝑊𝑖 ∈ 𝑊 belongs to each n-gram term in the query input
𝑇𝑖 ∈ 𝑇 . In the mask𝑀 , wordpieces belonging to n-gram terms are
indicated with 1 or are 0 otherwise.

𝑀𝑖, 𝑗 ∈ R |𝑇 |× |𝑊 | =

{
1 if𝑊𝑗 is a wordpiece of 𝑇𝑖
0 otherwise

(1)

An example of this mask can be viewed in Figure 3 where we
demonstrate masking for uni-gram as well as bi-gram terms 𝑇 .

Given the mask𝑀 , we can obtain each contextualized wordpiece
token corresponding to each n-gram term in the query.We input the
tokenized wordpiece query input to our BERT model and concate-
nate output wordpiece hidden states with dimension 𝑑 as follows:
𝐻 = [ℎ1;ℎ2;ℎ3; . . . ;ℎ |𝑊 |] = BERT(𝑊), where 𝐻 ∈ R |𝑊 |×𝑑 . Then
the corresponding hidden states per n-gram term are computed
and pooled to obtain a n-gram term level embedding for each input
term. This is done by first expanding the dimensions of our embed-
dings 𝐻𝑒 ∈ R1×|𝑊 |×𝑑 as well as the mask matrix𝑀𝑒 ∈ R |𝑇 |× |𝑊 |×1.
Then the expanded wordpiece embeddings per n-gram term are
computed as 𝐸 = 𝐻𝑒 ⊙ 𝑀𝑒 ∈ R |𝑇 |× |𝑊 |×𝑑 . Here we are implic-
itly broadcasting during our ⊙ multiplication, where for every n-
gram term in 𝑇 , we have all corresponding wordpiece embeddings
∈ R |𝑊 |× |𝑑 | . Any non-relevant wordpiece embeddings per n-gram
term are masked out as zero vectors. We pool the embeddings per
n-gram over the wordpiece𝑊 dimension to obtain the term-level
embeddings 𝑃 ∈ R |𝑇 |×𝑑 . In our use case, we compute the average
pooled representations of the wordpieces as 𝑃𝑖, 𝑗 =

∑ |𝑊 |
𝑘=1

𝐸𝑖,𝑘,𝑗
𝑀𝑖,𝑘

.
Given the n-gram term representations, we can predict their

corresponding weight. This is done by a linear layer to obtain
predicted weights 𝑤 = 𝑃𝐾⊤ + 𝑙 , where 𝑤 ∈ R |𝑇 |, 𝐾 ∈ R1×𝑑 , and
𝑙 ∈ R |𝑇 | . Since termweights should be non-negative, we use a ReLU
activation to produce the final weight𝑤𝑖 = max(0,𝑤𝑖). A summary
of this term weighting process is shown on the left of Figure 2.

3.2 Retrieval Scoring
We integrate the inferred query term weights learned into our
retriever by passing them into a corresponding retrieval scoring
function. In our study, we use the BM25 scoring function. Given
the query terms 𝑇 , document terms 𝐷 , and query term weights𝑤
this score is computed as follows:

score(𝑇, 𝐷,𝑤) =
|𝑇 |∑
𝑖=1

IDF(𝑇𝑖) ·
𝑓 (𝑇𝑖 , 𝐷) ∗ (𝑘3 + 1) ∗ 𝑓 (𝑇𝑖 ,𝑇 ,𝑤)

(𝑘3 + 𝑓 (𝑇𝑖 ,𝑇 ,𝑤)) ∗ 𝐾 (2)

Here the inverse document frequency of the query term is com-
puted as IDF(𝑇𝑖) = ln(numDocs−DF(𝑇𝑖)+0.5

DF(𝑇𝑖)+0.5), where DF is the number
of documents in the corpus containing 𝑇𝑖 . The document side fre-
quency 𝑓 (𝑇𝑖 , 𝐷) is the number of times the term appears in the
document. The query side frequency 𝑓 (𝑇𝑖 ,𝑇 ,𝑤) is the weighted
count of the term occurrence in the query. Using our predicted
term weights𝑤 , this is computed as 𝑓 (𝑇𝑖 ,𝑇 ,𝑤) = ∑ |𝑇 |

𝑗=1 I𝑇𝑖=𝑇𝑗
∗𝑤 𝑗 .

Finally, 𝐾 is another parametric constant defined as 𝐾 = 𝑘1 ∗ ((1 −
𝑏) + 𝑏 ∗ |𝐷 |

𝑎𝑣𝑒 |𝐷 |) + 𝑓 (𝑇𝑖 , 𝐷). We initialize the remainder scoring hy-
perparameters as 𝑘1 = 1.2, 𝑘3 = 8.0, and 𝑏 = 0.75, which are the
defaults used by the search engine we experiment with. Now given
an input query and a corpus document, we can produce a matching
score 𝑠 = 𝑠𝑐𝑜𝑟𝑒 (𝑇, 𝐷,𝑤) using intermediate term weights𝑤 .

One benefit of modeling our scoring function is we are opti-
mizing around our defined hyperparameter constants used by the
search engine. In contrast, other weight learning methods like
DeepTR [43] or DeepCT [12] still have to search over these hyper-
parameters to make sure that their learned weights produce viable
results. Additionally, while we use BM25 as our scoring function,
any generic scoring function can be used. These scorers can be
newly developed for a specialized application or transferred from
existing scorers used in production applications.

3.3 Scoring Regularization
We empirically find that directly optimizing these scoring functions
is challenging. The first challenge is that the output scores fall in
the range of 𝑠 ∈ [0,∞), while query-document relevance labels
(binary or graded relevance) range from [0, 1]. To address this
we sample document scores 𝑠𝑐 from a standard retrieval system
and normalize the model output score ranges based on maximum
observed document scores. We can define our scaled scores as
𝑠𝑙 = (𝑠 + 𝜖) ∗ 1

max 𝑠𝑐 .
The second challenge we encounter is that custom or more com-

plex scoring functions beyond BM25, which can be piecewise func-
tions, are harder to optimize directly. For this, we optimize a piece-
wise linear transformation on top of the document scores in an
end-to-end manner by applying a maxout network [18]. This net-
work is added on top of the scaled scores as 𝑠𝑚 = max𝑖∈[1,𝐿] 𝑠𝑙𝑎𝑖+𝑏𝑖 ,
where 𝐿 is the number of linear layers we use in the maxout com-
putation and each 𝑎𝑖 , 𝑏𝑖 ∈ R are a unique set of parameters. In
practice, we keep the 𝐿 = 12 as the same number of transformer
layers. These 𝑠𝑚 scores are the final scores used for training and
evaluation purposes.

End-to-EndQuery Term Weighting KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[CLS] nike runn ##ing shoes [SEP]

Mask Term 1 0 1 0 0 0 0

Mask Term 2 0 0 1 1 0 0

Mask Term 3 0 0 0 0 1 0

Term1 Term 3

Masks given unigrams terms

Term 2

[CLS] nike runn ##ing shoes [SEP]

Mask Term 1 0 1 1 1 0 0

Mask Term 2 0 0 1 1 1 0

Masks given bi-grams terms

Term 2

Term 1

Figure 3: For TW-BERTmasking, we illustrate which wordpiece tokens (columns) belong to which n-gram tokens. On the left
side, we have an example with uni-grams and on the right, we show a sample with bi-gram terms.

3.4 Optimization
3.4.1 Pre-Training. During our model pre-training, one objective
is to run a masked language model (MLM) task [13]. Here each
wordpiece has a 15% chance of being selected, of which it then
has either an 80% chance of being masked, 10% chance of being
randomly replaced, or 10% chance of remaining unchanged. In
addition, wemodify themasking strategy such that if anywordpiece
is masked, all occurrences of that wordpiece are also masked. This
makes the MLM task harder. The objective is to recover any selected
token within the MLM loss L𝑀𝐿𝑀 .

The second pre-training objective is to initialize the term scores.
We use an uninformed prior to mimic the standard retrieval scoring
where the input query term weights are the same, as previously
shown on the left of Figure 1. We pre-train the model to learn
uniform weights by minimizing an MSE loss over the originally
predicted term weights L𝑀𝑆𝐸 =

∑ |𝑇 |
𝑗=1 (𝑤 𝑗 − 1)2. The intuition

is that we want to initialize the model to behave as a vanilla re-
triever system without any prior weight information during pre-
training. Then during fine-tuning, we further optimize the weights
to improve upon the standard uniform weighting strategy. During
pre-training, we only require sample queries and do not require
relevant documents. Our final joint pre-training objective is defined
as L𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 = L𝑀𝐿𝑀 + L𝑀𝑆𝐸

3.4.2 Fine-Tuning. During fine-tuning, we leverage supervised
query and relevant document pairs. During the forward pass, the
input query is fed into TW-BERT, to produce the term weights. The
document statistics are extracted for the document terms. These
weights and statistics are fed into our BM25 scoring function and
regularization layers to produce a final score 𝑠𝑚 . This score is com-
pared against the ground truth relevance of the query-document
pair 𝑦 ∈ [0, 1]. Due to the previously discussed optimization com-
plexity with weighting and scoring, we further stabilize the opti-
mization procedure by reserving gradient updates for large weight
updates. This is done using an adapted MSE loss L𝐴𝑀𝑆𝐸 to score
the prediction:

L𝐴𝑀𝑆𝐸 (𝑠𝑚, 𝑦) =

0 for |𝑠𝑚 − 𝑦 | < 𝑑1
1
2 (𝑠𝑚 − 𝑦)2 for 𝑑1 ≤ |𝑠𝑚 − 𝑦 | < 𝑑2
𝑑2 ∗ (|𝑠𝑚 − 𝑦 | − 1

2𝑑2) otherwise
(3)

Here𝑑1 < 𝑑2 are hyperparameters, which we set to𝑑1 = 0.2, 𝑑2 =
1. The first loss term states that if the predicted value is close to the
provided label, then don’t add any additional loss. The second term
is the standard MSE loss. The third term is a Huber Loss [19], which
reduces the penalty for large errors. These components of the loss
let the model stay close to the uniform prior term weights while
making small adjustments to optimize over the training dataset.
This loss is also more robust when training on larger real-world
datasets by avoiding updates caused by noise in labels.

Since retrieval is evaluated by the ranking of served documents,
we also incorporate a list-wise ranking loss. Before training, we
sample a set of negative documents for each query, where we use
a T5 model [35] to score candidate query-document pairs. This is
done by computing the likelihood of each query given the sample
document. For each query, we use max normalization to produce
weak labels ∈ [0, 1] for corresponding documents, where we kept
the top 1000 scoring documents per query. During training, we
sample documents and labels given a single fixed query for each
batch. Then given the model’s output score for each document,
we compute a ListMLE loss [41] L𝐿𝑀𝐿𝐸 as an additional signal
to correctly order the scores. Our final fine-tuning objective is
L𝑓 𝑖𝑛𝑒−𝑡𝑢𝑛𝑒 = L𝐴𝑀𝑆𝐸 + L𝐿𝑀𝐿𝐸 .

3.5 Methodological Advantage
We describe our TW-BERT architecture that inputs a text query and
predicts query term weights for any size n-grams. All term weights
are predicted in a single forward pass, which makes it tractable to
perform during serving. Since we have a weight associated with
each term, it also makes our method interpretable. These term
weights are used by the same scoring functions used in IR engines
to rank query-document pairs. We describe how to optimize this
scoring effectively end-to-end, allowing us to leverage TW-BERT
produced weights directly within IR engines for final retrieval.

4 EXPERIMENTAL SETUP
In our evaluation, we first describe the setup of our retriever system.
Given the retriever setup, we denote the datasets, preprocessing,
and tasks we evaluate on. Finally, we list the relevant baselines for
our work.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Karan Samel et al.

4.1 Retriever Setup
We aim to leverage a lexical retrieval framework similar to those
used in production settings for our evaluations. The motivation
is that if we can integrate TW-BERT within such systems, our
method can be more easily applied to existing production search
applications. For our experiments, we use the Terrier IR Platform1,
which ingests weighted query terms and returns a ranked list of
indexed documents. For the Terrier settings, we use the default
processing pipeline which includes stopword removal and a Porter
stemmer [34]. Note that similar pre-processing is done for the
queries during TW-BERT training. We use the corresponding BM25
scorer in Terrier as well with the same hyperparameter settings.
During our experiments, we evaluate the ranked documents directly
returned by Terrier.

The main change from a vanilla Terrier deployment is that we
add n-gram query term weights provided by TW-BERT. For the
query, we use a max n-gram term size of 2 for all our experiments.
This means that for each candidate query, we utilize all its uni-gram
as well as all bi-gram terms. In the input sequence, we concatenate
the uni-grams followed by the bi-gram terms. Recall that each
uni-gram and bi-gram have distinct embeddings since we mask
each corresponding wordpiece token to each distinct n-gram term.
TW-BERT provides a weight for each of these uni-grams and bi-
grams occurring in the query. The corresponding n-grams and their
weights are then formatted using the Indri query language [37].
This formatted query is directly used by the Terrier pipeline to
retrieve the ranked documents.

4.2 Baseline Methods
We also test other baseline methods to weigh our n-gram query
terms. Note that for all methods we format the terms and weights
into an Indri query, keeping the same Terrier evaluation setup as
TW-BERT weighting. In particular, we test different approaches
to weight the input query terms, while the Terrier BM25 scoring
function and the retrieval pipeline remain constant.

We first compare the most standard BM25 retrieval setup, where
the input termweights passed into the scoring function are uniform.
Another input termweightingmethodwe test is DeepCT [12]where
the model optimizes to mimic query term recall. Unlike the original
paper, which applies the weights to the document side, we apply
the inferred weights to the query terms only. We also test SPLADE
[16], where we use the query side model to produce the query term
weights. However, SPLADE produces weights at a wordpiece level.
To operate at our n-gram level, we average pool the wordpiece
weights corresponding to each n-gram term. We focus on term
weighting methods from these deep pre-trained models to allow for
testing on out-of-domain terms, while classical weighting methods
[5–7, 38] use in-domain term statistics.

Finally, we test a Neural Passage Retrieval (NPR) model [25],
which has two dense BERT encoders to encode the query and
the document passages. It uses an embedding dot product to rank
query-document pairs. This baseline is the exception for our lexical
retrieval evaluation, as it does not use Terrier. It is used instead to
provide a reference point to compare dense models against aug-
mented lexical retrievers, regardless of deployment constraints.
1http://terrier.org

Table 1: Statistics regarding our evaluation datasets.

Dataset Corpus Size # Test Queries

MSMARCO 8.8M 101k
TREC-COVID 191k 50

Robust04 528k 250
Common Core 728k 50

Table 2: MSMARCO dev evaluation results which are run
through Terrier using different input term weighting strate-
gies.

Input Weights mAP R@10 R@100 R@500 R@1000

BM25 .1931 .3856 .6739 .8249 .8714
DeepCT (Q) .1932 .3862 .6737 .8247 .8713
SPLADE (Q) .1923 .3858 .6805 .8314 .8760
TW-BERT .2025 .4091 .6949 .8295 .8678

NPR .3547 - - - .9795

4.3 Datasets and Tasks
We pre-train and fine-tune all models on our T5 augmented MS-
MARCO passage data [3]. In both stages, we only use the train split
for optimization and use the dev set for evaluation.

We further split the MSMARCO train set into 95% training and
5% validation sets. During pre-training we use the published pre-
trained BERT-base checkpoint2. We further run our pre-training
MLM and weight initialization tasks on top of the pre-trained check-
point. We run our fine-tuning losses on top of this second-stage
pre-trained model. For both training stages, we use the validation
split set to perform early stopping. We use an AdamW optimizer
[24] with a learning rate of 1𝑒−5 for both stages.

In addition to the MSMARCO evaluation, we also evaluated our
performance on three other datasets:

(1) TREC-COVID3: COVID related articles and studies.
(2) Robust044: News article datasets.
(3) Common Core5: Educational articles and blog posts.

For these datasets, we only have a small number of evaluation
queries and we do not fine-tune any of our models on these datasets.
Therefore these tasks are zero-shot attempts by our models. The
corpus and query size statistics for these datasets are shown in
Table 1.

5 EXPERIMENTAL RESULTS
5.1 In-domain Results
We compare TW-BERT against our baseline weighting strategies
when evaluating the MSMARCO dev set in Table 2. Here the uni-
form term weighting strategy (BM25) is the only baseline that is not
supervised, while the remainder models are optimized on the train-
ing split. We explicitly denote that for SPLADE (Q) and DeepCT (Q),

2https://huggingface.co/bert-base-uncased
3https://ir.nist.gov/trec-covid/
4https://ir-datasets.com/trec-robust04.html
5http://trec.nist.gov/data/wapost/

http://terrier.org
https://huggingface.co/bert-base-uncased
https://ir.nist.gov/trec-covid/
https://ir-datasets.com/trec-robust04.html
http://trec.nist.gov/data/wapost/

End-to-EndQuery Term Weighting KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 3: Zero-shot results for TREC-COVID, Robust04, and Common Core. The top section shows results of our query weight-
ing baselines in Terrier. The middle sections shows the uniform weighting and TW-BERT results when using Bo1 expansions.
The bottom row shows the dense retrieval results using the NPR model.

TREC-COVID Robust04 Common Core
Input Weights Scoring mAP R@1000 mAP R@1000 mAP R@1000

BM25 BM25 .2026 .3954 .2442 .7007 .2159 .6927
DeepCT (Q) BM25 .2025 .3952 .2443 .7008 .2164 .6906
SPLADE (Q) BM25 .1977 .3898 .2337 .6882 .2082 .6925
TW-BERT BM25 .2207 .4126 .2447 .6812 .2412 .7059
BM25 Bo1 Exp. + BM25 .2266 .4273 .2767 .7581 .2950 .7645

TW-BERT Bo1 Exp. + BM25 .2328 .4305 .2823 .7542 .3213 .7837
NPR Dense Retrieval .1107 .2523 .2540 .6743 .2557 .7124

Table 4: Stratified MSMARCO dev mAP results based on the
length of the query. The query length is dictated by the num-
ber of uni-grams in the query.

Input Weights Length 1-5 Length 6-10 Length 11+

BM25 .2036 .1816 .1920
TW-BERT .2133 .1919 .1915
% Data 42.7 50.9 7.4

we only use the query model and apply the weights to the original
query terms. This differs from their original setups that modified
document side weights as well.

From the methods that utilize Terrier for retrieval, TW-BERT
has the best balance in mAP over precision and recall. Furthermore,
we see that it can retrieve the most relevant results in the top 100
documents.We also observe that TW-BERT obtains the largest gains
in shorter queries, as shown in Table 4. In shorter queries, each
weight provides stronger feedback over the retrieval of relevant
documents. In longer queries, additional weighted terms can lead
to noise and mask the effect of the salient terms.

We expect TW-BERT to improve over uniform weighting for in-
domain tasks. After pre-training, TW-BERT outputs similar uniform
weights but optimizes these term weights during the fine-tuning
stage. For Deep-CT we see comparable performance to uniform.
This is because in the training data, the number of queries associ-
ated with a document is sparse. Therefore it is difficult to estimate
term recall, which usually ends up being close to uniform. Testing
weighted term recall based on T5 labeled pairs led to similar per-
formance as well. SPLADE had on-par mAP to the baselines but
showed improvements in long-tail recall. One factor in this is due
to the MLM pre-training, which leads to robust wordpiece weights
even if the entire word-level term is not seen in the training set.

The pure neural approach NPR performs the best overall when
operating on the in-domain test set. Unlike our Terrier baselines it
learns a dense embedding for the entire query and document text
to leverage for scoring. In contrast, our baselines only modify term
weights and are restricted to a pre-defined scoring method and pre-
computed term-level statistics. Unlike our IR results, this method is
harder to integrate into existing IR infrastructure for deployment.

Figure 4: Sample inference results from TW-BERT on Ro-
bust04 queries. We show the term weights that led to wins
on the left and losses on the right respectively against a uni-
form weighting strategy.

These models also provide varying results when evaluated on out-
of-domain data, which we present next.

5.2 Zero-shot Results
We observe the generalization capabilities of our models when
inferring on out-of-distribution datasets, shown in Table 3. We first
focus on retrieval results in the top section of the Table as well as
the NPR results at the bottom row.

TREC-COVID. In TREC-COVID, TW-BERT still provides large
gains over the baseline methods. One aspect of this dataset is that
the COVID vocabulary is not present in the MSMARCO corpus.
The metric improvements indicate that our model learns to dis-
ambiguate main topics from filler terms and weights them appro-
priately. The remainder weighting strategies provide un-informed
weights per term and perform similarly to uniform weighting. We
see the clear effect of out-of-distribution COVID vocabulary where
NPR performs significantly lower than our retrieval methods.

Robust04. In Robust04, we see comparable results across all meth-
ods. Here standard retriever methods provide the best recall, while
NPR retains precision-recall balance. In this data we observe a vari-
ety of proper nouns and unique entities not observed in MSMARCO,
leading to similar performance across retrievers.

For Robust04 we also show sample term weighting by TW-BERT
in Figure 4. Here we see examples when it correctly provides more
relevant documents over uniformweighting on the left. For example,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Karan Samel et al.

we identify in “lyme disease” that we need to indicate the “lyme” is
the specific disease we want. Similarly, we want documents that
correspond to “food stamps” and “argentine british” as opposed
to just “increases” and “relations” in the 2nd and 3rd examples
respectively. On the right, we also observe when our weighting
method fails and uniform weighting provides more relevant results.
In the first two examples, we see that our model focuses on the
region of the query “pacific northwest” and “southeast asia”, rather
than the topics of “salmon dams” or “tin mining”. Similarly, in the
last example, we see a focus on “ban”, which can pertain to any ban
rather than the “land mine” ban.

Common Core. In comparison to Robust04, Common Core con-
tains more common terms overlapping with MSMARCO and there-
fore we see larger improvements for TW-BERT over other weight-
ing methods. Since the input distribution is similar to our training
data, we see that NPR also excels in this domain setup.

5.3 Query Expansion
Typically most retrievers are configured with query expansion ca-
pabilities, that include common co-occurring terms or synonyms
of query terms. We test TW-BERT performance in this setting, by
leveraging a Bo1 expansion model [1] provided by the Terrier plat-
form. This involves running a first-pass retrieval of the query using
uniform weights to generate candidate documents. This expansion
model selects the top terms that explain the divergence between
the top documents and a random distribution. In our setup, we use
10 terms and the top 5 documents. Then in the second pass, our TW-
BERT model provides weights for the original and expanded terms,
both of which are used for final retrieval. These expansion results
are reported in the middle section of Table 3. We see even larger
gains compared to uniform weighting expansion, even though our
TW-BERT model was not trained using expansion term data. Addi-
tionally, we see that both expansion schemes provide significant
improvements over NPR, reiterating the necessity of using lexical-
based methods for out-of-domain tasks.

We note that we also tested SPLADE expansion by adding its
pooled expansion terms to the input query. In these experiments,
we found out that expansion performance was poorer than the
non-expanded setup. This tells us SPLADE must match query terms
against the weighted and expanded document side terms, which are
non-trivial to integrate into the existing retriever pipeline. It also
shows the importance to leverage term-level, rather than wordpiece
level, representations for matching to integrate into lexical retriever
systems.

In our overall zero-shot results, we see TW-BERT providing con-
sistent improvements over term weighting baselines using the same
retrieval pipeline. This improvement is consistent when using both
the original terms and expanded terms. In comparison, we observe
dense retrieval performance varies based on the term overlap with
MSMARCO data.

6 CONCLUSION AND FUTUREWORK
Lexical retriever systems are still commonplace for large-scale
search infrastructure. They leverage term statistics and heuristic
scoring functions which enable efficient search, but may not cap-
ture the intent of the text. Recent deep learning approaches have

led to better contextualization of input texts, but are non-trivial
to deploy into existing search production systems. To bridge the
gap we propose TW-BERT, which learns to weight search query
input terms to identify salient inputs. Like traditional search, these
weighted terms are fed into a retriever scoring function to compute
the relevance of a candidate document. We compute a ranking loss
from the scoring function outputs, which allows us to optimize our
predicted term weights in an end-to-end fashion. With this end-to-
end optimization, we can directly leverage our predicted weights
within established lexical retriever frameworks without performing
additional parameter tuning. Using these retriever frameworks, we
show that our term weighting method outperforms baseline term
weighting strategies for in-domain tasks. In out-of-domain tasks,
TW-BERT improves over baseline weighting strategies as well as
dense neural rankers. We further show the utility of our model
by integrating it with existing query expansion models, which im-
proves performance over standard search and dense retrieval in
the zero-shot cases. This motivates that our work can provide im-
provements to existing retrieval systems with minimal onboarding
friction. It also provides avenues for future improvements to our
framework.

In our current work, we modify parts of an IR system that are
flexible by default, such as the input search query weights and
n-gram terms. In future work, we can soften these constraints to
further improve performance. One direction is to consider weigh-
ing the document side terms as well. Similarly, if both query and
document sides were trained with expansion terms, we can per-
form finer-grained matching. This can be seen as SPLADE but from
the perspective of retaining IR scoring functions and operating on
term-level tokens. Another aspect to investigate is out-of-domain
retrieval performance. In particular, our model is trained with the
corpus statistics of the original training corpus. These corpus sta-
tistics will vary when evaluating on different corpora. Therefore,
building in robustness to how we leverage the original corpus
statistics during scoring could further improve our method’s gener-
alization performance.

REFERENCES
[1] Giambattista Amati. 2003. Probability models for information retrieval based

on divergence from randomness Ph. D. Ph.D. Dissertation. thesis. University of
Glasgow.

[2] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu,
Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm: Learning term-
based sparse representation for fast text retrieval. arXiv preprint arXiv:2010.00768
(2020).

[3] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016.
Ms marco: A human generated machine reading comprehension dataset. arXiv
preprint arXiv:1611.09268 (2016).

[4] Michael Bendersky andWBruce Croft. 2008. Discovering key concepts in verbose
queries. In Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval. 491–498.

[5] Michael Bendersky and W Bruce Croft. 2012. Modeling higher-order term de-
pendencies in information retrieval using query hypergraphs. In Proceedings
of the 35th international ACM SIGIR conference on Research and development in
information retrieval. 941–950.

[6] Michael Bendersky, Donald Metzler, and W Bruce Croft. 2010. Learning concept
importance using a weighted dependence model. In Proceedings of the third ACM
international conference on Web search and data mining. 31–40.

[7] Michael Bendersky, Donald Metzler, and W Bruce Croft. 2011. Parameterized
concept weighting in verbose queries. In Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information Retrieval. 605–614.

End-to-EndQuery Term Weighting KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[8] Michael Bendersky, Donald Metzler, and W Bruce Croft. 2012. Effective query
formulation with multiple information sources. In Proceedings of the fifth ACM
international conference on Web search and data mining. 443–452.

[9] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. 2008. Select-
ing good expansion terms for pseudo-relevance feedback. In Proceedings of the
31st annual international ACM SIGIR conference on Research and development in
information retrieval. 243–250.

[10] Tao Chen, Mingyang Zhang, Jing Lu, Michael Bendersky, and Marc Najork. 2022.
Out-of-domain semantics to the rescue! zero-shot hybrid retrieval models. In
Advances in Information Retrieval: 44th European Conference on IR Research, ECIR
2022, Stavanger, Norway, April 10–14, 2022, Proceedings, Part I. Springer, 95–110.

[11] Zhuyun Dai and Jamie Callan. 2020. Context-aware document term weighting
for ad-hoc search. In Proceedings of The Web Conference 2020. 1897–1907.

[12] Zhuyun Dai and Jamie Callan. 2020. Context-aware term weighting for first stage
passage retrieval. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 1533–1536.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse lexical and expansion model for information retrieval.
arXiv preprint arXiv:2109.10086 (2021).

[15] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From distillation to hard negative sampling: Making sparse neural ir models
more effective. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2353–2359.

[16] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse lexical and expansion model for first stage ranking. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2288–2292.

[17] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit exact lexical
match in information retrieval with contextualized inverted list. arXiv preprint
arXiv:2104.07186 (2021).

[18] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. 2013. Maxout networks. In International conference on machine learning.
PMLR, 1319–1327.

[19] Peter J Huber. 1992. Robust estimation of a location parameter. Breakthroughs in
statistics: Methodology and distribution (1992), 492–518.

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[21] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39–48.

[22] Victor Lavrenko and W Bruce Croft. 2017. Relevance-based language models. In
ACM SIGIR Forum, Vol. 51. ACM New York, NY, USA, 260–267.

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[24] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations.

[25] Jing Lu, Gustavo Hernandez Abrego, Ji Ma, Jianmo Ni, and Yinfei Yang. 2021.
Multi-stage training with improved negative contrast for neural passage retrieval.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing. 6091–6103.
[26] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2020. Sparse,

Dense, and Attentional Representations for Text Retrieval. CoRR abs/2005.00181
(2020). arXiv preprint arXiv:2005.00181 (2020).

[27] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Expansion via prediction of importance with
contextualization. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 1573–1576.

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[29] Bhaskar Mitra, Corby Rosset, David Hawking, Nick Craswell, Fernando Diaz,
and Emine Yilmaz. 2019. Incorporating query term independence assumption
for efficient retrieval and ranking using deep neural networks. arXiv preprint
arXiv:1907.03693 (2019).

[30] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint 6 (2019).

[31] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[32] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139
(2017).

[33] Jay M Ponte and W Bruce Croft. 2017. A language modeling approach to in-
formation retrieval. In ACM SIGIR Forum, Vol. 51. ACM New York, NY, USA,
202–208.

[34] Martin F Porter. 2001. Snowball: A language for stemming algorithms.
[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[36] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[37] Trevor Strohman, Donald Metzler, Howard Turtle, andW Bruce Croft. 2005. Indri:
A language model-based search engine for complex queries. In Proceedings of the
international conference on intelligent analysis, Vol. 2. Washington, DC., 2–6.

[38] Krysta M Svore, Pallika H Kanani, and Nazan Khan. 2010. How good is a span of
terms? Exploiting proximity to improve web retrieval. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval. 154–161.

[39] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[41] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[42] Jheng-Hong Yang, Xueguang Ma, and Jimmy Lin. 2021. Sparsifying Sparse
Representations for Passage Retrieval by Top-𝑘 Masking. arXiv preprint
arXiv:2112.09628 (2021).

[43] Guoqing Zheng and Jamie Callan. 2015. Learning to reweight terms with dis-
tributed representations. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval. 575–584.

	Abstract
	1 Introduction
	2 Related Works
	3 Term Weighting BERT
	3.1 Model Architecture
	3.2 Retrieval Scoring
	3.3 Scoring Regularization
	3.4 Optimization
	3.5 Methodological Advantage

	4 Experimental Setup
	4.1 Retriever Setup
	4.2 Baseline Methods
	4.3 Datasets and Tasks

	5 Experimental Results
	5.1 In-domain Results
	5.2 Zero-shot Results
	5.3 Query Expansion

	6 Conclusion and Future Work
	References

