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Abstract-We show how to use the entity-relationship diagram as a vehicle for specifying the semantics 
of attributes. A main contribution of this work is a strategy for creating entity-relationship diagrams that 
make explicit the role of attributes that are over the same domain. Recursive queries can be posed over 
the universal relation when attributes are over the same domain and play distinct roles. We show how 
to extend a query language, that poses queries over the universal relation, to include the ability to express 
recursive queries. 

1. INTRODUCTION 

We have a vision that has driven this research, 
namely, that combining into one integerated system 
the best features of a universal relation interface and 
a visual display, such as entity-relationship diagrams 
(abbrev. ER diagrams)---our vehicle for database 
scheme design-will lead to a user-friendly database 
management system (abbrev. DBMS). A real-world 
data model with a visual display is essential for 
user-friendly database scheme design. A graphical 
query language can then be applied to the graphical 
database scheme thereby increasing the ability of a 
naive user to express queries over the database 
scheme. However, ER diagrams have certain short- 
comings that can be overcome by adding a universal 
relation interface to the diagrams. Universal relation 
interfaces also fall short in that the unique role 
assumption is too restrictive. In this paper we 
give solutions to these problems and explicitly 
show how recursive queries can be posed over the 
universal relation (also extended ER diagrams) which 
is one of the benefits gleaned from the research on 
roles. 
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?An example of a weak entity set is DEPARTURES which 
has a single attribute DATE. DEPARTURES depends 
on the many-to-one relationship INSTANCE-OF from 
DEPARTURES to FLIGHTS for its definition (21. The 
key of FLIGHTS, namely, FLIGHTNUM, together with 
DATE is the key of DEPARTURES. 

A constraint placed on a database in order for a 
universal relation interface to translate a query is the 
unique role assumption which requires an attribute to 
play a single role within the universal relation scheme. 
If, for example, attribute NAME plays the role of 
employee name, then it cannot also play the role of 
the department name in the same universal relation 
scheme. Doing so would mean that a tuple in the 
universal relation would either have the employee’s 
name or the department’s name in the column for 
NAME, but not both. When we want to represent 
information about an employee and his department, 
we must use two distinct attribute names. 

ER diagrams have the opposite problem. Every 
attribute that appears in the diagram is assumed to 
be playing a distinct role, even when the spelling of 
two attributes (in two distinct entity sets) is the same. 
Thus, if STATE appears as an attribute in two entity 
sets, one for products, and one for customers, we 
would assume that STATE will have two distinct 
values in a tuple that relates products and customers. 
The database scheme is lacking an important con- 
straint if a customer must buy a product in the state 
in which the customer lives. In this case, we expect 
STATE to have only one value as the unique role 
assumption requires. (We elaborate more on this in 
Example 2.) Moreover, in ER diagrams we cannot 
even assume that the attributes are over the same 
domain. For example, two occurrences of STATE 

could mean “states in the United States” and 
“states of employees’ health”. ER diagrams would 
benefit from the unique role assumption in the ability 
to capture the semantics of the attributes as these 
examples show. 

With the universal relation scheme assumption (i.e. 
the unique role assumption more precisely) there is no 
need for weak entity sets7 [l] whose appearance arises 
since a distinct attribute may appear in only one 
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entity set or relationship. The relationship on which 
a weak entity set depends, is not explicitly stated 
within the ER diagram-it must be gleaned from 
the written description of the database scheme. 
Thus, the key of the weak entity set is not apparent 
in a diagram. With a universal relation interface an 
attribute could appear repeatedly in a diagram. We 
have built upon the work of Azar and Pichat [3] who 
added inclusion dependencies to the ER model. Since 
they do not address roles directly, they do not discuss 
the benefits we achieve through the results of this 
paper. 

Furthermore, most query languages do not make 
the universal relation scheme assumption [4-131. 
Invariably, within a query, the joins must be specified; 
this distinguishes the languages from a universal 
relation interface query language. A dot notation is 
used in [ 1 I] and [ 131. An explicit join operator is used 
in [4, 5, 10, 131. In [7-91, a join is specified by naming 
a path through the ER diagram. Recursive queries, a 
subject of this paper, can be expressed in [8] and [1 11. 

While the unique role assumption does a fine job 
of capturing the semantics of attributes that appear 
in more than one place and play the same role, it does 
nothing for attributes that are over the same domain 
and play distinct roles. A criticism of traditional 
database design, which we see with ER diagrams and 
universal relation interfaces, is that certain queries are 
unexpressed since the connection (namely that they 
are over the same domain) between attributes is lost. 
An example of such attributes can be seen with the 
seIling agent and the buying agent in a real estate 
database. Both are real estate agents (i.e. they are 
over the same domain) and yet they can be distinct 
people. One has a contract with the home owner (i.e. 
the seller), the other with a person looking for a new 
home (i.e. the buyer). When the attributes are named 
distinctly, an end-user may miss the fact that selling 
agent and buying agent are over the same domain. 

A contribution we make is to show how to relax the 
unique role assumption in a universal relation inter- 
face. We allow an attribute to play more than one 
role. By using an ISA hierarchy we can name dis- 
tinctly each role played by an attribute. As in the ER 
model, specialization entity sets inherit the attributes 
of the generalization entity set. We provide a means 
of distinctly naming these attributes in U, the univer- 
sal relation, for each role. Moreover, attributes of 

DEPARTMENT MANAGERS 

Fig. 1. A sample ER diagram. 

entity sets that are determined by the attribute that 
plays multiple roles are also named distinctly in U for 
each role. Such attributes have distinct values, and so 
should have separate columns in U. This makes 
the entire database scheme visible for each role an 
attribute is playing within U, and yet, there is an 
economy of expression since the attribute which plays 
more than one role and all entity sets determined by 
it, needs to occur only once in the ER diagram. 

Maier et al. [14] have solved another aspect of the 
problem of relaxing the unique role assumption. They 
use the notion of objects to design a database scheme 
[IS]. An object represents a unit of retrieval. Consider 
attribute A which is playing a role of attribute B. If 
there is no object containing both A and B, they could 
not pose a query about both A and B. In [14] they 
show how to use role relationships to make this 
connection. The solution of [14] can be seen as 
information hiding. Either A or B is seen connected 
to the rest of the database scheme, but not both. 
Information about A is visible and information about 
B is hidden or vice versa. This poses certain problems 
in their approach as they point out. Certain queries 
are computable, but not recognized as such by their 
algorithm for translating queries. An example of such 
a query is “find all managers and their salary” posed 
over a database scheme as given in Fig. 1. Salary is 
always seen as a property of employee which over- 
rides the fact that managers have salaries too. In our 
approach, we diagrammatically show that employee 
and manager are over the same domain. We give a 
method for naming manager-name and manager- 
salary distinctly from employee-name and employee- 
salary so that one or the other can explicitly appear 
in a query. Finally, we retain the notion of functional 
dependencies which are not explicitly used in their 
approach. 

One advantage we glean from correctly represent- 
ing roles is the ability to express recursive queries over 
the universal relation. When two or more attributes 
are over the same domain and play distinct roles, a 
query may be interpreted as being recursive by a 
universal relation interface. As a basic yardstick for 
measuring the power of relational query languages, 
Codd introduced the relational algebra and relational 
calculus [16, 171. These languages were augmented 
with aggregate operators [18], a transitive closure 
operator [19], and a least fixed point operator [20]. 
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Agrawal [21] introduced an alpha operator which 
allowed, in addition to the power of relational alge- 
bra, the expression of recursive queries. Recursive 
queries are more general than transitive closure since 
aggregations, selections, and other operations can be 
performed on the transitive closure. 

The query language we give is useful for universal 
relation interfaces such as 13, 15,22-283 as welt as for 
such a system as Scrabble 1291 which is an entity- 
relationship oriented microcomputer DBMS. Even 
though Scrabbie is based on the functional depen- 
dency model 1301, it also makes the universal relation 
scheme assumption [25]. The common trait among 
these systems is that they allow the user to specify 
what data is to be retrieved without needing to specify 
how to retrieve the data. Queries are formulated 
using only attribute names (and not relation names) 
in the target-list and in the selection (no range 
formuia appears). 

The query language we give is a relational calculus 
for a database that consists of a single relation. It is 
a universal relation version of the relationat algebra, 
R~&J, given in ]2I]. Qur language is not as powerful 
as Alpha. A recursive query can compute flight plans 
from New York to Los Angeles using a relation of 
direct flights, even when there are no direct flights 
between the two cities. In Alpha, once a particufar 
Aight plan is obtained, any relational expression can 
be applied to that flight plan. In our language, we 
restrict the operations that can be applied to the flight 
pian to select, project, and join (the attributes in the 
flight plan range over the universal relation implicitly, 
so the join operation is implicit). An example of a 
query requiring a more expressive relational expres- 
sion is one that asks for Right plans such that every 
city that exists in the database, occurs in the flight 
pian. 

Our language makes use of the inherent ordering 
among the tuples in the flight plan. This feature 
makes certain queries easier to express. We show how 
to express queries that take advantage of that order- 
ing, for example a query that puts constraints on the 
layover time between flights. 

In this paper we tackk a subset of the research that 
could lead to accomplishing alI our goals as men- 
tioned at the start of this paper. Below, we enumerate 
the topics of this paper. The first three topics are 
covered in Section 2.2, the fourth topic in Section 2.5, 
and the fifth topic in Section 3. 

iFor instance, unless it is understood that an attribute plays 
more than one role, recursive queries posed over the 
universal relation are not possible. 

$lf it appeared to the universal relation interface that 
department name and employee name were over the 
same domain but playing distinct roles, meaningless 
recursive queries could be formulated. The number of 
@pies in each A, as described in Section 3, would be one. 

CjWe have jrn~~ernent~ this strategy in ER-Easy, a graphical 
interface for the design of EER diagrams [31,32]. 

(I) We show how to modify the ER diagram so 
that every occurrence of the same attribute has the 
same meaning-this is the unique role assumption, a 
fundamental assumption of a universal relation inter- 
face. Once this modification is made, the diagrams are 
referred to as Extended ER diagrams (abbrev. EER 
diagrams), 

(2) We show how to relax the pique rote assump- 
tion of the universal relation interface so that an 
attribute can pIay more than one role. 

(3) We show how to represent and distinguish 
between one role and more than one role of an 
attribute in an UX diagram. 

(4) We give an algorithm for transforming EER 
diagrams that erraneously convey the impression that 
two attributes are over distinct domains, to EER 
diagrams that show the two attributes over the same 
domain playing distinct roles. 

(5) With our relaxing of the unique role assump 
tion, recursive queries can now be expressed in a 
query language that poses queries over the universal 
relation. We give such a query language. It is a 
small matter to develop a graphical query language 
for recursive queries that can be posed over EER 
diagrams that we develop in Section 2.2. We do not 
give a graphical query language. 

2. MORAINE AND ROLES OF ATTRIBUTES 

It is extremely important that the domains and 
roles of attributes are properiy specified. Improper 
specification of domains and roles can severety limit 
the allowable queries? or allow meaningless queries 
to be formulated over the universal refation.: We 
begin by giving an introduction to the ER model in 
Section 2. I. fn Section 2.2 we show how to expficitly 
represent roles of attributes in an EER diagram. In 
Sections 2.3 and 2.4 we show how to determine, 
through an interactive process with an end-user, 
whether two attributes are over the same domain and 
play distinct roles, respectively. The strategies we give 
are only useful for domains whose elements are 
character data.$ A more sophisticated strategy is 
required for numeric data and is outside of the scope 
of this work. Finally, in Section 2.5, we show how to 
transform an EER diagram 17 with respect to two 
attributes A, and A, which appear to be over distinct 
domains. The algorithm transforms D into a diagram 
6 indicating that A I and A2 are over the same domain 
and play distinct roles. 

in the ER model we can represent entities and 
relationships [33]. An entity is a real-worid object 
which is distinguishable. A group of similar entities 
forms an entity set. Entities have attributes. Associ- 
ated with an attribute is a datat_~~e (e.g. integer, real) 
and a d~~~~~ which is a se~nt~c desc~ption in a 
natural language, like English. For example, the 
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domain of an attribute for employee name could be 
“all names of persons” and the datatype could be 
“character of length 20”. 

We can represent a database scheme using an ER 
diagram where entity sets are represented by rectan- 
gles and attributes are represented by ovals. A key is 
a set of attributes that distinguish entities of an entity 
set. In the algorithms of this section, when two (or 
more) attributes are over the same domain, we deter- 
mine whether one attribute is a generalization of the 
other attribute. More precisely, we must consider the 
entity set of the most general attribute, and not 
the attribute itself. This question only makes sense if 
the attribute is a key of the entity set and the value 
of the attribute is synonymous with the entity being 
represented. So, we introduce a new term called a 
descriptive key which is reserved for those keys which 
describe the entity set. Ordinarily, we need not (and 
do not) distinguish between a descriptive and non- 
descriptive key. We use the convention of underlining 
descriptive keys with a solid bar and non-descriptive 
keys with a dashed bar in ER diagrams. 

Example 1. In Fig. 2 we see the entity set 
DEPARTMENTS with attributes DNAME, 
MANAGER, and BUDGET. There are two keys 
DNAME and MANAGER, but only DNAME is a 
descriptive key. “Computer Science” easily identifies 
the department of the authors to the man on the 
street, whereas “C. W. Gear” would not. n 

A relationship is an ordered list of entity sets 
expressing a real-world correspondence among the 
entity sets participating in the relationship. In an ER 
diagram the participation of an entity set E in a 
relationship R is expressed by an edge or an arc from 
R to E. An arc is directed toward E when a distinct 
entity, of another entity set participating in R, can 
be mapped to exactly one entity of E. Three classes 
of relationships, one-to-one, many-to-one, and 
many-to-many we represent as illustrated by the 
“PRESIDENT”, “WORKS-IN”, and “TAKES” 
relationships, respectively, of Fig. 3. 

The ISA relationship [34-361 from El to E2 is a 
built-in relationship that is a special case of a one- 
to-one relationship. However, unlike one-to-one 
relationships, we only direct the arc to the more 
general entity set. An ISA relationship expresses a 
hierarchy between two entity sets E, and E2. Ez is a 
generalization of E, and also, El is a specialization of 
Ez . E, inherits all attributes of Ez . The keys of E, are 

Fig. 2. MANAGER as an attribute of the entity set 
DEPARTMENTS. 

PoLxTmANs 

EbfPLOyEES 

Fig. 3. Relationships. 

the keys of El. When discussing ISA relationships, we 
use attribute and entity set interchangeably. In Fig. 4 
“PERSONS” is a generalization of “PILOTS” (i.e. 
every pilot is a person). We label the arc with a 
role-name which is defined in the next section. 

Entity sets E, , . . ., E,, form a (directed) path in the 
database scheme if for all i (1 < i -Z n), there is a 
many-to-one or one-to-one relationship from Ei to 

E/+1. If there is a path from Ei to Ei then E, is an 
ancestor of E,. 

2.2. Explicitly representing roles 

We use ISA relationships to explicitly represent 
each role of an attribute. We distinguish three differ- 
ent semantic relationships that any two attributes can 
have with respect to each other and will then show 
how each is represented in the EER diagram: 
(1) Attributes can be over different domains and 
hence will play different roles. (2) Attributes can 
have the same domain and play the same role. 
(3) Attributes can be over the same domain but play 
distinct roles. 

When two attributes have distinct domains then 
they are required to be named distinctly. For exam- 
ple, attributes for employee name and department 
name should be distinct. 

When two or more attributes are over the same 
domain and play the same role, the meaning is that, 
in the universal relation r, a single column for those 
attributes is sufficient since we expect a tuple of r to 
agree on all these attributes. We really only have 
a single attribute, and all the occurrences of the 
attribute should have the same name in the EER 
diagram. By adding the semantics of the unique role 
assumption to ER diagrams, we are transforming 
them into EER diagrams. 

Example 2. For example, consider the EER dia- 
gram of Fig. 5. STATE is an attribute of the entity 
sets CUSTOMERS and PRODUCTS. The following 
semantics can be inferred from the syntax of the 
diagram. A customer lives in a particular state and a 
product is priced for sale distinctly in each state. Both 
occurrences of STATE are playing the same role. A 
customer must buy a product at the price for the state 

Fig. 4. An ISA relationship. 
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Fig. 5. STATE plays the same role in both entity sets. 

in which he resides. If customer Jones buys a com- 
puter in the state of Illinois for $2000, we know that 
Jones lives in Illinois, and the computer is priced for 
sale in Illinois for $2000. n 

When two or more attributes A, . . A, are over the 
same domain and play distinct roles either the roles 
are explicitly seen as distinctly named attributes or 
the roles are implicitly defined by distinct paths from 
an entity set E, to E,.? In the former case, either one 
attribute is a generalization of the other attributes or 
we can introduce another attribute A,, I which would 
be a generalization of A, . A,.$ We expect ISA 
relationships to represent this hierarchy. To create a 
hierarchy, each A, (1 < i < n), must be a key of an 
entity set E,. Such an E, can be created if it does not 
already exist. (The algorithm for transforming the 
EER diagram is the topic of Section 2.5.) We call the 
more general entity set the multi-role entity set and 
the specialization entity sets, role entity sets. 

Example 3. In the diagram of Fig. 6 it appears as 
if FROMCITY and TOCITY are over distinct do- 
mains. However, they are over the same domain and 
play distinct roles. FROMCITY could not be a 
generalization of TOCITY, nor vice versa. We can 
introduce another attribute CITY which is a general- 
ization of FROMCITY and TOCITY. The diagram 
of Fig. 7 represents the hierarchy with role entity sets 
FROMCITIES and TOCITIES, and multi-role entity 
set CITIES. n 

When the roles are implicitly defined by distinct 
paths from an entity set E, to E,, E, is the multi-role 
entity set. Two role entity sets are added to the 
diagram to take the place of E, on the paths from E, 
to E,. The role entity sets are specializations of the 
general entity set E, represented by ISA relationships 
as we saw before. 

Example 4. Consider the EER diagram of Fig. 8. 
There is a path from FLIGHTS to CITIES through 
the relationship FC and another through the relation- 
ship TC. This diagram should also be transformed 
into the diagram of Fig. 7. n 

The attributes of the multi-role entity set M 
are called multi-role attributes. For each role that 

?A combination of the two may occur. For simplicity, we 
treat the two cases separately. 

$Each A, (1 < i f n) may occur in several entity sets and 
play the same role in each entity set. For simplicity, we 
assume each A, occurs only once. 

Fig. 6. A FLIGHTS entity set with attributes. 

M plays, we expect a distinct occurrence of multi- 
role attributes in the universal relation. (The multi- 
role attributes themselves occur in the universal 
relation.) To distinctly name each such attribute, 
for purposes of this paper, we choose a role-name 
for the role entity set and prefix each multi- 
role attribute seen in the diagram with the role- 
name. The result is a set of role attributes for 
each role entity set. Role-names label the arcs 
emanating from ISA relationships and directed 
toward the multi-role entity set within the EER 

diagrams. 
Example 5. Consider the diagram of Figure 9. 

CITY and POP are multi-role attributes. FROM 
and TO are role-names labeling the arcs from 
entity sets FROMCITIES and TOCITIES, respec- 
tively, to the multi-role entity set CITIES. Role 
attributes that we expect in the universal relation 
scheme are FROMCITY, FROMPOP, TOCITY, and 
TOPOP. n 

Attributes of entity sets that are ancestors of a 
multi-role entity set are also multi-role attributes and 
hence, role attributes are created from them for each 
role entity set. 

Example 6. Consider Fig. 9. Given a specific entity 
Urbana of role entity set FROMCITIES, there is 
exactly one entity Illinois of entity set STATES 

related to Urbana. The reason is because of the 
many-to-one relationship from multi-role entity 
set CITIES to STATES and the ISA-relationship 
between FROMCITIES and TOCITIES. Similarly, 
entity Los Angeles of role entity set TOCITIES is 
related to only entity California of STATES. 

The EER diagram of Fig. 9 would also have role 
attributes FROMTAXRATE, TOTAXRATE, 
FROMSTATE, and TOSTATE. H 

Fig. 7. FLIGHTS database scheme augmented with role- 
defining entity sets. 
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09 FC TC 

Fig. 8. The two paths from FLIGHTS to CITIES implies 
CITIES plays two roles. 

2.3. Determining same domains 

When a user adds an attribute A to the database 
scheme, he should begin by specifying a datatype t. 
Then, the user should consider a domain list contain- 
ing those domains already specified for attributes of 
datatype t. If the domain of A is in the domain list, 
the user should choose that domain for the new 
attribute and not enter a second name for the same 
domain. Otherwise, a new domain d is associated 
with A and d is added to the domain list for the 
datatype t. 

Suppose that the user chooses an existing domain 
d, which was already associated with an attribute B. 
To verify whether or not A and B have the same 
domain, we can ask for sample values a and b for 
attributes A and B, respectively. Next, we ask the user 
the questions7 (1) Is a an acceptable value for B? 
(2) Is b an acceptable value for A? When the answer 
to both questions is “yes”, then the two attributes 
indeed have the same domain. When the answer to 
both questions is “no”, then the domain specification 
was too broad. In this case, two specifications are 
needed and each one will describe a smaller set of 
values than the original. 

Example 7. If the user started out by specifying the 
domain for employee names as “all possible names” 
and then specified department names as being over 
the same domain, the original domain specification 
was too broad. The questions$ (1) Is Peter Smith 
an acceptable value for department name? (2) Is 
Computer Science an acceptable value for employee 
name? are both answered with a “no”. The domain 
for employee names should be “all possible names of 
people” and the domain for department names 
should be “names of academic disciplines”. n 

When one answer is “yes” and the other answer is 
“no”, we assume that the domains are the same and 
then carry out additional inferencing to see if the 
roles are distinct as discussed in Section 2.4. One is 
tempted to go beyond establishing the domains as 
being the same and interpret this response as saying 

tone question should be sufficient to determine whether the 
attributes are over the same domain. For completeness, 
we give both possibilities. 

fPeter Smith and Computer Science are sample values given 
by the user for the attributes for employee name and 
department name, respectively. 

Fig. 9. FLIGHTS database scheme augmented with infor- 
mation about STATES. 

that one attribute, for instance A, is a generalization 
of the other attribute B. However, the answer we 
receive is dependent on the sample data and hence it 
would be possible to obtain a different answer based 
on a different set of data. For example, if our two 
attributes are employee names and manager names, 
the user may choose person names from their own 
work environment. The two names may be those of 
a manager and an employee. The answers to our 
questions could differ, depending on the sample data. 
This is an instance of attributes playing distinct roles, 
but to determine this, we need a different type of 
question which we describe in Section 2.4. 

2.4. Determining distinct roles 

Only when two attributes A and B are over the 
same domain does it make sense to ask whether or 
not A and B play the same role. Suppose that A is an 
attribute of E, and B is an attribute of E,. E, and E, 
are not necessarily distinct. The question is whether 
or not A and B always are expected to have the same 
value in a tuple of the universal relation. Worded 
another way, consider entities e, and ez of entity sets 
E, and E2, respectively, such that there is some 
relationship between e, and e, in the database. Do we 
expect A and B to have the same value in e, and e,? 
If so, then A and B are playing the same role. 
Otherwise, A and B are playing distinct roles. 

Example 8. Consider the FLIGHTS entity set of 
Fig. 6, and the question, “Must a flight have the same 
value for FROMCITY and TOCITY?” The answer is 
“no”, so we can assume that FROMCZTY and 
TOCITY are playing distinct roles. l 

2.5. Transforming a diagram to indicate distinct roles 

In this section we start with an EER diagram D in 
which the roles an attribute plays are not visually 
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communicated by the EER diagram. There are two 
cases to consider. Either the roles are implicitly 
defined by distinct paths from an entity set E, to an 
entity set E,, or there are two attributes, A and B, 
which appear to be over distinct domains, but are 
actually over the same domain and play distinct roles. 
We discuss these two cases separately in Sections 
25.1 and 2.5.2. In practice, the algorithms given in 
both sections need to be applied since the two cases 
can occur in a single diagram. 

2.5. I. Implicit multiple occurrences of attributes. 

When there are two distinct paths from entity set E, 
to entity set E,, then the attributes K of the descriptive 
key of E, could either be playing one role in the 
universal relation or two roles. Should K be playing 
one role, both paths must lead to the same entity of 
E,. If K is playing two distinct roles, then each path 
can lead to distinct entities of E,. In the latter case, 
we transform the diagram to make the roles explicit. 
E, is the multi-role entity set. We create two role 
entity sets, R, and R,, each of which takes the place 
of E, on one of the original paths originating with E,. 

We also create an ISA relationship from R, to E, and 
from R2 to E,. 

Example 9. In the EER diagram of Fig. 8, there is 
a path from FLIGHTS to CITIES through the 
relationship FC and another path through the 
relationship TC. CITIES is seen as a multi-role 
entity set. Two role entity sets are introduced, 
FROMCITZES and TOCITZES which take the 
place of CITIES in the relationships FC and TC, 

respectively, as seen in the diagram of Fig. 7. 
ISA relationships are introduced to connect 
FROMCZTIES and TOCITZES to CITIES to com- 
plete the transformation. n 

As a last note, the two paths cannot have a 
relationship in common. Otherwise, we would be 
creating an ISA hierarchy for the true multi-role 
entity set, and additional ISA hierarchies for all 
ancestors of the multi-role entity set. 

Example 10. Consider the diagram of Fig. 9. Since 
CZTfES is already playing two distinct roles, the 
attributes of STATES are multi-role attributes since 
STATES is an ancestor of CITIES. We should not 
create an ISA hierarchy from FLIGHTS to STATES, 

even though there are two paths between the entity 
sets. IN is a relationship shared between the two 
paths and the above rule prevents us from incorrectly 
transforming the diagram. n 

2.52. Explicit attributes over the same domain 

playing distinct roles. In this section we start with an 
EER diagram D in which A and B appear to be over 
distinct domains, that is, the attributes are named 

- 
tSample values, like b, for the attributes would be given by 

the user. 
$If E, is a role entity set, A should eventually be removed 

from E, since a role entity set obtains its descriptive key 
from the multi-role entity set as in all ISA relationships. 

§Hence, the concept of a weak entiry set is not needed. 

distinctly. However, A and B should appear to be 
over the same domain and play distinct roles. A and 
B belong to the entity sets E, and E2, respectively, in 
E. E, and E2 are not necessarily distinct. We give an 
algorithm to transform D into B as described in 
Section 2.2 for attributes that play more than one 
role. 

We begin by considering the descriptive key of 
E,. If A is a descriptive key of E,, then E, could 
be the multi-role entity set. To determine whether or 
not E, is a generalization of B we could ask the 
user, “Could B b be an entity of E,” where b is a 
value for Bt (e.g. considering Fig. 2, we ask, 
“Could MANAGER ‘Jones’ be an entity of 
EMPLOYEES” as in Example 12). If the answer is 
yes, then E, is the multi-role entity set for b, other- 
wise, E, is a role entity set.f The same process should 
be carried out for E2 although only E, or E2 can be 
the multi-role entity set. If neither E, nor E, are 
multi-role entity sets, then we create a multi-role 
entity set having a multi-role attribute C as a descrip- 
tive key. For the rest of this section we will refer to 
the multi-role entity set as M. If E, and/or E, are 
already role entity sets, we will refer to them as R, 
and/or R,, respectively. 

The rest of the algorithm is carried out for both A 

and B. Without loss of generality, we will use A in our 
discussion and assume that E, was neither a multi- 
role entity set nor a role entity set. The step for 
creating the role entity set would be omitted other- 
wise. 

We will create a role entity set R, and add a 
relationship E, R, between E, and R,. If A is a key 
(but not a descriptive key), then E, R, is one-to-one. 
If A is not prime (i.e. A does not belong to a key) then 
E, R, is many-to-one from E, to R,. A should be 
removed from E, in both of these cases. 

If A is part of a key of E, then there are two 
possible transformations which will accurately repre- 
sent the constraints represented by the relationships 
of the original EER diagram. One transformation is 
to make E, R, a many-to-many relationship from E, 

to R,. In this case, all the non-key attributes of E, 
become attributes of the relationship E, R,. A is 
removed from E,. Additionally, R, must participate 
in certain relationships in which E, participates. The 
key of E, in the original diagram is split between E, 
and R, in the new diagram. R, must participate in 
those relationships, R, in which the key of E, is also 
a key of R (i.e. those in which E, participates in R in 
the “many” sense, that is, there is no incoming arc 
from R to E,). This transformation can only be 
applied if E, has one key only. A second possible 
transformation is to merely make E, R, be a many-to- 
one relationship from E, to R, . A is not removed from 
E, in this instance. Since every attribute, and the roles 
they play, are named uniquely this simple transfor- 
mation does not cause ambiguity.3 

Finally, an ISA relationship should be created 
from R, to M, the multi-role entity set. 
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Fig. 10. Attributes CSTATE and PSTATE play distinct 
roles. 

Example 11. Consider the EER diagram of Fig. 10 
where the attributes CSTATE and PSTATE are over 
the same domain and play distinct roles. (Note, in 
contrast to Example 2, a customer who lives in 
Illinois can also buy a product within the state of 
Michigan.) For this diagram, there are two possible 
transformations since PSTATE is part of the key of 
PRODUCTS. CSTATE does not belong to the key of 
CUSTOMERS in Fig. 10 and so, the relationship 
between CUSTOMERS and CSTATES is many-to- 
one after both transformations. After one transfor- 
mation, as seen in Fig. 11 the relationship 
PRICEDIN between PRODUCTS and PSTATES is 
many-to-many. Since PRODUCTS participates in 
relationship PURCHASE, PSTATES must also 
participate in PURCHASE.? Finally, PRICE is 
transferred from PRODUCTS to PRICEDIN. The 
results of the alternative transformation are seen in 
Fig. 12. Here the transformations are more simple. 
PSTATE and PRICE remain in PRODUCTS and 
the relationship PRICEDIN is many-to-one from 
PRODUCTS to PSTATES. n 

Example 12. Consider the EER diagram of Fig. 2. 
The attributes MANAGER and ENAME are over the 
same domain and play distinct roles although the 
EER diagram does not reflect this. Since ENAME is 
a descriptive key of entity set EMPLOYEES, 
EMPLOYEES could be a generalization of 
MANAGER. We ask the user “Could MANAGER 
‘Jones’ be an entity of EMPLOYEES”. The answer 
is “yes”, so we create only one role entity set, 
MANAGERS, which is connected to the multi-role 
entity set EMPLOYEES by an ISA relationship, as 
shown in Fig. 1. Since MANAGER is a key, the HAS 
relationship between DEPARTMENTS and 
MANAGERS is one-to-one. n 

In summary, we give the algorithm for transform- 
ing the EER diagram. 

Input An EER diagram D that indicates A, . . . A, are 
over distinct domains. 

Output An EER diagram b that indicates A, . . . A, 
are over the same domain and play distinct roles. 

tThe key of PURCHASE remains {CNO, PNAME, 
PSTATE} as it was in Fig. 10. 

Algorithm 

Create a multi-role entity set if none exists. Ej is 
a multi-role entity set if Aj is a descriptive key 
of E, and Ej is generalization of A, for all i, 
l<iCn, i#j. 
Create a role entity set Ri for entity set Ei unless 
Ei is a role entity set (i.e. A, is the descriptive key 
of Ei). 
Connect role entity set Ri to the multi-role entity 
set via an ISA relationship for all i, 1 < i d n, 
except when Ri is the multi-role entity set. 
Create a relationship EiRi from Ei to Ri unless 
Ei is a multi-role or role entity set. E,R, should 
be one-to-one if Ai is a key, but not a descriptive 
key, of E,. EiRi should be many-to-one from Ei 
to Ri if Ai is not prime. In both cases, remove 
Ai from entity set E,. When Ai is a proper subset 
of the sole key of Ei, then either of the following 
two transformations may be applied. Should Ei 
have more than one key, then only Transform- 
ation 2 should be applied. 
Transformation 1: 
(a) E,R, is a many-to-many relationship. 
(b) The non-key attributes of Ei should be 

transferred from Ei to E, Ri. 
(c) For every relationship R in which Ei partic- 

ipates in the “many” sense, add an edge 
from Ri to R. 

(d) Remove Ai from entity set E,. 
Transformation 2: 
(a) EiRi becomes a many-to-one relationship 

from E, to Ri. 
(b) Ai is not removed from entity set Ei. 

3. THE QUERY LANGUAGE 

One benefit of the research of Section 2 is the 
ability to pose recursive queries over the universal 
relation. In the language we give in Section 3.3 we 
utilize role names which were introduced in Section 
2. Queries are posed over a single universal relation 
that contains all the attributes in the database 
scheme. We present the basic query language, with- 
out recursion, in Section 3.2. We then present the 
contribution of this paper in Section 3.3 which is an 
extension to the basic language to allow the expres- 
sion of recursive queries. 

3.1. Definitions 

A domain is a set of values. The Cartesian product 
of domains D,, . . . , Dk is the set of all k-tuples 

(v,, . . . , ok) such that v, is in D,, v2 is in D,, and so 
on. A universal relation is a subset of the Cartesian 
product of the domains. A row of the universal 
relation is a tuple and a column is an attribute. We 
give names to the universal relation and to attributes. 
We will refer to the universal relation by itself as U 
and also to the universal relation and its attributes 
a, b, c, as U(a, b, c). 
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Fig. 1 I. CSTATES and PSTATES are added as role entity sets. 

Consider a universal relation U( . . . , A, . . . , 
B, . ) where the attributes A and B are over the 
same domain and play distinct roles. The sequences 

are place holders for zero or more attributes in U 
that are not of interest in this discussion. We let 
(. . , a,, . . . , bi, . .) represent a tuple in II. A deri- 
vation of (a,, b,) with respect to U is a path 

<(. , a, > . . , b,, . . .), . . . , (. . , a,,, . . , b,, . . .)) 

where bi = a, + , for i=l,...,n-I and the a, are 
distinct. We call a, and b, the endpoints of the 
derivation and A and B the endpoints of the recursion. 
We also regard a derivation as an ordered relation 6 
consisting of the tuples in the path. For all i, j, if i < j 
then the tuple (. . ., a,, . , bi, . . .) precedes the tuple 
(. . ) a,, . . . , b,, . . .) in 6. The tuples do not need to 
be retrieved in this order. The order is an inherent 
part of the data. 

3.2. The basic query language 

To express SPJ-queries (i.e. select, project, join), we 
specify an optional list of definitions, a target-list, and 
a selection [27]. Note that this basic query language 
does not have a concept of roles. These components 
of a query are begun with the key words with, retrieve, 

and where, respectively. The definitions declare new 
attributes, called derived-attributes, which can be 
calculated from attributes in the database or previ- 
ously declared derived-attributes. The target-list 
specifies which attributes, arithmetic function results, 
and aggregate function results are to be. printed. The 
aggregate functions include min, max, avg, count, 
sum. The aggregate functions are always parameter- 
ized and produce a single value as a result for each 
attribute that is used as a parameter. 

Example 13. Consider the EER diagram of Fig. 6 
which has the corresponding universal relation 
FLIGHTS (E, FROMCITY, TOCITY, COST). 

The query retrieve avg(COST) computes the average 
cost of all flights stored in the database. n 

The selection is an arbitrary logical expression as 
in FORTRAN or Pascal. The expression can be 
written in conjvnctive normal form which is one or 
more conjuncts. Each conjunct cj consists of a disjunc- 
tion of atoms or negated atoms. An atom is built 
from attributes, derived-attributes, constants, arith- 
metic operators, and arithmetic comparison oper- 
ators (e.g. less than, greater than, equal to). When a 
selection appears in a query, a tuple must satisfy the 
selection in order to appear in the query result. 

r 

Fig. 12. CSTATES and PSTATES are added as role entity sets. 
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Implicit in the query is a blank tuple variable that 
ranges over all the attributes in the universal relation 

r371. 

FNO FROMCITY TOCITY COST 1 

Example 14. Consider the relation of Example 13. 
To find the cost, including the tax computed at a rate 
of 6%, of all flights originating in Urbana, we write 

102 Urbana 

103 Urbana 

with TOTALCOST:=COST f (COST * .06) 

retrieve TOCITY FROMCITY TOTALCOST 

where FROMCITY = “Urbana”. 

cbicago 50 

Dayton 60 

St. Louis 76 

LA 200 

New York 150 

cbieago 75 

LA 225 

400 Dayton New York 125 

3.3. Expressing recursive queries Fig. 13. A relation containing direct flights. 

Consider a universal relation U and attributes A 
and B that are over the same domain and play distinct 
roles. A recursive query posed over U with respect to 
A and B is going to produce a set of derivations, 
s I,..., 6,. The derivations have a column for every 
attribute in the universal relation and we name this 
relation A. The query specifies a projection of A onto 
the attributes in a target-list. We refer to this relation 
as A. In addition, associated with each derivation, 
there are values z,, . . . , zk obtained by evaluating 
recursive aggregate functions Z1, . . . , Z, . (We define 
the syntax and semantics of recursive aggregate func- 
tions in Section 3.3.1.) Aggregate function values 

aI,. . . , aj obtained by evaluating aggregate functions 

A,,..., A, also appear in the result. In summary, the 
result of the query is a relation, R(i\, Z, , . . . , Z,) and 
a set of values for A,, . . , A,. 

Example 15. Consider the relation given in Fig. 13. 
The query, “find all flight plans for trips originating 
in Urbana and terminating in New York” is ex- 
pressed as 

retrieve FNO, FROMCITY, TOCITY, COST 

where tin, .FROMCITY = “Urbana” and tend. TO - 
CITY = “New York”. 

The result of the query is shown in Fig. 14. The result 
contains three tuples, a,, 6,) and 6,. We will use the 
termflightplan to describe a tuple in a recursive query 
result for the flight database throughout the paper. 
Each tuple in bi (1 < i d 3), is a flight. n 

Example 16. Consider the relation of Example 13. 

The syntax of a recursive query posed over U with 
respect to A and B requires that we specify the 
endpoints of the recursion. To specify the endpoints 
for A and B of the recursion we introduce tuple 
variables tinil and ffinal, respectively. We specify an 
endpoint for A by equating tinit .A either to a constant 
value or to the symbol “*“. The symbol ‘&*” means 
to attempt use of all possibilities in the column for A 
within U as endpoints of derivations. Similarly, to 
specify an endpoint for B we equate tGna,.B either to 
a constant value or to “*“. The expressions for A and 
B are included as conjuncts in the selection as shown 
in Example 15. 

To express the query, “find all flight plans originating 
in Urbana such that the cost of each flight is less than 
$100.00” we write 

retrieve FNO, FROMCITY, TOCITY, COST 

where tinit .FROMCITY = “Urbana” and tfind .TO- 
CITY = “e” and COST < 100. 

Since the blank tuple variable is bound to A, FNO, 
FROMCITY, TOCITY, COST are the columns of b 
and COST is a column of A. n 

Example 17. The EER diagram of Fig. 15 

We use four kinds of tuple variables which are 
implicitly bound in the following way during a recur- 
sive query. Unlike in non-recursive queries, the blank 
tuple variable is bound to A. Attributes do not appear 
in the result except as a column in A. Hence, it makes 
sense to change the binding of the blank tuple 
variable to the most commonly used purpose, which 
is to describe attributes of A. Floating tuple variables, 
fi, . . ,J;, which are introduced in Section 3.3.2 are 
bound to A. Recursive aggregate function tuple vari- 
ables, rl , . . . , ri, which are introduced in Section 3.3.1 
are bound to A. No other tuple variables can be 
bound to A. Tuple variables t,, . . . , t, are bound to 
U and are restricted from occurring in the target-list. 
The tuple variables tinit and t,, must occur in a 
recursive query and they are bound to U. Once again, 
they specify the endpoints of the recursion. 

describes a database that stores distances between 
two cities, even when there are no direct flights 
between the cities. The corresponding universal 
relation is U(FN0, TIME, CITY, REGION, 
FROMTIME, TOTIME, COST, FROMCITY, 

r A 

FNO FROMCITY TOCITY COST 

101 Urbana cbicago 50 

201 cbieago 

102 Urbana 

New York 150 

Dayton 60 

New York 

Fig. 14. A relation showing all flight plans from Urbana to 
New York. 



TO 
_i CITIES I--=-&) the average cost of all flight plans, or to find the 

I , , Y minimum cost flight plan. 
Example 18. Consider the relation of Example 13 

and the query, “find all fhght plans that originate in 
Urbana and terminate in New York, the average cost 
of flights in a flight plan, and the minimum total cost 
of all flight plans.” The query is 

The average cost of flights in a flight plan is found by 
computing the recursive aggregate function ravg 
(COST) and the minimum cost of all flight plans 
is computed by applying the aggregate function 
min(COST). The invocation min(COST) causes the 
function rsum(COST) to be computed. a 

Fig. 15. FLIGHTS database scheme including distance 
Example 19. Consider the database scheme of 

between CITIES. 
Fig. 15 and the query, “Find all flight plans from 
Urbana to New York such that the distance flown is 

FROMREGION, TOCITY, TOREGION, 
no more than twice the actual distance between 

DISTANCE). Consider the query, “find all flight 
Urbana and New York.” The query is 

plans from Urbana to New York, but only if the retrieve FNO FROMCITY TOCITY COST 
distance between the two cities is less than 700 miles.” 
The query is where tinit .FROMCITY = “Urbana” and tfinsl~ 

TOCITY = “New York” and t, .FROMCITY = 

retrieve FNO FROMCITY TOCITY COST ti,,.FROMCITY and t, .TOCITY = tfina,. TOCITY 

and 2 * t, .DISTANCE 2 rsum (DISTANCE). n 
where tInit .FROMCITY = “Urbana” and 4inal~ 
TOCITY = “New York” and t, .DISTANCE < 700 We have extended the syntax to include a selection 

and t, .FROMCITY = t,,,,.FROMCITY and t,, TO- specifically for those tuples to be included in the 

CITY = tfina, .TOCITY. aggregation. Following a parameter of the aggregate 
function invocation is a “where” clause. This exten- 

There can be a tuple in U that contains Urbana, New sion is useful for aggregate functions as well as for 

York, and the distance even when there is no direct recursive aggregate functions. 

flight between the two cities (in this case, there will be Example 20. Consider the relation of Example 17 

null values for the attributes describing FLIGHTS). and the query, “find all flight plans from Los Angeles 

The tuple variable f, is bound to U. n to New York such that there are at least two stops 

3.3.1. Recursive aggregate operators. We define in the midwest”. This query appears in [21]. The 

recursive aggregate functions, including, rmax, rmin, query is 

ravg, rsum, rcount, to be those that aggregate values 
within each 6, (1 < i < m). If a recursive aggregate 

retrieve FNO FROMCITY TOCITY 

function were to appear in the target-list, we would 
expect one value for each tuple in the result. The 

where c, .FROMCITY = “Los Angeles” and tena,. 

recursive aggregate functions can also appear in the 
TOCITY = “New York” and 2 < rcount (FNO where 

selection. 
TOREGION = “MW”). n 

The aggregate functions introduced in Section 3 are 
still allowed to appear in the query and they aggre- 

A recursive aggregate function tuple variable, r, 

gate data from the relation R(6, Z,, . . . , 2,). The 
can occur within the recursive aggregate function 

function count gives us m, that is, the number of rows 
expression, either within the target-list or selection. 

in the column for Ai\. The other aggregate function 
The tuple variable r ranges over the tuples in each 6, 

invocations, max(C), min(C), avg(C), sum(C) implic- 
as does the recursive aggregate function. 

itly cause the recursive aggregate function invocation 
Example 21. Consider the relation of Example 17 

rsum(C) to be computed in order to produce a single 
and the query, “find all flights from Urbana to New 

value for each tuple in i\. Then, using these values, 
York such that the layover time is at least 45 min but 

the value of the aggregate function invocation is 
no more than 90 min.” The query is 

computed. This allows us to compute such values as retrieve FNO FROMCITY TOCITY COST 
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retrieve FNO FROMCITY TOCITY COST ravg 
(COST) min(COST) 

where tinit .FROMCITY = “Urbana” and tfina,. 
TOCITY = “New York”. 
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where fiti, .FROMCITY = “Urbana” and Ginal. 
TOCITY = “New York” and 
rcount (T, . TOCITY) - 1 = 
rcount (r, .TOCITY where r2 .FROMTIME - 

r, .TOTIME > 45 and r2 .FROMTIME - r, .TO- 
TIME < 90 and r, .TOCITY = rz .FROMCITY). n 

3.3.2. Floating tuple variables. Some queries 
can be more conveniently expressed when we 
make use of the inherent ordering among tuples 
within each ai for all i (1 < i < m). For example, 
we can more easily express the layover time between 
each pair of flights. We introduce floating tuple 
variables that allow us to compare two or more 
consecutive tuples within a derivation 6,. We reserve 
the symbol x with subscripts, to represent floating 
tuple variables. If a query contains floating tuple 
variables fi, . . ,fk then, during the computation of 
&, the floating tuple variables range over consecutive 
tuples such that tuplef; immediately precedes tuplef, 
in ai forj, (1 <j -C k)t and tuplef, is the newest tuple 
to be added to 6,. 

In the data definition language (i.e. as part of 
the database scheme) a relationship among the 
attributes that are over the same domain and play 
distinct roles needs to be specified with respect 

to fi>...,fk. A relationship between attributes 
(A, B) would be defined as one or more expressions 
of the form -f;.B=f;+,.A for all j (1 <j <k) 
where A and B are endpoints of the recursion. For 
example, in a genealogical database scheme with 
attributes (CHILD, MOTHER, FATHER) over 
the same domain and playing distinct roles, we may 
have the relationship specification (f,.CHILD = 
fi .MOTHER) or cf .CHILD =f2 .FATHER). This 
would allow a recursive query asking about the 
hierarchical relationship of all people in the database 
or only males or only females. For our airline data- 
base example we would specify fi .TOCZTY =f2. 
FROMCITY. All such possibilities are used in the 
evaluation. 

Example 22. The query of Example 21 can be 
more conveniently expressed by using floating tuple 
variables. The query becomes 

retrieve FNO FROMCITY TOCITY COST 

where tini, .FROMCITY = “Urbana” and tfmal~ 
TOCITY = “New York” and not (fi.FROM- 
TIME - f,.TOTIME > 90 or f>.FROMTlME - 

fi .TOTIME < 45). W 
3.3.3. Recursively derived-attributes. We allow the 

creation of recursively derived-attributes of which 
values are not stored in the database, but are com- 
puted from other attributes in the database. Recur- 
sively derived-attributes contain expressions that 
range over A. 

tThat is,l;.B =A+, .A where A and B are the endpoints of 
the recursion. 

In the implementation of Ask-easy [27] we allow 
derived-attributes to be specified at database scheme 
design time as well as within a query. In the same 
way, we extend the language to allow recursively 
derived-attributes to be specified at scheme design 
time and used as if they were attributes in the 
database scheme. Two advantages are gained by 
using recursively derived-attributes. First, the expres- 
sion of a query is less verbose and secondly an 
end-user can more readily understand the meaning of 
a recursively derived-attribute over the expression 
that computes the value of the recursively derived- 
attribute. 

Recursively derived-attributes are only meaningful 
in a recursive query. The end points of the recursion 
are expected to be found within a query and so, they 
need not be specified within a recursively derived- 
attribute definition. A recursively derived-attribute 
can be computed by using floating tuple variables. 

Example 23. Some useful recursively derived- 
attributes for the FLIGHTS database scheme of Fig. 
15 are NUMBER-FLIGHTS, TOTAL-DISTANCE, 
TOTAL-COST, MID WESTSTOPS, and LAY- 
OVER, LAYOVER is the only recursively derived- 
attribute that requires the use of floating tuple 
variables. The definitions for these recursively 
derived-attributes are: 

with NUMBER-FLIGHTS:=rcount(FNO) 

We expect an end-user, such as a travel agent, to 

TOTAL-DISTANCE=rsmn (DISTANCE) 

TOTAL-COST:=rsum (COST) 

MID WESTSTOPS:=rcount(FNO where 
TOREGION = “MW”) 

LAYOVER:=f,.FROMTIME --fi .TOTIME 

either query the EER diagram of Fig. 16 or the 
universal relation scheme 

U (FNO, TIME, FROMTIME, TOTIME, COST, 

CITY, REGION, FROMCITY, FROMREGION, 

TOCITY, TOREGION, DISTANCE, NUMBER- 

FLIGHTS, TOTAL-DISTANCE, TOTAL-COST, 

LA YO VER, MID WESTSTOPS). 

The query of Example 22 can be written as 

retrieve FNO FROMCITY TOCITY COST 

where tlni, .FROMCITY = “Urbana” and fm . 
TOCITY = “New York” and LA YOVER < 90 and 
LA YO VER > 45. 

The query of Example 19 can be rewritten as 

retrieve FNO FROMCITY TOCITY COST 

where tini, .FROMCITY = “Urbana” and Ginal ’ 
TOCITY = “New York” and t, .FROMCITY = tinit. 
FROMCITY and t, .TOCITY = thnal .TOCITY and 2* 
t, .DISTANCE 2 TOTAL-DISTANCE. 

The query of Example 20 can be rewritten as 

retrieve FNO FROMCITY TOCITY 
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NUMBER-FLIGHTS 

TOTAL-DISTANCE 

TOTAL-COST 

LAYOVER 

MIDWESTSTOPS 

Fig. 16. FLIGHTS database scheme with recursively 
derived-attributes. 

where tlnit .FROMCITY = “Los Angeles” and tfina,. 
TOCITY = “New York” and 2 < MIDWEST- 
ST0 PS. n 

4. CONCLUSION 

We have shown how an EER diagram can be used 
to explicitly indicate the attributes that are over the 
same domain and play distinct roles versus those that 
play the same role. We have given a strategy for 
creating such a diagram from a simpler diagram that 
did not represent the attributes as being over the same 
domain. Finally, we have given a recursive query 
language for a universal relation interface. 

We have shown that attributes of entity sets that 
are ancestors of a multi-role entity set are also 
multi-role attributes and hence, role attributes are 
created from them for each role entity set. We have 
omitted discussing many-to-many relationships in 
which the multi-role entity set participates. For in- 
stance, consider the EER diagram of Fig. 9. We could 
add an entity set CONCERTS, and a many-to-many 
relationship between CITIES and CONCERTS. The 
question is, are the attributes X of CONCERTS 
multi-role attributes or not? (That is, should there be 
distinct copies of X for each role entity set in the 
universal relation or not?) If CONCERTS is not a 
multi-role entity set then must the city in which a 
concert is playing be the same as the city to (or from) 
which a flight flys? We believe that the latter situation 
is the case. However, we must rely on relational 

design theory to make this point convincing and that 
is outside the scope of this paper. 

Future work includes specifying an algorithm to 
translate a database with multi-role attributes into a 
network database scheme, and developing query 
translation and optimization algorithms for the re- 
cursive queries posed over a network database. Also, 
there are other semantic-packed operators that could 
be added to the universal relation query language to 
further achieve the goals as mentioned at the start 
of this paper. For instance, an ALL operator that 
would allow the expression of such queries as “Find 
suppliers who supply all parts”. 

Furthermore, other semantic aid can be provided 
for the user during database scheme design, such as 
specifying the functional dependencies. We think the 
EER diagram is a very important interface between 
the user and a universal relation. The visual display 
of the entity sets and relationships can aid the user in 
correctly defining the database scheme. 

Interestingly, the language we give for recursive 
queries is a tuple calculus language for database 
schemes that have only one relation. In [38], a tuple 
calculus language is given that suffices for database 
schemes with many relations. 

We have implemented a prototype of ER-Easy, a 
user-friendly database scheme design program on a 
SUN workstation that includes the ideas of Section 
2 [31,32]. ER-Easy allows the user to specify a 
database scheme by means of EER diagrams and 
converts this scheme into a network database scheme 
or a relational database scheme that reflects the 
structure of the underlying universal relation. ER- 
Easy employs the inference techniques of Sections 2.3 
and 2.4 to prevent scheme layouts that misrepresent 
roles. 
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