
Learning Groupwise Multivariate Scoring Functions Using Deep
Neural Networks

Qingyao Ai

CICS, UMass Amherst

Amherst, MA, USA

aiqy@cs.umass.edu

Xuanhui Wang

Google Research

Mountain View, CA, USA

xuanhui@google.com

Sebastian Bruch

Google Research

Mountain View, CA, USA

bruch@google.com

Nadav Golbandi

Google Research

Mountain View, CA, USA

nadavg@google.com

Michael Bendersky

Google Research

Mountain View, CA, USA

bemike@google.com

Marc Najork

Google Research

Mountain View, CA, USA

najork@google.com

ABSTRACT

While in a classification or a regression setting a label or a value

is assigned to each individual document, in a ranking setting we

determine the relevance ordering of the entire input document list.

This difference leads to the notion of relative relevance between

documents in ranking. Themajority of the existing learning-to-rank

algorithms model such relativity at the loss level using pairwise or

listwise loss functions. However, they are restricted to univariate
scoring functions, i.e., the relevance score of a document is computed

based on the document itself, regardless of other documents in the

list. To overcome this limitation, we propose a new framework for

multivariate scoring functions, in which the relevance score of a

document is determined jointly by multiple documents in the list.

We refer to this framework as GSFs—groupwise scoring functions.

We learn GSFs with a deep neural network architecture, and demon-

strate that several representative learning-to-rank algorithms can

be modeled as special cases in our framework. We conduct eval-

uation using click logs from one of the largest commercial email

search engines, as well as a public benchmark dataset. In both cases,

GSFs lead to significant performance improvements, especially in

the presence of sparse textual features.

CCS CONCEPTS

• Information systems→ Learning to rank;

KEYWORDS

Multivariate scoring; groupwise scoring functions; deep neural

architectures for IR

ACM Reference Format:

Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Michael

Bendersky, and Marc Najork. 2019. Learning Groupwise Multivariate Scor-

ing Functions Using Deep Neural Networks. In The 2019 ACM SIGIR In-
ternational Conference on the Theory of Information Retrieval (ICTIR ’19),

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICTIR ’19, October 2–5, 2019, Santa Clara, CA, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6881-0/19/10.

https://doi.org/10.1145/3341981.3344218

October 2–5, 2019, Santa Clara, CA, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3341981.3344218

1 INTRODUCTION

Unlike in classification or regression, the main goal of a ranking

problem is not to assign a label or a value to individual items, but,

given a list of items, to produce an ordering of the items in that list

in such a way that the utility of the entire list is maximized. In other

words, in ranking we are more concerned with the relative ordering

of the relevance of items—for some notion of relevance—than their

absolute magnitudes.

Modeling relativity in ranking has been extensively studied in

the past, especially in the context of learning-to-rank [24]. Learning-

to-rank aims to learn a scoring function that maps feature vectors to

real-valued scores in a supervised setting. Scores computed by such

a function induce an ordering of items in the list. The majority of

existing learning-to-rank algorithms learn a parameterized function

by optimizing a loss that acts on pairs of items (pairwise) or a list
of items (listwise) [5, 7, 8, 37]. The idea is that such loss functions

guide the learning algorithm to optimize preferences between pairs

of items or to maximize a ranking metric such as NDCG [6, 20, 32],

thereby indirectly modeling relative relevance.

Though effective, most existing learning-to-rank frameworks

are restricted to the paradigm of univariate scoring functions: the

relevance of an item is computed independently of other items in

the list. This setting could prove sub-optimal for ranking problems

for two main reasons. First, univariate functions have limited power

to model cross-item comparison. Consider an ad hoc document re-

trieval scenario where a user is searching for the name of an artist. If

all the results returned by the query (e.g., “calvin harris”) are recent,

the user may be interested in the latest news or tour information. If,

on the other hand, most of the query results are older (e.g., “frank

sinatra”), it is more likely that the user seeks information on artist

discography or biography. Thus, the relevance of each document

depends on the distribution of the whole list. Second, user interac-

tion with search results shows a strong tendency to compare items.

Prior research suggests that preference judgments by comparing

a pair of documents are faster to obtain, and are more consistent

than absolute ratings [38]. Moreover, it has been shown that better

predictive capability is achieved when user actions are modeled in a

relative fashion (e.g., SkipAbove) [4, 22]. These studies indicate that

users compare a document with its surrounding documents prior

https://doi.org/10.1145/3341981.3344218
https://doi.org/10.1145/3341981.3344218

to a click, and that a ranking model that uses the direct comparison

mechanism can be more effective, as it mimics user behavior more

closely.

Given the above arguments, we hypothesize that the relevance

score of an item should be computed by comparison with other

items in the list at the feature level. Specifically, we explore a general

setting of multivariate scoring functions for learning-to-rank. In its

general form, a multivariate scoring function f : Xn → Rn , where
X is the universe of all items, takes a vector of n items as input and

jointly maps them to an n-dimensional vector of reals. Each element

in the output vector determines the relative relevance of an item

with respect to other items in the input. While it is straightforward

to define a multivariate function, it is less clear how such a function

may be efficiently learned from training data or efficiently evaluated

during inference given lists of arbitrary and variable number of

items. To that end, we propose Groupwise Scoring Function (GSF)

as an instance of the class of multivariate functions that is parame-

terized by deep neural networks. A GSF learns to score a fixed-size

"group" of items. We show how this model can be extended to act

on lists of arbitrary length and demonstrate how efficient training

and inference can be achieved by a Monte Carlo sampling strategy.

Empirical experiments on a private email search corpus and a public

benchmark demonstrate that GSFs can achieve the state-of-the-art

performance in learning-to-rank tasks.

In particular, our contributions can be summarized as follows:

• We motivate and formulate multivariate scoring functions

for learning-to-rank;

• We present Groupwise Scoring Function (GSF) as an instance

of the class of multivariate functions that is parameterized

by deep neural networks;

• We explore the conditions under which a GSF reduces to

existing learning-to-rank models;

• We demonstrate, through empirical evaluation on propri-

etary and public datasets, the improvements obtained by

GSFs and discuss their potential for learning-to-rank tasks;

• To encourage research in this space and to allow for re-

producibility of the reported results, we open source our

implementation within the TF Ranking library [28].

2 RELATEDWORK

Learning-to-rank refers to algorithms that model the ranking prob-

lem with machine learning techniques. In general, ranking is formu-

lated as a score-and-sort problem with the objective of construct-

ing a scoring function where scores computed by such a function

induce an ordering of items in a list. Existing learning-to-rank al-

gorithms [5, 6, 8, 14, 21, 35] mainly differ by two factors: (a) the

parameterization of the scoring function (e.g., linear functions [21],

boosted weak learners [37], gradient-boosted trees [6, 14], support

vector machines [21, 23], and neural networks [5]); and (b) the loss

function (e.g., pointwise [15], pairwise [5, 6, 21] and listwise [8, 35]).

Virtually all of the existing algorithms, however, yield a univariate

scoring function in the end where the score of an item is computed

in isolation and independently of other items in the list. To the best

of our knowledge, there are only a few exceptions.

First, the score regularization technique [12] and the CRF-based

model [30] use document similarities to smooth the initial rank-

ing scores or enrich query-document pair feature vectors. When

computing relevance scores, however, both methods take only one

document at a time.

The second exception is a bivariate scoring function [11] that

takes a pair of documents as input and predicts the preference of

one over the other. It is easy to show that the bivariate scoring

function is a special case of our proposed framework.

Third is a group of neural learning to rank algorithms [2, 3]

and click model [4] that builds an recurrent neural network over

document lists. They, however, either focus on a re-ranking problem

or use a pointwise loss to optimize user clicks. In contrast, our

method can be applied to arbitrary number of documents with any

types of ranking loss functions.

Search result diversification is another area of related work. Di-

versification algorithms maximize objectives that take subsets of

documents into account. These include maximal marginal rele-

vance [9] and subtopic relevance [1]. Recently, several deep learn-

ing algorithms were proposed with losses corresponding to those

objectives [19, 36]. In contrast, our work focuses on improving

relevance, not diversity, by way of cross-document comparisons.

Another area of related research is the work on pseudo-relevance

feedback [25]where queries are expanded based on the top retrieved

documents in a first round. The idea is that expanded queries lead to

improvements in a second-stage retrieval. In this paper, we consider

document relationships in the learning-to-rank setting, not retrieval,

and do not require two rounds of retrieval. We also do not assume

a pre-existing initial ordering of the document list.

Finally, note that our work is orthogonal and complementary to

the recently proposed neural IR techniques [11, 16, 26, 27]. These

techniques focus on advanced representations of document and

query text but employ standard loss and scoring functions. On the

other hand, our work concerns the nature of the scoring functions

while employing a relatively simple query-doc representation.

3 PROBLEM FORMULATION

In this section, we formulate our problem in the context of learning-

to-rank. Letψ = (x ,y) ∈ Xn × Rn be a training sample where x is

a vector of n items xi , 1 ≤ i ≤ n, y is a vector of real n relevance

labels yi , 1 ≤ i ≤ n, and X is the space of all items. To simplify

discussion and to follow convention, we refer to xi simply as a

"document" and x ∈ Xn
as a list of n documents, but note that xi

itself could be a feature vector representing a query-document pair.

For every document xi ∈ x , we have a corresponding relevance

label yi ∈ y. Finally, let Ψ be a set of training examples.

The goal of learning-to-rank can often be stated as finding a

scoring function f : Xn → Rn that minimizes the empirical loss

over the training data:

L(f) =
1

|Ψ|

∑
(x ,y)∈Ψ

ℓ(y, f (x)), (1)

where ℓ(.) is a local loss function.

As noted in earlier sections, the main difference between the

various learning-to-rank algorithms lies in how the scoring func-

tion f (·) and the loss function ℓ(·) are defined. While there are

numerous examples of prior work on different types of loss func-

tions [24], the vast majority of learning-to-rank algorithms assume

a univariate scoring function u : X → R that computes a score for

each document independently of other documents:

f (x)|i = u(xi), 1 ≤ i ≤ n, (2)

where f (·)|i denotes the i
th
dimension of f .

A score obtained from u(·) depends only on its argument. In

other words, fixing xi and changing any or all other documents in

the list to x ′ (for j , i) does not affect the output of u(xi).
In this paper, we set out to explore the space of multivariate

scoring functions f : Xn → Rn for learning-to-rank. Following

our discussion in Section 1, such a function is theoretically able

to capture the relationship between its arguments and, as a result,

could jointly produce relative scores. In other words, replacing xi
with a new document x ′i could lead to a change to scores for all

documents in the list. Note, however, that any multivariate scoring

function f (x) should ideally be invariant to the order of items in x .
Learning and evaluating a multivariate scoring function in prac-

tice is, however, nontrivial. In the discussion above, we made a

simplifying assumption that n, the number of documents in a list,

is constant across all training samples. As is common in learning-

to-rank settings, however, that is often not the case and in fact the

length of x is arbitrary and varies across training or evaluation

samples. It is therefore not immediately clear how one may con-

struct a generic multivariate function. In the following section, we

address these challenges and introduce an instance of multivariate

scoring functions that is suitable for the task of learning-to-rank

and is further trained and evaluated in an efficient manner.

4 GROUPWISE SCORING FUNCTIONS

In this section, we present a detailed construction of an instance

of multivariate scoring functions which we refer to as groupwise
scoring functions (GSFs). A GSF in its basic form is a function д(·;θ) :
Xm → Rm that is parameterized by a deep neural network (DNN)

and that jointly maps a group ofm documents (wherem is fixed) to

a vector of scores of the same size. We begin this section by laying

out the foundations of a GSF, later proceed to extend it to lists of

n ≥ m documents, where n may vary across samples, and finally

complete the construction by providing a mechanism to efficiently

train and evaluate an extended GSF.

4.1 Parameterization by DNNs

As noted earlier, we parameterize our functions using deep neural

networks. Feed-forward neural networks have widely been ap-

plied to learning-to-rank problems [13, 17, 39]. The reasons we

believe a deep neural network fits well into our framework are

two-fold. First, compared to tree models, neural networks scale

well to high-dimensional inputs. This is important because a GSF

takesm documents as input where each document is a vector of an

arbitrary and potentially large number of features. Second, neural

networks arguably handle sparse features such as text more natu-

rally whereas other models require extensive feature engineering.

As such we believe a deep neural network is the right candidate for

the task of learning a GSF.

To begin the construction, we need to define an input layer.

Conceptually, a document x can be represented as a concatenation

of two subsets of features: the embedding features for sparse textual

features xembed
(e.g., for document titles) and the dense features

, , , , ,[x1, x2] [x1, x3] [x2, x1] [x2, x3] [x3, x1] [x3, x2]

{x1, x2, x3}x

g([x3, x2])

f(x)

… … … … … …

X X X

Figure 1: An extended groupwise scoring function. For illus-

trative purposes, we simplify д(.) to be a bivariate function

acting on permutations of size 2 formed from a list of 3 doc-

uments x . All 6 size-2 permutations from x are fed to д(.)
which itself outputs 2 scores per permutation. Intermediate

scores computed by д are subsequently aggregated to com-

pute the final vector of scores f .

xdense (e.g., document static scores or various match scores [16]).

For simplicity, we construct the input layer by concatenating allm
documents. Specifically, let

h0 = concat(xembed

1
,xdense

1
, ...,xembed

m ,xdensem).

Note that in practice the input layer can be extended to include

document-independent "context" features (such as query embed-

dings) and need not be limited to document-derived features.

Given the above input layer, we build a multi-layer feed-forward

network with 3 hidden layers as follows:

hk = σ (w
T
k hk−1 + bk), k = 1, 2, 3 (3)

wherewk and bk denote the weight matrix and the bias vector in

the k-th layer, σ is an activation function, which in this work is the

ReLU function: σ (t) = max(t , 0).
Our groupwise scoring function д is thus defined as:

д(x) = wT
o h3 + bo (4)

wherewo and bo are the weight vector and the bias in the output

layer. The output layer of the network consists of m units, each

producing a score for each of them documents.

We note that in this work we wish to keep the design of our

input layer and network architecture simple as these details, while

important and consequential, are not germane to the topic of this

work.We leave the exploration ofmore sophisticated representation

of groups of input documents and advanced layers as future work.

4.2 Extension to Arbitrarily Long Lists

The domain of the function д(·) presented in the previous section

is Xm
withm fixed. As noted earlier, in learning-to-rank, it is often

the case that the list size (i.e., number of documents retrieved for

a query) varies between queries. That important detail poses a

challenge when designing and training a GSF.

Addressing this challenge by brute-force, one may setm to be the

corpus size and subsequently zero-pad input lists during training

and inference. To state the obvious, the resulting network clearly

does not scale to real-world corpora. Moreover, given the enormity

of the parameter space, training such a network becomes prohibitive

and any resulting model is unlikely to be effective.

A more viable solution, and one that we adopt to extend GSFs,

is the following: Given a list of documents x of an arbitrary size n
and a GSF д : Xm → Rm , we propose to compute д(.) on size-m
permutations of x and accumulate scores along the way.

Let Πm (x) denote a set of all possible n!
(n−m)!

permutations of

sizem of the n documents in x , and let πk ∈ Πm (x) be an element

of that set. A permutation πk can be understood as a group ofm
documents. In our proposed method, we compute д(·) on πk for all

k . The vector of values д(πk) contains the scores of all documents

xi ∈ πk relative to other documents in that group. Group scores д
are subsequently used to compute a final score for all n documents.

To explain that, it helps to define the following function:

h(π ,x) =

{
д(π)|π −1(x), if x ∈ π

0, otherwise,
(5)

where we use π−1(x) to denote the position of x in π . The final
score f (·) is then calculated by the following equation:

f (x)|i =
∑

πk ∈Πm (x)

h(πk ,xi), 1 ≤ i ≤ n. (6)

Figure 1 illustrates one such f (·) in a simplified setting where

д(·) is bivariate and x is a list of 3 documents.

4.3 Efficient Training and Inference

One caveat of the extended GSF is the factorial growth of the space

of permutations Πm (.). For large values of n, the set Πm (x) grows
so intractably large that computing д(.) on the resulting groups and

aggregating group scores by Equation 6 quickly become prohibitive:

assuming the computational complexity of д(·) is O(m) such a

scoring paradigm has a complexity of O(m n!
(n−m)!

).

To reduce the complexity of GSFs, we propose to substitute the

summation in Equation 6 with an expectation as follows:

f (x)|i = Eπ ∋xi [д(π ,xi)|π −1(xi)], 1 ≤ i ≤ n. (7)

The expectation in Equation (7) can be approximated effectively

using Monte Carlo methods [31]. In our implementation, we use

the following sampling recipe: From each training sample with

document list x , we form groups by taking sub-sequences of a

randomly shuffled version of x .
Such down-sampling substantially reduces the time complexity

to O(mn). It is easy to show that, because each xi ∈ x appears in

exactlym groups, each document is equally likely to be compared

with other documents in the list. Moreover, a document’s position

in the group is also uniformly distributed. Given enough training

data, a GSF trained using this sampling strategy asymptotically

approaches a GSF trained with all permutations and is further

invariant to document order in the input list.

4.4 Loss Function

We train a GSF by optimizing the empirical loss in Equation (1) using

back-propagation. While in theory any arbitrary loss function ℓ(·)

can be used within this framework—more on this in Section 4.5—we

empirically found the cross-entropy loss to be particularly effective.

We define this loss as follows:

ℓ(y, f (x)) = −

n∑
i=1

yi
Y

· logpi (8)

where Y =
∑
y∈y y is a normalizing factor, and pi ’s are the projec-

tion of scores f (x) onto the probability simplex using Softmax:

Softmax(t)|i =
eti∑n
j=1 e

tj
, 1 ≤ i ≤ n. (9)

An important property of this loss function is that it can be

incorporated into an unbiased learning-to-rank framework. Specif-

ically, it is easy to extend this loss to factor in Inverse Propensity

Weights [23, 34] to counter position bias in click logs. The IPW-

enabled variant of the loss in Equation (8) is as follows:

ℓ(y, f (x)) = −

n∑
i=1

wi · yi · logpi = −
∑
i :yi=1

wi · logpi , (10)

where wi is the Inverse Propensity Weight of the ith result, and

where it is assumed that y ∈ {0, 1} for click logs and that only one

document is clicked (i.e., Y = 1).

We use the above loss in the experiments reported in this work

and leave the exploration of more advanced loss functions as future

work. We will also defer a theoretical analysis of the cross-entropy

loss or its extensions in the context of GSFs to a future study.

4.5 Relationship with Existing Models

In this section, we discuss the relationship between some of the

existing learning-to-rank algorithms and our proposed model. In

particular, a GSF model can be reduced to most existing algorithms

by way of tuning a few knobs including group sizem, loss func-

tion ℓ(·), and the score aggregation function f (·). This includes
RankNet [6], ListNet [8], and the work by Dehghani et al. [11]. Due

to space limitation, we only show the ListNet as an example.

A traditional listwise model uses a univariate scoring function

with a listwise loss that is computed over all documents in the list. It

is easy to see how a GSF can be modified and reduced to a univariate

function with a listwise loss: Fixm = 1 for д(·), define f (·) as in
Equation (7), and plug any listwise loss ℓ(·) into Equation (1).

Let us go through this exercise by presenting a configuration

that transforms our GSF model to ListNet [8]. Given the univariate

nature of д(·) in the new configuration, define ŷ as

ŷ ≜ f (x), ŷi ≜ f (x)|i = д(xi), 1 ≤ i ≤ n. (11)

ListNet optimizes the cross-entropy loss between two ("top-one"

probability) distributions: One obtained from relevance labelsy and

another defined over scores ŷ. The following expression defines

the ListNet loss:

ℓ(y, ŷ) = −

n∑
i=1

eyi∑n
j=1 e

yj log
eŷi∑n
j=1 e

ŷj
. (12)

Using the above loss in Equation (1) completes the transformation

of a GSF to the ListNet model.

Note that the ListNet loss is almost identical to the loss used in

our GSF model as shown in Equation (8). ListNet, however, projects

labels to the probability simplex using the Softmax functionwhereas

in GSF labels are simply normalized. When yi = 0, we calculate

Table 1: List of baseline DNN models.

PointDNN A standard DNN model with a univariate scoring func-

tion and pointwise loss [39].

RankNet A neural network model with univariate scoring and

pairwise loss [5].

BiDNN The standard DNN model with bivariate scoring and

Sigmoid cross entropy [11].

Table 2: List of GSF variants.

PairGSF GSF reduced to a univariate scoring function with a

pairwise loss used in RankNet [6].

BiGSF GSF reduced to a bivariate scoring function similar

to [11], but where the aggregation function remains

as in Equation 7.

GSF(m) GSF model with group sizem.

zero loss in the GSF setup while this is not the case in the standard

ListNet loss; the ListNet loss is always non-zero. This difference

becomes important if one wishes to train a model in an unbiased

learning-to-rank framework [23, 33] where propensity weights can-

not be computed for non-clicked documents [34]. As such, having a

non-zero loss for non-clicked documents proves to be a significant

limitation of the ListNet loss in the context of unbiased learning.

5 EXPERIMENTAL SETUP

GSFs have theoretically interesting properties but their effective-

ness in practice remains to be verified empirically. In the remainder

of this paper, we set out to do just that by evaluating our proposed

method on two datasets. To conduct experiments, we have im-

plemented the GSF model in Tensorflow, a standard deep learning

platform. In order to facilitate reproducibility of the reported results,

we open source our code within the the TF Ranking library [28].

Moreover, in this section, we give a detailed description of our

experimental design, setup, and model hyper-parameters.

5.1 Baseline Learning-to-Rank Models

We compare our method with a number of existing learning-to-rank

algorithms that fall into two categories: DNNmodels and tree-based

models. Table 1 summarizes a list of DNNmodels we use as baselines

in our experiments. In this table, PointDNN and RankNet represent

the existing DNN models with a univariate scoring function in the

learning-to-rank literature. BiDNN is a recently proposed model

that takes a pair of documents and jointly computes preference

scores [11]. As for tree-based models, we primarily use the state-

of-the-art MART and LambdaMART [6] algorithms as a baseline

to compare with. In general, tree-based models cannot efficiently

handle high-dimensional sparse features such as document text.

Therefore, where we compare DNNs and tree-based models we do

so by training amodel with dense features only. Furthermore, where

possible, we also explore a hybrid approach in which predictions

from the DNN models are used as input features for tree-based

models. Such a hybrid approach enables us to incorporate sparse

features into tree-based models; we compare hybrid models with

both standalone DNN and tree-based models in our experiments.

For completeness, Table 2 summarizes the different GSF variants

considered in the following sections.

5.2 Datasets

We conduct a first set of experiments on a click dataset that is

obtained from search logs of one of the largest commercial email

search engines. In this service, a maximum of 6 results are returned

and presented to users in an overlay. The overlay disappears after

a click and the clicked result is then displayed. As a result, at most

one click is obtained per query session. For this dataset, we discard

all sessions that do not contain a click. For sessions with a click, we

keep all 6 displayed documents and their click/no-click is recorded

as relevance labels. This process results in approximately 150 mil-

lion sessions in total. We sampled 5 million sessions to construct a

held-out test set and used the rest for training and validation with

a 9 : 1 ratio. To train BiDNN and BiGSF, we sample all pairs where

one document is clicked.

The features in this dataset consist of both dense and sparse

features. The dense features include query-document matching

features like BM25. These types of features are the primary fea-

tures used in traditional learning-to-rank algorithms [24]. Recently,

sparse features were shown to be effective through embedding in

an end-to-end deep neural network model [11]. Our click dataset

contains n-grams from query strings and document subjects as

sparse features. The average of the embedding vectors for n-grams

in a query or document subject is used as the feature representation.

The second dataset used in our experiments is the publicly avail-

able MSLR-WEB30K [29]. This is a large-scale learning-to-rank set

that contains 30,000 queries. On average there are 120 documents

per query and each document has 136 numeric features. All doc-

uments are labeled with graded relevance from 0 to 4 with larger

labels indicating a higher relevance. We evaluate the models on

Fold 1 of this dataset. Results obtained on the other folds are similar.

5.3 Hyperparameters and Training

We build the DNN models using a 3-layer feed-forward network.

On the Email dataset, hidden layer sizes are set as 256, 128 and 64

for h1, h2 and h3 respectively. We set the learning rate to 0.1 and

training batch size to 100. For sparse features, we set the embedding

dimension to 20. Larger embedding dimensions (e.g., 100), learning

rates (e.g., 0.2, 0.3), and layer sizes (e.g., 512 or 1024) were tested

but no significant difference was observed. For this dataset, we use

unbiased learning-to-rank techniques to overcome click bias [23, 34]

and to that end, we optimize the weighted variant of the cross-

entropy loss as shown in Equation (10) during training.

In models trained on Web30K, hidden layers have 64, 32, and 16

units instead with batch normalization between consecutive layers.

A learning rate of 0.005 is used and training batch size is set to

128. These hyper-parameters were found to be effective through

fine-tuning on the validation set. We train the model for 30,000

steps and evaluate the final model. Finally, when aggregating losses

from queries in a mini-batch, a query’s loss is weighted by the sum

of the relevance grade of its documents.

For both datasets, we use Adagrad to optimize the objective.

5.4 Evaluation

For experiments on the Email dataset, we report an Inverse

Propensity Weight (IPW) enabled variant of mean reciprocal rank

(MRR) [33]. Such a weighted metric allows us to correct for the

1 2 3 4 5 6
Group Size m

0.5

1.0

1.5

2.0

2.5

3.0
R

el
at

iv
e

W
M

R
R

Im
pr

ov
em

en
t

(%
)

All Features

Dense Features

Figure 2: RelativeWMRR improvement over PointDNN for

GSF models with different group sizes using dense features

and all (dense and sparse) features on the Email dataset.

1 2 4 8 16 32 64 128
Group Size m

43

44

45

46

47

N
D

C
G

(%
)

NDCG@1

NDCG@5

NDCG@10

Figure 3: NDCG at rank positions 1, 5, and 10 (in percentage)

for GSFs with different group sizes on the Web30K dataset.

position bias that exists in click logs. Let N denote the number of

test sessions and ranki be the rank of the clicked document for the

ith session, then weighted MRR is calculated as follows:

WMRR =
1∑N

i=1wi

N∑
i=1

wi
ranki

(13)

wherewi is the IPW of the clicked document for the ith session.

For experiments on the Web30K dataset, we run 10 trials of

every model configuration and report mean Normalized Discounted

Cumulative Gain [18] at rank positions 1, 5, and 10 along with 95%

confidence intervals. Note that when computing NDCG, queries

with no relevant documents are discarded from the evaluation set.

Also, each trial may produce a different model given the same hyper-

parameters due to the stochastic nature of network initialization,

as well as batch-level and query-level shuffling of documents.

6 EXPERIMENTAL RESULTS

In this section, we report the results of our experiments. We first ex-

amine the effect of group sizesm on GSF models. We then compare

GSFs with the state-of-the-art learning-to-rank algorithms.

6.1 Effect of Group Size

As discussed in Sections 4.2 and 4.3, while a GSF can easily and

efficiently extend to a variable list size n, the group sizem must be

fixed before the construction of the model. To study the effectm
has on resultant models, we conduct experiments with different

configurations on both the Email and Web30K datasets.

BiDNN PairGSF GSF(1) BiGSF GSF(2)
0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e
W

M
R

R
Im

pr
ov

em
en

t
(%

)

All Features

Dense Features

Figure 4: RelativeWMRR improvements over PointDNN on

all features and dense features on the Email dataset. All im-

provements over PointDNN are statistically significant ac-

cording to a t-test with α < 0.01. The improvement of GSF

with group size 2, denoted GSF(2), over the other models is

also statistically significant at α < 0.05.

On the Email dataset, we train a PointDNN model (a univari-

ate scoring function with pointwise loss, see Table 1) as baseline.

We then measure improvements over this model, as indicated by

WMRR, of GSF models trained with different group sizes. We repeat

these experiments for two settings: (a) all features experiments use

both sparse query and document textual features as well as numer-

ical features; and, (b) dense features experiments use only the dense

numerical features. Results are illustrated in Figure 2.

From Figure 2, we can see that a GSF trained with all features

reaches its peak performance when m = 2, and GSF with dense

features reaches its peak when m = 3. We also observe that the

ranking quality decreases slightly when the group size becomes

larger. We believe this observation can be explained by the fact

that feed-forward networks usually are sensitive to the input order.

As group size increases, the number of permutations for a group

of documents grows rapidly. When this happens, because of the

particular sampling process we use to form groups from a document

list (see Section 4.3 for details), the approximation of the expectation

in Equation (7) becomes less accurate.

On the Web30K dataset, we measure the performance of GSF

models in terms of NDCG at rank positions 1, 5, and 10 and report

these metrics for various group sizes. Figure 3 illustrates the results

for groups of size 1, 2, 4, 8, 16, 32, 64, and 128.We observe an upward

trend as we increase the group sizem. The models with group size

m ≥ 8 are approximately 3% better than those with group size 1.

Noting that there are only dense features in the Web30K dataset,

this indicates that the extension of univariate scoring functions

to multivariate scoring functions could be particularly useful for

learning-to-rank models with dense features. Once again, for mod-

els with very large group sizes (m ≥ 32), we observe that NDCG

plateaus or drops slightly, which can be explained by inadequate

sampling and the growth of the space of permutations.

6.2 Comparison with Baseline DNNs

We are interested in the relative performance of GSF models when

compared with other baseline DNN algorithms. On the Email

dataset, we measure the gain inWMRR over the PointDNNmethod

obtained by PairGSF (univariate GSF with pairwise loss), BiGSF

Table 3: Relative WMRR improvement over LambdaMART

on the Email dataset. ∗ and + denotes statistically significant

improvements over LambdaMART with dense features and

all other models in the table, both using t-test with α < 0.01.

Dense Features All Features

LambdaMART 0.00% –

GSF(2) 0.30%
∗

2.40%
∗

LambdaMART+GSF(2) 0.95%
∗

3.42%
∗+

(bivariate GSF), and finally GSF models with group sizes 1 and 2—

we denote the last two models as GSF(1) and GSF(2) for brevity. To

provide a reference point for how well GSF models perform, we

also report the gain from the BiDNN model. The results of these

comparisons on Email data is illustrated in Figure 4.

All five models achieve significant improvements over the

PointDNN baseline. Among them, GSF(2) yields the highestWMRR

for both "all" and "dense" feature settings. For example, using all fea-

tures GSF(2) achieves a 2.5% improvement over the PointDNN base-

line. This improvement is significantly better than the gain from

BiDNN, an improvement of less than 1.5%.

If we consider dense features only, BiDNN, BiGSF, and GSF(2)

models—all bivariate functions—lead to better results than GSF(1),

a univariate function. This suggests that scoring documents jointly

proves particularly effective when only dense features are available.

We also compared PairGSF, BiGSF, GSF(1) and GSF(2) in terms

of NDCG@5 on the Web30k dataset. Results are shown in Table 4(a)

which confirm again that the GSF is indeed more effective than the

univariate and bivariate scoring functions.

6.3 Comparison with Tree-based Models

We next compare the proposed GSF models with tree-based models

in both a standalone and a hybrid approach. In the hybrid setting—

henceforth, referred to as LambdaMART+GSF—the output of the

GSF model is used as a feature in LambdaMART. We use Lamb-

daMART as reference because it has been shown to yield state-of-

the-art performance in public learning-to-rank competitions [10].

Table 3 shows the results we obtained on the Email dataset. For

scalability reasons, we use an internal implementation of Lamb-

daMART on this dataset. As LambdaMART cannot natively handle

raw textual features, we only report the relative improvement over

LambdaMART with dense features. Based on the results in Figure 4,

we use GSF(2) as the representative GSF model for this experiment.

From Table 3, we see that GSF significantly outperforms Lamb-

daMART in (a) dense features regime (where GSF slightly out-

performs LambdaMART), and (b) all features regime (where the

performance gap is much more significant). This demonstrates the

importance of incorporating raw textual features and the effective-

ness of GSF models in leveraging them. Furthermore, the hybrid

LambdaMART+GSF approach achieves an even better performance,

reaching gains as large as 3.42% over LambdaMART, a statistically

significant improvement over all other models in Table 3. This vali-

dates the complementary nature of our method to LambdaMART

and the benefits of the hybrid approach.

Table 4 shows the results on the Web30K dataset. For repro-

ducibility, we use several learning-to-rank models implemented in

the open-source Ranklib toolkit
1
as baselines.

1
https://sourceforge.net/p/lemur/wiki/RankLib/

Table 4: A comparison on the Web30K dataset of (a) various

GSF flavors and weaker baselines by NDCG@5; (b) strong

baseline models and the best-performing GSF variant by

NDCG at different cut-offs with 95% confidence intervals

from 10 trials; and, (c) highest performing trial as measured

by NDCG at different rank positions on the validation set.
∗

denotes statistically significant differences betweenGSF and

LambdaMART using t-test with α < 0.05.
(a)

RankNet RankSVM PairGSF BiGSF GSF(1) GSF(2) GSF(64)

32.28 34.79 40.40 41.10 43.14 43.72 44.46

(b)

MART LambdaMART GSF(64)

NDCG@1 43.73 (±0.01) 45.35 (±0.06) 44.21 (±0.18)

NDCG@5 43.96 (±0.03) 44.59 (±0.04) 44.46 (±0.12)

NDCG@10 46.40 (±0.02) 46.46 (±0.03) 46.77 (±0.13)

(c)

MART LambdaMART GSF(64)

NDCG@1 43.76 45.27
∗

44.47

NDCG@5 44.03 44.56 44.63

NDCG@10 46.44 46.52 47.01
∗

We observe that all GSF variants in Table 4(a), outperform

RankNet and RankSVM by a very large margin. A comparison of

GSFs with MART and LambdaMART is shown in Table 4(b), where

we report mean NDCG at various rank positions over 10 trials along

with 95% confidence intervals. From the table, it is clear that the

GSF setting with group sizem = 64 yields statistically significant

improvements over MART at all NDCG cut-offs. On the other hand,

GSF(64) falls short of LambdaMART as measured by NDCG@1, is

on par in terms of NDCG@5 (i.e., confidence intervals overlap), and

performs significantly better than LambdaMART as indicated by

NDCG@10. For completeness, we select the trial with the highest

NDCG@1 on the validation set and measure its NDCG@1 on the

test set. We repeat this for NDCG@5 and NDCG@10 and report

the results in Table 4(c). The conclusions from Table 4(b) still hold.

The results from Table 4 are interesting. We believe the reason

LambdaMART performs better than GSF at NDCG@1 is a result of

the differences between loss functions: in the existing GSF setup, we

use the cross-entropy loss which is not position-dependent, whereas

LambdaMART’s loss is designed to take position into account.

Our observations from a comparison of GSFs with tree-based

models lead us to believe that the ranking quality of GSFs is at

least on par with state-of-the-art tree-based models. As the number

of training examples increases by orders of magnitude and when

sparse textual features are present in a feature set, GSFs yield higher

quality models and prove more scalable.

7 DISCUSSION AND FUTUREWORK

We began this work by stating a hypothesis, that the relative rele-
vance of an item would be more accurately estimated if relevance

scores for all items were computed jointly. Experiments conducted

in the last section shed light on that hypothesis and the questions

raised earlier in this work. The results are encouraging.

GSFs, while not yet a fully mature deep learning framework,

provide a blueprint for designing multivariate scoring functions

for ranking. Analogous to the use of Recurrent Neural Networks

in Natural Language Processing and Convolutional Neural Net-

works in Computer Vision, we believe GSFs are inspired by and are

more appropriate for ranking, where relativity plays a large role.

Moreover, GSFs incorporate local feature distributions by simul-

taneously considering multiple candidate documents, mimicking

user behavior more closely. Thus, we believe that GSFs provide

an opportunity for the advancement of learning-to-rank research

using deep learning.

There are, for example, many components that warrant a closer

look. A naïve concatenation of a list of input documents, as done in

this work, may not be effective at preserving documents’ structure

andmay lead to a loss of signals useful for comparison of documents.

A feed-forward network may not be appropriate for capturing

similarities or differences between documents. Finally, while the

cross-entropy loss proved effective in practice, (a) it lacks theoretical

justification and (b) a metric-driven loss may lead to better overall

performance. We plan to pursue this direction of research and

continue to improve our understanding of multivariate scoring and

ranking functions. In order to facilitate and share this research, we

open source GSFs within the TF Ranking library [28].

8 ACKNOWLEDGMENTS

This work would not be possible without the support provided by

the TF-Ranking team.

REFERENCES

[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.

Diversifying Search Results. In Proc. of the 2nd ACM International Conference on
Web Search and Data Mining. 5–14.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking refinement. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval. ACM, 135–

144.

[3] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,

Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2slate: Re-ranking and slate

optimization with rnns. arXiv preprint arXiv:1810.02019 (2018).
[4] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A

Neural Click Model for Web Search. In Proc. of the 25th International Conference
on World Wide Web. 531–541.

[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to rank using gradient descent. In Proc. of
the 22nd International Conference on Machine Learning. 89–96.

[6] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report Technical Report MSR-TR-2010-82. Microsoft

Research.

[7] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to Rank

with Nonsmooth Cost Functions. In Proc. of the 19th International Conference on
Neural Information Processing Systems. 193–200.

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to

rank: from pairwise approach to listwise approach. In Proc. of the 24th Interna-
tional Conference on Machine Learning. 129–136.

[9] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based

Reranking for Reordering Documents and Producing Summaries. In Proc. of the
21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. 335–336.

[10] O. Chapelle and Y. Chang. 2011. Yahoo! Learning to Rank Challenge Overview.

In Proc. of the Learning to Rank Challenge. 1–24.
[11] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce

Croft. 2017. Neural Ranking Models with Weak Supervision. In Proc. of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 65–74.

[12] Fernando Diaz. 2007. Regularizing query-based retrieval scores. Information
Retrieval 10, 6 (2007), 531–562.

[13] Bora Edizel, Amin Mantrach, and Xiao Bai. 2017. Deep Character-Level Click-

Through Rate Prediction for Sponsored Search. In Proc. of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
305–314.

[14] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of Statistics 29, 5 (2001), 1189–1232.
[15] Fredric C. Gey. 1994. Inferring Probability of Relevance Using the Method of Lo-

gistic Regression. In Proc. of the 17th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval. 222–231.
[16] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance

Matching Model for Ad-hoc Retrieval. In Proc. of the 25rd ACM International
Conference on Information and Knowledge Management. 55–64.

[17] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.

2013. Learning Deep Structured Semantic Models for Web Search Using Click-

through Data. In Proc. of the 22nd ACM International Conference on Information
and Knowledge Management. 2333–2338.

[18] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.
[19] Zhengbao Jiang, Ji-RongWen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie, and

Ming Yue. 2017. Learning to Diversify Search Results via Subtopic Attention. In

Proc. of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 545–554.

[20] Thorsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data.

In Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 133–142.

[21] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proc. of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
217–226.

[22] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.

2005. Accurately Interpreting Clickthrough Data As Implicit Feedback. In Proc. of
the 28th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. 154–161.

[23] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

Learning-to-Rank with Biased Feedback. In Proc. of the 10th ACM International
Conference on Web Search and Data Mining. 781–789.

[24] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[25] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,

USA.

[26] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match Using

Local and Distributed Representations of Text for Web Search. In Proc. of the 26th
International Conference on World Wide Web. 1291–1299.

[27] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.

2017. DeepRank: A NewDeep Architecture for Relevance Ranking in Information

Retrieval. In Proc. of the 2017 ACM Conference on Information and Knowledge
Management. 257–266.

[28] Rama Kumar Pasumarthi, Xuanhui Wang, Cheng Li, Sebastian Bruch, Michael

Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan

Wolf. 2018. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank.

(2018). arXiv:arXiv:1812.00073

[29] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. (2013).

arXiv:1306.2597

[30] Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang, and Hang Li. 2008.

Global ranking using continuous conditional random fields. In Proc. of the 21st
International Conference on Neural Information Processing Systems. 1281–1288.

[31] Christian P. Robert and George Casella. 2005. Monte Carlo Statistical Methods.
Springer-Verlag.

[32] Michael Taylor, John Guiver, Stephen Robertson, and TomMinka. 2008. SoftRank:

Optimizing Non-smooth Rank Metrics. In Proc. of the 1st International Conference
on Web Search and Data Mining. 77–86.

[33] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In Proc. of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 115–124.

[34] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc

Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal

Search. In Proc. of the 11th International Conference on Web Search and Data
Mining. 610 –618.

[35] Fen Xia, Tie-Yan Liu, JueWang, Wensheng Zhang, and Hang Li. 2008. Listwise ap-

proach to learning to rank: theory and algorithm. In Proc. of the 25th International
Conference on Machine Learning. 1192–1199.

[36] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2016. Modeling

Document Novelty with Neural Tensor Network for Search Result Diversifica-

tion. In Proc. of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 395–404.

[37] Jun Xu and Hang Li. 2007. AdaRank: A Boosting Algorithm for Information

Retrieval. In Proc. of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. 391–398.

[38] Peng Ye and David Doermann. 2013. Combining preference and absolute judge-

ments in a crowd-sourced setting. In ICML 2013 Workshop on Machine Learning
Meets Crowdsourcing.

[39] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.

Situational Context for Ranking in Personal Search. In Proc. of the 26th Interna-
tional Conference on World Wide Web. 1531–1540.

http://arxiv.org/abs/arXiv:1812.00073
http://arxiv.org/abs/1306.2597

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Groupwise Scoring Functions
	4.1 Parameterization by DNNs
	4.2 Extension to Arbitrarily Long Lists
	4.3 Efficient Training and Inference
	4.4 Loss Function
	4.5 Relationship with Existing Models

	5 Experimental Setup
	5.1 Baseline Learning-to-Rank Models
	5.2 Datasets
	5.3 Hyperparameters and Training
	5.4 Evaluation

	6 Experimental Results
	6.1 Effect of Group Size
	6.2 Comparison with Baseline DNNs
	6.3 Comparison with Tree-based Models

	7 Discussion and Future Work
	8 Acknowledgments
	References

