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ABSTRACT
Learning-to-Rank (LTR) systems are ubiquitous in web applications
nowadays. The existing literature mainly focuses on improving
ranking performance by trying to generate the optimal order of
candidate items. However, virtually all advanced ranking functions
are not scale calibrated. For example, rankers have the freedom to
add a constant to all item scores without changing their relative
order. This property has resulted in several limitations in deploy-
ing advanced ranking methods in practice. On the one hand, it
limits the use of effective ranking functions in important applica-
tions. For example, in ads ranking, predicted Click-Through Rate
(pCTR) is used for ranking and is required to be calibrated for the
downstream ads auction. This is a major reason that existing ads
ranking methods use scale calibrated pointwise loss functions that
may sacrifice ranking performance. On the other hand, popular
ranking losses are translation-invariant. We rigorously show that,
both theoretically and empirically, this property leads to training
instability that may cause severe practical issues.

In this paper, we study how to perform scale calibration of deep
ranking models to address the above concerns. We design three
different formulations to calibrate ranking models through cali-
brated ranking losses. Unlike existing post-processing methods,
our calibration is performed during training, which can resolve
the training instability issue without any additional processing.
We conduct experiments on the standard LTR benchmark datasets
and one of the largest sponsored search ads dataset from Google.
Our results show that our proposed calibrated ranking losses can
achieve nearly optimal results in terms of both ranking quality and
score scale calibration.
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1 INTRODUCTION
Learning-to-Rank (LTR), the long-established research area at the
intersection of machine learning and information retrieval, aims to
output a ranked list for a set of candidate documents (throughout
the paper we use documents to represent web pages, ads, products,
etc.) and is widely deployed in many user facing systems [19].

The LTR literature mainly focuses on improving ranking met-
rics, such as Normalized Discounted Cumulative Gain (NDCG). The
dominant setting for LTR is the so-called score-and-sort, where a
scoring function is learned to score each document and a ranked
list is formed by sorting documents according to the scores. Given
the fact that the existing LTR literature mainly focuses on the rank-
ing metrics, little attention has been paid to the absolute values of
scores, since ranking itself is indifferent to various score transfor-
mations (e.g., adding a constant). In fact, as we show in this paper,
popular pairwise and listwise ranking losses do not produce scale
calibrated ranking scores. This effect, however, can limit the use of
advanced ranking models in important practical applications.

For example, in sponsored search, the final presentation to users
is a ranked list of ads. The vast majority of work in this domain [10,
11, 20, 33, 35] uses pointwise regression losses that produce cali-
brated scores. This is because calibrated pCTR is a required input for
computing the cost-per-click (CPC) after ad impressions. Though
advanced ranking losses may produce significantly better ranking
performance, the strict business constraint prohibits their usage in
this application, which in turn leads to suboptimal user experience
and ads revenue.

Besides prohibiting advanced ranking functions to be used in
various important applications, the lack of constraints in score scale
distribution can lead to training instability issues, as the scores may
keep drifting during model training. This will cause numerical
failures in real-world large scale learning systems, especially under
the continual learning paradigm. The problem is becoming more
relevant nowadays as continual training is becoming a norm in
many industrial applications [16], in order to keep up with the
temporal dynamics of the contents and user behaviors.

How to calibrate the score scales of a ranking model has not been
widely studied in the LTR literature, especially in the deep learning
context. Existing works on calibration are mainly on classification
problems, including Platt scaling [27], isotonic regression [21, 43],
histogram binning and Bayesian binning [24, 42], and focal loss [22].
Calibration in classification is quite different from the problem in
LTR. In classification, there is a fixed set of candidate classes, and
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the output scores should sum up to be probability one, where the
methods are usually probabilistic and class-centric, such as address-
ing the over-confident predictions of certain classes. However, there
are no such constraints in LTR, as the number of candidate items is
not fixed, but can be arbitrary in general. Furthermore, the ranking
scores may go beyond probabilities - they can represent relevance,
revenue, or watch time [44]. Few works [7, 36] study the problem
of calibrating ranking models. They are all post-processing meth-
ods, where a ranker is first trained, followed by a calibration stage.
Besides complicating training and serving logic, post-processing
methods cannot address training instability. Furthermore, existing
work did not study ranking calibration for deep rankers that are
ubiquitous nowadays.

We want to highlight that our scale calibration technique aims
to align the scores produced by the ranking model with some ex-
ternal scale, for example, the predicted click-through rate of an
ads retrieval model. We’ll use “calibration” and “scale calibration”
interchangeably in the rest of the paper. Readers should not confuse
it with a different field called uncertainty calibration [8, 15], where
“calibration” is performed to produce confidence intervals.

In this paper, we focus on designing scale calibrated ranking
losses to calibrate deep ranking models. In particular, we formalize
the translation-invariant property and show that most effective
ranking losses, including pairwise and listwise ones, are translation-
invariant. It is the key reason that leads to uncalibrated ranking
scores and training instability. We propose three different methods
to calibrate ranking models through designing calibrated ranking
losses that are not translation-invariant, including a multi-objective
formulation, a multi-task formulation, and a novel reference-based
method. All ourmethods directly trainmodels that output calibrated
ranking scores without post-processing, and are thus applicable to
various scenarios such as continual training [25].

Our experiments are conducted on standard public LTR datasets
and a sponsored search dataset from a one of the world’s largest
ads ranking systems at Google. Our proposed calibrated ranking
losses achieve not only strong ranking quality, but also nearly
optimal calibration quality, while no existing methods achieve both.
More specifically, we are able to outperform the strong production
baseline and fully deploy our methods in an ads ranking system.
Our work removes the limitations of using advanced ranking losses
in real applications such as sponsored search, as well as addressing
the practical issue of training instability.

In summary, our contributions are as follows:

• We formalize the important problem of ranking calibration,
showcasing its value in important real-world applications,
which is largely ignored in the LTR literature.

• We rigorously study the cause of uncalibration for advanced
rankingmethods, and propose threemethods that can achieve
both effective ranking and calibration.

• We perform comprehensive evaluation on both public LTR
benchmarks and one of the world’s largest ads ranking sys-
tems, showing the practical value of our work.

The rest of the paper is organized as follows. In Section 2, we
review the related work. We define the problems in Section 3 and
present our proposed methods in Section 4. Our experiments are

described in Section 5. We conclude this paper in Section 6. All of
our proofs can be found in Proofs at the end of this paper.

2 RELATEDWORK
Learning-to-Rank (LTR) has been extensively studied in the past [19],
where a scoring function is trained to minimize a ranking loss and
deployed to score and sort user-facing candidate documents. The
focus of LTR research has been to improve ranking metrics, with
numerous advances in designing more effective loss function, from
pointwise to pairwise to listwise [5, 12], and better model archi-
tectures, including support vector machines [13], gradient boosted
decision trees [4, 14, 39], and neural networks [2, 3, 17, 26, 40].
Neural ranking models are already commonly deployed in many
industrial applications to handle large-scale datasets and differ-
ent data types [18, 32, 41], and recently achieved state-of-the-art
performance on traditional LTR datasets with only numerical fea-
tures [30, 31]. However, almost none of them have studied the
calibration issue we discussed above, limiting their applicability in
wider applications.

Calibrating model output scores has been studied more exten-
sively for classification problems. The goal is to have a meaning-
ful probability distribution over classes for an instance so as to
inform follow-up actions [21]. Post-processing methods are com-
monly used, where calibration is performed after the classification
model is available. Platt et al. [27] proposed a parametric approach
to train a logistic model on the outputs of an SVM model, since
outputs of SVM do not have probabilitic interpretations. Isotonic
regression [21, 43] and binning method such as histogram binning
and Bayesian binning [24, 42] are examples of non-parametric ap-
proaches. A recent work by Mukhoti et al. [22] proposed to address
the overconfidence issues of deep models.

To the best of our knowledge, there are limited work that stud-
ies the ranking calibration problem and existing works mainly
use the post-processing methods. Tagami et al. [36] used the pair-
wise squared hinge loss to train an LTR model for ads ranking.
It then used Platt-scaling [27] to convert the ranking scores into
probabilities. Recently, Chaudhuri et al. [7] compared different post-
processing methods to calibrate the outputs of an ordinal regression
model, including Platt scaling and isotonic regression.

Our work has several major differences from the existing liter-
ature. First, we focus on ranking instead of classification, whose
differences are discussed in the previous section. Second, our meth-
ods are integrated into ranking function training and do not need an
extra post-processing step. Besides being operationally beneficial
for real-world applications (e.g., simplifying the infrastructure), we
show that not handling calibration during model training can cause
training instability issues that post-processing methods fail to fix.
This phenomenon has been largely ignored in the literature. Third,
the few ranking calibration papers only studied shallow models.
We focus on deep ranking models that are ubiquitous nowadays,
and all our methods are end-to-end differentiable.

3 THE PROBLEM
In the score-and-sort setting, we define a scoring function, such
as a deep neural network (DNN), for a query 𝑞 with 𝑛 documents
as 𝑠 (x𝑞 ;Θ) : 𝜒𝑛 → R𝑛 , which maps a list of 𝑛 documents x𝑞
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defined in feature space 𝜒𝑛 to 𝑛 real number scores given the model
parameters Θ. The parameters Θ fully describe the scoring function
and can be trained to optimize an empirical loss on the training
dataset grouped by queries, Ψ = {(x𝑞, y𝑞) |𝑞 ∈ 𝑄}, where𝑄 denotes
the set of queries, drawn from the distribution on (𝑋,𝑌 ):

L(Θ) = 1
|𝑄 |

∑
𝑞∈𝑄

ℓrank (y𝑞, 𝑠 (x𝑞 ;Θ)), (1)

where ℓrank is the loss for a single query and L represents the total
empirical loss. In the following, we use 𝑠𝑖 = 𝑠 (x𝑞 ;Θ)𝑖 as the score
for document 𝑖 , s𝑞 and {𝑠𝑖 } as the shortcut and expanded version
for 𝑠 (x𝑞 ;Θ), 𝑖 ∈ 𝐷𝑞 as the iterator over all documents of query
𝑞, and 𝑦𝑖 to denote the label for document 𝑖 . We use 𝑃 = |Θ| and
𝑁 = |Ψ| to denote the number of parameters and the total number
of documents in the training set in the rest of the paper.

3.1 Scale Calibrated Losses
We formally define scale calibrated losses and show that popular
pointwise losses are calibrated.

Definition 1. A ranking scoring function 𝑠 is scale calibrated
if there exists a monotonic function 𝑓 such that for the marginal
conditional distribution on 𝑌 |x𝑞 of a given distribution on (𝑋,𝑌 ), the
value of 𝑓 (𝑠𝑖 (x𝑞,Θ)) for any candidate 𝑖 equals to the expectation of
𝑌𝑖 , i.e., 𝑓 (𝑠𝑖 (x𝑞,Θ)) = E𝑌 |x𝑞 [𝑌𝑖 ].

Definition 2. A loss function ℓ is a scale calibrated loss if the
scores that minimize the loss are scale calibrated.

In the popular pointwise losses, each score is directly anchored
to its label. For example, the mean squared loss (MSE), typically
used for real-valued labels, is

ℓMSE (y𝑞, s𝑞) =
1
2

∑
𝑖∈𝐷𝑞

(𝑦𝑖 − 𝑠𝑖 )2 . (2)

The score 𝑠𝑖 is anchored to 𝑦𝑖 ∈ R. On the other hand, the logistic
loss (LogLoss) typically used for binary labels is

ℓLogLoss (y𝑞, s𝑞) = −
∑
𝑖∈𝐷𝑞

[𝑦𝑖 ln(𝜎 (𝑠𝑖 )) + (1 − 𝑦𝑖 ) ln(1 − 𝜎 (𝑠𝑖 ))]

(3)
where 𝜎 (𝑠𝑖 ) is the sigmoid function and 𝑦𝑖 ∈ {0, 1} is the binary
label. 𝜎 (𝑠𝑖 ) is a monotonic function and anchored to 𝑦𝑖 .

It’s obvious to show that both MSE and LogLoss are scale cali-
brated losses. Assume that we draw 𝑛𝑖 samples of document 𝑖 with
𝑦
(𝑘)
𝑖

∼ 𝑌𝑖 as the 𝑘-th label sample. It can be seen that MSE loss is
minimized when 𝑠𝑖 =

∑
𝑘 𝑦

(𝑘)
𝑖

/𝑛𝑖 and LogLoss is minimized when
𝜎 (𝑠𝑖 ) =

∑
𝑘 𝑦

(𝑘)
𝑖

/𝑛𝑖 , the empirical expectation of 𝑌𝑖 .

3.2 Translation-Invariant Ranking Losses
We show that more effective (in terms of ranking metrics) ranking
losses, including pairwise and listwise ones, are not scale calibrated
due to their translation invariance property:

Definition 3. A ranking loss ℓ is invariant to a transformation
T : 𝑠𝑖 → 𝑠 ′

𝑖
where 𝑠 ′

𝑖
≠ 𝑠𝑖 , if

ℓ (y, s′) = ℓ (y, s) . (4)

Proposition 4. A loss ℓ that is invariant to a transformation is
not scale calibrated.

Definition 5. As a special case, the global translation transforms
scores by adding a constant term, i.e., 𝑠 ′

𝑖
= 𝑠𝑖 +𝑤 , with𝑤 ≠ 0. A loss

function that is invariant to this transformation is called translation-
invariant.

In ranking problems, the ranks of candidate documents, achieved
by the sort function, are invariant to any transformation that pre-
serves the order of the scores. Many pairwise and listwise ranking
losses that approximate the ranks are thus invariant to some trans-
formations. Especially, the commonly used ranking losses below
are translation-invariant.

• The pairwise RankNet loss [4]:

ℓRankNet (y𝑞, s𝑞) = −
∑

𝑖≠𝑗 ∈𝐷𝑞

I𝑦𝑖>𝑦 𝑗
ln

exp(𝑠𝑖 − 𝑠 𝑗 )
1 + exp(𝑠𝑖 − 𝑠 𝑗 )

, (5)

• The listwise softmax loss [1, 26]:

ℓSoftmax (y𝑞, s𝑞) = −∑
𝑖∈𝐷𝑞

𝑦𝑖 ln
exp(𝑠𝑖 )∑

𝑗∈𝐷𝑞
exp(𝑠 𝑗 )

= −∑
𝑖∈𝐷𝑞

𝑦𝑖 ln 1∑
𝑗∈𝐷𝑞

exp(𝑠 𝑗−𝑠𝑖 ) , (6)

• The listwise ApproxNDCG loss [29]:

ℓNDCG (y𝑞, s𝑞) = − 1
DCGideal

𝑞

∑
𝑖∈𝐷𝑞

2𝑦𝑖 − 1
log2 (1 + 𝑟𝑖 (s𝑞))

, (7)

𝑟𝑖 (s𝑞, 𝛽) =
∑
𝑗 ∈𝐷𝑞

exp[𝛽 (𝑠 𝑗 − 𝑠𝑖 )]
1 + exp[𝛽 (𝑠 𝑗 − 𝑠𝑖 )]

+ 1
2
,

where 𝛽 is the smoothing parameter. In these popular ranking
losses, scores always appear in the paired form of 𝑠𝑖 − 𝑠 𝑗 or 𝑠 𝑗 − 𝑠𝑖 .
So when a constant𝑤 is added to each score 𝑠 ′

𝑖
= 𝑠𝑖 +𝑤 , the losses

stay invariant:

ℓ ({𝑠 ′𝑖 }) = ℓpaired ({𝑠 ′𝑖 − 𝑠 ′𝑗 }) = ℓpaired ({𝑠𝑖 − 𝑠 𝑗 }) = ℓ ({𝑠𝑖 }). (8)

Many other ranking losses, such as BoltzRank [37], also have the
same translation-invariant property.

3.3 Training Instability
As a result, scorers trained with these ranking losses are poorly
calibrated. As shown in Fig. 1, such properties can cause training
instability issues, where the average score goes to either positive or
negative infinity as the training proceeds, which we formalize as:

Proposition 6. A ranking model trained with a loss ℓ that protects
translation invariance diverges indefinitely in continuous training.
More specifically, as training steps goes to infinity, 𝑡 → ∞, the model
predictions diverge with |𝑠 | → ∞.

As a result of the proposition, severe numerical failures may arise
as training continues when the absolute values of scores become
numerically much larger than the typical difference between scores.
This potentially causes the ranking model to collapse, especially for
large ranking models that need long time to converge or trained in
the continual learning framework [25], both of which are common
in practice nowadays. Apparently, such an issue cannot be fixed by
the post-processing methods such as Platt-scaling [27].

Please note that score divergence is a sufficient but not a nec-
essary condition for score un-calibration. We highlight the issue
in this paper as it allows theoretical analysis and is easily repro-
ducible in our production systems. In fact, L2 regularization on
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Figure 1: The trend of the average scores of DNN mod-
els trained with the RankNet loss Eq. (5) in Blue, softmax
loss Eq. (6) in Red, ApproxNDCG loss Eq. (7) in Green, and
our calibrated softmax loss Eq. (11) in Black on the Istella
dataset.𝑀 is the magnitude scale of the y-axis.

model weights as an intuitive way to reduce score value divergence.
We tested this, but found the following deficiencies: (1) Adding
L2 regularization alone will not achieve score calibration (without
post-processing); (2) Blindly constraining score scale by L2 reg-
ularization can hurt ranking performance. In the following, we
will present our methods to address this issue, which provide both
robust ranking and calibration performance.

4 CALIBRATED RANKING LOSSES
In this section, we propose three different methods to calibrate the
ranking models by calibrated ranking losses. Our goal is to preserve
the high ranking quality of ranking losses while achieving scale
calibration. The main idea is to explore the one degree of freedom
of the scores resulted from their translation-invariance and add
proper constraints to make them calibrated.

4.1 The Multi-Objective Method
Our first method is to combine a translation-invariant ranking loss
and a calibrated regression loss:

LMultiObj (Θ) = 𝛼Lrank (yrank, s) + (1 − 𝛼)Lregr (yregr, s), (9)

where the ranking loss weight 𝛼 ∈ (0, 1). Here we use •regr to refer
to losses and labels in calibrated regression losses, such as Eqs. (2)
and (3), and •rank for uncalibrated ranking losses, such as Eqs. (5),
(6) and (7). The multi-objective method results in a direct tradeoff
between the ranking loss and the regression loss.

4.2 The Multi-Task Method
Another practical method for deep models is to use the multi-task
learning [6, 34]. In this method, we have two output layers after the
DNN hidden layers: one as the main output that serves the model
predictions and the other as an auxiliary task that outputs ranking
scores and is only used during model training. In this way, the main
output is always calibrated, while at the same time, the ranking
gradients from the ranking loss back-propagate to the shared layers

so that the model can push the shared layers towards optimizing
for ranking quality.

Formally, a multi-task scorer can be defined as

𝑠 (x𝑞 ;Θ, \ regr, \ rank) : 𝜒𝑛 → (R × R)𝑛

where Θ are model parameters shared by the two outputs, \ regr are
parameters of the main output layer and \ rank are of the ranking
output layer. The total loss on the multi-task head can be written as
LMultiTask (Θ, \ regr, \ rank) =

𝛼Lrank (yrank, srank) + (1 − 𝛼)Lregr (yregr, sregr), (10)

where again we have the ranking loss weight 𝛼 ∈ (0, 1).

4.3 The Reference-based Method
Finally, we introduce a novel reference-based method to derive
calibrated ranking losses. Similar to Platt scaling [27], we want
to fit the global translation degree of freedom of ranking losses.
The difference is that we tune the global shift to optimize the scale
calibration in the model training process, but not a post-processing
step. We can achieve this goal with the following trick: in addition
to the 𝑛 candidate documents with predicted ranking scores 𝑠𝑖 and
labels𝑦𝑖 , we add a virtual candidate with a fixed ranking score 0 and
label 𝑦0. 𝑦0 is a global tunable parameter and serves as a reference
for calibration.

Using the softmax loss as an example, by adding the virtual
candidate as the reference, we get the calibrated softmax loss as
follows:
ℓCalSoftmax = ℓSoftmax ({y𝑞, 𝑦0}, {s𝑞, 0})

= −
∑
𝑖∈𝐷𝑞

𝑦𝑖𝑠𝑖 +
©«𝑦0 +

∑
𝑖∈𝐷𝑞

𝑦𝑖
ª®¬ ln ©«1 +

∑
𝑗∈𝐷𝑞

exp(𝑠 𝑗 )
ª®¬ . (11)

Our reference-based method can be extended to other ranking
losses easily. Consider the pairwise RankNet loss [4] - if we intro-
duce an anchor candidate with label 𝑦0 to a query, the calibrated
RankNet loss is then equivalent to the multi-objective method with
an additional LogLoss on each real candidate, and those with label
𝑦𝑖 > 𝑦0 are treated as positive samples while those with 𝑦𝑖 < 𝑦0
are taken as negative. The loss boils down to the standard LogLoss
when we choose 𝑦0 → 0+, as
ℓCalRankNet =

−∑
𝑖≠𝑗 ∈𝑞 I𝑦𝑖>𝑦 𝑗

ln exp(𝑠𝑖−𝑠 𝑗 )
1+exp(𝑠𝑖−𝑠 𝑗 ) −

∑
𝑖∈𝑞 I𝑦𝑖>𝑦0 ln

exp(𝑠𝑖 )
1+exp(𝑠𝑖 )

−∑
𝑖∈𝑞 I𝑦𝑖<𝑦0 ln

exp(−𝑠𝑖 )
1+exp(−𝑠𝑖 ) = ℓRankNet + ℓLogLoss

��
𝑦0

(12)

In this paper, we focus on the listwise softmax loss due to its effec-
tiveness [31] and use the calibrated softmax loss to represent the
reference-based method. For the calibrated softmax loss, we have
the following theoretical property.

Proposition 7. Given the scores that minimize the calibrated
softmax loss, any global translation of them leads to increased loss.
Furthermore, the calibrated softmax loss is a scale calibrated loss.

5 EXPERIMENTS
We validate our proposed methods on several datasets under vari-
ous settings, including ranking with logistic prediction on binary
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labeled datasets and regression prediction on real-valued datasets.
We want to answer the following research questions:

• RQ1: Are the proposed methods able to produce good rank-
ing performance as well as robust scale calibration?

• RQ2: Do the proposed methods generalize to different rank-
ing labels and calibration tasks, including binary and real-
valued labels?

• RQ3: Are the proposed methods able to prevent training
instability that post-processing methods fail to fix?

• RQ4: How do our proposed methods perform on real-world
production systems?

• RQ5: What are the behaviors of the three proposed methods,
and which one should practitioners choose?

5.1 Datasets
We use two popular public learning-to-rank datasets, Web30K and
Istella, and a real-world ads ranking dataset from Google sponsored
search system. For Web30K and Istella, besides studying regression
calibration on real-valued labels, we also study logistic calibration
by binarizing the labels (positive values as 1 and the rest as 0):

Web30K [28] is a public learning-to-rank dataset where the
31531 queries are split into training, validation, and test partitions
with 18919, 6306, and 6306 queries respectively. There are on av-
erage about 119 candidate documents associated with each query.
Each document is represented by 136 numerical features and graded
with a 5-level relevance label. The percentages of documents with
relevance label equal to 0, 1, 2, 3, 4 are about 51.4%, 32.5%, 13.4%,
1.9%, and 0.8%.

Istella full dataset [9] is a public learning-to-rank dataset com-
posed of 33018 queries, with 20901, 2318, and 9799 queries respec-
tively in training, validation, and test partitions. The candidate
list to each query is with on average 316 documents, and each
document is represented by 220 numerical features. The graded
relevance judgments also vary from 0 to 4 but with a skewed distri-
bution: 96.3% for 0s, 0.8% for 1s, 1.3% for 2s, 0.9% for 3s, and 0.7%
for 4s.

Sponsored Search is a proprietary ads ranking dataset at Google.
The labels used in our experiments are binary user clicks. The sys-
tem employs a continuous training framework, with a huge number
of queries per second. Our experiments are conducted on 5 months
of data in this paper.

5.2 Experiment Setup
Different applications may rank candidate documents based on
different utilities (such as CTR, relevance, or watch time), and need
the scores to be calibrated in different manners. In this paper, we
study the ranking and score calibration in the following two ways
when we have the flexibility to do so (i.e., on Web30K and Istella
datasets): (1) In the regression ranking and calibration task, the goal
is to achieve good ranking performance while correctly predicting
the numeric relevance label; (2) In the logistic ranking and calibra-
tion task, the goal is to achieve good ranking performance while
correctly predicting the logits to the binarized relevance labels (la-
bels 1, 2, 3, 4 as 1 and label 0 as 0). For the sponsored search dataset,
we only focus on the logistic ranking and calibration task given
user clicks.

Metrics. For ranking performance on public datasets, we adopt
the popular NDCG@10 as the evaluation metric. Other ranking
metrics such as NDCG@5 are consistent. Higher NDCG values
indicate better ranking. Besides ranking metrics, we also care about
calibration performance. For regression ranking and calibration, we
use the mean squared error (MSE) as the evaluation metric, measur-
ing the discrepancy between predicted scores and real-valued labels.
For logistic ranking and calibration, we use logistic loss (LogLoss)
as the metric to measure the discrepancy between predicted click
probabilities and binary labels. Lower MSE and LogLoss values
indicate better calibration performance. In addition, we consider
the Empirical Calibration Error (ECE) [23] as a universal metric
of calibration for both regression and logistic tasks. This metric is
commonly used in uncertainty calibration. For ranking scale cali-
bration, we divide ranking documents in each query into 𝑀 bins
after we sort them by the model predictions, and compute the ECE
by,

𝐸𝐶𝐸 =
1
|𝑄 |

∑
𝑞∈𝑄

𝑀∑
𝑚=1

|𝐵𝑚 |
|𝐷𝑞 |

������ 1
|𝐵𝑚 |

∑
𝑖∈𝐵𝑚

𝑦𝑖 −
1

|𝐵𝑚 |
∑
𝑖∈𝐵𝑚

𝑓 (𝑠𝑖 )

������ . (13)

In this work, we use𝑀 = 10 bins with each bin containing approxi-
mately the same number of documents with successive predictions.
Finally, by taking the last N (e.g., 100) evaluation points on the
score-step plot such as in Fig. 1, and making a linear fit, we define
stability by comparing the delta between two end points of the
linear fit with the mean residual of the fit: if the former is greater,
we mark the training as not stable. This metric indicates the con-
vergence of the training course, see Fig. 1 for examples of stable vs
unstable training curves.

For the sponsored search dataset, we report metrics that are used
by the production team. The pCTR is computed as the sigmoid of
the output logits and used to compute calibration metrics. Area
Under the Curve (AUC) is computed per query and then averaged
over all queries to measure ranking quality.

Comparing Methods. The focus of this paper is on the loss
function, thus all compared methods on each dataset share the same
model architecture. For Web30K and Istella datasets, the neural
rankingmodel contains three layers with 1024, 512, 256 hidden units
respectively. In addition, we apply the log1p input transformations,
batch normalization, and dropout [31]. Hyperparameters including
learning rate, batch normalization momentum, dropout rate, 𝛼 , and
𝑦0 are tuned for each method when applicable to the validation set.

On the public LTR datasets, for the logistic ranking and calibra-
tion task, our baseline includes the pointwise logistic loss (“Point-
wise Logistic”), which is the norm in the field. For the regression
ranking and calibration task, our baseline includes the pointwise
mean square loss (“Pointwise Regression”). For both tasks, we also
compare with ranking models that use the listwise softmax loss
(“Softmax”), and softmax loss with the post-processing method Platt
scaling (“Softmax-Platt”). To the best of our knowledge, Platt scal-
ing is still the most popular and effective calibration method [7, 36]
in terms of performance. However, being a post-processing method,
it is highly non-trivial to migrate it to large-scale stream learning
systems. Our methods can address such constraints without sacri-
ficing ranking performance. We mainly study the listwise softmax
loss due to its ranking effectiveness [31].
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Table 1: Comparisons on the logistic ranking and calibration task. Bold numbers are the best in each column. Up arrow “↑”
and down arrow “↓” indicate statistical significance with p-value=0.01 of better and worse performance than the baseline
“Softmax-Platt”, respectively. Check mark “✓” indicates stability, and cross mark “✗” for instability.

Web30K Istella
Method NDCG@10 LogLoss ECE Stability NDCG@10 LogLoss ECE Stability

Pointwise Logistic 0.4566↓ 0.5864↑ 0.1136↑ ✓ 0.6379↓ 0.0600↑ 0.0175↑ ✓

Softmax 0.5002 2.6648↓ 0.5432↓ ✗ 0.6978 2.5206↓ 0.5962↓ ✗

Softmax-Platt 0.5002 0.6175 0.1491 ✗ 0.6978 0.0651 0.0241 ✗

MultiObj 0.4971 0.6013↑ 0.1264↑ ✓ 0.6857↓ 0.0618↑ 0.0207↑ ✓

MultiTask 0.4952↓ 0.6019↑ 0.1272↑ ✓ 0.6615↓ 0.0638↑ 0.0228↑ ✓

Calibrated Softmax 0.5014 0.6265↓ 0.1601↓ ✓ 0.6980 0.0645↑ 0.0229↑ ✓

Table 2: Comparisons on the regression ranking and calibration task. Bold numbers are the best in each column. Up arrow
“↑” and down arrow “↓” indicate statistical significance with p-value=0.01 of better and worse performance than the baseline
“Softmax-Platt”, respectively. Check mark “✓” indicates stability, and cross mark “✗” for instability.

Web30K Istella
Method NDCG@10 MSE ECE Stability NDCG@10 MSE ECE Stability

Pointwise Regression 0.4956↓ 0.5456↑ 0.1883↑ ✓ 0.6786↓ 0.1243↑ 0.0541↑ ✓

Softmax 0.5002 6.73 × 104↓ 123.3↓ ✗ 0.6978 1.68 × 107↓ 955.4↓ ✗

Softmax-Platt 0.5002 0.5534 0.2084 ✗ 0.6978 0.1368 0.0621 ✗

MultiObj 0.4977 0.5706↓ 0.1996 ✓ 0.6838↓ 0.2782↓ 0.1971↓ ✓

MultiTask 0.5005 0.5411↑ 0.1838↑ ✓ 0.6914↓ 0.1490↓ 0.1033↓ ✓

Calibrated Softmax 0.5010 0.5587↓ 0.2253↓ ✓ 0.6990 0.1351↑ 0.0607↑ ✓

Weevaluate all our three proposedmethods: (1) themulti-objective
method in Eq. (9) (“MultiObj”), where we combine softmax loss
with the corresponding pointwise loss. (2) The multi-task method
in Eq. (10) (“MultiTask”), where we use an auxiliary softmax head
during training to compliment the pointwise loss. (3) The calibrated
softmax loss method in Eq. (11) (“Calibrated Softmax”).

For the sponsored search dataset for ads ranking, our baseline
is the production deep model at the time of our development. The
baseline is quite sophisticated in terms of model architecture (e.g,
leveraging techniques such as [38]). However, it uses the pointwise
logistic loss. The system employs continual training to handle the
huge data volume and adapt to the fast-changing environment. For
our experiments, we only change the loss function and keep every-
thing else fixed. We implemented the original uncalibrated softmax
loss as another baseline. We were able to test the multi-objective
method as the treatment and did not test the other methods due to
resource constraints.

5.3 Results on the Public LTR Datasets
The main results are shown in Table 1 and 2, for the logistic and re-
gression tasks, respectively. We emphasize that the goal of this paper
is not to get better ranking metrics, but to achieve both strong ranking
and calibration metrics. We can make the following observations:

• The pointwise baselines (Pointwise Logistic and Pointwise
Regression) can get very good calibration performance, but
their ranking performance is much inferior to other meth-
ods that involve listwise ranking losses. Such observations
coincide with the vast LTR research literature.

• Our three proposed methods are stable and are able to gener-
ate both strong ranking performance and calibration perfor-
mance, which answers positively to RQ1. We highlight that
the calibrated softmax method tend to achieve the best rank-
ing performance and as good calibration performance as the
pointwise baselines among all methods. Furthermore, the
behaviors are pretty consistent across different tasks and
datasets, which answers positively to RQ2.

• The Softmax baseline can produce strong ranking perfor-
mance, but is completely unstable and uncalibrated. This
verifies our analysis of the uncalibration issue of advanced
ranking losses and explains why they are not applicable to
some applications that require calibrated scores.

• Softmax-Platt can generate good performance on both fronts.
However, it does not resolve the instability issue of the soft-
max loss. As a result, this baseline may fail in real-world
large-scale learning systems with large amount of data and
trained continuously, as we will show in Sec. 5.4.

• Importantly, for each configuration, at least one of our mod-
els is more competitive than the Softmax-Platt baseline. For
example, for Istella dataset, Calibrated Softmax has neutral
ranking performance and better calibration performance
than Softmax-Platt.

We further analyze the behaviors of the three proposed methods
in terms of their trade-offs between the ranking performance (mea-
sured by NDCG@10) and the calibration performance (measured by
MSE or LogLoss). The results are shown in Figure 2 and Figure 3 for
the logistic and regression tasks. Each method has several points
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Figure 2: Tradeoffs of methods for logistic ranking and calibration. Negative LogLoss (-LogLoss) is used for illustration.
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Figure 3: Tradeoffs of methods for regression ranking and calibration. Negative MSE (-MSE) is used for illustration.

in the plot as we vary 𝛼 or 𝑦0. The settings that were reported in
Table 1 and 2 are shown in bold symbols.

We can observe that the three proposed methods have different
behaviors: (1) the scattered points of the multi-objective method
form a tradeoff frontier and span over a wide range in terms of
ranking and calibration performance. (2) The scattered points of the
multi-task method stay tightly on the high calibration metrics end.
(3) The scattered points of the calibrated softmax loss stay tightly
on the high ranking metrics end. These behaviors provide guidance
to practitioners and answers RQ5: Depending on the business needs,
practitioners can bias towards one of them (e.g., prefer calibrated
softmax loss if ranking performance is more important), or simply
tune the multi-objective method as it provides a more flexible set
of solutions to choose from. We provide a more in-depth analysis
on the sensitivity of 𝛼 and 𝑦0 in Supplement Sec. S.1.

5.4 Results on the Sponsored Search Dataset
As mentioned in the experiment setup, we further evaluate the
multi-objective method on one of the world’s largest ads ranking
system at Google. It is a sponsored search application where pCTR
prediction is required to calculate costs for the advertisers. The
strong production baseline uses the calibrated pointwise logistic
loss, and we also compare with the original listwise softmax as

Table 3: Relative percentage difference of the average pCTR
(for calibration) and AUC (for ranking quality) of differ-
ent methods relative to the Pointwise Logistic baseline af-
ter training on 5 months of data in the Sponsored Search
dataset.

Method pCTR AUC Calibration Stability
Pointwise Logistic 0.0% 0.0% ✓ ✓

Softmax -99.6% -1.8% ✗ ✗

Softmax-Platt 0.0% -1.8% ✓ ✗

MultiObj (Ours) 0.0% +0.9% ✓ ✓

an uncalibrated ranking loss. In our multi-objective method, we
combine softmax as the ranking loss with pointwise logistic loss.
For all these methods, we follow the production setting and train
them continuously over the last 5 months of data. We compare the
results in Table 3. Note that for proprietary reasons, we only report
relative numbers to the production baseline (“Pointwise Logistic”)
with respect to the average pCTR for scale calibration and AUC for
ranking quality. A 0.5% improvement in AUC has very significant
effect on core business metrics, and any noticeable difference in
pCTR calibration is not acceptable.



KDD ’22, August 14–18, 2022, Washington, DC, USA Le Yan et al.

From this table, we can see that when the model is trained with
softmax loss only, the pCTR values deviated from the Pointwise
Logistic baseline noticeably and thus are not applicable. Moreover,
we can see a degradation in terms of the ranking quality measured
with AUC in the model trained with softmax loss, due to the model
instability caused by translation-invariance after training for a long
time. Softmax with Platt scaling can not recover from such training
failures. Also note that we conducted Platt scaling offline, and it
is non-trivial to add an extra post-processing logic into the actual
continual learning and serving system. Finally, when our calibrated
ranking loss (MultiObj) is applied, we find that both the pCTR is
well calibrated and ranking quality is significantly better than the
baseline. The proposed method has been successfully deployed into
the production system with consistent gains for online metrics.
These results show the practical value of our proposed method and
answer positively to RQ3 and RQ4.

6 CONCLUSION
In this work, we first showed that commonly used ranking losses
are translation-invariant. Such a property makes ranking models
trained with advanced ranking losses suffer from a global score
translation. It leads to uncalibrated model outputs and limits ap-
plying advanced ranking models to a wide range of real-world ap-
plications where scale calibrated scores are required. Furthermore,
this global translation can lead to numeric instability in practice.
We then presented three different methods to calibrate deep rank-
ing models directly without requiring post-processing, and show
they have different trade-off properties, so practitioners can choose
among them depending on business needs. We compare them with
baselines on both public LTR datasets and a large-scale online ads
ranking application. Our experiments show that our proposed for-
mulations are the first in the literature to be very effective in both
ranking and scale calibration, while being stable.

A PROOFS
Proof of Proposition 4. A loss ℓ is invariant to a transformation
T𝑤 : R → R, where 𝑤 is a transformation parameter that speci-
fies one-to-one map T𝑤 . {𝑠𝑖 } is the set of ranking scores that will
minimize the loss. Assume the loss is calibrated, there exist a one-
to-one map 𝑓 so that E[𝑓 (𝑠𝑖 )] = E[𝑦𝑖 ] for any 𝑖 . At the same time,
{T𝑤 (𝑠𝑖 )} also minimize the loss according to the definition and thus
satisfies E[𝑓 (T𝑤 (𝑠𝑖 ))] = E[𝑦𝑖 ]. As both 𝑓 and T𝑤 are one-to-one
maps or bijections, we have T𝑤 (E[𝑦𝑖 ]) = E[𝑦𝑖 ], or T𝑤 can only be a
bijection onto itself for any𝑤 , which contradicts with the condition.
So the assumption that the loss is calibrated does not hold.

Proof of Proposition 6. We start with the standard gradient
descent. At step 𝑡 , all queries in𝑄 are used to compute the gradient
of each parameter \𝛼 :
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where _ is the learning rate, 𝑆𝛼𝑖 = 𝜕𝑠𝑖
𝜕\𝛼

is a 𝑃 × 𝑁 matrix, g𝑖 = 𝜕ℓ
𝜕𝑠𝑖

is the loss gradient on the score of the document 𝑖 , and g (𝑡 ) is a
𝑁 -dim vector of gradients, and the dot product is to sum over all

documents in Ψ. The corresponding score changes in step 𝑡 are,
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where notation •𝑇 is the transpose of the matrix or vector. The
corresponding loss changes by,
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In the vicinity of the optimum, g (𝑡 ) converges to g and ΔL (𝑡 ) = 0.
We thus have 𝑆 (𝑡 ) · g = 0 and Δ𝑠 (𝑡 ) = 0. In other words, the model
scores are converging to a stationary point in the training.

In practice, we apply stochastic gradient descent with mini-batch
of training query set 𝐵 (𝑡 ) , instead of 𝑄 , summed in each step in
Eq. (14). Let’s say it takes 𝜏 + 1 steps to finish an epoch, meaning
𝑄 =

⋃𝑡0+𝜏
𝑡=𝑡0

𝐵 (𝑡 ) . Then the total change of scores,
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In the vicinity of the optimum, we will have

ΔL𝑡0:𝑡0+𝜏 =
1
|𝑄 | g

𝑇 · Δ𝑠𝑡0:𝑡0+𝜏 = 0. (15)

Deep neural network models are in general nonlinear, so that
𝑆 (𝑡 ) ≠ 𝑆 (𝑡

′) if 𝑡 ≠ 𝑡 ′. So we can no longer derive the constraint
𝑆 (𝑡 ) · g (𝑡 ) = 0 from Eq. (15), nor the condition Δ𝑠 (𝑡 ) = 0. To satisfy
constraint Eq. (15), we must have total change Δ𝑠 perpendicular
to g independent of parameter. For the ranking losses discussed
above, the global translation Δ𝑠𝑖 = 𝑤 invariance offers a non-trivial
solution for the constraint. In fact, the global translation speed𝑤 is
a measure of the curvature near the local optimum of the nonlinear
model, which is nontrivial in general. So in most practical situations,
one will find that ranking scores do not converge. They may move
at a constant rate to positive or negative infinity in the training
course, as shown in Fig. 1 for the three ranking losses.

Proof of Proposition 7. We can prove the first part of this
proposition. For a list of scores s that minimizes the calibrated
softmax loss, a small global translation𝑤 leads to:

ℓ ′ = ℓ + 1
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where the notation 𝑜 (·) denotes that the remaining quantity is neg-
ligible when𝑤 is small. Therefore, the calibrated softmax loss will
be stable to the global translation and the average score converges
to a constant.

We can now prove that the calibrated softmax loss is a calibrated
loss. It’s easy to show that at the optimum of the calibrated softmax
loss, the softmax probability for a document 𝑖 converges to

𝑝𝑖 =
exp(𝑠𝑖 )

1 +∑
𝑗 ∈𝑞 exp(𝑠 𝑗 )

=
𝑦𝑖

𝑦0 +
∑

𝑗 𝑦 𝑗
.

Normalization of the probability indicates that𝑦0𝑒𝑠𝑖 = 𝑦𝑖 . Therefore,
we can define a one-to-one mapping function 𝑓 (𝑠) = 𝑦0𝑒𝑠 so that
𝑓 (𝑠) = E[𝑦] calibrates the ranking scores 𝑠𝑖 with the corresponding
labels 𝑦𝑖 .
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(a) Multi-objective Head (b) Multi-task Head (c) Calibrated Softmax Loss
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Figure S1: NDCG@10, -LogLoss, and -MSE vs relative ranking weight 𝛼/(1−𝛼) for multi-objective andmulti-taskmethods and
vs 𝑦0 for calibrated softmax loss on Web30K. All three metrics are the higher, the better.

S SUPPLEMENT
S.1 Impacts of 𝛼 and 𝑦0
In this supplement section, we give an in-depth analysis on the
effects of the parameters 𝛼 and 𝑦0 to get a deeper understanding of
the three proposed methods. The results are illustrated in Figure S1
for the Web30K dataset. The main observations are summarized as
follows:

• When we increase the ranking loss weight 𝛼 in the multi-
objective method, the calibration metrics decrease mono-
tonically and ranking metric increases monotonically till an
optimal value 𝛼∗. It saturates and fluctuates thereafter.

• We observe a similar decrease in the calibration metrics
when we increase the ranking loss head weight 𝛼 in the

multi-task method, but the range decreased is much nar-
rower compared to the multi-objective method. As the main
head is always directly trained with the regression loss, the
calibration performance is much more preserved when more
weight is added to the ranking head.

• One interesting observation in the multi-task method is that
the calibration performance may not always compete with
the ranking performance. Thismay attribute to the additional
freedom in the multi-task method.

• In the models trained with the calibrated softmax loss, we
find that the calibration metrics are non-monotonic in terms
of the anchor label 𝑦0. Also, in a wide proximity of 𝑦0 that
optimizes the calibration metrics, the ranking performance
is nearly insensitive to the change of𝑦0 and is approximately
the best ranking performance achieved.
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