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ABSTRACT

Google Drive is widely used for managing personal and work-
related documents in the cloud. To help users organize their doc-
uments in Google Drive, we develop a new feature to allow users
to create a set of working files for ongoing easy access, called
workspace. A workspace is a cluster of documents, but unlike a
typical document cluster, it contains documents that are not only
topically coherent, but are also useful in the ongoing user tasks.
To alleviate the burden of creating workspaces manually, we
automatically cluster documents into suggested workspaces. We
go beyond the textual similarity-based unsupervised clustering
paradigm and instead directly learn from users’ activity for docu-
ment clustering. More specifically, we extract co-access signals (i.e.,
whether a user accessed two documents around the same time) to
measure document relatedness. We then use a neural document
similarity model that incorporates text, metadata, as well as co-
access features. Since human labels are often difficult or expensive
to collect, we extract weak labels based on co-access data at large
scale for model training. Our offline and online experiments based
on Google Drive show that (a) co-access features are very effec-
tive for document clustering; (b) our weakly supervised clustering
achieves comparable or even better performance compared to the
models trained with human labels; and (c) the weakly supervised
method leads to better workspace suggestions that the users accept
more often in the production system than baseline approaches.
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1 INTRODUCTION

Google Drive is widely used for storing, editing and sharing per-
sonal and work-related documents in the cloud. In this paper, we
describe workspaces' — a new feature that helps users to organize
their Google Drive documents into sets of working files for ongo-
ing easy access. For instance, a user may create a workspace for
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each task they are working on, and add related documents to this
workspace. Organizing documents using workspaces does not affect
file storage location or permissions — it just aggregates documents
to help users find them more efficiently. Figure 1 shows an example
of the workspace feature.
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Figure 1: Two workspaces in Google Drive. The right one is
automatically suggested to the user.

To alleviate the burden of creating workspaces manually, we
develop a machine learning method to automatically cluster docu-
ments into workspaces and suggest workspaces to users (see the
workspace on the right in Figure 1). This workspace suggestion task
can be regarded as a special case of document clustering, where
each suggested workspace is a cluster of documents. Different from
a typical document cluster, a high-quality workspace should con-
tain coherent documents that are also useful to the user. Coherent
indicates that the documents inside a workspace should have topics
or belong to the same work task. Useful indicates that the user is
likely to use the documents in the near future.

We discuss a few limitations and challenges of applying exist-
ing document clustering methods for workspace suggestion. First,
document clustering is typically addressed as an unsupervised prob-
lem. Clustering is often based on hand-crafted features and weights
(e.g., the TF-IDF representation), or learned from an unlabeled text
corpus (e.g., topic modeling). The unsupervised clustering meth-
ods could be suboptimal due to two drawbacks: (a) they may not
adapt well to different clustering criteria [13], especially when the
desired clustering is not solely based on document topics but also
on other factors. For workspace suggestion, a user may prefer to
cluster documents based on whether they belong to the same task
the user is working on, regardless of the document topics; (b) it
is not easy to incorporate new features and learn optimal feature
weights without hand-tuning for the unsupervised methods.
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Supervised clustering methods, on the other hand, are believed
to be superior, since their models and the clustering results can be
optimized based on available labels. Some prior work has explored
semi-supervised [2, 3, 6] and supervised clustering methods [10,
13, 22]. However, these techniques have met less adoption than the
unsupervised methods due to the difficulty of collecting clustering
labels. As a new feature in Google Drive, prior to its production
launch and wide user adoption, suggested workspaces suffered from
the same lack of clustering labels.

Lastly, the existing methods mostly focus on using document text
for clustering. Many techniques have been proposed to improve
the text representation, from using words and phrases as features
with TF-IDF weighting [25], to extracting latent semantics or topics
using Latent Semantic Analysis [12] or topic modeling [9, 14]. A
few prior works use search logs for search result clustering [30]
and webpage clustering [7, 11, 23]. However, these methods are
less suitable for private document corpora like Google Drive due
to sparsity in their search logs [8, 29].

We address these limitations in this work, and propose to learn
from large-scale document usage activity to cluster documents
into workspaces. Different from search logs, the document usage
activity logs, or activity logs for short, record users’ document usage
activities, such as opening and editing documents. Activity logs are
available in much more abundant quantity since they span more
than just the search component. They can be collected in desktop
file systems, cloud storage systems like Google Drive, or other
information systems. While the activity logs could contain several
useful signals for document clustering, in this work we focus on
one: we extract co-access signals, where co-access is defined as two
documents are accessed by the same user consecutively within a
short time window. For example, a co-access will occur when a user
opens two documents at the same time or updates two documents
in quick succession. We hypothesize that co-accessing indicates that
the two documents are likely to be related, based on the assumption
that they may belong to the same task, analogous to the case of
query sessions in the search logs [24].

Under the assumption that the human labels are available, we
propose a supervised clustering method to incorporate text features,
metadata features, as well as features based on the co-access signals.
The supervised method learns a model based on these features to
predict the similarity between two documents using human labels
of “whether two documents should be clustered together” We use
a feedforward neural network to build the document similarity
model to learn text representations automatically. We then clus-
ter documents based on the predicted document similarity using,
for instance, agglomerative hierarchical clustering algorithms like
single-linkage clustering [4]. Our experiments show that the co-
access features are very effective for document clustering when
used alone as well as when combined with other features.

However, the assumption of being able to collect human cluster-
ing labels at scale does not always hold. For instance, prior to the
public launch of workspaces we faced the cold-start problem and
had no way to collect a realistic labeled dataset. Therefore, we also
study how to derive weak labels from the activity logs to enable
weakly supervised clustering. More specifically, we extract future
co-access labels to train the document similarity model. The future

co-access label is a synthetic label that indicates whether the user
will co-access the two documents in the near future.

These labels are certainly not perfect as clustering labels. How-
ever, they could be good approximations for human labels, and —
very importantly — can be extracted from activity logs at large scale
prior to the product launch. Our experiments show that this weakly
supervised clustering method achieves comparable performance
to the supervised clustering method, or even better performance
when the number of human labels is limited.

Our contributions can be summarized as follows:

e We present the workspace suggestion task — an interesting
document clustering problem that requires intra-cluster documents
to be coherent as well as useful to users in their ongoing tasks.

e We go beyond the text-based unsupervised document cluster-
ing paradigm to learn from large-scale activity logs for workspace
suggestion. To the best of our knowledge, activity logs have not
been explored in the literature for document clustering.

e We discover an effective signal in activity logs for document
clustering, called co-access. The co-access signals are analogous to
the clickthrough signals used for search ranking [5, 17], and can
be utilized in two ways. First, recent and historic co-accesses can be
used as features in a predictive model alongside document text or
metadata. Second, future co-accesses can be used as weak labels in
the absence of clustering labels.

e We adopt a neural document similarity model to utilize the
large scale co-access signals. The model supports supervised and
weakly supervised document clustering using human labels and
future co-access labels respectively.

e We conduct extensive offline and live experiments to demon-
strate the effectiveness of the co-access signals as well as our clus-
tering methods. We find our weakly supervised clustering method
- which does not require any human labels — can achieve compa-
rable performance to the supervised clustering method, or even
better performance when the number of human labels is limited.
Lastly, the live experiments also confirm that our weakly super-
vised method leads to better workspace suggestions that the users
accept significantly more often than the other baseline clustering
approaches based on document topicality or heuristics.

2 RELATED WORK

Document clustering (or text clustering) has been extensively stud-
ied in the literature. Typically, documents are represented as feature
vectors [25], using words and phrases extracted from the documents
as features. Prior work has proposed to improve document repre-
sentation using latent topics, such as Latent Semantic Indexing [12],
Probabilistic Latent Semantic Analysis [14] and Latent Dirichlet
Allocation [9]. Based on the representation, clustering algorithms
can then measure document similarity (or distance) to conduct clus-
tering, using cosine or other similarity functions. Two types of clus-
tering algorithms are commonly used. Agglomerative hierarchical
clustering algorithms, such as single-linkage and complete-linkage,
are often more effective but less efficient due to their quadratic
time complexity. Distance-based partitioning clustering algorithms
such as k-means, on the other hand, are more efficient but can be
less effective. We refer the reader to Aggarwal and Zhai [4] for a
comprehensive survey on document clustering.



While clustering is typically addressed as an unsupervised learn-
ing problem, prior work has studied semi-supervised/supervised
clustering when labels are partially/fully available. The labels can
be pointwise, in the form of “which cluster the item belongs to” [6],
or pairwise, in the form of “these two items do or do not be-
long together” [13]. For semi-supervised clustering, prior work
modifies clustering algorithms to use labeled data as seeds in k-
means [3, 6] or as clustering constraints [2]. For supervised cluster-
ing, some methods directly optimize a clustering loss defined on
the labels [13, 19]. Others, including ours, learn a model to mea-
sure item similarity based on the pairwise labels, and then use the
similarity model to predict pair similarity for clustering. For ex-
ample, Ng and Cardie [22] train a decision tree to predict whether
two noun phrases are co-referent and use it for noun phrase coref-
erence/clustering. Cohen and Richman [10] train a classifier to
predict whether two entity names are co-referent and use it for
entity-name clustering. Our work follows the same idea, but is dif-
ferent in that we propose a weak supervision method that directly
learns the similarity model from large-scale activity logs without
human labels.

Our work is also related to user logs and implicit feedback. The
idea of using signals from user logs as implicit feedback [20] has
been extensively explored for many information retrieval problems,
such as search ranking and query suggestion. A comprehensive
survey can be found here [16]. Some prior work has also used
search logs for webpage clustering [7, 11, 23] and search result
clustering [30]. For example, Beeferman and Berge [7] proposed an
agglomerative clustering algorithm for clustering similar webpages
using a click-through bipartite graph extracted from search logs.
They estimate similarity between webpages based on their shared
neighbor nodes in the bipartite graph. Wang and Zhai [30] clustered
search results around the query subtopics learned from search logs.
Our approach is different from these prior works in that we explore
document usage activities for document clustering in Google Drive,
whose activity logs are much more abundant than its search logs.

3 PROBLEM SETTING
3.1 Workspace Suggestion

Workspace suggestion aims to automatically suggest workspaces
for a given user at a given request time (see Figure 1). A workspace
is a cluster of documents, and a high-quality workspace should
contain coherent documents that are also useful to the user for
his/her ongoing tasks.

We give an overview of our workspace suggestion process below:

(1) Document selection. A user may have access to tens of
thousands of documents, or more. For workspace suggestion, we
are only interested in the ones that are most useful to the user in
the near future. For this purpose, we select up to N documents that
were recently accessed by the user as the candidate documents;

(2) Document clustering. To cluster the selected documents
into workspaces, we apply our proposed clustering method (Sec-
tion 4) that learns from large-scale activity logs;

(3) Ranking. We rank each clustered workspace based on its
utility score, i.e., how likely the user will use documents in the
workspace in the future, estimated based on the user’s recent activ-
ity. We omit the details here and leave further exploration of the

cluster ranking problem as future work, since it is not the focus of
this work.

3.2 Document Clustering

In this work, we focus on the document clustering problem above,
which is the core part of the workspace suggestion process. More
specifically, our document clustering problem is to group a given
set of documents D = {dl-}fi ; into clusters that are coherent inter-
nally while different from each other. In other words, documents
within a cluster should be as similar as possible, and documents
from different clusters should be as dissimilar as possible. Unlike
other document clustering applications, the notion of similarity in
workspace suggestion, may not solely depend on topicality, but also
depends on whether the documents are all useful in the context of
the same ongoing task.

Each document d contains text content, from which we could
measure the document textual similarity. In addition to document
text, Google Drive also record users’ document usage activities in
activity logs, such as opening, editing, uploading, and downloading
documents. The activity logs can be represented as a list of events,
E = {e}, where each event e = (¢, u, d) has a timestamp ¢, an acting
user u, and a target document d, indicating user u used/accessed
document d at time t.

Our research problem is to improve the document clustering
using the activity logs. It is important to point out that while we
evaluate our methods in the context of Google Drive, the problem
of suggesting coherent and useful workspaces is a general one. Our
weakly supervised clustering methods can apply to many cloud file
and document storage scenarios.

3.3 Privacy

Google Drive contains private document corpora and requires spe-
cial treatment to protect user privacy. For this reason, the data
used for workspace suggestions are k-anonymized [27] and are
inaccessible to individual engineers. Moreover, for our proposed
methods, we limit the use of text content to the document titles,
not the full content, with no word sequence information preserved.
The titles are also k-anonymized, i.e., only frequent words used by
sufficiently many users in the corpus are retained. Some of our base-
line methods extract text features from document full content, but
these methods only cluster documents on request — the document
content and their extracted features are never materialized.

4 METHOD

This section describes our supervised and weakly-supervised docu-
ment clustering method using activity logs.

4.1 Supervised Clustering

To facilitate developing the supervised clustering method, we first
reformulate the clustering problem as a label prediction problem.
That is, for each pair of documents in the given document set
d,d’ € D, we predict a co-cluster label y; 4 € {0,1} indicating
whether the two documents should be clustered together or not.
The entire set of co-cluster labels can be more formally denoted as
Yp = {yd,d’l{ds d’'} € Pp}, where Pp = {{d,d’}|d,d’ e DAd #
d’} is the set of all the unordered document pairs for D. It is easy



to see that we can induce clusters from the co-cluster labels Yp
and vice versa. For example, from clusters {d;,d3} and {d2}, we
can induce the labels as yg, 4, = 1 and yq4, 4, = Yg,4, = 0, and
from these labels we can induce the original two clusters. Note
that the labels may not produce strict partitioning clustering, i.e.,
each document belonging to exactly one cluster. For example, when
Yd,.d, = 1 and yg, 4, = 1, we may have y4, 4, = 0, and induce two
overlapping clusters {dy, d2} and {d>, d3}.

Based on the formulation above, we do not solve the clustering
problem directly; instead, we build a document similarity model
sim(d, d’) to estimate the probability that two documents are similar
to each other and should be grouped together into one cluster, i.e.,
P(ygq = 1) = sim(d,d"). Using sim(d,d’), we can predict yg 4
for all the document pairs in $p by thresholding, and then induce
clusters from the predicted labels. If strict partitioning clustering is
required, we can apply clustering algorithms such as single-linkage
clustering or complete-linkage clustering based on the predicted
similarities.

This method converts the clustering problem into a simpler classi-
fication problem, i.e., predicting whether two documents are similar
to each other or not. The document similarity model sim(d,d”) can
be learned in a supervised manner using available human labels or
large-scale activity logs, as described in the following sections.

4.2 Document Similarity Model

The document similarity model takes a pair of documents {d, d"}
as input, and outputs their estimated similarity sim(d,d”) € [0, 1].
Each document can be represented by its text content, as well as
metadata such as document media type (MIME type). In addition
to those two types of features, we also investigate how to extract
features from activity logs to measure document similarity for
clustering purpose, and we call them activity-based features. Table 1
lists all the features and labels used in our experiments. We defer the
description of the activity-based features and labels to Section 4.4
and 4.5. We describe data anonymization in Section 3.3 above.

Table 1: Features and labels for a documents pair d, d’.

Text features
« text(d): text content for document d.
« text(d’): text content for document d’.

Metadata features

« mime(d): MIME type of the document d.

- mime(d’): MIME type of the document d’.
Activity-based features

« recent_co_accesses(d,d’): number of co-accesses
between d, d’ in the past 2 weeks.

« historic_co_accesses(d, d’): number of co-accesses
between d, d’ in the past 4 weeks.

Human and activity-based labels

« co_cluster(d, d’): human labels on whether d, d’
should be clustered together in a workspace.

« future_co_accesses(d, d’): number of co-accesses
between d, d’ in the future week.

To learn representations automatically for text features, we use
a feedforward neural network to build our document similarity
model. Figure 2 illustrates the neural network architecture.

sim(d, d’)
t
l Logistic layer ‘
l ReLu layer, h, ‘
l ReLu layer, h, ‘
Input layer, h0
Text Text Mime type || Mime type Activity-based
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I Shared word I
embeddings recent_co_access(d,d’)
text(d) text(d’) mime(d) mime(d’) historic_co_access(d,d)

Figure 2: Document similarity model.

In the neutral network, we first build dense representations
¢ (text(d)) for each document text input text(d). ¢; could be any
complex text encoder such as Transformer and BERT. However,
as mentioned in Section 3.3, to protect user privacy, we are only
allowed to use k-anonymized words with no sequence information
for model training. As a result, models like BERT and recurrent
neural networks are not applicable to our workspace suggestion
problem. Thus, we choose to encode text(d) by averaging its word
embeddings, similar to the Deep Averaging Network [15]:

Dretext(d) emby (t)

|text(d)| ’
where t € text(d) are the words inside the document text, and
emby (1) is the word embedding. Next, we build dense representa-
tions for each document MIME type features mime(d) by simply em-
bedding this categorical feature, i.e., ¢ (mime(d)) = emby, (mime(d)).
Note that the word embeddings and MIME type embeddings are
shared between the two documents d, d’.

We then concatenate the text encoding ¢; (text(d)), ¢: (text(d’))
and MIME type embeddings ¢, (mime(d)), ¢m(mime(d’)) with
the activity-based features. Let’s denote the feature vector after
concatenation as hy. The feature vector is then passed to multiple
(K) hidden layers. More specifically, each hidden layer is defined as

hy = ¢(wihg_y +bp). k=12 ..K, (2)

br(text(d)) = (1)

where wy and by denote the weight matrix and the bias vector in
the k-th layer and ¢ is an activation function — we use the rectified
linear unit (ReLu) in our experiments. The last hidden layer output
hg is then passed to a sigmoid layer to compute the final similarity,

sim(d,d’) = o(wlhg +by), ®3)
where w, and b, are the weight and bias vector for the sigmoid
output layer, and o is the sigmoid function.

Given a training dataset D = {(d,d’,yq4)|{d.d’} € UiPI()i)},
we train the entire network end-to-end by minimizing the weighted



cross-entropy loss defined as follows:

- Z Yg,qa log(sim(d,d"))+A(1-yg 4) log(1-sim(d,d")).
(d.d.ygar) €D

4
where the co-cluster labels y; ;- are induced from workspaces cre-
ated by users (see the label description in Table 1), A € (0,1] is a
hyper parameter used to down-weight the loss for negative docu-
ment pairs. We down-weight negative pairs because the number
of co-clustered document pairs (i.e., yg 4 = 1) is often relatively
small in practice. For example, in our data set only around 3% of
the document pairs are clustered into the same workspace by the
users (see data set description in Section 5.1). This data imbalance
issue could lead to understatement of pairwise similarity [13].

4.3 Co-access Signals

Prior work on document clustering mostly relied on using document
text signals, however there are two weaknesses to this "ad-hoc" clus-
tering paradigm. First, models based on lexical text features, such as
the TF-IDF representation [25], could face the vocabulary mismatch
problem when estimating document similarity. Many techniques
have been proposed to address this problem including latent seman-
tic analysis [12], topic modeling [9, 14] and more recently word2vec
embeddings [21]. However, these techniques offer little help on the
second weakness. That is, the text features/representations could be
effective in capturing topic similarity, but they may not adapt well
to other notions of similarity or document clustering criteria [13].
In the case of workspace suggestion, a user may want to cluster
documents according to whether they belong to the same task the
user is working on, and each task may contain documents on a
wide range of topics.

To address these weaknesses and improve document clustering,
we propose to extract signals from users’ activity logs (Section 3.2)
for measuring document similarity. This idea is analogous to the
pioneering of work from the early 2000s that leveraged search logs
for improving web search ranking [5, 17]. In this earlier work, click-
through signals are introduced, and combined with text features for
ranking. Instead of clickthrough, search logs and web search rank-
ing, in our work we extract co-access signals from activity logs for
document clustering.

Two documents are considered to be co-accessed if a user ac-
cessed them consecutively within a short time window. Figure 3
shows a sample activity stream with a few co-access pairs using
a 2-minute time window. In the figure, (d1, d2) are co-accessed
twice, and (d1, d3) are co-accessed once. However, d3 and d4 are
not co-accessed, because the time difference between their accesses
is larger than the 2-minute time window. d2 and d3 are not co-
accessed even though they are accessed within 2 minutes. This is
because d2 and d3 are not accessed consecutively — d1 is accessed
between d2 and d3. We believe that co-accessing two documents
indicates that they are likely to be related. This is based on the
assumption that within a small time window a user is likely to be
working on the same task, and documents accessed for the same
task are related.

The question is then, what is the optimal co-access time window?
To answer this question we conduct an analysis on document inter-
access time (IAT), i.e., the time interval between a user accessing two
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co-access
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N~ N \.,/ \.,/ time
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Figure 3: Documents co-accessed by a user in an example
activity event stream. We use 2 minutes as the co-access time

window threshold in this example.

different documents. For example, for the activity stream in Figure 3,
the IATs for d1/d3 and d3/d4 are 1 and 2.5 minutes respectively. We
plot the distribution of IATs over a sample of Google Drive users in
Figure 4. It shows that most of the inter-access behaviors happen
within a few minutes. More specifically, 58% of the IATs are within
one minute. The accumulative percentage grows to 67% and 74%
for IATs within two and three minutes, followed by a very long
tail. We notice the number of IATs decreases dramatically for each
minute after two or three, and therefore hypothesize that most of
the within-task document inter-accesses should occur within this
time threshold. Thus, we fix the co-access time window to two
minutes in the remainder of this paper.

60%
50%
40%

Percentage

0% =
1 2 3 4 5 6 7 8 9 10

Document inter-access time (mins)

Figure 4: Distribution of document inter-access time, i.e.,
time interval between a user accessing two documents.

Aside from the co-access signals, other types of activity-based
signals (e.g., co-session) could also be potentially useful. However,
due to space constraints, in this work we solely focus on co-access,
and leave the exploration of other signals to future work.

4.4 Activity-Based Features

Based on the co-access signals, we extract features from activity
logs to improve document similarity prediction, and we call them
activity-based features. More specifically, given a pair of documents
{d,d’}, we extract feature recent_co_accesses(d, d’), which is the
number of co-accesses in the past 2 weeks before the user requesting
workspace suggestions, as well as feature historic_co_accesses(d,d’),
which is the number of co-accesses in the past 4 weeks before the
user requesting workspace suggestions. The two activity-based
features are also listed in Table 1.

Activity logs could be potentially noisy, and so are the two
activity-based features extracted from the logs. For example, when
auser restarts a web browser, the browser may automatically reload
all previously opened Google Drive documents, which could result



in a series of co-accesses between these documents that may not
necessarily be related or similar. To test whether the two activity-
based features are indeed useful in predicting document similarity,
we analyze them by using each individual feature to predict the
co-cluster labels (i.e., whether or not two documents are clustered
in the same workspace by the user) and report the Area Under the
ROC Curve (AUC) in Table 2. For this analysis, we randomly sample
around 1M document pairs from our training data set Z);I’ ain (see
the data collection description in Section 5.1). The AUC results of
0.63 and 0.68 in Table 1 indicate that both of the two activity-based
features perform fairly well in distinguishing the co-clustered doc-
ument pairs (yg 4 = 1) from the negative pairs (y; 4 = 0) ~ much
better than a random guess. Thus, we further hypothesize that
they could enrich the document pair representation for predicting
document similarity in addition to the document text and metadata
features, and test this hypothesis in Section 6.1.

Table 2: AUC performance on predicting co-cluster labels by
each activity-based features.

Feature AUC

recent_co_accesses(d,d’) | 0.6360
historic_co_accesses(d,d’) | 0.6838

4.5 Activity-Based Labels and Weak
Supervision
With the proposed activity-based features and the text/metadata
features, one could train an effective document similarity model to
enable supervised clustering when the co-cluster labels are avail-
able, as described in Section 4.1 and Section 4.2. However, one
practical issue we encountered is the inability to collect any real-
istic co-cluster labels at scale before the production launch of the
suggested workspaces. This is not unique to our use case - it is
often challenging or expensive to collect human clustering labels at
large scale, which is an important reason for the limited adoption of
supervised clustering methods in practical applications. Therefore,
in this section we investigate the following research question: Is
it possible to extract weak labels from activity logs and use them for
effective document clustering without the need for human labels?
Figure 5 illustrates our process of extracting activity-based labels.
We first split a user’s activity event stream into past and future
activity segments, at the time when the user requests workspace
suggestion. The past activity segment contains events before the
workspace suggestion request. We use this segment for extracting
activity-based features, such as the number of recent co-accesses
(see Table 1). The future activity segment contains events after the
workspace suggestion request. We propose to derive activity-based
labels from this segment. More specifically, we extract the number
of future co-accesses (co-accesses in the subsequent days after
the workspace suggestion request) as labels for model training.
The notion of recent co-access features and future co-access labels
is analogous to notion of clickthrough features [5] and clickthrough
labels [17] used for search ranking — clickthrough information from
the past search logs can be extracted as features, while the future
clickthrough information can be used as labels for model training
or evaluation.

sim(d,d') —————— loss(sim(d,d’), labels)

Text/metadata features

Activity-based features

Extract [features Extract|labels

Activity—bTed labels
Past activity segment
d, 4, d,
(%

Future activity segment
d, d, d,
e time

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Time requesting wcl)rkspace suggestion

Figure 5: Past and future activity segments used for extract-
ing activity-based features and labels respectively.

We hypothesize that future co-access could be a good weak
label for training the document similarity model. We already show
that co-access could indicate document relatedness and similarity
(see Table 2), and will further test this hypothesis in Section 6.2.
Meanwhile, we acknowledge that the future co-access labels are
not perfect, but they are cheaper and easier to collect at large scale
from activity logs. This is similar to implicit user feedback [20] used
in other related problems. For example, for search ranking, user
clicks are often collected as labels for training ranking models [17],
even though clicks are known to be biased [18, 29]. In addition, by
optimizing clustering models to group future co-accessed items in
the same cluster, we can save users time from switching context
and searching for the right next document they need in the future.

Therefore, we propose to use the future co-accesses as weak la-
bels to train the document similarity model, as a weakly supervised
clustering method. More specifically, we collect another training
data set Dy = {(d,d",yg4){d.d"} € U,-PI(;)}, where the labels
yq 4 are the binary future co-access labels, or more formally,

®)

1, future_co_accesses(d,d’) > 0
Yd,a = .
0, otherwise.

Instead of binarizing the future co-access labels, we also tried to use
the raw future co-access counts to train the document similarity
model as a regression model, as well as to weight training examples
in the cross-entropy loss (Equation 4) using the raw counts. How-
ever, we find similar performance across these model variations,
and therefore, for simplicity, use the binary future co-access label
definition in the remainder of this paper.

5 EXPERIMENTAL SETUP
5.1 Data Collection

We collect two Google Drive activity datasets for our work on
the suggested workspaces feature. Before the production launch,
we collect the first dataset, future co-access label data D, , which
contains the future co-access labels. This dataset is used to train
the first production model when human labels are not available.
Only after the production launch, we are able to collect the second
dataset, the human labeled data Dy, which contains the co-cluster
labels from user created workspaces. Note that we use subscript
"a", which stands for activity-based labels, and "h", which stands
for human labels, to differentiate the two datasets.



To collect Dy, we randomly sample three large, non-overlapping
subsets of users who actively use Google Drive workspaces for
training, validation and testing. For each user, we synthesize the
datasets using the following steps:

(1) Sample 20 hypothetical workspace suggestion request times-
tamps from a uniform distribution within a 2-week time window.
We also try to sample requests based on users’ Google Drive home-
page visits, but find the two methods yield very close results.

(2) For each sampled request timestamp, collect the past and
future activity segments (see Figure 5). We collect a maximum of
several thousand events over several weeks for each segment. We
filter out cases where the past or future segments do not contain
sufficient events.

(3) From each past activity segment, we collect documents D =
{d} for clustering by selecting N most recently accessed documents.

(4) From the document set D, we construct the document pair
set Pp (Section 4.1). The size of the document pair set could be very
large (up to N - (N — 1) /2 pairs in theory). To improve efficiency as
well as reducing noise, we filter the document pairs by requiring
them to be co-accessed at least once in the past two weeks before
the request time, i.e., recent_co_accesses(d,d”) > 1. This reduces
the pair set size dramatically to ~ 20 pairs per request on average.

(5) For each document pair in Pp, we extract all the features
and labels listed in Table 1. The co-cluster human labels are defined
by whether the two documents are added to the same workspace
by the user within a week following the request time. The data is
anonymized as described in Section 3.3.

The future co-access label data Dy, is collected in the same way
as described above for Dy, except for three differences. First, we
sample from a large population of Drive users, not limited to the
ones who actively use Drive workspaces. Because of this, we can
collect more data for 9,. Second, we do not extract the co-cluster
labels for Dy, since the suggested workspaces were not available at
the time of data collection. Lastly, for D, we collect only a single
data set for training, because we further tune and test models on
Dy’s validation and testing data set.

Table 3 shows some statistics for the collected data sets, which
reports the number of requests (#requests), and the number of doc-
ument pairs (#pairs). Note that D" is much larger than Z)Iir“i",
because D, can be collected from all eligible Drive users, while
Dy, can only be collected from users who actively use and create
Drive workspaces. The table also reports the percentages of positive
document pairs (positive rates) according to the future co-access
and co-cluster labels, which are quite consistent across different
data sets. We also notice the positive rates are low, therefore we
use weighted cross entropy loss (Equation 4) to down-weight the
loss of the negative examples.

5.2 Evaluation

We evaluate the document clustering performance according to
co-cluster labels as well as the future co-access labels, and con-
sider the co-cluster labels as the the ground-truth. We measure the
clustering performance using the pair-counting F1 measure [1]. It
treats document clustering as classification on whether each pair
of documents are in the same cluster, and then combines the pair
precision and recall using the F1 measure [28]. The F1 measure

Table 3: Statistics for D}, and D, date sets. The train, vali, test
superscript indicates the data set is for training, validation
or testing respectively. "#requests” and "#pairs" report the
total number of requests and document pairs respectively.
"co-access%" and "co-cluster%" reports the percentage of pos-
itive pairs according to the future co-access labels and the
co-cluster labels respectively.

Data set | #requests | #pairs | co-access% | co-cluster%
Dy | 434K 15.6M | 8.27% 2.72%
oyl 18.0K 385K | 8.89% 2.88%

Dt 16.9K 396K | 8.96% 3.00%
plrain | 19 9M 405M | 8.96% n/a

requires selecting a classification threshold; we tune the thresh-
old in [0.01,0.02, ...,0.99] to maximize F1 on the validation data
set. In addition to the F1 measure, we also measure the area under
the ROC curve (AUC) for the same document pair classification
problem. The AUC tells us how well a model could distinguish the
positive document pairs from the negative ones. Overall, we use
the following four metrics:

F1p: F1 measure based on the co-cluster human labels.
F1,: F1 measure based on the future co-access labels.
AUCp: AUC based on the co-cluster human labels.
AUC,: AUC based on the future co-access labels.

Both the F1 measure and AUC are computed at the request level.
That is, we compute one measure score for each document pair
set Pp, and then report the average measure scores. To compute a
valid AUC, the document pair set p needs to contain at least one
positive and one negative pair. Therefore, we filter out all invalid
cases in the validation and testing data sets. Note that information-
theoretic clustering metrics such as purity or mutual information
are less applicable here, because our labeled dataset contains doc-
uments that do not belong to any cluster (workspace) and they
would need to be treated as singleton clusters for these metrics.
We train our models using Z)}tlmi” or D" tune hyperparame-

ters on the validation data Z)}‘l’“li, and report results on the test data

Z)}tlm. We perform statistical significance tests using paired t-test
with 0.01 as the p-value threshold.

5.3 Implementation Details

We implement the document similarity model in Tensorflow, using
AdaGrad as the optimizer. We cap the word vocabulary size at 500k
by mapping less frequent words to a few out-of-vocabulary embed-
dings. We use pilot studies to select the embedding dimension size
and batch size. We tune the hidden layer size, A (Equation 4), learn-
ing rate, and classification threshold (Section 5.2) by grid search.
We discuss implementation details for other baseline models in
Section 6.3.

6 EXPERIMENTAL RESULTS
6.1 Activity-Based Features

To study the effectiveness of activity-based features, we train the
document similarity model with different feature sets using co-
cluster labels on Z);lr 4 We report their test results on D;le“ in



Table 4, in which fr, fyr, fa stand for the text, metadata and activity-
based feature sets respectively. The performance differences men-
tioned in the comparison below are all statistically significant (p-
value < 0.01).

Table 4: Performance with/without activity-based features.
Models are trained on co-cluster labels. f7, fas and f4 stand
for text, metadata and activity-based features respectively.

Feature set AUCy, | F1y, AUC, | F1,

fa 0.7169 | 0.3324 | 0.6986 | 0.3388
fm 0.6285 | 0.3110 | 0.5810 | 0.2598
M+ fa 0.7353 | 0.3333 | 0.7027 | 0.2997
fr 0.6590 | 0.2902 | 0.5978 | 0.2740
fr+fa 0.7360 | 0.3188 | 0.7045 | 0.2906
fm+fr 0.6883 | 0.3018 | 0.6100 | 0.2573
fv+ fr+fa | 0.7495 | 0.3459 | 0.7099 | 0.3242

First, activity-based features are the most effective features
when used alone. By comparing each individual feature set, fy, fr
and fu, we find fy outperforms fys, fr by a large margin across all
the metrics (+7% to +30%). fr outperforms fjs on all metrics except
for F1p,. Second, incorporating activity-based features with base-
line feature sets effectively improves the performance. Comparing
the baseline feature sets fys, fr, fir + fr with and without f4, we
find adding f4 into the baseline feature sets improves all metrics
by a large margin (+6% to +26%). These two observations clearly
show the effectiveness of activity-based features.

Third, combining all the features fys + fr + f4 achieves the best
performance across all the metrics. Therefore, we only report results
on all features for the other experiments below due to space limita-
tions. Finally, we find the evaluation results are quite consistent
between the future co-access metrics (AUC,, F1,) and co-cluster
metrics (AUCy, F1p). This indicates the future co-access label could
be a good approximation for the co-cluster human label. This leads
to our next research question: can we train an effective model using
future co-access labels as weak supervision?

6.2 Weak Supervision

To study the effectiveness of the proposed weak supervision method,
we train a document similarity model with future co-access labels
on DI4in (weak supervision method) and another model with co-
cluster human labels on Z){l’ @in (supervision method). We compare
their test results on D}tle“ in Table 5, denoted as Mg, and Mggqp
respectively. First, the weak supervision method achieves compa-
rable performance as the supervision method. M, and Mggqp
have very close performance in terms of AUC}, and F1j, and the
differences are not statistically significant. The p-value is 0.06 when
comparing AUCy, and 0.14 when comparing F1;. This indicates
that the future co-access label is a good approximation for the co-
cluster human label, and our model can effectively learn from the
large-scale dataset of weak labels without any human labels. Sec-
ond, the weak supervision method outperforms the supervision
method by a large margin on future co-access metrics, AUC, and
F1,. This is expected since M, is trained by optimizing for fu-
ture co-access prediction. The two observations combined indicate
training with future co-access labels could optimize both future
co-access prediction as well as co-cluster prediction.

Table 5: Performance for models trained with future co-
access and co-cluster labels. M, stands for the model trained
with future co-access labels. M, stands for the model
trained with co-cluster human labels using x% of Dy, train-
ing data. "Data size" reports the number of document pairs
in the used training data set. +/— indicates M, is statistically
better/worse than the marked baselines (p-value < 0.01).

Model Data size | AUCy, F1y AUC, F1,
Mioh 0.16M | 0.7016% | 0.2878% | 0.6505% | 0.2343*
Mooy, 1.41M | 0.7298% | 0.3210% | 0.6862% | 0.2977%
Miouh 1.56M | 0.7418 | 0.3391% | 0.6927" | 0.2978"
Msoon 7.82M | 0.7429 | 0.3423% | 0.7030" | 0.3202F
Moo 9.38M | 0.7431 | 0.3343% | 0.7018" | 0.3147"
Maooh 10.9M | 0.7422 | 0.3474 | 0.7048% | 0.3112%
Mioouh 15.6M | 0.7495 | 0.3459 | 0.7099% | 0.3242%
Mg 405M | 0.7458 | 0.3498 | 0.7291 | 0.3457

Co-cluster labels are not available at the time of the initial prod-
uct launch, and are often much more difficult to collect at large scale
than future co-access labels. So next, we study the effectiveness of
the weak supervision method by comparing its performance with
models trained on limited co-cluster human labels. For this experi-
ment, we randomly subsample different amounts of D" to train
the document similarity model, and compare their test results with
M, in Table 5. We denote the model trained with x% of D;l’ ain a5
Mo, and report the data size in terms of the number of document
pairs. We find that when the amount of co-cluster labels is limited,
training with future co-access labels achieves better performance.
More specifically, M, statistically significantly (p-value < 0.01) out-
performs M, on AUCy, when x% < 9% (1.41M document pairs),
and on F1; when x% < 60% (9.38M document pairs).

6.3 Live Experiment

To conclude the empirical study, we verify the effectiveness of our
proposed weak supervision method by comparing it with several
baseline clustering methods that do not require supervised labels,
and were included in the original suggested workspaces launch:

Weak Supervision Our proposed weak supervision method. This
method predicts sim(d,d’) using the model trained with future
co-access labels, and clusters documents using the single-linkage
clustering algorithm based on the predicted similarities.
Topicality A popular unsupervised clustering method that repre-
sents a document’s topic using a feature vector and then clusters the
documents using complete-linkage clustering based on the vectors’
cosine similarity. We extract Knowledge Graph [26] entities and
salient terms from document full text content as features, using
an internal tool. The tool also produces relevance scores for each
extracted term, which are used as the feature weights.
Hyperlink Same as Topicality, except that a document’s topic
is represented using its hyperlinks, and document similarity is
estimated using the Jaccard similarity coefficient.

Calendar A heuristic method that clusters documents that are all
attached to the same calendar event.

Collaborator A heuristic method that clusters documents shared
from the user’s close collaborators, by the collaborators.
Favorites A heuristic method that clusters the user’s most fre-
quently used documents. Favorite documents are selected based on



document interaction scores, and the score is estimated based on
the number of activity events on the document weighted by the
event recency.

We use pilot studies to select the above clustering algorithms (single-
linkage or complete-linkage) and other hyper parameters (e.g., clus-
tering thresholds). We rank and suggest the clustered workspaces
as described in Section 3.1. As already mentioned in Section 3.3, to
protect user privacy, the baseline methods process and cluster doc-
uments at request time. The document content and their extracted
features are never materialized.

We compare their performance using an online experiment, and
measure their acceptance rate over 28 days. Acceptance rate is the ra-
tio between the number of accepted workspace suggestions and the
number of displayed workspace suggestions. In Table 6, we report
the relative improvement of the Weak Supervision method over
the other baselines. We find that Weak Supervision outperforms
the other methods by a large margin +[30%, 49%]. This shows the
benefit of learning from large-scale activity logs, and testifies to
the effectiveness of the proposed weak supervision method.

It is interesting to note that Hyperlink, Favorites and Cal-
endar methods all outperform Topicality (a standard text-based
unsupervised clustering method). This indicates that the document
clustering criterion for workspace suggestion may not only depend
on topicality, but also on other factors (e.g., the tasks that the user
is working on).

Table 6: Relative acceptance rate improvements of Weak Su-
pervision over the other clustering baselines.

Baseline Relative Improvement
Collaborator +49.1%
Topicality +43.1%
Calendar +40.9%
Favorites +31.3%
Hyperlink +29.9%

7 CONCLUSIONS

In this work, we develop workspace suggestion to help users orga-
nize their documents in Google Drive. A workspace is a cluster of
coherent documents that are also useful for a user’s ongoing task.
To cluster documents into workspaces, we go beyond the text-based
unsupervised clustering paradigm and propose to learn directly
from large scale activity logs. More specifically, we first hypothesize
that document co-access can be used to measure document related-
ness/similarity. We then develop a supervised clustering method
based on a neural document similarity model, which incorporates
co-access features with sparse text features and categorical meta-
data features. Third, we propose to use future co-access — which can
be automatically extracted from large scale activity logs at little
cost — to enable weak supervision without any human labels.

Our offline evaluation using Google Drive logs shows that the
co-access features are very effective for document clustering when
used alone and provide large performance gain when combined
with document text and metadata features. Our weak supervision
method based on the future co-access labels can achieve comparable
performance to the supervised clustering model, and even better

performance when the number of human labels is limited. Our
online experiment shows that the weakly supervised method leads

to better workspace suggestions that the users accept 30% to 49%
more often compared to other unsupervised clustering baselines.
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