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ABSTRACT
Email has been an essential communication medium for
many years. As a result, the information accumulated in
our mailboxes has become valuable for all of our personal
and professional activities. For years, researchers have been
developing interfaces, models and algorithms to facilitate
search, discovery and organization of email data. In this
survey, we attempt to bring together these diverse research
directions, and provide both a historical background, as
well as a comprehensive overview of the recent advances
in the field. In particular, we lay out all the components
needed in the design of a privacy-centric email search engine,
including search interface, indexing, document and query
understanding, retrieval, ranking and evaluation. We also
go beyond search, presenting recent work on intelligent task
assistance in email. Finally, we discuss some emerging trends
and future directions in email search and discovery research.
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1
Introduction

Email has thrived as an electronic communications medium for at
least five decades, with the first published email standards dating back
to Bhushan et al. (1973). While the basic email format — a header
containing email metadata and a body containing the message content
— remained more or less unchanged through the decades, the types of
information shared through email have been continuously evolving.

While email was originally developed with organizational and en-
terprise communications in mind, the success of web-based services
like Hotmail and Yahoo! Mail in the late 1990’s made email a popular
consumer communication tool. Over the years, and with the rise of
the various messaging applications, there have been reports on a de-
cline in interpersonal email communications, especially among younger
users (Tsotsis, 2011). However, consumer email traffic has still consis-
tently kept growing. This discrepancy can be attributed in large part
to the rise of machine-generated messages, such as store promotions,
newsletters, receipts and bills (Maarek, 2017).

Despite advances in instant communications, email also remains a
vital communication tool in the enterprise setting. A recent survey of
1,000 U.S. employees by Naragon (2018) finds that users spend more
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than 3 hours on a weekday checking their work email. Roughly 50% of
survey participants check both their personal and work email at least
every few hours. Naragon (2018) also reports that in a work setting,
email is a more preferred communication medium than either instant
messaging (11% preference), or phone (16%), and is tied in popularity
with face-to-face communications (31%).

The popularity of email in both our personal lives and in the work-
place is in part due to its use for collaborative task management. Col-
laborative task management involves reminder creation, identification
of messages related to the task, synthesis of information from these
messages, and interaction with others in order to complete the task.
Regardless of its limitations, email is often the preferred medium for
these activities (Whittaker, 2005).

As a confluence of these factors, email remains a reliable repository
of information about our personal and organizational communications,
social networks, activities, financial transactions, travel plans, and
work commitments. As our mailboxes grow, so does the need for the
development of new effective approaches to information finding in this
repository. As researchers repeatedly discover, there is a substantial
difference between search in public data (e.g., web search) and private
email collections.

First, chronology plays an important role for both email search algo-
rithms and interfaces (Dumais et al., 2003). Second, corpus size of single
mailbox is drastically smaller than that of a large web corpus. This
often leads to low recall, especially for longer queries, or when there is a
vocabulary mismatch between user queries and their mailboxes (Carmel
et al., 2015; Li et al., 2019b). Finally, developing effective search algo-
rithms while stringently preserving the privacy of user information is a
difficult research challenge (Bendersky et al., 2018).

Therefore, in this survey, we provide an overview of the current
state-of-the art techniques that focus on these unique aspects of email
management, search and discovery. Since we assume that most of our
readers are more familiar with the web search counterparts of these
techniques, we contrast and draw comparisons between web and email
search, when appropriate.
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1.1 Email Statistics

Before diving into describing the various email use cases, in this section
we provide an overview of email usage, including general statistics, the
demographic characteristics of its user base, and modes of email access.

The Radicati Group, Inc. (2019) report1 states that the total number
of emails sent and received per day will have exceeded 300 billion in
2020, and that email will be used by 4 billion people, over half of the
world’s population. Despite email being a mature technology, the report
projects steady year-over-year growth of roughly 4% for the next several
years. The Radicati Group, Inc. (2015) report also breaks down these
statistics by business and consumer users, finding that the number
of business emails exceeds the number of consumer emails sent and
received, with both numbers projected to grow. The growth in the
consumer email traffic is cited to be mainly due to machine-generated
email, not interpersonal communication, which is consistent with other
reports (Maarek, 2017).

These statistics demonstrate the importance of email in the business
setting, and allow to draw a clear distinction between the personal email
use case, and the enterprise use case (Narang et al., 2017). This puts
business email search and discovery in a clear connection to the existing
work on enterprise search (Kruschwitz and Hull, 2017), with the added
constraint that the corpora (user mailboxes) are private, rather than
shared across the organization.

Narang et al. (2017) investigate email usage in a large organization
(Microsoft) and report on the activities performed by a large sample
of close to 300,000 US employees. In particular, they note that as
mailbox size increases, people are much more likely to spend time on its
organization by deleting, moving or marking email. Search activity also
has strong positive correlation with the mailbox size. Activity analysis
shows that 20%− 35% of all email activity involves organization, and
10%− 20% involves search, with the variation mainly attributed to the
mailbox size and email deletion rate.

1The Radicati Group is an analyst firm specialized in tracking emerging com-
munication and collaboration technologies, providing quantitative and qualitative
market research. In this survey, we are quoting statistics provided in their 2015, 2018
and 2019 executive summaries, which are available online at www.radicati.com.

www.radicati.com
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For the personal email use-case, Carmel et al. (2017b) provide a
fascinating peek into the demographics of the Yahoo! Mail US user base.
Overall, they find that email users are older and more affluent than
both the average web searchers, as well as the overall US population.
They are also more likely to be female – 58.4% of all email searches
come from women, as opposed to 49.7% of web searches.

While in the early days of email desktop clients using POP or IMAP
were more prevalent, today many users use webmail or mobile clients to
access their email. Both webmail and mobile email clients are usually
controlled by a large email provider that also controls a centralized
secure storage for all user mailboxes. A recent Litmus Email Analytics
(2019) report indicates that only 18% of the email opens today can
be attributed to desktop clients. The same report lists Gmail, Yahoo!
Mail and Outlook.com as the most used webmail clients. Examples of
international webmail providers also include, among others, QQ Mail
by Tencent, 163/126 Mail by NetEase, Mail.Ru, Yandex, ProtonMail
and GMX Mail.

As most people access their email today through one of these large-
scale centralized email providers, in the remainder of this survey we
shall assume that the mailboxes are centrally and securely stored and
managed. This setting provides the opportunity to develop new search
and discovery capabilities using a large-scale dataset containing millions
of user mailboxes. It also carries the challenge of developing these
capabilities while maintaining user trust through audited access, data
anonymization, and data erasure compliance.

Indeed, breaking user trust has been shown to have major implica-
tions for email providers. This is evidenced by negative public reaction
to services like Google Buzz, which “automatically searched the user’s
most emailed contacts and added them as followers, thereby inadver-
tently exposing potentially sensitive communications” (Nowak, 2010),
or Oath (Yahoo mail owner) purportedly selling consumer preferences
gleaned from promotional emails to advertisers (Liao, 2010).

Therefore, the tension between the opportunities for novel user
experiences and the challenge to preserve user trust is a major recurrent
theme that runs throughout the email search and discovery research,
and is discussed extensively in this survey. In particular, we dedicate
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Chapter 7 to the challenges of privacy-preserving management of user
data.

1.2 Email Management and Finding Strategies

In the previous section, we established the scale of email usage, and the
importance of mailboxes as personal and organizational information
repositories. In this section, we focus on the way that users keep track
of and find information in these repositories in real-world settings.

The goal of the majority of email searches is re-finding information
in previously seen emails, which relates it to the known-item search
problem (Craswell et al., 2005), where only one particular, known in
advance item can fully satisfy the user information need. It is not
surprising, therefore, that emails are frequently revisited, and most of
the revisits are information seeking (Alrashed et al., 2018).

Some information types that users seek during email revisits are
listed in Table 1.1. Interestingly, finding task-related instructions is
the most common reason for email revisit, which is in line with the
prevalence of email usage for task management that is noted by other
researchers as well (Whittaker, 2005; Lampert et al., 2010).

Table 1.1: Distribution of information types users are looking for in email revisits,
as reported in a survey of 395 corporate email users (Alrashed et al., 2018).

Type of Information Percent
Instructions to perform a certain task 24.1%
A document (e.g., attachment, link) 22.0%
An answer to a question that was previously asked 16.3%
status update 10.2%
A solution to a problem 9.0%
A task request to you 4.9%
A person/customer (e.g., contact information) 2.0%
An appointment/event 2.0%
Machine generated message (e.g., reservation) 0.8%
Other 8.6%

            

Ai et al. (2017) conduct a survey of 324 users to examine what
message attributes facilitate searcher recall. They find that, unlike in
web search, email searchers tend to remember more details about the
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provenance of the messages they are interested in (e.g., sender and sent
date – see Figure 1.1). This reflects greater familiarity with email than
web pages, and re-affirms the known-item approach to email search.
Ai et al. (2017) also find that this good attribute recall is not always
reflected in the search query length and structure. Based on a sample
of 2 million queries from Outlook email search logs, they report that
advanced syntax is used in only 18% of the queries, and most of these
advanced queries contain either from: or to: filters.
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Figure 1.1: Percentage of searchers who remembered certain attributes, compared
between email and web searches, based on a survey of 324 regular email users,
conducted by Ai et al. (2017).

Users may also use other email discovery mechanisms beyond search
to find the relevant information in their mailboxes. Examples of email
discovery mechanisms include content recommendation, classification
and information extraction. For instance, some email services can auto-
matically tag emails with labels such as “Travel” or “Finance” (Grbovic
et al., 2014) and extract useful information like bill due dates or hotel
check-in times (Sheng et al., 2018). This can help with relevant infor-
mation discovery without the need for conducting an explicit search.

Broadly speaking, most email search and discovery mechanisms
discussed in this survey are in the realm of personal information man-
agement (PIM). PIM studies the organization and maintenance of
information items stored for the purpose of completing personal or
work-related tasks and activities. In fact, Whittaker et al. (2006) argue
that email plays a critical role in three key PIM areas, including task
management, personal archiving, and contact management.
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One notable exception to viewing email search and discovery as
a sub-field of PIM, is access to mailboxes by third-parties who are
not the persons to whom the email was addressed. Such access is
conducted in cases such as legal e-discovery for litigation or government
investigations (Oard and Webber, 2013), historical research (Task Force
on Technical Approaches for Email Archives, 2018), or logging by
organizational mail auditing tools (Microsoft 365, 2020). As this survey
takes a user-centric approach to email search and discovery, most of
these cases are outside of our scope. However, some of the described
techniques are likely to be helpful in finding relevant information by
third-parties as well.

1.3 Survey Scope and Organization

The majority of the research on email search and discovery that this
survey draws upon has appeared over the past decade in a broad
spectrum of information retrieval and data mining conferences including
(but not limited to)

• ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval – https://dl.acm.org/conference/sigir

• ACM International Conference on Web Search and Data Mining –
https://dl.acm.org/conference/wsdm

• ACM SIGKDD Conference on Knowledge Discovery and Data
Mining – https://dl.acm.org/conference/kdd

• The Web Conference (formerly known as International World
Wide Web Conference, or WWW) – https://dl.acm.org/confere
nce/www

• The Conference on Information and Knowledge Management –
https://dl.acm.org/conference/cikm

• Text REtrieval Conerence – https://trec.nist.gov/

We made our best attempt to provide a comprehensive survey
of this large body of research, providing some historical perspective,

https://dl.acm.org/conference/sigir
https://dl.acm.org/conference/wsdm
https://dl.acm.org/conference/kdd
https://dl.acm.org/conference/www
https://dl.acm.org/conference/www
https://dl.acm.org/conference/cikm
https://trec.nist.gov/
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organizing it into broad themes, and finally suggesting some directions
for future research. We also attempted to provide a perspective – based
on the existing research, as well as our own experience – on the unique
challenges facing the researchers in this field, contrasting it to the more
commonly known web search setting.

Prerequisites This survey assumes minimal prior knowledge and
should be relatively self-contained. We keep most of the discussions
at a high level of abstraction, and refer the readers to the original
research papers for technical details. However, some grasp of standard
notation, concepts and techniques in information retrieval and machine
learning can be beneficial for getting the most out of this survey. We
suggest the following introductory and freely available books as useful
accompanying references:

• Introduction to Information Retrieval, by Schütze et al. (2008)

• The Elements of Statistical Learning, by Hastie et al. (2009)

Target Audience We hope that the following audiences will find this
survey useful:

• Search practitioners and engineers who want to be exposed to the
scientific fundamentals of email search (or other personal search
scenarios)

• Industry and academic researchers and graduate students in the
fields of information retrieval, machine learning or natural lan-
guage processing who are interested in better understanding the
state-of-the-art and the emerging trends in email search and dis-
covery.

Outline The remainder of this survey is organized as follows. In Chap-
ter 2 we provide a high-level overview of the architecture of a standard
email search engine. As there is no previously published work that
summarizes such architecture, we do our best to synthesize multiple
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disparate research avenues, and compare the different design and ar-
chitecture choices to web search engines, which are likely to be more
familiar to our readers.

Chapter 3 is dedicated to the evolution of interfaces for email
search and discovery, from manually defined folders and exact search to
relevance-based ranking and knowledge panels. In Chapters 4 and 5, we
discuss the various aspects of email and query understanding, respec-
tively. In these chapters, due to the heterogeneous topics discussed, we
often go beyond the realm of email search and delve into other aspects
of email management and discovery, including spam detection, labeling
and templatization.

In Chapter 6, we once again broaden our scope beyond search and
discuss various assistive applications that allow users to effectively find,
manage and create email content. In this chapter, we also often go
beyond the boundaries of the mailbox, and discuss how assistance can
work across multiple personal content types (e.g., email, calendar entries
or personal files).

Chapter 7 is dedicated to management of user data in email search
and discovery. We discuss the best practices of privacy-preserving treat-
ment of user data, as well as learning from sparse and biased click data
in email search. We speculate on possible future research directions in
personal search and discovery in Chapter 8, and conclude the survey in
Chapter 9.

Special considerations There are three important considerations that
we would like our readers to keep in mind as they make their way
through this survey.

First and foremost, data and user privacy is an important leitmotif
in email search and discovery. Our goal is to elucidate the importance
of these topics, and the degree to which they affect how the research
in the field is conducted. Therefore, we include a chapter dedicated
to privacy-preserving user data management, and return to this topic
throughout the survey.

Second, when possible, we try to draw parallels between email and
web search. The latter may be a more familiar territory to many of our
readers, as it has been one of the focal points of information retrieval
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research for the past two decades. Contrasting email and web search also
aids in highlighting the unique aspects of email search and discovery
algorithms.

Finally, the readers are likely to notice that while the title of the
survey focuses on email search, some chapters broaden their scope
beyond email to other types of personal content, and modes of content
management and discovery that go beyond search. This is by design,
rather than mere lack of focus. We strongly believe that the future of
personal content search and discovery lies in integrative approaches
that seamlessly combine personal information across various content
silos to best assist the users in completing their personal or work tasks.



2
The Anatomy of an Email Search Engine

In this chapter we provide a high level exposition of the critical compo-
nents of an email search engine. To better motivate this exposition, it
is important to draw some comparisons between the architecture of an
email search engine, and that of a generic, non-private search engine.
Web search is the most commonly used example of a search system,
and one which many of the readers may have some familiarity with.
Therefore, in what follows we elaborate on several key aspects that
distinguish between email and web search.

Corpus size The users of modern web search engines, like Google,
Baidu, and Bing have access to hundreds of billions of web pages
(Google Search, 2018). In contrast, in email search, the users only
have access to their individual mailboxes, and therefore the number of
searchable documents is limited. Thus, the proportion of queries for
which no documents are retrieved is likely to be greater in email search
than in web search, and increasing recall is an important part of email
retrieval systems, and is further discussed in Section 2.3.3 and Section
5.3. It is important to note, however, that while the size of each user’s
corpus is small, the overall size of a large consumer or enterprise email

12
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service index (e.g., Gmail or Outlook.com) rivals that of any web search
engine. For instance, a recently released email statistics report (The
Radicati Group, Inc., 2018) states that: “In 2018, the total number of
business and consumer emails sent and received per day will exceed 281
billion”.

Links and anchor text Anchor text and link graphs have traditionally
been used in multiple components of large-scale web search engines,
from crawling (Olston and Najork, 2010) and ranking (Brin and Page,
1998) to test collection generation (Asadi et al., 2011). From the early
days of web search, link-based signals like PageRank (Brin and Page,
1998), HITS (Kleinberg, 1999), and SALSA (Lempel and Moran, 2001)
have helped these search engines to serve relevant, high-quality results
even for very short and ambiguous queries (Najork, 2007). In contrast,
in email search anchor text and links are non-existent, as there are no
cross-references among user mailboxes. Instead, researchers working
on email search often rely on other features that are specific to email
structure, such as attachments, email threads and sender and recipient
information (Carmel et al., 2015; AbdelRahman et al., 2010) to improve
the quality of email search. More details on these structural features
are provided in Section 2.4.

Implicit user feedback Implicit user feedback, which is most commonly
derived from clicks on links on the search results page, has been success-
fully leveraged in web search applications for training machine learned
ranking models (Agichtein et al., 2006; Joachims, 2002). However, the
use of click data in email search ranking has been limited by the lack of
cross-user interactions with the same item. To overcome this limitation,
Bendersky et al. (2017) recently proposed a click aggregation-based
approach, which is discussed in more detail in Section 7.3.

Content and query dynamics While document freshness is an impor-
tant consideration in web search (Dai et al., 2011), web search exhibits
a wide spectrum of content and query dynamics. For instance, Kulkarni
et al. (2011) categorize intent dynamics in web search into three main
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categories: (a) zoom – intent zooms in on to the current event, (b) shift
– intent undergoes a gradual shift over time, and (c) static – relatively
stable intent over time. For the third intent type, document freshness
plays a lesser role than the long-term context of the past user behavior.
In contrast, email searchers exhibit a very strong bias towards recent
messages (Dumais et al., 2003). This is reflected by the fact that re-
sults in many of the popular email search interfaces are presented in
descending chronological order (see Section 3.2 and Section 2.3.2 for
more discussion on this phenomenon).

Adversarial content and spam While spam, phishing and other adver-
sarial content are prevalent in email, they are generally not addressed as
a part of the search architecture. Rather, all suspected spam emails are
grouped into a “Spam” folder and are ignored during the search process.
This is in contrast to web search, where adversarial approaches like link
manipulation, click baiting, and content plagiarism play an important
role in search engine design (Spirin and Han, 2012). We discuss the issue
of adversarial content filtering later on in this survey, in Section 4.1.1.

Search tasks It is also important to note the differences between
the tasks that the users are expecting to achieve via email search as
compared to web search. In web search, many search tasks and needs
can be categorized as general: users have a broad idea of what they
are trying to achieve, but do not have a particular web page in mind.
In email search, the tasks are specific as users are often looking for
a particular email or thread, related to their information need. This
type of search behavior falls under the category of known-item search
(Craswell et al., 2005). In a recent survey, Ai et al. (2017) found that
while in web search 42.9% of the users report that their search tasks
are general, the portion of general tasks in email search is only 9.1%.
In Section 2.5 we further discuss how the existing test collections and
metrics reflect this tendency.

Data privacy Unlike in web search, in email search both the content of
the users’ documents (emails) and their queries are of a private nature.
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Figure 2.1: An end-to-end email search engine architecture, as described in this
chapter. Solid arrows demonstrate the online flow of a search request. Dashed arrows
and shaded shapes indicate the offline evaluation process.

This requires researchers to employ privacy-preserving techniques when
examining either document (Di Castro et al., 2016b; Sheng et al., 2018)
or query (Foley et al., 2018) content. Privacy-preserving data process-
ing is often facilitated by techniques such as data de-identification,
k-anonymization or differential privacy. We discuss these technique in
detail in Section 7.1.

2.1 Architecture Overview

We now present an end-to-end architecture of an email search engine
and discuss its similarities and differences as compared to the standard
web search architectures. As shown in Figure 2.1 an email search engine
consists of the following modules.

(A) Search Interface – user interface used to perform the search
activity. It may be a page in a web browser, a desktop client, or a
mobile app. In Chapter 3 we provide some examples of email user
interfaces, and the principles that guide the development of these
interfaces.

(B) Query Processor – module that is responsible for rewriting
the input user query received from the search interface into its
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internal form, which may include synonym expansion, spelling
corrections, stemming, etc. We provide a detailed overview of the
most pertinent techniques for query processing for email search
in Chapter 5.

(C) Retrieval – a system that retrieves all the candidates that match
the user query from the index. In general, the retrieval system
has to be fast and lightweight, as it considers the contents of the
entire personal index. Standard retrieval optimization strategies
(Turtle and Flood, 1995) may be used. See Section 2.3 for more
details on the retrieval system.

(D) Personal Index – real-time and access-controlled indexing system
that processes incoming emails. Each search query is matched
against only emails belonging to the user who issued the query.
We go into more details of this index in Section 2.2.

(E) Ranker – re-orders the top results retrieved by the retrieval
system, either based on chronological ordering or some relevance
criteria. Oftentimes, learning-to-rank techniques are applied at
this stage to improve relevance (Carmel et al., 2017b; Zamani
et al., 2017). See Section 2.4 for more details.

(F) Logging – the logging system records the user’s interactions with
the search interface including queries, clicks, views, and the fea-
tures of the emails. It is important to note that since all the logged
content is private to the user, the email search logging system
often includes a privacy layer that applies data anonymization
techniques (e.g., k-anonymity or differential privacy) to facilitate
privacy-preserving data access during system development and
experimentation (Bendersky et al., 2017; Foley et al., 2018). We
discuss various techniques for data anonymization in Section 7.1.

(G) Evaluation – as common in search engines, evaluation is required
to continuously monitor the performance of the email search
engine, as well as for measuring the effect of new changes that are
introduced to any of its components. Evaluation can be done either
manually, using editorial ratings, or automatically by tracking the
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clicks and session metrics in the logs. We describe both types of
evaluation in Section 2.5 in more details.

(H) Editorial ratings – unlike in web search, where editorial ratings
can be done by third-party raters, in email search it is common
to use personal raters who are requested to issue queries and
evaluate results from their own mailboxes (Carmel et al., 2015;
Dumais et al., 2003). See Section 2.5.1 for more details on how
these personal editorial ratings are collected.

2.2 Email Indexing

While the indexing of public web documents is a frequently explored
topic in the information retrieval literature, there is much less published
work on indexing of private document collections, including email.
Therefore, while there is no single canonical publicly available work on
best practices for implementing an email message indexing system, in
this section we discuss some desiderata for such a system, and how they
have been addressed in prior work.

2.2.1 Access Controlled Indexing

Obviously, email messages are private, and should only be accessed
and retrieved by the user who owns the messages. This also affects the
extent to which researchers and engineers can make use of the email
contents to improve search and discovery experiences. For instance,
practitioners often use synthetic emails generated via k-anonymization
(Di Castro et al., 2016b; Sheng et al., 2018) to perform information
extraction, classification, and other learning tasks over email data.

Email services are often hosted by a central provider such as Yandex,
Microsoft, or Google. Thus, the most obvious approach to private
indexing is maintaining a single secure indexing system that divides the
collection into |U | individual indices, where U is the set of all users. The
most secure, albeit costly, solution is maintaining a separate document
collection, a separate vocabulary, and separate posting lists for each
user u ∈ U , such that only user u can access their index. A less costly
but more complicated solution is to maintain a cross-user vocabulary
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and postings lists, and instead to rely on the retrieval mechanism to
only return the documents of a single user, say by tagging every email
with the identity of the recipient and adding that identity tag as a
conjunct to each query. This design choice is more space efficient, as
longer postings lists have better compression ratios.

Alternatives that do not assume an existence of a single trusted
index host, while not widely deployed, do exist in published research.
For instance, Bawa et al. (2009) propose a methodology for constructing
distributed peer-to-peer indices for private or shareable documents with
provable privacy guarantees.

2.2.2 Handling Content Duplication

It is clear from the description in the previous section that a naive
implementation of private indexing is costly. For instance, email threads
may be shared across users, and would be indexed multiple times for
each user. Moreover, as is evident from prior work (Di Castro et al.,
2016b; Sheng et al., 2018; Wendt et al., 2016), a large portion of email
data consists of machine-generated email, which can be represented as
templates for significant savings in indexing capacity.

To address the issue of content duplication across threads, Broder et
al. (2006) propose indexing email threads in a document tree structure,
which allows sharing the content between the nodes of the tree. This
requires two simple additions to the standard inverted index structure.
First, each posting list entry needs to contain a bit indicating whether
it is shared (s) or private (p). Second, threads are stored in a document
tree structure. This is illustrated in Figure 2.2. This structure reduces
posting list duplication, as each term is indexed once per thread. As an
example, in Figure 2.2, the term “did” has only one posting list entry,
despite appearing in both d1 and d2. This is due to the fact that “did”
is shared with the descendants of document d1 in the document tree,
namely with d2 and d3. Broder et al. (2006) also propose an efficient
query evaluation algorithm that makes use of the proposed inverted
index structure.

While Broder et al. (2006) mainly focus on reducing content duplica-
tion due to message threading, another major source for duplication are
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From: marcus

To: ronny

Subject: re:paper

not yet!

> From: ronny

> To: marcus

> Subject: re paper
> well, did you?

>

>> From: andrei

>> To: ronny, marcus
>> Subject: paper

>> did you read it? 

Who Date Subject
andrei 2/1/2005 paper

ronny 2/1/2005 Re: paper

marcus 2/2/2005 Re: paper

Thread view

Last email in the

thread (message d3)

andrei: <1, p>

did: <1, s>
it: <1, s>

marcus: <1, p>, <2, p>, <3, p>

not: <3, s>

paper: <1, p>, <2, p>, <3, p>
read: <1, s>

ronny: <1, p>,<2, p>, <3, p>

well: <2, s>

yet: <3, s>

you: <1, s>

Posting lists

d1

d2

d3

d2

d3

d1

From: marcus

To: ronny

Subject: re:paper

not yet!

> From: ronny

> To: marcus

> Subject: re paper
> well, did you?

>

>> From: andrei

>> To: ronny, marcus
>> Subject: paper

>> did you read it? 

Who Date Subject
andrei 2/1/2005 paper

ronny 2/1/2005 Re: paper

marcus 2/2/2005 Re: paper

Thread view

Last email in the

thread (message d3)

andrei: <1, p>

did: <1, s>
it: <1, s>

marcus: <1, p>, <2, p>, <3, p>

not: <3, s>

paper: <1, p>, <2, p>, <3, p>
read: <1, s>

ronny: <1, p>,<2, p>, <3, p>

well: <2, s>

yet: <3, s>

you: <1, s>

Posting lists

d1

d2

d3

d2

d3

d1

(a) The inverted index

P1:

andrei: <1, p>
marcus: <1, p>

paper: <1, p>

ronny: <1, p>

S1:

did: <1, s>
it: <1, s>

read: <1, s>

you: <1, s>

P1:

andrei: <1, p>
marcus: <1, p>

paper: <1, p>

ronny: <1, p>

S1:

did: <1, s>
it: <1, s>

read: <1, s>

you: <1, s>

P2:

marcus: <2, p>

paper: <2, p>

ronny: <2, p>

S2:

well: <2, s>

P2:

marcus: <2, p>

paper: <2, p>

ronny: <2, p>

S2:

well: <2, s>

P3:

marcus: <2, p>
paper: <2, p>

ronny: <2, p>

S3:

not: <3, s>
yet: <3, s>

P3:

marcus: <2, p>
paper: <2, p>

ronny: <2, p>

S3:

not: <3, s>
yet: <3, s>

d1

d2

d3

(b) The document tree

Figure 2.2: An example of index encoding for a thread d1 → d2 → d3, which
eliminates posting list duplication, as each term is indexed only once per thread.
(From Broder et al. (2006)).

machine generated emails (Maarek, 2017). In these emails, the majority
of the content is generated from a single template and repeated across
multiple emails (consider, for instance, shopping receipts or credit card
statements). For such templated emails, index compression techniques
proposed for dealing with versioned document collections (Claude et al.,
2011; He et al., 2010) may be readily applied.

2.2.3 Fast Incremental Updates

The amount of new email that users receive on a daily basis creates
the need for designing indexing systems that can handle fast addition
of messages to the search index. In addition, since users often delete
emails to de-clutter their mailboxes, the indexing needs to support fast
item deletion. A naive implementation that would simply append or
delete a new posting list entry for every update consumes a non-trivial
amount of resources. Frequent posting list updates also result in less
efficient query processing.
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To combat this, Hawking (2010) proposes a combination of a baseline
and update indices which are searched in parallel. The baseline index
contains all the historical data and can be optimized for read operations.
The update index is much smaller and only includes the most recent
updates. The baseline index can be merged with the update index in a
batch manner on a pre-defined schedule.

2.3 Retrieval Techniques

In this section we discuss various retrieval techniques employed in email
search engines, including search operators, chronological ordering and
relevance-based retrieval.

2.3.1 Search Operators

An email message consists of its free-form content as well as structured
metadata (“fields”), such as the sender, the recipient, the time received,
whether it was opened, etc. It may be convenient for the users to use
structured search operators to filter the results by the value of these
fields (see Table 2.1). While powerful, these search operators are rarely
used explicitly, but are often implicitly present in query intents. For
instance, Ai et al. (2017) found that searchers often remember certain
message attributes like sender, recipients, subject, or date, prior to
conducting a search. Therefore, an interesting research direction would
be to develop a translation model from implicit intents to explicit
operator queries.

In practice, search operators are commonly implemented using
field restricts (i.e., only term matches in a specific field are used for
retrieval). Thus, the query processor and the index should support
complex structured queries. See Lucene as an example of a search
system that implements field restricts in its query language.1

2.3.2 Chronological Ordering

A common strategy for presenting search results to the users in email
web and desktop clients is descending chronological sorting of the

1https://lucene.apache.org/core/2_9_4/queryparsersyntax.html#Fields

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html#Fields
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Table 2.1: Common examples of search operators used in email search (based on
Gmail Help (2018)).

Operator Description Example Usage
to: Filter based on email sender to:alice@mail.com
from: Filter based on email recipient from:bob@mail.com
cc: Filter based on a copied recipient cc:kate@mail.com
subject: Filter based on email subject subject:dinner
has: Filter based on an email attribute has:attachment
is: Filter based on the email state is:read
after: Filter based on the email age after:2018/01/01
label: Filter based on a certain label label:personal
size: Filter messages exceeding size size:10M

results. This approach is intuitively appropriate for email search, and
is supported by research evidence. For instance, Dumais et al. (2003)
found that 22% of the items opened in search were first seen within the
last week. In addition, Dumais et al. (2003) presented an interface that
supported multiple sort options such as Date, Author, and Rank. They
found that “regardless of which sort order people started with, they
issued more queries in which they sorted the results by Date”. In their
experiments, Rank was based on a simple Okapi-based algorithm.

In general, the chronological ordering is usually implemented using a
straightforward one-pass matching algorithm that requires that all query
terms appear in at least one of the message fields, and then sorting the
retrieved documents in descending received timestamp order (Carmel
et al., 2017b). This approach is efficient and simple to implement, and
it scales well to web-based email services that receive millions of search
requests. It also guarantees generally high quality results that do not
violate users expectations. However, it has an issue with recall, in case
of a mismatch between the query terms and the email text.

2.3.3 Relevance-based Retrieval

To combat the issue of recall presented in the previous section, several
approaches have been proposed.



22 The Anatomy of an Email Search Engine

Relaxed Match Carmel et al. (2015) propose a simple partial match
approach to increase the number of returned results, which requires that
at least one query term should appear in the message content (or one
of its fields). While this approach may surface a lot of irrelevant results
as well, especially for longer queries, these results can be demoted by
the next stage ranker. Thus, this approach increases the recall of the
retrieval stage, while pushing the burden of precision to the ranking
stage.

Fielded match Ogilvie and Callan (2005) treat the email search prob-
lem as a variant of known-item search in structured documents and
propose a hierarchical language modeling approach that models the
email as a mixture of its fields. The language model θe of an email e is
thus estimated using a linear combination of the language models of
the different fields

P (w|θe) =
∑
f

λfP (w|θMLE(f)), (2.1)

where f is a field of e and θMLE(f) is the Maximum Likelihood Estimate
of the multinomial language model of f . Ogilvie and Callan (2005)
consider email, subject line, email thread, and the subthread which
contains all the replies to the email as fields. The entire collection
language model is also used for smoothing. Then, the retrieved results
are ordered by: P (Q|θe) = ∏|Q|

i=1 P (qi|θe).
Note that this approach is similar to the relaxed match approach,

as it allows partial matches, however it provides a more principled
and robust relevance ranking of the retrieved messages, as the query
term matches are weighted by their language model scores. The scores
produced by this model can also be fed as features to the ranking stage,
described in the next section.

Query expansion The approaches described above deal with the partial
match case, but it is also important to note the importance of query
expansion in the retrieval stage as well, as the size of the retrieval corpus
is relatively small. Any number of techniques can be applied for this,
including log-based, mailbox-based and pseudo-relevance based query
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expansion, which is investigated by Kuzi et al. (2017). Additional details
on applications of query expansion to email search are covered in more
detail in Section 5.3.

Approximate Nearest Neighbors In recent years, the researchers have
suggested the use of approximate nearest neighbor algorithms for the
retrieval of documents that are semantically related to the query in
some dense embedding space (Aumüller et al., 2017). While, to the best
of our knowledge, there are no published results on specific applications
of approximate nearest neighbors retrieval to email search, many of the
developed algorithms and software2 can be readily adapted to this use
case.

2.4 Relevance Ranking

As discussed in the previous section, after the broad matching retrieval
stage is employed, we are faced with the challenge of ranking the top
results in the best possible manner using all the available information
about the retrieved emails. Unlike in other information retrieval sce-
narios, e.g., web search, where the underlying collection is large, the
number of truly relevant documents to the query in email search is
typically quite small. As mentioned above, some researchers even model
the task as one of known-item search (Craswell et al., 2005; Ogilvie and
Callan, 2005) in which case only a single, known in advance item can
fully satisfy the user information need.

Thus, solely relying on the retrieval stage to generate the best
ordering does not work well in practice (Dumais et al., 2003; Carmel
et al., 2015) and can often generate “embarrassing results” (Carmel
et al. (2015)), i.e., results that are completely irrelevant to the query,
but are being pushed to the top of the ranked list simply by the virtue
of matching some query terms.

The first published research to employ standard learning-to-rank
techniques to this problem is the work by Carmel et al. (2015). In
general, the learning to rank methods used in email search are fairly

2See https://github.com/erikbern/ann-benchmarks for a comprehensive list.

https://github.com/erikbern/ann-benchmarks
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standard and include RankSVM (Carmel et al., 2015), logistic regression
(Ramarao et al., 2016), LambdaMART (Wang et al., 2016a), or feed
forward neural networks (Zamani et al., 2017) among others. Therefore
for the purpose of this section, the main interest are the features used by
the learning-to-rank models, as they differ from the standard learning-
to-rank features used in web search. For instance, Table 2.2 provides
a detailed breakdown of features used in the seminal work by Carmel
et al. (2015).

In general, the features used in the ranking stage in email search
commonly fall into the following broad categories:

1. Sender features depend on some characteristics of the email
sender that indicate the affinity between the sender and the
searcher (e.g., number of sent or received emails, number of times
sender emails were searched for, etc.). In the enterprise setting,
affinity based on non-email communications may also be useful,
e.g., calendar appointments, shared documents, etc.

2. Recipient features reflect the characteristics of the recipient
group – individuals and mailing lists in the to or cc fields of the
email – with respect to the searcher.

3. Message features depend on the attributes of the email message.
These features may include message freshness, the last time it
appeared in search results, presence of attachments, and any
folders, system-assigned labels (Grbovic et al., 2014; Wendt et al.,
2016) or templates (Bendersky et al., 2017) that the email is
associated with.

4. Action features are based on the actions that the user has
explicitly performed on the message (e.g., opens, replies, forwards,
stars, spam assignments, etc.).

5. Query similarity features measure the topical similarity be-
tween the query and the email. These could simply be the scores
produced during the retrieval stage, or other common IR similarity
measures, e.g., BM25, cosine similarity, language models, query
term overlap, and so on. More recently, researchers have used deep
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neural networks to model the text matching problem (Mitra and
Craswell, 2018). Various types of neural matching models were
also found to be useful in email search (Zamani et al., 2017; Shen
et al., 2018; Li et al., 2019b).

6. Searcher features enable personalization of email search results,
based on what is known about the user performing the search. For
instance, Zamani et al. (2017) propose using situational context
features including time and location to improve search results. In
the context of query completion, Carmel et al. (2017b) demon-
strate that using user search history, as well as their demographic
information (age, gender, income level, state of residence) can
significantly improve suggestion quality. Similarly, Foley et al.
(2018) show that the semantics of fine-grained user location, when
available, can improve query completion quality by up to 20% for
single-character query prefixes.3

7. Click features that are derived from cross-user interactions with
the same item, while highly valuable in web search, are not directly
useful in email search. This is due to the fact that each user only
interacts with their own mailbox, resulting in a highly sparse
click distribution. To combat this data sparsity, Bendersky et al.
(2017) propose a parameterization approach that enables effective
leveraging of historical click data for ranking. In this approach,
an email is represented by a set of attributes (e.g., email template,
labels, subject n-grams) that generalizes across multiple users.
Click data is then aggregated by these attributes and incorporated
into the underlying learning-to-rank model. We discuss this click
aggregation approach in more detail in Section 7.3.

2.5 Evaluation and Metrics

Evaluation is a central part of any search system. In order to make
search quality improvements, one needs to measure success and make

3As derived from the Google Maps platform: https://cloud.google.com/maps-pl
atform/places/.

https://cloud.google.com/maps-platform/places/
https://cloud.google.com/maps-platform/places/


2.5. Evaluation and Metrics 27

decisions accordingly. Therefore, in this section, we discuss the evaluation
paradigm for email search, which differs significantly from web search.

Email mailboxes are private document collections. It is often hard to
argue for “objective” relevance, especially given the short and ambiguous
nature of email search queries. Carmel et al. (2017b) report that email
search queries consist of 1.5 terms on average. Therefore, techniques
employed for email search evaluation differ significantly from web search
evaluation. First, for editorial ratings, the researchers tend to rely on
personal raters who annotate their own data. These annotations are
often not reusable (as mailbox contents frequently change) and costly
to construct. Thus, the researchers often rely on implicit user feedback
from search logs for evaluation as well.

We describe techniques for test collection construction in more detail
in Section 2.5.1. Then, in Section 2.5.2 we discuss the success metrics
usually employed in the field. Finally, in Section 2.5.3, we provide a brief
listing of publicly available email search and discovery test collections.

2.5.1 Test Collections

Synthetic queries AbdelRahman et al. (2010), in an attempt to build a
reusable test collection, use the publicly available Enron dataset (Cohen,
2015). They sample a small number of previously annotated discussion
topics or category labels (Berry et al., 2001) to create a synthetic query
set. Some examples of synthetic queries include “attachment”, “project
progress” and “california energy crisis”. Then, up to 100 emails are
retrieved by multiple retrieval methods from a corpus consisting of
mailboxes of several Enron employees. All the retrieved emails are
pooled and manually graded by three judges on a [0, 1, 2, 3] scale. The
proposed retrieval methods are then evaluated using the NDCG@k
metric.

AbdelRahman et al. (2010) provide an interesting example of how
to apply the known principles of the Cranfield paradigm to email search
evaluation, however their method has several shortcomings. First, it is
unclear whether the synthetic queries indeed reflect true user information
needs. Second, the relevance is determined by external raters, who may
not have a full understanding of the personal search task underlying the
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query. Therefore, in later studies researchers have focused on personal
mailbox ratings, as we discuss next.

Personal ratings In the personal rating setting, selected users (e.g.,
employees of the corporation where the research is conducted) are
instructed to search over their own mailboxes and evaluate the retrieved
results (Dumais et al., 2003; Carmel et al., 2015). There are several
important aspects that differentiate this type of personal rating from
the standard editorial ratings over public web data.

First, the raters are generally instructed to issue queries that match
the standard query usage. To achieve this, Carmel et al. (2015) require
that the issued queries match patterns mined from an email search log,
e.g., [<sender name> <body word>]. This type of requirement ensures
that while the information needs themselves are private to the raters,
the types of their information needs can be generalized to other users.

Second, the results need to be judged with respect to the intent
that “the editor had in mind at query time” (Carmel et al., 2015). This
goes to demonstrate the importance of the situational context in email
search (Zamani et al., 2017). The relevance of an email message is not
absolute, and is likely to change over time, as new emails arrive and the
intent of the user drifts. This is in contrast to web search, where human
raters are provided with general, objective guidelines for their task.

Implicit feedback While personal ratings are an important component
of email search evaluation, they are costly to collect, have a limited
shelf-life due to the mailbox dynamics, and are often not reusable across
search systems. In addition, even with the most rigorous setup, editorial
evaluations cannot fully capture the nature of personal search, and
do not scale as collections evolve and query intents drift over time.
Therefore, much of the more recent work (Bendersky et al., 2017; Wang
et al., 2016a; Zamani et al., 2017; Ramarao et al., 2016) resorts to
using implicit feedback instead of editorial judgments. It is well known
that implicit feedback, such as clicks, is an abundant albeit biased
resource (Joachims, 2002). For web search, implicit feedback is rarely
used without further validation by ground truth editorial evaluations,
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since it can be maliciously manipulated (Najork, 2009). However, it is
more applicable in email search for several reasons.

First, since users interact solely with their own mailboxes, click-bait
and click-spam, which are major research challenges in the context of
web search (Spirin and Han, 2012), are much less likely in the email
search scenario.4 Second, click data captures well the dynamic nature
of email data, and can be used to discover new relevant documents.
Third, as discussed in the beginning of the chapter, email search is a
type of known-item search. Therefore, users usually know what they
are looking for, and their clicks are likely to be informed by this prior
knowledge.

Finally, recent studies demonstrate that even though click noise and
bias still exist in email search, recent advances in unbiased learning-to-
rank (Joachims et al., 2017) can be used to combat them through tech-
niques like inverse propensity weighting (Wang et al., 2016a), regression-
based expectation-maximization estimation (Wang et al., 2018), and
trust bias modeling (Agarwal et al., 2019a). We discuss all of these
advances in more detail in Chapter 7.2.

2.5.2 Success Metrics

Ranking metrics are crucial for continuous progress in search engine
quality and are at the heart of all information retrieval research. As there
are multiple ranking metrics to consider, the choice of an evaluation
metric is heavily dependent on an application. For instance, in the
web search setting, researchers consider metrics such as NDCG@k
(normalized discounted cumulative gain at rank k) to account for graded
ratings and ensure high quality at the top of the list. In contrast, for
the TREC newswire collections, where recall plays a larger role, mean
average precision (MAP) of the entire ranked list is often used.

As previously discussed, email search is commonly considered to
be a special case of a known-item search (Ogilvie and Callan, 2005),
where only one relevant email message per query is expected. Thus,
researchers often use mean reciprocal rank (MRR) (Carmel et al., 2015;

4Note that email search generally skips the Spam folder, which is discussed in
more detail in Section 4.1.1.
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Ogilvie and Callan, 2005; Wang et al., 2016a; Bendersky et al., 2017) as
the evaluation metric. Formally, MRR over a set of N queries is defined
as

MRR =
∑N
i=1

1
ranki

N
, (2.2)

where ranki is the rank of the relevant message for the i-th query.
In addition to the MRR metric, Carmel et al. (2017b) also suggest
success@k metric, defined as

success@k =
∑N
i=1 I(ranki ≤ k)

N
, (2.3)

which is equivalent to the percentage of queries for which the relevant
message was ranked at or above position k.

As discussed in Section 2.5.1, relevance in email search is often
derived from implicit feedback, such as user clicks. Since clicks are often
biased (Joachims et al., 2017), we might need to weight them for bias
correction. Accordingly, Wang et al. (2016a) propose the weighted MRR
(wMRR) metric. It is a variant of MRR, where each query i is assigned
a weight wi such that

wMRR =
∑N
i=1

wi
ranki∑N

i=1wi
, (2.4)

where weights wi are estimated from click data. The various estimation
methods are discussed in detail in Section 7.2. In general, queries with
clicks at higher ranks receive lower weights during the evaluation. This
is motivated by the well-known issue of position bias (Joachims et al.,
2007), which causes email messages at the top of the ranked list to be
clicked more often than those lower in the ranked list irrespective of
their relevance.

In addition to purely click-based metrics, Ashkan and Metzler (2019)
propose metrics that capture other types of implicit user feedback:
abandonment rate

ar =
N∑
i=1

ai, (2.5)
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where ai is a binary indicator of whether the user abandoned the i-th
query without clicking on any results; and time to click

ttc =
N∑
i=1

ti, (2.6)

where ti is the time to the first click. For both abandonment rate and
time-to-click metrics, lower values indicate better search experience.

Ashkan and Metzler (2019) also advocate for making the metrics
more user-centric by normalizing them with respect to the user’s his-
torical behavior. Taking the MRR metric as an example, a user-centric
version of the metric can be defined as

pMRR =
∑N
i=1

pi
ranki∑N

i=1 pi
, (2.7)

where pi = log( ranki
ranki

+1) and ranki denotes the average click rank for the
user issuing the i-th query. Intuitively, this type of user-centric metric
will reward changes that result in the most effort savings to the user.
Ashkan and Metzler (2019) find that user-centric metrics like pMRR
are generally more discriminative than their standard counterparts in
detecting changes in A/B experiments, suggesting that they are a good
choice for online evaluation.

It is important to point out that the metrics described in this
section are applicable regardless of whether chronological ordering
(Section 2.3.2) or relevance-based ranking (Section 2.4) are used, as
they measure the user response to the ranked list regardless of how
the list was produced. In fact, Carmel et al. (2015) demonstrate that
relevance-based ranking can boost click-based metrics like MRR or
success@k by large margins over the chronological ordering baseline.

2.5.3 Public Datasets

As discussed in the beginning of this section, the private nature of
email corpora creates a substantial barrier for entry for the academic
researchers in the field. It is not surprising, therefore, that a large fraction
of the research presented in this survey was conducted at technology
companies that provide web mail services, like Yahoo, Microsoft, or
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Google. There are, however, two existing public datasets that have been
extensively used by the researchers in the field.

The most well known of these datasets is the Enron Email dataset
(Cohen, 2015). The Enron dataset contains data from about 150 users,
mostly senior management of Enron, organized into folders. The dataset
contains a total of about half a million messages. This data was orig-
inally made public, and posted to the web, by the Federal Energy
Regulatory Commission during its investigation of the Enron corpo-
ration. A version of the Enron Email dataset is available for down-
load online.5 There are multiple research articles published using the
Enron dataset on topics including classification (Bekkerman, 2004),
search (AbdelRahman et al., 2010), and visualization (Heer, 2005) of
email.

It is important to note that while the Enron dataset is currently
publicly available for download, it is not officially supported by any data
consortium or institution, and the privacy of the email correspondents
has not been preserved through any reduction procedure. Therefore, the
authors advise that the researchers who decide to use this dataset take
extra precautions to ensure that their analysis and algorithms preserve
the privacy of Enron correspondents.

A newer publicly available email research dataset is the Avocado
Research Email Collection (Oard et al., 2015), which consists of 1.3 mil-
lion emails taken from 279 accounts of a defunct information technology
company referred to as “Avocado”. It is similar in structure to Enron
Email, albeit larger. It also contains some additional information not
available in Enron such as contact information, email attachments, etc.
The Avocado dataset has been recently used in research on commitment
detection (Azarbonyad et al., 2019), intent modeling (Lin et al., 2018),
attachment recommendation (Van Gysel et al., 2017) and action item
extraction (Mukherjee et al., 2020). Sayed et al. (2020) use the Avocado
dataset as the retrieval corpus for creating a test collection containing
search topics, as well as email relevance and sensitivity judgments for
each topic.

5https://www.cs.cmu.edu/~./enron/

https://www.cs.cmu.edu/~./enron/
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The Avocado dataset can be licensed from the LDC website.6 Unlike
Enron, Avocado README specifically discusses privacy reduction methods
performed prior to it release, including reducting sensitive email content,
attachment content and private correspondent information. Therefore,
the authors strongly encourage the use of Avocado dataset over Enron
for any new research projects.

6https://catalog.ldc.upenn.edu/LDC2015T03

https://catalog.ldc.upenn.edu/LDC2015T03


3
Search Interfaces

In this chapter we discuss the evolution of email management interfaces
from filing and organizing to free-form search. We cover a few early
systems that heavily rely on foldering as a means of content discovery,
and the gradual move to search interfaces in Section 3.1. Section 3.2
discusses attribute-driven search interfaces that allow flexible sorting
of search results. Finally, in Section 3.3, we focus on the emergence of
relevance-based email search interfaces.

3.1 From Foldering to Finding

Managing email overload through organizing it into thematic folders
has a long history. For instance, Cincotta (1983) recommends managing
email communications related to different projects or activities by
creating appropriate UNIX directories. User defined email folders were
also adopted by early web email clients such as RocketMail (later
acquired by Yahoo!) or Hotmail (later acquired by Microsoft).

Pachyderm, an experimental email system developed in 1997 (Birrell
et al., 1997), presaged many of the features of today’s web-based email
systems: email was stored by a service and accessed through a web-
based client. Users could organize their messages by attaching labels,

34
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with inbox, unread, hidden and deleted being predefined labels. The
Pachyderm UI surfaced all defined labels in a list (akin to a folder list).
Messages were full-text indexed, and users could retrieve their messages
by issuing complex queries on content terms as well as fields and labels.
For convenience, users could name a query and thereby add it to the
pane of labels; this facility was akin to a smart foldering mechanism.

Gmail by Google, which was announced on April 1st, 2004, in
addition to advanced search functionality and large storage, also features
labels. The main distinctions between folders and labels is that each
email can be assigned multiple labels, and that label names can be used
in search (see Table 2.1). bluemail by IBM (Tang et al., 2008) further
suggests the use of tag clouds for email management, inspired by their
popularity in contemporary social networking applications.

As the volume of email communication continues to grow, manual
email filing and folder, label and tag management is becoming more
laborious and time consuming. Moreover, there is no clear indication
that careful folder and label curation is actually helpful for email re-
finding. For instance, in a study of usage patterns of 345 IBM employees,
Whittaker et al. (2011) find no correlation between filing behavior and
success in finding tasks. Therefore, in recent years, research focus has
shifted towards automatic email categorization techniques, which are
discussed in more detail in Section 4.1.2, and to interfaces that facilitate
more effective email search, which we discuss next.

3.2 Attribute-based Ordering and Filtering

Cutrell et al. (2006) argue that web search and email search strategies
are unalike; the most important difference being “that people are familiar
with many different characteristics of their information, as well as the
context(s) in which they previously encountered them”. According to
Cutrell et al. (2006), context plays a critical role in recalling personal
information. There are many contextual cues that are used to find the
relevant email, including its sender, recipients or the attachments it
contains. Perhaps the most important contextual cue of all is time, as
searchers are much more likely to look for emails related to recent tasks
or events.
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Dumais et al. (2003) develop an experimental email search interface
SIS (Stuff I’ve Seen) that recognizes the importance of these contextual
cues. Instead of presenting a fixed ranking of messages to the user,
SIS provides a flexible interface that allows re-ordering and filtering
of email messages based on multiple attributes (see Figure 3.1). In a
study of over 8,000 searches conducted by 233 volunteers, Dumais et al.
(2003) find that – regardless of the initial ranking order – users apply
chronological ordering to their search results in over 60% of the cases.
This validates the importance of chronological ordering in email search.

Indeed, chronological information has been recognized as a crucial
element in effective email management and discovery since the early
days of the research in the field (Whittaker and Sidner, 1997). Therefore
traditional approaches to email search often consist of the following two
stages:

1. Retrieval of all emails that strictly match the search query terms

2. Ordering of the retrieved results in a reverse chronological order
(see, e.g., Figure 3.2(a)).

Even today, many of the web email services use this chronological
ordering as their default search ranking mechanism. However, chrono-
logical ordering has its limitations, and incorporating relevance can lead
to significant improvements in email search experience.

3.3 Relevance-Based Search Interfaces

Carmel et al. (2015) elucidate two main drawbacks of the chronological
ordering in email search. First, it makes the discovery of older messages
hard, as (a) recalling the exact attributes of these messages is difficult,
and (b) they will be ranked low in the chronological ordering. Second,
the chronological ordering imposes strict query match in order “to avoid
embarrassing, non-relevant yet recent results from being displayed at
the top of the list” (Carmel et al., 2015). This significantly degrades
the recall of the email retrieval stage.
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As an example, consider Figure 3.2 that shows the results retrieved
for query “sigir 2020” in (a) chronological mode, and (b) relevance mode.
Note that in Figure 3.2(a) the messages with the highest likelihood
of relevance (calls for papers and tutorials) are not even displayed at
the top, as messages about various events in 2020 from the mailing list
[SIG-IRList] dominate the search results.

(a)

(b)

Figure 3.2: Illustration of the results for query “sigir 2020” in (a) relevance, and
(b) descending chronological modes, as presented in a Gmail webmail client. If the
user does not accept any of the relevance results in (a), and presses ENTER, they
will be redirected to (b).

Despite its shortcomings, chronological ordering does provide the
benefit of predictability. Users often rely on scrolling through the results
in a chronological order to improve recall (“I received the address to
Alice’s place after her invite to the party was sent”). In a study of
345 users of an email client that supports search, folders and finding
tagging, Whittaker et al. (2011) find that scrolling still accounts for
62% of all email accesses. Therefore, in real-world applications, both
relevance and chronological rankings can provide value.

For instance, Gmail currently provides both the search-as-you-type
top relevance results as well as the chronological results, if the user does
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not accept any of the relevance-based results (see Figure 3.2). Yahoo
Mail provides a Date/Relevance toggle for the displayed search results.
Finally, Outlook.com provides a hybrid interface that combines the top
relevance results and chronologically sorted results (Figure 3.3). Carmel
et al. (2017a) refer to these top relevance results as heroes, and discuss
some potential implementations of this hybrid interface. They report
that in live experiments in Yahoo Mail, the hybrid approach results in
12% improvement (as measured by the Mean Reciprocal Rank metric)
over chronological ranking. The improvements in Yahoo enterprise email
are even higher (18% MRR gain), which validates the importance of
relevance email ranking in the organizational setting.

Figure 3.3: An illustrative example of hybrid “heroes” relevance results (HList)
followed by chronological results (TList) displayed on a mobile device, as shown by
Carmel et al. (2017a).

As email relevance ranking algorithms continue to improve, we are
likely to see more innovation in email search interface design, going
beyond displaying ranked lists of emails. For instance, as shown in Figure
3.4, search can directly surface structured information relevant to the
query through information cards, similar to the knowledge panels that
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are common in web search.1 Examples of such structured information
may include tracking numbers of recently shipped orders, frequent
flyer numbers, bill amounts and due dates, upcoming event date and
locations, etc. Structured information cards were implemented in the
short-lived Inbox by Gmail web and mobile clients (Kaushal, 2016),
however they are still not commonly seen in the major email clients.
We discuss some research challenges that need to be solved to foster
wider adoption of such interfaces in Section 8.5 of this survey.

Figure 3.4: Knowledge panel in Inbox by Gmail (a defunct service), which directly
surfaces the relevant answer to the query “delta frequent flyer”, without the need to
read through the email (Kaushal, 2016).

1https://support.google.com/knowledgepanel/answer/9163198

https://support.google.com/knowledgepanel/answer/9163198


4
Mailbox Understanding

In this chapter, we focus on algorithms and techniques designed specifi-
cally for mailbox organization and information extraction from email
corpora. While many of these algorithms are related to, and inspired by
standard text processing techniques, they were all designed or tailored
to address the specific challenges posed by the unique nature of email
data.

First, in Section 4.1, we focus on mailbox organization through the
lens of various clustering and classification techniques. Effective mailbox
organization is a major challenge that many users face on a daily basis
both in their personal and professional lives. In addition, since email
communication is often abused by spamming and phishing, we also
cover techniques for fighting these adversarial activities.

Then, in Section 4.2 we discuss techniques for processing unstruc-
tured email content with a focus on various information extraction tasks
such as signature extraction, quotation detection, and others.

Finally, in Section 4.3 we discuss template induction and extrac-
tion techniques for machine-generated email. This line of research is
motivated by the proliferation of bulk-sent machine-generated emails
(receipts, bills, and reservations) in user mailboxes (Maarek, 2017).

41
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4.1 Mailbox Organization

Organizing one’s mailbox into manageable groupings that facilitate
productivity has been a long-standing challenge that predates the web
and even graphical user interfaces. For instance, an early version of the
Navy Email Service User Guide (Cincotta, 1983) states that:

“Managing ones mail is important. If the number of messages
you receive daily encompasses many projects and various
activities you would want to organize your mail into various
files possibly even various directories”.

The user guide then goes on to suggest UNIX system utilities for email
management. While email services have improved immensely since these
early days, effective mailbox management still remains a challenge. This
challenge is further exacerbated for business email use, as the average
worker sends and receives more than 120 emails a day, and this number
has been steadily rising over the past several years (The Radicati Group,
Inc., 2015).

Accordingly, in this section, we provide an overview of some algo-
rithms and techniques that empower users to effectively organize and
manage their mailboxes. We start in Section 4.1.1 by describing the
problem of combating adversarial content such as spam and phishing,
and continue with foldering (Section 4.1.2) and clustering (Section 4.1.3)
mailbox organization techniques.

4.1.1 Adversarial Content Filtering

Spam

Email spam detection and filtering is one of the classical applications of
machine learning to text categorization. The research on spam detection
goes back for more than twenty years. While the original methods relied
on either manual or automatic rule development (Cohen et al., 1996),
early research showed that naive Bayes classifiers work surprisingly well
for this task (Pantel and Lin, 1998; Sahami et al., 1998). Naive Bayes
use for spam filtering was further popularized by Graham (2003) who
demonstrated a filtering rate of 99.75% on his own mailbox.
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Modern production-grade spam detection systems rely on features
that go beyond email text for spam filtering. Taylor et al. (2007) report
that sender reputations (the fraction of spam messages reported for the
sender) as well as DomainKeys Identified Mail Signatures (DKIM) are
important features used by the Gmail service.1 Taylor et al. (2007) also
identify the ability to process very large high-dimensional datasets in a
distributed fashion as an important requirement for a production-grade
spam filtering system.

The TREC Spam Track 2005 – 2007 evaluated the spam filtering
effectiveness of the competing systems on a chronological sequence of
email messages (Cormack, 2007). The systems were evaluated using a
combination of a public (Enron) and private email corpora. The track
participants had no access to the private corpora, and their system code
was sequentially executed on the emails in these corpora by the track
coordinators, to provide a realistic simulation of the spam filtering in
production systems. The overall effectiveness of the competing systems
improved year over year (Cormack, 2007), with Relaxed Online SVMs,
which compute an approximate Support Vector Machine solution at
greatly reduced expense, significantly outperforming other text clas-
sifiers, and achieving a misclassification rate of one in a thousand or
better (Sculley and Wachman, 2007).

Phishing

Email phishing is an attack, where a malicious sender impersonates a
trusted source to obtain sensitive information (e.g., passwords, bank
account information, etc.) from the email recipient. Ramzan (2010)
formally identifies a phishing attack as one having all of the following
characteristics:

1. Brand Spoofing The attacker attempts to convince the user that
the email message originates from a trustworthy brand.

2. Website Involvement The phishing email contains a link that
redirects the user to a malicious site for the purpose of data
collection.

1https://tools.ietf.org/html/rfc6376

https://tools.ietf.org/html/rfc6376
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3. Sensitive Information Solicitation The phishing website offers a
mechanism to enter personal user information.

There are some standard measures to tackle phishing by preventing
email address spoofing using techniques like DKIM, mentioned above. In
the data mining and the information retrieval communities, researchers
also have focused on machine learning techniques to detect phishing.

For instance, Abu-Nimeh et al. (2007) perform a study using various
machine learning algorithms and a set of “bag-of-words” features similar
to the spam detection work described in the previous section. Fette
et al. (2007) further demonstrate that using a set of specialized features
(e.g., IPs instead of site names in the email links, or the age of linked-
to domain names) can improve phishing detection effectiveness when
compared to standard spam detection algorithms.

Another research strand focuses on detecting potential phishing sites,
independently of the emails that link to them. Phishing site detection
is usually performed by measuring the similarity of a suspicious site
to either legitimate trusted brand sites (Wenyin et al., 2005) or other
known phishing sites (Cui et al., 2017).

4.1.2 Email Categorization

Users are likely to experience email overload as more and more informa-
tion accretes in their mailboxes (Whittaker and Sidner, 1997), which
naturally gives rise to attempts to automatically categorize and label
email. Most of the earlier automatic email categorization research fo-
cuses on leveraging standard text classification techniques. For instance,
Kiritchenko and Matwin (2001) use co-training between email body-
based and header-based SVM classifiers. Bekkerman (2004) uses the
Enron dataset to do a performance comparison between several popular
text classifiers including Maximum Entropy, Naive Bayes, SVMs and
Winnow (Littlestone, 1988), demonstrating that a simple-to-implement
Winnow classifier is not only efficient, but also as effective as a more
complex SVM classifier on this task.

More recent work addresses specific issues that make email cate-
gorization inherently different from standard text classification. First,
individual foldering and labeling strategies vary significantly, which
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makes developing and surfacing a unified category set to users that can
address all their needs intractable due to the large number of possible
categories. For instance, Koren et al. (2011) manually identify 2,000
English-only labels using 6,000 commonly-used folder names.

Cohen et al. (2004) take an alternative approach, and instead of
a flat labeling scheme, propose a taxonomy of verbs and nouns (see
Figure 4.1) that “jointly describes the email speech act intended by
the email sender”. For instance, an email can be associated with a
“Propose Meeting” or a “Request Opinion” speech act. Cohen et al.
(2004) presciently describe how the speech acts associated with an email
can be used by a virtual personal assistant to provide timely reminders
of certain commitments users have made.
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Figure 4.1: An ontology of verbs and nouns that compose the email speech acts as
shown by Cohen et al. (2004). Underlined nodes indicate intents for which classifiers
were trained in the original paper. The <Verb><Noun> pair in the figure indicates
that the email speech acts may also be defined recursively, e.g., (remind (deliver
data)) is a valid act.

Grbovic et al. (2014) entirely move away from personal communica-
tions and focus instead on categorizing machine-generated emails, which
according to some estimates (Ailon et al., 2013) account for the majority
of email traffic. Bootstrapping 100,000 popular human generated folders,
Grbovic et al. (2014) build LDA topic models with a varying number
of topics K using a concatenation of the emails in each of these folders
as a single document. The optimal K should ensure that both each
individual topic, as well as the overall set of topics achieve significant
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coverage of the popular folders. They find that K = 6 best fulfills this
requirement, and the resultant set of labeled topics is:

{human, career, shopping, travel, finance, social}.

As machine-generated emails can be associated with structural
templates (see more on this in Section 4.3.1), Wendt et al. (2016)
propose leveraging these templates for improving email categorization
using a similar set of email labels: {receipt, finance, travel}. Their
method is based on two intuitions: first, within a single template all
emails should be assigned the same label; second, textually similar
templates are likely to have the same label. Thus, Wendt et al. (2016)
construct a template graph, where edge weights are defined by textual
similarity, and each template is associated with a label distribution
provided by a seed classifier.

Wendt et al. (2016) demonstrate that running label propagation
(Ravi and Diao, 2016) over this graph results in a significant coverage
increase across the given labels. It can also be used in conjunction with
topic modeling to discover new labels in the data such as politics, music,
or fashion.

Another interesting property of email labels is time dynamics. Unlike
in standard newswire or web text classification, mailbox content is
rapidly evolving. In an early work in this area, Segal and Kephart
(2000) introduce SwiftFile, an online classifier that predicts the most
likely folders the email should be moved into. The classifier is initialized
based on the current folders, which are represented by the centroids of
the weighted bag-of-words vectors of the messages they contain. When
a new email is received, the centroids are updated, and the predictions
for the subsequent emails may change.

With the advent of deep neural networks, researchers have explored
their application to the email categorization task as well. For instance,
Zhang et al. (2017) use an LSTM-based classifier to predict the likely
category of future emails in a thread. Sun et al. (2018) propose a
framework for jointly learning embeddings for emails and users, using
as input sequences of email templates users both receive and open.
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4.1.3 Mailbox Clustering

While most existing email clients have adopted foldering and labeling
organization paradigms, there are other alternative approaches to mail-
box organization. As an interesting example, Bar-Yossef et al. (2006)
propose organizing the mailbox under the assumption that it is “an
egocentric social network, consisting of contacts with whom an individual
exchanges email”. As this egocentric network could be large, producing
meaningful groupings or clusters over it may prove difficult. To this end,
Bar-Yossef et al. (2006) propose a new cluster ranking framework that
outputs the maximal clusters in the network, ordered by their strength.
For an unweighted network G = (V,E), this can be simply solved by
outputting all maximal cliques in G, however just using cliques may be
limiting for realistic networks. Instead, the authors propose the notion
of network cohesion:

cohesion(G) = min{S,A,B}
|S|

min{|A|, |B|}+ |S| , (4.1)

where S ⊆ V is a vertex separator that, when removed along with its
incident edges from G, separates G into two disconnected components
with vertex sets A and B. Intuitively, the more cohesive the network G
is, the harder it is to break it into large pieces (A and B) by removing
a small number of nodes from the network (S). The network cohesion
values will range from 0 for disconnected networks to 1 for cliques. The
notion of cohesion can be further generalized for weighted networks, by
summing over a sample of possible weight thresholds that can be used
to generate a pruned unweighted version of the network. This process
is called integrated cohesion.

Bar-Yossef et al. (2006) propose an efficient algorithm called C-
Rank for ranking the clusters in the weighted contact network by their
integrated cohesion and discuss its application to the mailbox clustering
problem. They include both anecdotal examples (Figure 4.1) as well
as an empirical study over the Enron corpus, which includes recall of
maximal communities as well as robustness to data changes, showcasing
the effectiveness of the C-Rank algorithm.
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Table 4.1: Top ten clusters emerging from running the C-Rank cluster ranking
algorithm over one of the co-authors’ mailbox contact network (from Bar-Yossef
et al. (2006)).

Rank Weight Size  Member IDs Description
1 163 2 1,2 grad student + co-advisor
2 41 17 3-19 FOCS program committee 
3 39.2 5 20,21,22,23,24 old car pool
4 28.5 6 20,21,22,23,24,25 new car pool
5 28 2 26,27 colleagues
6 28 2 28,29 colleagues
7 25 3 26,30,31 colleagues
8 19 3 32,33,34 department committee
9 15.9 19 35-53 jokes forwarding group
10 15 14 54-67 reading group

4.2 Unstructured Email Processing

Email has long been an interesting data source for information extraction
and natural language understanding. While it would not be possible to
fully cover all this work in a single section, we attempt to provide a short
overview of some of the techniques that are applied to unstructured
email, i.e., email communications that are not expected to adhere to any
particular structure or format. Such communications are most likely
to be of personal (and often informal) nature, and the tasks that are
studied in the literature are generally applied in this context.

4.2.1 Latent Structure Detection and Summarization

There is a significant amount of research focusing on a correct identifi-
cation of certain email components. For instance, Carvalho and Cohen
(2004) study the problem of signature block extraction, wherein they
build a machine learning model to identify the set of lines that contain
sender signature, including name, phone number, affiliation, etc. This
type of analysis can be a building block for applications that automati-
cally construct a detailed user contact list. Carvalho and Cohen (2004)
demonstrate that using a set of lexical and syntactic features based on
various regular expressions in a sequential classification algorithm such
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as Conditional Random Fields (CRFs) (Sutton and McCallum, 2012)
can achieve above 95% precision and recall on this task.

Related to the signature block extraction task, Minkov et al. (2005)
study an application of CRFs to named entity extraction from emails. El-
sayed and Oard (2006) further expand this line of research into modeling
identities that tie an informal signature like Bob, or an entity mention
like Mr. Bruce, to a unique email identifier robert.bruce@enron.com.
Going beyond mentions of individuals, Gao et al. (2016) describe an
automatic approach for constructing a collection-specific organization
knowledge base. This is done via extraction of email domain mentions
from an email corpus (e.g., haas.berkeley), and linking them to real-
world entities (e.g., Haas School of Business) via Wikipedia lookup and
Google search.

Another common research theme in detecting latent structure in
unstructured emails is correct resolution of complex thread structures
(Carenini et al., 2007), which also includes removal of noisy text resulting
from headers, quotations and signature blocks (Lam, 2002; Rambow
et al., 2004), and representation of email communications as a dialogue
(Wan and McKeown, 2004; Hu et al., 2009). Thread structure detection
enables effective summarization of verbose email threads into short and
cohesive narratives (Carenini et al., 2007; Wan and McKeown, 2004;
Rambow et al., 2004).

Lampert et al. (2009) take a more holistic approach, and argue that
in order to successfully process unstructured email it is important to
identify all of the email zones, each with a different function. They iden-
tify nine such zones: author, greeting, reply, forward, signoff, signature,
advertising, disclaimer, and attachment. While some of these zones may
have a consensus definition, some may be highly dependent on a user or
an email client. Therefore, discovering this latent 9-zone structure is not
straightforward. Lampert et al. (2009) develop an SVM-based classifier
based on graphic (layout and presentation), orthographic (distinctive
characters or character sequences), and lexical features that achieves
over 85% precision in the 9-zone segmentation task, using a sample of
400 annotated emails from the Enron dataset.
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4.2.2 Task Detection and Extraction

There has been a recent resurgence of interest in a variety of NLP appli-
cations that aim to leverage the colloquial and subjective nature of the
unstructured email medium. Some of these applications include intent
detection (Lin et al., 2018; Azarbonyad et al., 2019), sentiment analysis
(Hangal et al., 2011), Big Five traits prediction (Shen et al., 2013),
understanding communication differences between genders (Mohammad
and Yang, 2011), and others.

As email is commonly used for tracking action items and to-do’s
(Whittaker, 2005), task detection in email is one particular application
that has been attracting researcher interest for quite some time. Multiple
machine learning approaches have been developed both for email-level
task detection (Lampert et al., 2010), as well as for identifying particular
email sentences that have a call to action (Bennett and Carbonell, 2007).

In the most recent work on the subject to date, Mukherjee et al.
(2020) propose a novel abstractive approach to generating action items
from emails. First, they apply a classifier to identify emails that contain
a commitment to perform a certain action item. For such emails, they
first rank the sentences in the email based on their relevance to the
aforementioned commitment, and then use a seq2seq model (Sutskever et
al., 2014) to generate a coherent action item using the commitment, and
the email sentences most relevant to the commitment. Experiments using
roughly 10,000 annotated emails from the Avocado corpus demonstrate
the superiority of their abstractive approach to a simple extractive
baseline (see Figure 4.2 for an example).

Figure 4.2: An illustrative email and action item extraction example (from Mukher-
jee et al. (2020)). The identified commitment sentence is highlighted. GOLD is the
action item written by the human judge, and PRED is the seq2seq model prediction.
The sentences have been paraphrased and names changed due to the data sensitivity
of the Avocado dataset.
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4.3 Machine-Generated Email Processing

An important and unique aspect of mailbox content that we focus
on in this section is the proliferation of machine-generated content
in email communications. Grbovic et al. (2014) reported that 90% of
inbound non-spam Yahoo! mail traffic originated from bulk senders
across a variety of verticals such as Retail, Travel, Social, Finance, etc.
These machine-generated messages vary widely in both their importance
to the recipients and their intent, and include multiple email types
from marketing newsletters to critical information like flight tickets
and purchase receipts. However, there is one common theme when
considering this wide range of machine-generated email types. Email
services, in order to surface timely and important information to their
users, have to identify the underlying templates that generate these
emails, and must be able to effectively extract information from the
various fields in these templates.

To achieve this goal, multiple techniques were developed for under-
standing structured email content. These techniques can be roughly
structured into three main stages that are covered in more detail in the
remainder of this section.

First, in Section 4.3.1 we discuss techniques for grouping emails by
their underlying templates. Second, in Section 4.3.2 we discuss how these
templates can be threaded into cohesive sequences. Finally, in Section
4.3.3 we discuss how various types of information can be extracted from
email templates.

4.3.1 Template Induction

Structured email templates were first introduced by Ailon et al. (2013).
Most abstractly, Ailon et al. (2013) make the assumption that given
any machine-generated email e, we can efficiently compute its template
identifier τ(e), as well as a list of variable values var(e). We work under
this assumption for the remainder of this section.

Templates can be thought of as groupings of semantically identical
messages, where some variable fields are replaced. For instance, all
purchase receipts from a particular retailer can be grouped into a
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single template and the list of template variables include product prices,
delivery dates, etc. Figure 4.3 demonstrates a template example.

Dear Bob,

Thank you for your Dr. Seuss Store purchase!

Order No. 98213

Items:
Cat in the Hat
Lorax

Tax: $1.17
Total price: $10.97

Dear Alice,

Thank you for your Dr. Seuss Store purchase!

Order No. 23432

Items:
Green Eggs and Ham
Fox in Socks
Dr. Seuss's ABC

Tax: $2.39
Total price: $15.04

Example documents

Dear [Name],

Thank you for your Dr. Seuss Store purchase!

Order No. [#]

Items: [repeated Product]

Tax: [Currency]
Total price: [Currency]

Template

Figure 4.3: An example of template τ with two sample machine-generated emails
associated with it. The variable fields var are denoted by square brackets.

In particular, Ailon et al. (2013) propose a subject template method
that works in two stages. First, emails are grouped by senders. Only bulk
senders, i.e., senders that send a large volume of email (e.g., usps.com,
amazon.com) are considered. Then, subject lines (e.g., Your order
#1123-222 was received) are analyzed to derive regular expressions
of the form Your order * was received.

While many association rule mining algorithms are applicable here,
in practice a simple technique that replaces long numbers, proper names,
unique identifiers and words with probability below a certain threshold
per sender with a wildcard results in reasonable template accuracy
(Ailon et al., 2013).

Subject-based templatization, while providing reasonable accuracy
in many cases, does have its shortcomings. First, it completely ignores
the body of the email. Therefore, two emails e and e′ with the same
subject will always be grouped into the same subject template (i.e.,
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τ(e) = τ(e′)), even if the bulk sender updates its template generation
algorithm between the sending of these two emails. Second, if the
subject templatization technique fails to extract a reasonably long
regular expression, it may be prone to creating a large default cluster
like *, which will not be semantically cohesive and simply group together
multiple unrelated messages.

To avoid these shortcomings, Avigdor-Elgrabli et al. (2016) propose
structural templates that use the email HTML structure. In particular
they utilize XPaths – expressions that specify a full path from the
document root to some target node in an HTML document. Avigdor-
Elgrabli et al. (2016) propose two clustering approaches that take as an
input <sender, XPath list> tuples to derive structural templates. The
first approach, referred to as stripped clustering, collapses repetitions
of sub-structures in the XPath-list into one instantiation of each sub-
structure. This ensures that emails with different numbers of items (e.g.,
itemized receipts) all fall into the same cluster. The second approach
further generalizes the stripped clustering approach by grouping together
stripped structures having small pairwise edit distance. The authors
demonstrate that using stripped XPaths leads to a ten-fold reduction
in the number of generated clusters as compared to using non-stripped
XPaths, while retaining more than 98% of the extractions. Adding a
relaxed matching with an edit distance of 3 increases the extraction
coverage of the exact matching approach by 25% (as more structure
variations can be captured by the templates), while only reducing the
extraction success rate by 2%. This confirms the feasibility of using the
HTML email structure for templatization and affirms the importance of
approximate – rather than exact – matching in the template clustering
phase.

4.3.2 Threading

Unlike in personal communications, where the notion of threads is
prevalent, it is not available for machine-generated communication, as
it is generally one-sided (e.g., a user is unlikely to respond to a receipt
about their purchase). Therefore, Ailon et al. (2013) propose the idea
of causal threading of sequences of machine-generated emails. Their
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approach joins a series of interactions from a bulk sender into a cohesive
thread. See Figure 4.4 as an example.

∣∣{ }∣∣

}∣∣∣

∣∣∣
{ }∣∣∣

Figure 4.4: A snippet of the learned causal graph from Ailon et al. (2013). While
these message are not a part of the same thread, the proposed algorithm can correctly
infer common sense patterns across vendors, e.g., that order confirmations precede
order shipments.

Ailon et al. (2013) propose both a causal inference algorithm, as
well as a predictive algorithm, to address the problem of unseen threads.
The casual inference algorithm constructs a directed causality graph G,
where an edge w(τ, τ ′) indicates a causal connection τ ′ → τ between
templates. To infer causality, the prior probability of observing τ in
a time window δ is compared to the probability of observing τ in the
same time window following an appearance of τ ′. Assuming that the
number of appearances of a template τ in a time window has a Poisson
distribution with a parameter λ(τ), this is formally defined as

w(τ, τ ′) = C(τ, τ ′)/C(τ)
1− exp(−λ(τ)δ) ,

where C are either conditional or unconditional template appearance
counts. Only edges with w(τ, τ ′) > 1 are retained and the graph G is
further pruned by restricting its maximum out-degree.
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The causality graph G can be further augmented by other features
defined on the ordered template pairs. Specifically, given two emails e1, e2
such that w(τ(e2), τ ′(e1)) ∈ G, Ailon et al. (2013) use features derived
from the temporal proximity of their templates, matches of var(e1)
and var(e2), their respective variable lists, and template periodicity
features.

Template threading has led to some follow-up work on predicting
activity in a certain thread. For instance, Gamzu et al. (2015) investi-
gated whether it is possible to predict the arrival of future emails in
the same thread. Di Castro et al. (2016a) explored what actions users
might take on emails in the thread. We cover this work in more detail
in Section 6.3.

4.3.3 Information Extraction

Thus far in this section, we only discussed the template structures τ ,
but not the list of variables var(e) that can be extracted by applying
these structures to an individual email e. Such extractions can be used
in a variety of search and discovery scenarios. As an example, they can
be naturally surfaced in search through knowledge panels that directly
present answers extracted from individual emails (see Figure 3.4 for
an example), or presented along with the emails to facilitate locating
the relevant information. It can also be presented in applications that
involve personal assistance (Figure 4.5).

Sheng et al. (2018) provide a detailed discussion of a large-scale
extraction engine from templated email data, with a focus on three
email categories or verticals: Bills, Hotels and Offers. Each of these
verticals has different extraction patterns, but the general extraction
flow looks as follows:

1. Identify the email template.

2. Identify the vertical of the template (e.g., Bills).

3. Identify the relevant fields from the email for extraction, based on
the vertical (e.g., due date for Bills, or check-in date for Hotels).
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Figure 4.5: Google Assistant responding to a user query for their recent bills, and
proactively displaying deals extracted from Gmail when the user enters the relevant
store (Sheng et al., 2018)

The first stage of the flow (email template induction) has been
discussed in detail in Section 4.3.1. For the last two stages (vertical
detection and field extraction), a supervised classification approach
is used. The positive examples for the classifiers comes from various
sources: (a) microdata – machine-readable semantic annotations in
HTML emails,2 (b) manual, hand-crafted annotations per sender, (c)
parsers based on rules and regular expressions. The negative examples
are downsampled from the rest of the email corpus. Features for the
vertical and field classifiers are presented in Table 4.2.

One important practical consideration made by Sheng et al. (2018)
is the fact that extractions “require high precision, so the improvement
steps usually entail increasing coverage of extractions while maintaining
high precision”. This is due to the fact that, as shown in Figure 4.5

2https://www.w3.org/TR/microdata/

https://www.w3.org/TR/microdata/
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Table 4.2: Features used by Sheng et al. (2018) for (a) classification of structured
email templates into predefined verticals (e.g., Bills), and (b) classification of template
fields into predefined type (e.g., due date).

Feature Name Description
subject-text Words in the subject line
sender-text Tokens in the sender field
top-text Top 150 words in the body
strong-text Text marked header, title, bold etc.
alt-text Alt-text supplied for image content
footer-text Last 100 words in the body
html-tag-count Number of HTML tags in the body
text-token-count Number of text tokens in the body
link-tag-count Number of link tags
image-tag-count Number of image tags
script-tag-count Number of script tags
table-tag-count Number of table tags
datetime-count Number of candidate date-time spans
salient-entities Top entity IDs

           

(a) Vertical classifier features
Feature Name Description
{5/10/20}-w-before 5/10/20 words before the candidate span
{5/10/20}-w-after 5/10/20 words after the candidate span
field-text Contents of the candidate span
doc-index Position of the field in the document (0-1)
candidate-index Positional rank relative to all candidates

           

(b) Field classifier features

extraction are likely to be surfaced in assistive products, and therefore,
there is low tolerance for incorrect information. Therefore, the system
developers are likely to start with very conservative extraction rules,
and iteratively improve coverage, while maintaining high precision.

Similar to the work by Sheng et al. (2018), Di Castro et al. (2018)
describe a production-ready information extraction system for the Travel
vertical. Unlike Sheng et al. (2018), who rely on a multi-vertical deep
learning classifier with a unified set of simple features, Di Castro et al.
(2018) utilize an automatic rule extraction system tailored towards a
specific vertical.

Gupta et al. (2019b) describe an information extraction system for
structured emails in the Flight Reservation vertical. Similar to prior
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work, their system uses a mixture of handcrafted wrappers, rule-based
wrapper induction, and machine learning to ensure high precision of
the resulting extractions. In addition, Gupta et al. (2019b), discuss the
adaptation to non-English languages with minimal cost. They consider
several alternatives; their best solution translates unlabeled non-English
email into English, and uses an English language embedding to represent
sequence of words in the original email. Then, a CNN classifier (trained
on the English email data) is applied to this translation embedding,
achieving both high precision and recall on the source language.



5
Query Understanding

Query processing and understanding techniques have an extensive track
record of success in web search. Search logs, which contain user queries
and the associated interactions with the retrieved content (clicks, re-
formulations, long views, etc.) have long been considered a valuable
source of information that significantly improved the efficacy of web
search engines in understanding user queries. Our readers may refer to
Silvestri (2010) for a good overview of this topic.

In web search engines, features like query auto-completion, query
spell-correction, and related query suggestion are all considered an
expected norm. In that regard, email search still significantly lags
behind web search at the time of this writing. Consider Figure 5.1,
which demonstrates how the query “amazin” is interpreted by a major
web mail service.1 Statistically, it is likely to be a common misspelling
of the online retailer Amazon, as any web search engine will helpfully
indicate. However, email search treats “amazin” as a sub-string match
for the word amazing, resulting in clearly non-relevant results.

This example indicates an important distinction between email and
web search. Unlike in web search, email search requires an understand-

1Similar behavior was demonstrated in the other web mail services as well.

59
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Figure 5.1: Results for query “amazin”, as retrieved by a popular mail search
engine. Note that results containing “Amazon” are present in the mailbox, but are
not retrieved.

ing of the personal mailbox, in addition to the log-based interactions
aggregated across a large base of email users. Understanding that (a)
many email service users often search for Amazon orders, and (b) the
current user is an avid Amazon shopper, would significantly reduce the
time spent finding relevant personal content for a potentially misspelled
query like “amazin”.

Therefore, in this chapter, we provide examples of current research on
three common query understanding tasks that can help to improve the
email search experience: query auto-completion, query spelling correction
and query expansion. To improve these tasks, the researchers may
potentially use the following types of email data:

• Personal mailboxes – help in identifying any particular misspellings
or phrasings that are unique to the user (e.g., informal language,
or nicknames).

• Personal query logs – email search logs from an individual user,
which can help to identify recurring searches, and unique search
intents, patterns, and interests.

• Global query logs – an anonymized union of all personal query
logs, which are useful for leveraging the universal email search
trends, similar to web search logs (Silvestri, 2010).

The techniques that we describe in this chapter heavily rely on one
(or some) of these data sources to attain better email-specific query
understanding.
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5.1 Query Auto-Completion

Unlike in web search, where we can fully rely on the “wisdom of the
crowds” to auto-complete queries, email search needs a more nuanced
understanding of the individual mailbox to improve query completion.
For instance, even if completing “amaz” to “amazon” is a highly common
pattern in the global query logs, it only makes sense to suggest it if
the user indeed received messages from Amazon. In addition, for some
very personal queries (e.g., sender names and aliases), drawing auto-
completions from the global query logs is not a viable option. On the
other hand, personal query logs may be sparse for users who do not
actively engage in email search.

Therefore, in email search, we need to consider whether query
suggestions based on a global search log actually match the personal
mailboxes. To this end, Horovitz et al. (2017) propose an approach that
combines mailbox-based and global log-based completions.

For mailbox-based completion, Horovitz et al. (2017) first extract
candidates using unigrams and bigrams extracted from the user mailbox.
For each candidate, features are extracted based on:

• tf-idf score, where tf is computed based on the candidate oc-
currence in the user mailbox, and idf is its occurrence across all
mailboxes.

• message-level features, which are based on the type of messages
that the candidates most frequently appear in: read, flagged,
forwarded, etc. In addition, candidates that appear mostly in
older messages are penalized.

• field-level features, which are defined as field-specific (sender,
recipient, cc, subject, and attachment) tf-idf candidate scores.

Horovitz et al. (2017) train an online variant of SVMRank (Crammer et
al., 2009) to learn the feature weights, using prefixes of queries resulting
in clicks as a source of training data. They demonstrate that the resulting
mailbox-based suggestions are substantially better than those purely
based on global search logs, and that a linear combination of mailbox-
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based and global log-based methods yields further improvements. These
trends are consistent across prefix lengths and evaluation metrics.

In addition to better mailbox understanding, better user modeling
also shows consistent improvements for query auto-completion in email
search. As an example, Carmel et al. (2017b) show that demographic
factors such as age, income, gender and state of residency can all
improve log-based query suggestions. More recently, Foley et al. (2018)
also demonstrate that semantic representations of the fine-grained user
location can significantly improve query suggestion over a log-based
baseline for very short prefixes. The most substantial gains (×4.51
improvement over the MRR of the baseline method) were observed for
zero-prefix queries, with the positive effects dissipating for 3+ character
prefixes. These findings indicate that user location is highly predictive of
query intent in email search, and should be considered as an important
feature for mobile email search clients.

Another interesting research direction is personal log-based query
suggestion, which was found useful in web search (Mei and Church,
2008), but has not been tackled in the context of email search. It is
still unclear whether such log-based personalization can further improve
performance if mailbox-based query suggestions have already been
deployed, especially since some users do not search their personal email
as frequently as the web.

5.2 Query Spelling Correction

Query spelling correction is standard for web search engines today,
however, with the exception of Gmail, none of the major web clients
support this functionality (Bhole and Udupa, 2015). Similarly to query
auto-completion, query spell-correction in email search can be of two
flavors. The first flavor is global log-based, and its implementation will
be mostly similar to web search (and, in large part, web-based query
spelling corrections may be reused in this paradigm).

The second flavor, which we focus on in this section, is based on
personal mailboxes, and addresses the personal and context-specific
nature of email search. Bhole and Udupa (2015) propose a machine-
learning based algorithm that:
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1. generates a set of 1,000 candidates from a user’s email data that
have a small edit distance from the query and high idf score in
user’s mailbox;

2. scores these candidates using a linear model containing features
based on lexical similarity to the query, state of the mailbox and
recent user activity.

As contact names and email addresses are often issued as queries
in email search (Ai et al., 2017), Ramarao et al. (2016) propose a
hashing-based people search algorithm to specifically handle misspelled
or mis-remembered names. The algorithm learns hash functions that
map similar-sounding names to similar binary code words in a language-
independent space (e.g., Lakshmi and Laxmi would map to the same
code).

Gupta et al. (2019a) further explore the idea of personalized spelling
corrections, specifically focusing on the problem of efficiently serving
such models with low latency at the very large scale required by the
major web mail services. In particular, Gupta et al. (2019a) focus on an
efficient computation of Levenshtein distance through early termination
for candidates that are unlikely to provide good corrections. They also
discuss techniques for generating highly compact personalized lexicons
with real-time updates, which are generated using email titles and
contacts.

Gupta et al. (2019a) report that personalized spelling corrections
can affect up to 3% of Gmail query traffic and, for the affected queries,
result in double-digit improvements across metrics and languages. These
results demonstrate the importance of mailbox-based spelling correction
in email search, re-affirming the results on mailbox-based query auto-
completion reported in Section 5.1.

5.3 Query Expansion

Similarly to the two previous tasks, query expansion techniques in email
search fall into two major categories: log-based and mailbox-based.
As personal query logs in email are often highly sparse, global and
non-personalized log-based techniques are used.
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Email queries are generally very short – 1.5 terms per query as
compared to 3 terms per query in web search (Kuzi et al., 2017). Thus,
query expansion is important for improving retrieval, especially in
terms of recall which constitutes a major problem in email search, as
the underlying corpus (a user’s mailbox) is relatively small. Moreover,
studies show that reusing expansion terms mined from web search logs
may be helpful, but not sufficient (Li et al., 2019a).

Kuzi et al. (2017) introduce three techniques for query expansion
in email search: a translation model based on global query logs, an
embedding model based on the user’s mailbox, and a pseudo-relevance
feedback model, which constructs the expansion terms from the retrieved
search results. The experimental results demonstrate that the global
translation model tends to be the most effective among the three
techniques across multiple baselines and collections. In some cases, a
linear interpolation of the three approaches may further improve the
results.

Li et al. (2019a) further explore the application of global email query
logs for the problem of query expansion. In particular, they address the
problem of information sparsity through incorporating a multiple-view
embedding approach. Unlike the translation model proposed by Kuzi et
al. (2017) that “translates” query terms into clicked document subjects,
Li et al. (2019a) consider multiple views of the data including clicks,
query sessions and user distribution and incorporate each view into a
separate feed forward neural network. Each network learns an embedding
based on “similarity” and “context” tasks, which are customized per
each view. Table 5.1 summarizes the views and the tasks being used.

At a final stage, the candidate synonyms from each view are filtered
through label propagation on a bipartite graph between query and
document n-grams with click-weighted edges, and then merged together
through a learning-to-rank framework. Offline evaluation suggests signif-
icant improvement over a variety of baselines, including individual views,
as well as synonym generation based on DESM, a publicly available
embedding model based on the Bing query corpus (Mitra et al., 2016).
Online experiments using Gmail search also show statistically signif-
icant improvements over a system that uses synonyms developed for
Google web search. This further validates the importance of employing
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Table 5.1: A summary of the data views used by Li et al. (2019a) for learning
similarity and context embeddings for generating candidate synonyms for query
expansion.

View Similarity Context
Click Subject n-gram is clicked

for a query n-gram
Embed a query n-gram
with the clicked subject
n-grams

Query session Two query n-grams are in
the same search session

Embed a query n-gram
with query n-grams in the
same session

User distribution User issued a query n-
gram

Embed a query n-gram
with the users who issued
this query n-gram

specialized data sources and techniques for the query understanding
tasks in email search.

Similarly to the case of both query auto-completion and spelling
correction, thus far personal query logs have not been used for query
expansion in published work. The sparsity of personal query logs and
their private nature have limited their utility. A successful incorporation
of personal query logs in query understanding for email search is an
interesting open research challenge.



6
Beyond Search: Intelligent Task Assistance

Thus far in this survey, we have discussed the scientific advances that
can lead to improvements in search over email and other types of
personal content (files, calendar entries, etc.). Search is a major assistive
feature that enables easier and faster task completion for millions of
users. However, with the recent advances in machine learning, and
especially the rise of deep learning, other modes of assistance have
become more commonly used in email and other personal content
storage systems. Some recent assistive features available in personal
content management systems include, among other, file recommendation
in Google Drive (Tata et al., 2017), Smart Compose feature in Gmail
(Wu, 2018), Suggested Reminders in Cortana (Graus et al., 2016), or
Grammarly writing assistance tools.1

Therefore, in this chapter, we go beyond search, and focus on other
assistance modes that facilitate personal content discovery and creation.
In particular, we focus on recent research on personal content recom-
mendation (Section 6.1), cross-platform assistance (Section 6.2), activity
prediction (Section 6.3) and assisted composition (Section 6.4). It is
important to note that while our survey mainly focuses on email content,

1https://www.grammarly.com/
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in this chapter we often go beyond the boundaries of the mailbox, as
many of these assistive features aim to boost productivity by bridging
between the various types of personal content.

6.1 Personal Content Recommendation

There is a large and growing body of work on content recommendation in
domains like e-commerce (Linden et al., 2003), streaming services (Bell
and Koren, 2007) and social media (Rogers, 2016). In all of these
domains, the recommendations are done over public corpora, such
that the recommended items are shared across users. Similarly to the
case of search, content recommendation for private content has several
important distinctions from content recommendations in these public
domains.

First, the documents are private or shared across a few users, so
standard collaborative filtering techniques are not applicable. Second,
as discussed in previous chapters, private data poses challenges in
developing machine learning models while respecting user privacy. Third,
since traditional private content storage systems do not incorporate
recommendations, designing effective recommendation user interfaces is
an important new challenge.

Tata et al. (2017) examine these three challenges in the context of
Quick Access – a document recommendation system in Google Drive.
As Drive documents are access-controlled and are generally not shared
widely among all Drive users, the authors eschew the collaborative
filtering approaches in favor of a binary classification approach. First,
for each user, a candidate working set is determined, based on user
activity within the last 60 days. Then, each of the documents in the
working set is scored using a deep network. The scoring is formulated
as a binary classification. For a given scenario, a single positive example
is generated (an opened document), as well as a random sample of
negative examples selected from the working set. Tata et al. (2017) use a
deep neural network, incorporating features reflecting various document
properties (e.g., mime type), event types (opens, edits, comments) and
event client platforms (Windows, Mac, Android, iOS). The features are
encoded both as sparse fixed-width vectors, as well as histograms.
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Similarly to research on email search, Tata et al. (2017) discuss
privacy policy as an important concern while building the system.
They discuss code peer-review enforcement, work with anonymized and
aggregated summary statistics, data k-anonymization, and debugging
the models with data donated by the team members and colleagues
as important pre-requisites for successfully building machine learning
systems over private data.

Interestingly, Tata et al. (2017) also examine the effect of different
user interface (UI) variations on the system performance. These vari-
ations include integration with zero-state search, pop-up suggestions,
thumbnail integration and UI rendering latency. The authors demon-
strate that these variations play a crucial role in user experience and
live metrics.

Xu et al. (2020) further explore the role of explanations for personal
content recommendation, using the Recommended Document Pane of
Microsoft Office 365 as an experimentation platform. They find that the
type of provided explanations plays a big role in how users interact with
the documents suggested by the platform. For instance, a document
recommendation decorated with the explanation “Alice commented on
this file” significantly increases the click probability, particularly if the
user receiving the recommendation authored that document. As another
example, for documents that have not been opened for a while, the
explanation “Bob shared this file with you” can help users to better
recognize the file and reduce time to file open. On the other hand,
some explanations like “You recently opened this” should be avoided,
as they convey little information to the users, and do not help in their
interactions with the suggested files.

Overall, the research above indicates the importance of user interface
design when building personal content recommendation systems. Further
exploration of this area is an interesting direction for future research.

6.2 Cross-Platform Assistance

While Quick Access is an example of a system where all the recommen-
dations come from the same source, an important function of private
content recommendation is breaking the barriers between the various
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personal content silos. As an example, an average office worker uses the
following on a daily basis: email, cloud file storage, calendar application,
one (or more) messaging application(s), and a video conferencing system.
Search and discovery across these different platforms is an important
research challenge.

As an example, Van Gysel et al. (2017) address the problem of
attachment recommendation – suggesting a relevant document attach-
ment in the context of the current conversation thread. They cast the
problem as one of standard information retrieval, by formulating a query
from the conversation context, and then retrieving the attachable items
in response to this query. In order to formulate a query, Van Gysel
et al. (2017) first propose a heuristic that generates k candidate terms
for each < request, response > pair. The powerset of the k candidate
terms is considered as all possible queries that could have retrieved
the attachment to the response message. The queries are then scored
by their ability to retrieve the relevant attachment (as measured by
the reciprocal rank). These are then used to generate training data
for a convolutional neural network that assigns a weight to each term.
Experiments over the public Avocado dataset (see Section 2.5.3) as well
as a set of proprietary enterprise emails demonstrate the efficacy of the
proposed approach.

In another example, Zhao et al. (2018) propose CAPERS: a Calendar-
Aware Proactive Email Recommender System. CAPERS proactively
suggests emails in response to the context of the user’s meeting schedule.
As a motivation, in an internal survey, Zhao et al. (2018) find that
68.4% of the 592 participants prepare for meetings by accessing email,
which suggests that an accurate proactive email discovery may save
user time. Similarly to Van Gysel et al. (2017), Zhao et al. (2018) find
that treating this problem as a query formulation process that extracts
keywords from the meeting subject and body, followed by a retrieval
and a ranking stage attains the best results, achieving over 80% as
measured by the nDCG metric at the top ranks.

There are numerous other examples that indicate that cross-platform
content consumption is an important and practically useful research
direction. This is especially pertinent in the era of mobile devices, where
limited screen surface makes switching among different personal content



70 Beyond Search: Intelligent Task Assistance

platforms a hindrance to user productivity. There is a growing body
of literature that addresses mobile access to personal content: Chen
et al. (2019a) demonstrate a method and an interface for making app
suggestions in the context of personal messaging; Swaminathan et al.
(2017) introduce a conversational interface that allows access to email
information through a wearable device; Kokkalis et al. (2013) convert a
mailbox to a stream of tasks that can be easily triaged on a small screen
(see Figure 6.1); Graus et al. (2016) tackle the problem of automatically
scheduling timely reminders for such tasks.
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ABSTRACT 
This paper introduces privacy and accountability techniques 
for crowd-powered systems. We focus on email task man-
agement: tasks are an implicit part of every inbox, but the 
overwhelming volume of incoming email can bury im-
portant requests. We present EmailValet, an email client 
that recruits remote assistants from an expert crowdsourc-
ing marketplace. By annotating each email with its implicit 
tasks, EmailValet’s assistants create a task list that is auto-
matically populated from emails in the user’s inbox. The 
system is an example of a valet approach to crowdsourcing, 
which aims for parsimony and transparency in access con-
trol for the crowd. To maintain privacy, users specify rules 
that define a sliding-window subset of their inbox that they 
are willing to share with assistants. To support accountabil-
ity, EmailValet displays the actions that the assistant has 
taken on each email. In a weeklong field study, participants 
completed twice as many of their email-based tasks when 
they had access to crowdsourced assistants, and they be-
came increasingly comfortable sharing their inbox with 
assistants over time. 
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INTRODUCTION 
Email management means triaging a never-ending tide of 
incoming requests. New messages push important requests 
out of view, and those requests can be unintentionally 
missed [26, 38]. To avoid overlooking important messages, 
people spend large amounts of time carefully processing 
their inbox or triage by focusing only on high priority mes-
sages [6, 18, 35]. However, people often keep unfinished 
tasks in their inbox [38], and triaging is error-prone [35]. As 
a result, tasks are often mixed with other emails, get pushed 
down by new messages, become hard to find, and forgotten.  

Current approaches for handling email-based tasks are lim-
ited and/or expensive. Integrating task management directly 
into the email client [3, 8] or asking communicators to 
structure their requests [39] requires significant manual 
effort. Automatic techniques have shown some promise in 
identifying tasks in emails [12, 16, 19, 25], but they are not 
yet fully reliable [25] and require heavy-handed user inter-
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Figure 1. The EmailValet email client draws on crowdsourced expert assistants to transform a cluttered inbox into an organized 
task stream. Assistants are given limited, accountable access to the user’s inbox so that they may extract tasks from each email. 
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Figure 6.1: Email Valet (Kokkalis et al., 2013) transforms a cluttered mailbox into
a succinct, mobile-friendly stream of individual tasks.

6.3 Activity Prediction

As billions of actions are being taken by email users each day, analyzing
this aggregated activity provides a unique opportunity for reducing the
user information overload. To achieve this goal, researchers have been
developing large-scale machine learning algorithms that take as an input
activity patterns both from the sender and the recipient standpoints,
and attempt to predict future activity.

In one of the earliest works on this subject, Dabbish et al. (2005)
develop a model that attempts to predict how likely a user is to perceive
an email as important or reply to it. The model is based on the survey
responses from 124 email users in an academic institution. Dabbish
et al. (2005) show that emails containing an action, information or
scheduling request, status update, or reminder message content were
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more likely to be deemed important. Message importance, in turn,
significantly increased the likelihood of email reply. Information requests
are additionally found to be highly predictive of email reply regardless of
email importance. On the other hand, an increased number of recipients
significantly reduces the likelihood of an email reply action.

Aberdeen et al. (2010) take a large-scale machine learning approach
to predict the priority of an email, i.e., how likely is the user to act on
an email. They formulate the prediction problem as

p = P (a ∈ A, t ∈ (Tmin, Tmax)|f , s), (6.1)

where A is the set of actions denoting email importance (open, reply,
manual corrections), t is the delay between delivery and action a, f is
the feature vector, and s indicates that the user actually saw the email.
According to Aberdeen et al. (2010) hundreds of features are used from
the following main categories:

• social - based on the degree of interaction between sender and
recipient

• content - headers and recent terms that are highly correlated with
user action (or lack thereof)

• thread - user interactions with the thread thus far

• label – user-applied message labels.

For scalability purposes, a linear logistic regression model is used,
and two models are trained – a local (i.e., user-specific) model and a
global (i.e., at the user population level) model. The final prediction is
a sum of the local and the global model, as the global model provides
back-off for cases where there is a dearth of data for the local model.

In later research Di Castro et al. (2016a) revisit the task of action
prediction, with more fine-grained predictions focusing on four action
types in response to an email: read, reply, delete, and delete-without-
read. They leverage the massive scale of a commercial web email service
(Yahoo! Mail) for their analysis. Similarly to Aberdeen et al. (2010),
Di Castro et al. (2016a) find that both local and global features are
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useful for this task. In addition, they propose “horizontal” regularization
for low-activity users that takes the general form

Ex,y[Loss(w, x, y)] + λn||w − w′||, (6.2)

where w is the local model weights vector, λ is a tunable parameter
depending on the number of user actions n, and w′ is the weight vector
for either an average user or a user belonging to the same latent class
(found by k-means clustering). For preserving privacy, the features for
each example x are not based on the email content, but only rely on
aggregated action counts, either per user or per class. Interestingly, this
horizontal regularization approach significantly improves performance
for read and reply predictions, but not for delete and delete-without-read
predictions, indicating that the latter actions may be less generalizable
in nature.

Gamzu et al. (2018) examine another user action, that is specific to
bulk mail – unsubscription. They find that a logistic regression model
that combines personal user activity features with those from the global
user population, as well as from relevant demographic groups demon-
strates the best performance, reaffirming the importance of “horizontal”
or cross-user learning for activity prediction noted by previous work.

Gamzu et al. (2018) also argue for the importance of providing the
users with a convenient interface for unsubscription from email traffic
that may be of low interest to them. In an online experiment, where
an unsubscription dialogue (see Figure 6.2) was shown to Yahoo! Mail
users, 34.2% of the dialogues were engaged with to unsubscribe. Gamzu
et al. (2018) report that these numbers are 8 times larger than the
number of users who actively performed unsubscriptions by clicking
links within email bodies. These high engagement number demonstrate
that proactive assistance interfaces are crucial in combating information
overload.

In addition to predicting user activity in response to a particular
email message, researchers have also examined predicting future sender
activity on an email conversation or their communication with a given
recipient. This has been explored in-depth specifically for bulk machine-
generated emails (Ailon et al., 2013; Gamzu et al., 2015; Zhang et al.,
2017).
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Figure 6.2: Unsubscribe dialog to facilitate easier unsubscription (as shown in
(Gamzu et al., 2018)).

As an example, Zhang et al. (2017) use an anonymized dataset
consisting of 2.5 million machine-generated emails from more than
a hundred thousand users to predict one of 17 categorical labels for
the next received email (e.g. restaurant reservation, online purchase,
job listing, etc.). They examine the performance of Markov chains,
multilayer perceptron, and long short-term memory (LSTM) for this task
(shown in Figure 6.3). Neural based models that effectively encode the
various time-based features (e.g., day of the week, period of the months
and the length of the time gap between two consecutive messages)
demonstrate superior performance to Markov chains. The high MRR
values in Figure 6.3, especially for the LSTM model, indicate the
feasibility of assistive technologies that take into account the arrival of
future emails.

6.4 Assisted Composition

Thus far, we have discussed the assistive technologies that make it easier
for users to engage with the existing personal content. In this section,
we focus on a case for assistive composition – technologies that facilitate
more effective personal content creation. Such assistive technologies
generally serve two goals. First, they take care of mundane, repetitive
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Figure 6.3: The performance gap between the Markov chains and the neural
methods (MLP and LSTM) for the task of category prediction for future emails.
(Zhang et al., 2017).

content creation tasks such as generating canned email replies (Kannan
et al., 2016) or suggesting likely email recipients based on context and
past history (Carvalho and Cohen, 2008). Second, they can actually
improve the quality and the readability of the generated content by
using well-structured grammatical as-you-type auto-completions (Wu,
2018), suggesting relevant email attachments (Van Gysel et al., 2017)
or improving the readability of the composed emails through better
language clarity or grammar (Grammarly, 2018).

Overall, methods and systems for assisted composition can be broken
down into the following categories (in an increasing difficulty order):
binary prediction, item ranking, and content generation, each of which
we discuss next.

6.4.1 Binary Prediction

The earliest techniques for assisted composition focus on binary classifi-
cation tasks that help to prevent unintentional message composition
errors. As examples, Perronnin (2009) proposes a missing attachment de-
tection system based on the statistical language model of the composed
email; Carvalho and Cohen (2007) focus on preventing information leaks
by building a classifier for unintended email recipients using both email
content and the sender social network information.
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In some cases, binary classification can also be combined with an
auxiliary task that focuses on a particular part of the message. For
instance, in the context of identifying requests for action, Lampert
et al. (2010) draw a distinction between message-level identification –
whether an email contains a request – and utterance-level identification
– determining where in the message the request is expressed, and how
to respond to it. In this case, the former can be formulated as a binary
classification, while for the latter a more general information extraction
or content generation model needs to be employed.

6.4.2 Item Ranking

Going one step forward beyond binary classification, researchers also
proposed ranking models for assistive composition. Some examples
include ranking likely email recipients (Carvalho and Cohen, 2008),
or recommending which documents should be attached to an email
(Van Gysel et al., 2017). Email folder suggestion (Segal and Kephart,
2000) or reply suggestion (Sordoni et al., 2015) where all the suggestions
are known in advance, can be modeled as item ranking models.

In general for evaluating these models ranking metrics should be
considered, in lieu of classification metrics like precision or recall. In
the cases where we expect to have exactly one correct suggestion,
MRR – mean reciprocal rank of the first relevant system suggestion –
could be used as a success criteria. For cases where there are multiple
potentially relevant suggestions, MAP (mean average precision) or DCG
(discounted cumulative gain) could be used.

6.4.3 Content Generation

Most recently, commercial systems started to provide more advanced
assistive composition features that are directly geared towards content
generation. The development of such models is generally afforded by
advances in deep learning. These advances enable training models from
massive amounts of anonymized user generated content. For instance,
Kannan et al. (2016) in their work on the Smart Reply feature in Gmail
use a training set of 238 million email messages.
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The Smart Reply system suggests brief replies to email messages
containing simple information requests. The feature is especially helpful
on mobile devices, where tapping on a suggested reply option can
significantly reduce time to reply: Kannan et al. (2016) indicate that
at the time of writing, 10% of mobile replies in Gmail Inbox were
“composed with assistance from the Smart Reply system”.2

As an interesting research problem, Kannan et al. (2016) discuss
enforcing response diversity to ensure the usefulness of the smart replies.
First, the redundant responses are normalized into a single canonical
intent (e.g., Yes, I can! and Sure, I can!), and only one response per
intent is shown to the user. Second, in order to provide real choice to
the users, if none of the top three responses are negative, the third
response is replaced with a negative one.

The Smart Compose system (Wu, 2018; Chen et al., 2019b) takes
the content generation techniques one step further by learning to inter-
actively offer sentence completions as the users type. To achieve this,
the authors combine a bag-of-words neural language model (Bengio
et al., 2003) with a Recurrent Neural Network based language model
(RNN-LM) (Mikolov et al., 2010), using the averaged word embeddings
of the subject and the previous emails as an input to RNN-LM for the
next word prediction.

The creators of the Smart Reply and the Smart Compose features
raise several interesting practical considerations for deploying assistive
composition at scale. For instance, Wu (2018) reports that using Ten-
sor Processing Units (TPUs) instead of standard CPUs for inference
decreases serving latency from hundreds to tens of milliseconds, while
also greatly increasing request throughput.

2https://en.wikipedia.org/wiki/Inbox_by_Gmail

https://en.wikipedia.org/wiki/Inbox_by_Gmail


7
Managing and Learning from User Data

The ability to effectively leverage user data is crucial to the development
of any large scale search or recommendation system. Researchers need
such data to empirically quantify and compare the performance of their
systems, to perform labeling and annotation, and to use it for training
machine learning algorithms. However, unlike in some other textual data
processing settings, where human assessors and researchers can access
public data (e.g., web pages), in the email setting, the data is in the
private domain. The number of publicly available annotated resources
is very limited,1 and not all annotation use cases can be supported
by these resources. As a result, when developing mailbox processing
algorithms, there is a need for leveraging user data for annotation and
training while respecting the privacy constraints of an email corpus.

In addition, when training learning algorithms with user interaction
data such as clicks, without direct access to human labeling or email
corpus, it is important to be mindful of the inherent biases and sparsity
of such interactions. Clicks are not always indicative of relevance or
utility, and each user will have access only to their own private email
corpus, limiting the generalizability of their interaction data.

1See Section 2.5.3 for an overview of the existing public datasets.
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To address these important issues, we dedicate this chapter to
the management of users’ personal content and interaction data in
the context of email search and discovery. We start by discussing best
practices for privacy-preserving processing of email content in Section 7.1.
In Section 7.2, we describe techniques for click bias correction to ensure
optimal training of click-based learning-to-rank algorithm. We conclude
in Section 7.3 that discusses techniques for click data aggregation.

7.1 Data Privacy

Data privacy presents multiple model development challenges. For
instance, researchers cannot access unredacted email content in order
to inspect and debug their models. They also cannot evaluate the
performance of a model on an individual user, or a predefined group
of users. Finally, models directly trained with unredacted data may
leak private information. To address these issues, Kannan et al. (2016)
propose the following general privacy-preserving principles for data
protection and reduction:

• Encryption All types of data are stored in an encrypted format,
and the unredacted data cannot be directly accessed by the model
developers.

• Aggregation Model developers can only inspect aggregated model
statistics that cannot be associated with a particular user.

• Frequent Words If the inspection of a particular text snippet is
required, any user identifications are removed and only frequent
words (i.e., words that occur across multiple users) are retained.

To comply with these principles, the data processed by email search
and discovery algorithms should be anonymized, i.e., the data should
not be related to an identified or identifiable individual person. The
anonymization process should render all personal data anonymous in
such a manner that this individual is no longer identifiable.2

2Based on the General Data Protection Regulation by the European Parliament
and Council of the European Union (2016).
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In this section, we discuss three broad classes of data anonymization
methods: data de-identification (Section 7.1.1), k-anonymization (Sec-
tion 7.1.2), and differential privacy (Section 7.1.3), and provide concrete
examples of how they can be applied to email search and discovery. In
some limited special cases, users may also allow some of their data to be
directly annotated with no or limited anonymization. This is discussed
in Section 7.1.4.

7.1.1 Data De-identification

The simplest data anonymization technique is data de-identification,
which attempts to remove any personally identifiable information from
the stored content, prior to applying any modeling techniques to it. Data
de-identification is often used in practical applications, e.g., in medical
data processing to ensure the privacy of patients records (Uzuner et al.,
2007).

In particular, HIPAA regulation by the US Department of Health
and Human Services (2012) is designed as a standard for de-identification
of protected health information, and provides implementation specifica-
tions for this standard. The HIPAA regulation suggests the Safe Harbor
data identification method, which requires removal of the 18 types of
personal identifiers listed in Table 7.1 from any released medical record.
While the Safe Harbor method was developed primarily for medical
record anonymization, it is clear that the personal identifiers it defines
are applicable to email (or any other private) content as well.

Data de-identification is an important data pre-processing stage
that should be applied to all types of private data. However, it is
important to note that it is insuffient to guarantee data privacy on its
own. Identifying all the private information in Table 7.1 may be an
error prone process (Uzuner et al., 2007), with no provable guarantees
for removing all personal identifiers. Therefore, in the next two sections,
we discuss two methods that provide additional statistical privacy
guarantees: k-anonymity and differential privacy.
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Table 7.1: Personal identifiers that need to be removed in order to de-identify
health information. According to the Safe Harbor method, as described by the US
Department of Health and Human Services (2012) HIPAA regulation §164.514(b)(2).

(a) Names
(b) All geographic subdivisions smaller than a state, or the initial three
digits of the ZIP code, if the geographic unit formed by combining all
ZIP codes with the same three initial digits contains more than 20,000
people
(c) All elements of dates (except year) for dates that are directly
related to an individual
(d) Telephone numbers (k) License numbers
(e) Fax numbers (l) Vehicles identifiers and serial

numbers
(f) Email addresses (m) Device identifiers and serial

numbers
(g) Social security numbers (n) URLs
(h) Medical record numbers (o) IP addresses
(i) Health plan beneficiary numbers (p) Biometric identifiers
(j) Account numbers (q) Full-face photographs
(r) Any other unique identifying number, characteristic, or code

7.1.2 k-Anonymity

The formal principle of k-anonimity states that given a set of protected
attributes (e.g., location, age, etc.), the data can be considered k-
anonymous only if every combination of values of these attributes can
be indistinctly matched to at least k individuals (Samarati and Sweeney,
1998).

Di Castro et al. (2016b) apply the principles of k-anonymity to
performing annotations over anonymized email data. In particular, these
k-anonymized annotations can be used to validate the templatization
and extraction algorithms described in Section 4.3.

The email k-anonymization technique consists of three main stages:
grouping, masking and assignment.

• Grouping In this stage, the messages are grouped by a MailHash
algorithm. First an email is assigned to a unique hash, which is the
MD5 hash of its DOM-tree signature. Then, the number of distinct
users (each user identified by a unique recipient email address)
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associated with each group is counted, such that any group that
has less than k unique users associated with it is deleted.

• Masking For each of the remaining groups, the text is deleted
from each of the DOM-tree entries, up to the point where all
messages in the group are identical, and thus k-anonymization is
preserved at the group level. The retained masked samples can
be considered templates, while the deleted entries represent the
template variables (see Section 4.3.1 for a formal email template
definition).

• Assignment The grouping and masking stages guarantee that
each resulting email template is k-anonymized. In the assignment
stage, we are also guaranteeing that the assignment stage is k-
anonymized by guaranteeing that no samples from a single user
are viewed by the same human assessor. For this, the algorithm
ensures that each user will be associated with at most one template
assigned to the same assessor.

Figure 7.1 shows an example of the resulting email samples (receipt
and flight itinerary) from this three-stage process.

Figure 7.1: An example of k-anonymized email sample of a shopping receipt and a
flight itinerary (from Di Castro et al. (2016b)).

As email search queries are as likely to contain personal information
as mailboxes (e.g., searching for a contact name is one of the most
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common email search tasks (Ai et al., 2017)), email query log analysis
has similar privacy constraints to mailbox processing. In both cases, it
is common to apply k-anonymization to query and email text, retaining
only frequent terms co-occurring across multiple users.

As an example of k-anonymized log processing, Li et al. (2019b)
detail their anonymization technique, wherein only queries and email
subject lines are used, and only n-grams that appear in query logs of
sufficiently many users are retained. Then – for both subject line and
query – a small subset of these frequent n-grams is retained, without
order information. Other query processing work discussed in Chapter
5 applies similar anonymization policies (Gupta et al., 2019a; Foley
et al., 2018). User identifiers are either reported to be fully removed
from the data (Foley et al., 2018), or hashed using a non-invertible
function (Carmel et al., 2017b).

Such strict data protection requirements inevitably limit the ex-
pressiveness of the resulting models, preventing the usage of sequence
learning algorithms such as CRFs, RNNs, LSTMs, or the more recently
introduced Transformers (Vaswani et al., 2017). This is due to the
fact that in order to meet the privacy threshold, most k-anonymity
based approaches only consider term unigrams. As a result, they do not
retain term order information for queries, subject lines, or email con-
tents. The applicability of sequence learning algorithms to obfuscated,
k-anonymized datasets is an interesting direction for future work, and
holds a big promise for improving the state-of-the-art of mailbox and
query understanding techniques in email search.

7.1.3 Differential Privacy

The issue with k-anonymity is that it may become difficult on high-
dimensional datasets (i.e., if the number of protected attributes is too
large) (Aggarwal, 2005). In addition, in the case of datasets where
the data has user associations, even if each individual attribute is
k-anonymized, it can still be compromised by joining the data with
external sources of information (Naranyanan and Shmatikov, 2008).

To address these issues, differential privacy was proposed (Dwork,
2008). Formally, a randomized algorithm A has an ε-differential privacy
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guarantee if
P (A(D) ∈ S)
P (A(D′) ∈ S) ≤ exp(ε), (7.1)

where D and D′ are any two datasets differing in at most one element,
and S is a possible outcome of the algorithm A. Simply put, this defini-
tion provably ensures that adding or removing a single database item
does not substantially change the output distribution of the algorithm
A.3 In practice, differential privacy is usually implemented by adding
small amounts of random noise to either the dataset D or the algorithm
A, to ensure that single item changes will be masked by this noise.

As an example for a differential privacy application for email corpora,
consider the case of Smart Compose (Chen et al., 2019b) and Smart
Reply (Kannan et al., 2016), two examples of large language models
trained on a text corpus comprising of the personal emails of millions
of users. Smart Compose and Smart Reply are available to Gmail users,
providing automatic sentence completions and reply suggestions, respec-
tively.4 Obviously, even though the training data for these language
models may contain sensitive information about individual users, the
models should never emit such data as suggestions. One simple solution
is applying k-anonymization to the data, however, as discussed at the
end of Section 7.1.2, this will severely limit their expressiveness and
effectiveness due to the loss of word order information.

Alternatively, differential privacy does not require k-anonymization,
and instead focuses on injecting noise into either the data itself, or the
model training process, such that we will have provable guarantees that
the model will not inadvertently memorize rare-but-sensitive items (e.g.,
personal identifiers). In this context, Carlini et al. (2019) demonstrate
that applying differential privacy minimizes the risk of such unintended
memorization that occurs when trained neural networks may expose the
presence of secret or private data in the model (a.k.a. canaries). They
propose a formal definition of these canaries and define an exposure
evaluation metric

exposureθ(s[r]) = log2 |R| − log2 rankθ(s[r]), (7.2)
3For strong privacy guarantees, ε ∈ [0, 0.01] is recommended, although it can

potentially be as large as ln(2), if there is more risk tolerance (Dwork, 2008).
4See Section 6.4 for more details on the implementation of these models.
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where s[r] is a canary sequence chosen through randomness r, from
some randomness space R, and rank is the index of canary s[r] in
the list of all possibly-instantiated canaries, ordered by the empirical
perplexity of the evaluated model θ.

Intuitively, exposureθ(s[r]) measures how much more likely a par-
ticular canary s[r] is to be guessed by a model θ than any other random
sequence. For instance, consider inserting a specific canary s[r] =“Social
security #523452345” into a dataset, and training a language model
over it. Then, one can compute the perplexity of this canary, and rank
it with respect to all other possible canaries. The value of the exposure
will range from log2 |R| (canary is ranked first) to 0 (its rank is indis-
tinguishable from that of any other random sequence). Higher values of
the exposure metric indicate model propensity to memorization and a
higher risk of unintentional private data leakage.

Given a task of predicting the next character given a prior sequence
of characters (akin to the Smart Compose use case), Carlini et al.
(2019) discuss several standard techniques that can ameliorate the
private data leakage risk, including weight regularization and data de-
identification. However, they find that none of these techniques provide
provable guarantees against memorization and data exposure. Instead,
they turn to differential privacy, and empirically demonstrate that the
differentially-private stochastic gradient descent algorithm (DP-SGD)
by Abadi et al. (2016) is an effective defense that can almost completely
prevent data exposure, albeit with some performance losses for the next
character prediction task. An interesting finding is that even for large
values of ε – which introduce vanishingly small amounts of noise to
DP-SGD, and do not have a significant impact on task performance –
the measured exposure becomes negligible.

7.1.4 Transparent Data Access

In some cases, the researchers may still need access to the full mailbox
corpus without any anonymization applied, e.g., for the purposes of
code debugging or better understanding of the model behavior. In such
a case, the users should be aware of such access, understand what data
is being shared and with whom, and voluntarily opt-in for being a
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part of such a research experiment. For instance Carmel et al. (2015)
describe accessing a sample of real user queries issued on Yahoo Web
mail service from a set of opted-in users.

Researchers do find that in some instances users may be comfortable
in sharing some of their mailbox data with researchers or annotators,
at least for the purpose of limited study. For instance, Kokkalis et al.
(2013) propose a Valet approach to email data, where users knowingly
share data with crowd-source workers for a limited duration of time.

Kokkalis et al. (2013) find that a majority of the study participants
(18 of 28) were initially uncomfortable with data sharing. However,
“over half of those with concerns (10 of 18) ... reported that they felt
more comfortable with the service over time, while no one reported a
decrease in comfort”. This indicates that given a perceived value of
annotations, users may be willing to provide limited access to their
mailbox as long as:

(a) the users can clearly specify the time limits for workers access;

(b) the users have full control over what data is being shared; and

(c) the users perceive the services enabled by data sharing valuable.

This finding validates the feasibility of conducting personal search
studies with small groups of volunteers who provide informed consent
for data access for research purposes for a limited time period, subject to
the review of the proper institutional review boards. Developing formal
guidelines for such review boards, as well as ethics training programs
for researchers are important investments to enable further research
advances in the field (Gibney, 2017).

7.2 Data Bias

Despite the privacy limitations, it is important to be able to leverage
some user information in order to improve the efficacy of email search and
discovery algorithms. One such source of information is user interaction
data, especially clicks. Therefore, in this section, we turn our attention to
a class of techniques that aims to optimize email search ranking purely
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from click data, without access to any human relevance judgments.
As prior work demonstrates, such techniques can be applied to any
document corpus with search logs (Joachims, 2002); in this section we
focus on their specific applications to email search, while providing a
brief survey of relevant prior work on utilizing click data.

Click data from search logs has been extensively explored for search
ranking optimization, starting with the seminal early work by Joachims
(2002). While click data is attractive due to its abundance, its main
limitation is bias – user click behavior may be biased by factors not
directly related to document relevance – e.g., position bias (Radlinski
et al., 2008), presentation bias (Yue et al., 2010), or freshness bias
(Zhang et al., 2011).

Multiple click models that attempt to simulate user behavior in the
presence of such biases have been developed to mitigate their effect
(see Chuklin et al. (2015) for an overview). However, it is important
to note that click models, which learn click probabilities from large
quantities of clicks for individual <query, document> pairs, cannot
be directly utilized in personal search applications like email search,
where documents are not shared across users (Wang et al., 2016a). It is
thus often impractical to accumulate a large number of clicks for each
<query, document> pair.

Instead, a class of techniques called unbiased learning-to-rank has
been recently proposed, based on the counterfactual learning frame-
work (Joachims et al., 2017). An attractive property of unbiased learning-
to-rank is that it does not require queries to repeat in the click logs,
which makes it a fitting choice for email search applications. In the
remainder of this section, we first provide a basic primer on the topic of
position bias correction via unbiased learning-to-rank in Section 7.2.1.
We then discuss specific ways to combat position bias in email search
in Section 7.2.2.

7.2.1 Position Bias Correction

Formal Definition

Position bias can be modeled via a simple yet effective generative click
model (Chuklin et al., 2015). This model assumes that the observed click
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Bernoulli variable C depends on two other hidden Bernoulli variables
E and R. E represents the event whether a user examines a document
at a certain position k. R represents the event whether a document d is
relevant to a query q. Specifically,

P (C = 1|q, d, k) = P (E = 1|k) · P (R = 1|q, d), (7.3)

where P (C = 1|q, d, k) is the probability of clicking document d that
is shown at position k given query q, P (E = 1|k) is the probability
that position k is examined, and P (R = 1|q, d) is the probability that
document d is relevant to query q. For succinctness, we use the following
shorthand in the remainder of this discussion:

θk = P (E = 1|k) (7.4)
γq,d = P (R = 1|q, d) (7.5)
ξq,d,k = θkγq,d. (7.6)

Intuitively, the click model ξq,d,k decouples the concepts of exami-
nation and relevance. It assumes that the examination only depends
on the position, while relevance only depends on the query and docu-
ment. Therefore, this model accounts for click position bias, which is
often observed in real world search engines. While document relevance
remains constant, regardless of where it is displayed, its probability of
examination θk varies by its position. In traditional search interfaces,
where the results are presented in a vertical order, and are examined
in a top down fashion, this leads to rarer examination of documents at
the bottom ranks (Joachims et al., 2007).

With this click model at hand, we next focus on various way to esti-
mate the hidden examination variable θk. Note that given the definition
of the observed click probability ξq,d,k in Equation 7.6, we need a way to
either estimate the hidden relevance variable γq,d, or eliminate it from
the equation, which can be done either with or without randomizing
the search results.

Position Bias Estimation with Randomization

A simple way to estimate ξq,d,k is randomizing the order of the search
results shown to the users. It is easy to see that given sufficient search
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traffic, result randomization effectively integrates out the relevance
component γq,d, as we will observe a large sample of all possible orderings.
There are several ways to perform result randomization, and we describe
two commonly used methods in this section.

Wang et al. (2018) prove that given a randomized data set R where
the top N documents are randomly shuffled before showing them to
users, the probability of examination θk is proportional to the number
of clicks in Rk. While simple to implement and effective for precise
estimation of the position bias Randomize TopN can significantly lower
the relevance of the top results, and thus create an undesired degradation
in user experience.

A relatively milder intervention is to randomize pairs. Joachims et
al., 2017 show that an experiment that swaps results at rank 1 and rank
k at random, gives a good estimation of θ1

θk
for k = 1 . . . N. Joachims

et al., 2017 further demonstrate that it is sufficient to know the ratio
between the different θk’s for unbiased learning algorithms, not their
absolute values.

This intervention can still be relatively disruptive, as the most
relevant result could move to the k-th position at the bottom of the
list. Instead, Wang et al. (2018) propose Randomize Pair, which swaps
only adjacent pairs at position k − 1 and k. k’s are varied, and search
logs for each k are collected separately. Such an intervention gives us a
good estimation of θk

θk−1
. A chain rule can be then applied to estimate

the relative ratio between θ1 and θk:
θk
θ1

= θk
θk−1

· θk−1
θk−2

· · · θ2
θ1
.

Position Bias Estimation without Randomization

To be effective, result randomization has to be done on real search
traffic, and that can be harmful to the user experience due to the
shuffling of the search results. For instance, Wang et al. (2018) show
that Randomize TopN and Randomize Pair can lead to 14% and 7%
respective drops in the mean reciprocal click position metric for email
search. Therefore, estimating position bias without result randomization
is a challenging, but important research topic. Next, we briefly review
two representative techniques that address this problem.
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Wang et al. (2018) propose a regression-based EM algorithm that
does not require randomization to learn the position bias. Given a
regular click log L = {(ci, qi, di, ki)}Ni=1, the log likelihood of generating
this data is

logP (L) =
∑

(c,q,d,k)∈L
c log θkγq,d + (1− c) log(1− θkγq,d).

The EM (Expectation-Maximization) algorithm can now be used to
find the parameters that maximize the log likelihood of the whole data.

The regression-based EM algorithm only modifies the Maximization
step in the standard EM algorithm, Using the exact identifiers is par-
ticularly challenging in the case of email search, due to click sparsity
caused by each user having a separate corpus of documents. Instead
of directly working with (q, d) identifiers, Wang et al. (2018) assume
there is a feature vector xq,d representing them, and use a function to
compute the relevance γq,d = f(xq,d). The Maximization step is then to
find a regression function f(x) to maximize the likelihood of the data
given the estimation from the Expectation step.

Intervention Harvesting (Agarwal et al., 2019b) is another technique
to learn position bias without randomization. It is motivated by the
Randomize Pair approach and generalizes the Randomize Pair approach
for any pair of positions k and k′. It views a Randomize Pair intervention
as imposing two ranking functions: one is the original ranking, and the
other is the one that only differs from the previous one by swapping
documents at k and k′.

Instead of running intervention experiments, the key idea behind
Intervention Harvesting is that natural interventions are readily available
in virtually any operational system – namely that there is more than
one ranking function employed in a real-world search engine. In the
Randomize Pair approach, both ranking functions require the same
amount of traffic. This condition is not required in the Intervention
Harvesting approach, which instead computes the normalized clicks
ck,k

′

k and ck,k
′

k′ . The click count normalization accounts for non-uniform
assignment probabilities to positions k and k′ by the two ranking
functions. Based on these normalized counts of all pairs of positions
k and k′, Agarwal et al. (2019b) develop an AllPairs estimator for
position bias, and empirically demonstrate its robustness.
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Unbiased Metrics

The position bias estimation techniques described above can be used to
unbias metrics defined over biased click data. Recall that we introduced
a weighted variant of the Mean Reciprocal Rank (wMRR) metric in
Equation 2.4 in Section 2.5. Wang et al. (2016a) show that weighting
the i’th query based on the inverse propensity of the position of its
click, wi = 1

θki
, provides a principled way to remove position bias from

the MRR metric. Intuitively, this unbiased wMRR metric will assign a
higher weight to queries with clicks at lower position, since they are
likely to be underrepresented in the data due to smaller probability of
examination.

In a multi-click setting, an unbiased version of the Discounted
Cumulative Gain metric (DCG), can be similarly defined, by weighting
the gain from each clicked document by its inverse propensity (Joachims
et al., 2017). Such an unbiased metric can be readily optimized by
learning-to-rank algorithms such as LambdaRank (Burges, 2010).

7.2.2 Position Bias Correction in Email Search

In the previous section, we have discussed the theoretical grounding
of some of the commonly used position bias estimation techniques in
the unbiased learning-to-rank framework. In this section, we turn our
attention to the empirical evaluation of unbiased learning-to-rank in
the context of email search.

Wang et al. (2016a) examine the question of how pronounced position
bias in email search is, and whether user clicks are indeed affected by
their position in the ranked list. They run a Randomize TopN experiment
for a small fraction of users of an email search service (Gmail), as well
as a cloud file search service (Google Drive). Figure 7.2 demonstrates
the propensity scores θk obtained by this experiment. As we can see
in Figure 7.2, email search users are more than twice as likely to click
on the first position compared to the fourth position, regardless of the
result relevance (as email ranks in this experiment are randomized).
The position bias still exists, but is much less pronounced in the cloud
file search setting. This demonstrates the importance of separately
estimating propensity scores for each individual search service, as they
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may be affected by multiple factors. Moreover, they should be re-
estimated periodically, as they are informed by users’ past experience
with the search service.
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Figure 7.2: Propensity scores obtained by a Randomize TopN experiment conducted
in email and cloud file search services (Wang et al., 2016a).

However running result randomization to estimate the probability of
examination at each position is likely to have a severe negative impact on
search quality, as shown in Table 7.2. This can be somewhat ameliorated
by applying the Randomize Pair technique, however some significant
losses in performances can still be observed, especially for swaps at
the top positions. This further motivates the use of non-randomization
propensity techniques described in Section 7.2.1.

Finally, several publications confirm the importance of accurate
position bias estimates for the purpose of tangible search quality im-
provements. For instance, Wang et al. (2016a) apply Randomize TopN
inverse propensity weighting when training an unbiased learning-to-rank
model using email search click data. They find that such weighting can
improve the click-through rate by up to 0.7% using an experiment on
live traffic.
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Table 7.2: The effects of Randomize TopN (RandTopN) and Randomize Pair
(RandPair), as measured by the relative change of MRR against the production
system (Wang et al., 2018). * indicates statistically significant differences.

Email (N=3) File Storage (N=5)
RandTopN -13.94%* -31.04%*

RandPair(1, 2) -6.80%* -12.44%*
RandPair(2, 3) -0.56% +3.75%
RandPair(3, 4) +0.20% +1.09%
RandPair(4, 5) +0.38% +0.36%

Wang et al. (2018) demonstrate that similar improvements can be
obtained when the regression-based EM algorithm is used for propensity
estimation. Such improvements, while small in terms of percentages, are
highly significant for systems that serve millions of users daily, as they
can significantly increase consumer satisfaction and the productivity of
enterprise workers.

The click bias model presented in Equation 7.3 assumes that clicks
indicate that a document was both examined by the user and relevant.
However, in realistic settings, non-relevant documents may also be
clicked as a result of user judgment error. Agarwal et al. (2019a)
postulate that this can be modeled by position-dependent trust bias.
Such trust bias results from the fact that the perceived relevance of the
document may be influenced not only by its actual relevance, but also
by its position in the ranked list. Agarwal et al. (2019a) use ε+k and ε−k
to respectively denote perceived relevance, or lack thereof. Thus, the
position bias model (Equation 7.3) can be generalized to model trust
bias as well:

P (C = 1|q, d, k) = θk(ε+k γk,d + ε−k (1− γk,d)). (7.7)

Agarwal et al. (2019a) extend the regression-based EM algorithm
by Wang et al. (2018) to estimate trust bias parameters ε+k and ε−k .
They demonstrate that the obtained inverse propensity weights can
further improve click-through rates in a live experiment in email search,
when compared to the version that does not account for trust bias.

Some follow-up work extends the position bias model to account for
query context as well. For instance, position bias may differ between
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queries where the user is most likely to click the first result (e.g., the
latest hotel booking), and queries where the user may be more likely to
examine the ranked list in depth (e.g., an old email from a friend). Wang
et al. (2016a) propose a generalized bias model for email search that
explicitly attempts to predict position bias for a query given its features
such as query length or the categories of the clicked document. Fang
et al. (2019) extend the Intervention Harvesting approach discussed in
Section 7.2.1 to take into account query context such as its length, its
position in the search session, and the number of returned results.

Overall, unbiased learning-to-rank has been proven to be an influen-
tial technique in email search and beyond. It remains an active research
area, as evidenced by recent tutorials5, open-source code releases6, and
surveys (Ai et al., 2021). One interesting direction for future work is
applying the most recent work in the area — including a dual learning
algorithm for propensity and relevance estimation (Ai et al., 2018) and a
unification of unbiased learning-to-rank with online learning (Oosterhuis
and Rijke, 2021) — in the context of email search.

7.3 Data Aggregation

Thus far in this chapter, we tackled the issues of data privacy and data
bias in personal search applications such as email search. Both of these
issues stem from data sparsity: in email search, each user has access only
to their own personal corpus (e.g., emails, documents or multimedia
files). Data sparsity has an additional important limitation. Cross-user
interactions with the same item, which are common in web search (i.e.,
millions of users visiting the same web page) are non-existent in personal
search.

As an example, consider the email search example in Figure 7.3. In
this case the user skipped the first two results (even though they might
have more terms in common with the query book order number) and
clicked on the last result. It would be impossible to directly leverage this
specific interaction to learn a model for other users given the private

5https://ultr.aiqingyao.org/
6https://github.com/ULTR-Community/ULTRA

https://ultr.aiqingyao.org/
https://github.com/ULTR-Community/ULTRA


94 Managing and Learning from User Data

nature of the interaction (since no other user received an email with
the exact same order number).

Figure 7.3: Illustrative example of email search results for query [book order number]
as shown by Bendersky et al. (2017). The first two results are skipped, and the last
one is clicked.

However, by aggregating non-private query and document attributes
(i.e., those that exclude any personal information such as order number)
across a large number of user interactions, it is possible to identify
privacy-preserving query-document associations that can be leveraged
to improve search quality across all users. For instance, by using term
associations, we can learn that emails with the frequent term receipt in
the subject are likely to be relevant to queries containing the frequent n-
gram order number. As another example, using the structural templates
described in Section 4.3.1, we can learn that emails from an online
bookstore AliceBookseller.com that correspond to a subject template
Your order receipt * are more likely to be relevant to queries containing
the frequent n-gram book order.

Bendersky et al. (2017) propose to address the issue of click sparsity
through aggregating cross-user interactions via attribute modeling of
email messages. This approach is schematically described in Figure 7.4.
Both documents and queries are projected into an aggregated attribute
space, and the matching is done through that intermediate represen-
tation, rather than directly. Since we assume that the attributes are
semantically meaningful, we expect that similar personal documents and
queries will share many of the same aggregate attributes, making the at-
tribute level matches a useful feature in a learning-to-rank model. Some
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examples of privacy-preserving query-document associations that could
be learned by aggregating across a large number of private user interac-
tions include email labels or categories, machine-generated structural
email templates, and frequent n-grams appearing in the content of user
queries and clicked email subjects. Bendersky et al. (2017) demonstrate
that, when incorporated into an unbiased learning-to-rank framework,
these aggregated attributes contribute to significant email search quality
improvements.

Figure 7.4: Document and query attribute aggregation and matching as shown
by Bendersky et al. (2017). Instead of directly matching attributes at the personal
(email) level, they can be matched via aggregating cross-user interactions, to overcome
data sparsity.



8
Open Research Challenges

Thus far in the survey we have discussed the extensive research on
the various aspects of email search and discovery, including search
engine design, email and query understanding, intelligent assistance,
and privacy-preserving user data management. However, despite the
breadth of this research, many open challenges still remain. Recent
fundamental research breakthroughs at the intersection of the fields of
deep learning, differential privacy (Abadi et al., 2016), unbiased learning
(Joachims et al., 2017), multi-modal content understanding (Zhuang
and Liu, 2019), multi-task learning (Caruana, 1997), domain adaptation
(Ganin et al., 2016), and federated learning (Konečný et al., 2016) open
up fascinating directions for future advancements in the field of email
search and discovery.

In this chapter, we discuss some of these potential directions in
detail. Some of them are not specific to email, and have also been
identified as key challenges during the latest Strategic Workshop on
Information Retrieval (Culpepper et al., 2018): multi-modality (Section
8.1), conversational information seeking (Section 8.3), and fairness
(Section 8.5). Some are specific to email search, including domain-
specific models (Section 8.2) and user privacy (Section 8.6). Some

96
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combine general search problems with the distinctive characteristics of
access to personal content (Section 8.4).

Finally, it is important to note that much of the visionary research
cited in this chapter comes from academic institutions rather than
industrial research labs. This is despite the fact that there are only
few publicly available email datasets. Some of the work circumvents
the steep entry barrier into this research field by extensively utilizing
crowd-sourcing for data annotation (Liang et al., 2019), surveys of email
search behavior (Swaminathan et al., 2017), and even accessing redacted
email content with user consent (Swaminathan et al., 2017; Kokkalis
et al., 2013). Other researchers propose retrieval systems for experiments
over private collections with content obfuscation (Shao et al., 2019), and
logging with differential privacy (Feild et al., 2011). Such techniques
can be instrumented within a research lab or a company to facilitate
privacy-preserving data collection or in-situ studies.

We hope that the research presented in this chapter will inspire
our readers to deeply reflect on their assumptions about search and
discovery in personal communication archives, and eventually advance
the field beyond the existing paradigm of email search, as reflected in
current production systems. While email and other personal content
management systems have a storied past and a well-established present,
there is still much that remains to be done to improve search and
discovery in these systems.

8.1 Multi-modal Search

Thus far in this survey we have mostly focused on textual information
retrieval tasks, as email is inherently a written communication medium.
However, in addition to email text, there is a lot of valuable content
contained in email attachments: PDFs, images, links to sites containing
multimedia (e.g., YouTube) and so on. How can unlocking the con-
tent of these attachments improve the effectiveness of an email search
system?

Some recent advances in search over personal media suggest an
answer to this question. For instance, Jiang et al. (2017) conduct a
study of the Flickr personal media repository. They propose a Visual
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Query Embedding method that maps query terms to related visual
concepts, using click data as an indicator of relevance. They learn
the mapping using deep architectures. In particular, they find that
a multi-layer perceptron with a max-pooling layer is highly effective,
significantly outperforming a variety of baselines, including exact match,
WordNet-based matching and pre-trained word2vec embeddings. This
indicates the importance of leveraging user interactions (clicks, in this
case) for better multi-modal representations.

Jiang et al. (2017) note that a majority of personal media queries
are relatively short, averaging at 1.5 words (stopwords excluded). They
also focus on the visual rather than topical content (e.g., “lake” rather
than “trip to Tahoe”). How to map topical queries into their visual
counterparts remains an interesting research question. For instance,
one can imagine that a query “trip to Tahoe” over one’s mailbox may
potentially retrieve emails with attachments of photos of the lake or
the ski slopes taken during the trip.

As a step towards this goal of answering complex information needs
over private multi-modal corpora, Liang et al. (2019) propose MemexQA:
a question answering system for personal media collections. Given a
sequence of user photos, the MemexQA system can answer factoid
questions like “What did we eat for Aldo’s birthday?” accompanied by
a group of photos that can help the user to verify the correctness of the
answer (see Figure 8.1).

Figure 8.1: Questions, multiple-choice answers and supporting evidence photos in
the MemexQA system (the correct answers are marked in green) (Liang et al., 2019).
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Anguera et al. (2008) consider the case for multi-modal search on
mobile devices. They postulate that in mobile search, spoken rather
than typed queries are more likely, and therefore propose a multi-modal
indexing and retrieval system that allows the user to associate audio
tags with an image at indexing time for easier retrievability. A fully
automatic end-to-end personal content search system that bridges the
semantic gap between the various input and output modalities (speech,
image, video, text) is an exciting direction for future research.

Overall, the research described in this section demonstrates that
there is a value that can be unlocked by modeling emails holistically.
This would include any image or video attachments, and can help in
answering topical questions and voice requests through related visual
concepts.

8.2 Domain-specific Search and Domain Adaptation

Email search is an important discovery tool for the enterprise. The
Radicati Group, Inc. (2015) report indicates that the number of enter-
prise emails currently surpasses the number of consumer (not machine-
generated) emails; the same report indicates that an average enterprise
user receives close to 130 emails on a daily basis. Worker mailboxes
contain large amounts of enterprise knowledge, and workers may spend
as much as 19% of their work time on search and information gathering
activities (Chui et al., 2012). Given these statistics, it is not an exagger-
ation to state that improving email search in the enterprise can directly
improve worker productivity, and positively impact the world economy.

In the enterprise setting, in addition to the personal mailbox, it is
interesting to consider the unique properties of each individual business
or company. Therefore, applying a single monolithic search solution
for all the businesses may lead to sub-optimal result quality for each
individual enterprise. Alternatively, training an individual ranking model
for each enterprise is untenable, due to the limited amounts of interaction
data available for training purposes, especially for smaller businesses.

Tran et al. (2019) investigate the use of domain adaptation to address
this problem. In domain adaptation we assume that a model trained on
data from a large source domain can be adapted to a small target domain,
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where training data is absent or limited. Most adaptation strategies
attempt to bring the source and the target feature representations to
be as semantically close as possible to each other, in order to enable
effective knowledge transfer across domains (Ganin et al., 2016). To this
end, Tran et al. (2019) propose a Maximum Mean Discrepancy (MMD)
loss regularization. Formally, for a given domain a loss is given as

L = Lp + λMMDLMMD, (8.1)

where Lp is a ranking loss in the domain, and the MMD loss LMMD is
given by the L2 norm of the difference between the feature distributions
of the source and the target domains. Here, the source domain is a large
sample of users from the overall search traffic, while the target domain
is a specific enterprise. λMMD is a tunable parameter.

Tran et al. (2019) demonstrate that MMD regularization signifi-
cantly improves the quality of search in a given domain, compared
to several baselines, while being robust to changes in the setting of
the λMMD parameter. Experiments over four small enterprises demon-
strate 3%− 8% improvements when compared to simply training the
model over the domain data alone. These results clearly indicate the
importance of thinking about enterprise email search as a mixture of
specific enterprise needs with generilizable user behaviors, which opens
up several interesting research directions.

8.3 Question Answering Systems for Personal Content

Intelligent assistants like Alexa, Google Assistant and Siri can handle
simple questions about user personal content today, such as “What’s on
my calendar tomorrow?”.1 However, further research is still required into
more complex questions, including questions that cannot be answered by
a single email or calendar event, and require multi-document synthesis.

Balog and Kenter (2019) present a compelling vision towards the end
goal of complex question answering over personal data. They propose the
concept of a personal knowledge graph (PKG) – a structure that captures
the entities, their attributes and their relations for a particular user.

1https://gsuiteupdates.googleblog.com/2019/11/use-google-assistant-with-you
r-g-suite.html

https://gsuiteupdates.googleblog.com/2019/11/use-google-assistant-with-your-g-suite.html
https://gsuiteupdates.googleblog.com/2019/11/use-google-assistant-with-your-g-suite.html
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Balog and Kenter (2019) postulate that PKGs can help in a variety
of applications from entity disambiguation (“my mom”) and query
understanding (“bob’s recent emails”) to a personalized conversational
agent that can help complete complex tasks (“schedule an appointment
with a dentist, which was recently recommended by Alice”).

8.4 Search on Mobile and Wearable Devices

Search in general, and personal content search in particular, are rapidly
moving to mobile environments. Search characteristics, both in terms of
query distributions and their topics, as well as user behavior in response
to the queries, shift significantly as users transition from desktop to
mobile devices (Kamvar et al., 2009). These changes may be especially
significant in the era of intelligent assistants, such as Siri, Cortana or
Google Assistant, that enable users to interact with their devices using
natural language voice queries.

Mobile devices afford access to information that is not available on
a desktop. This information may be highly valuable for improving user
search experience. To take location as an example, Foley et al. (2018)
analyze an anonymized search log of a mobile email application and
find that “a large fraction of queries include some term that is also part
of the name or title of their location”. E.g., users entering a Target store,
may search for their recent “Target coupons”. One can imagine that
such user searches may be better served by proactive assistance – e.g.,
automatically surfacing a recently received email promotion whenever
a user enters a store where the discount is available. More generally,
as discussed in Section 2.4, Zamani et al. (2017) show that situational
context like country, query language, weekday and time of the query
can all improve the quality of email search ranking in a desktop setting.
It is plausible that an even finer grained situational context (e.g., GPS
coordinates) will play an even larger role in a mobile search setting.

To examine the prevalence of mobile email search, Swaminathan et
al. (2017) conduct a user study that finds that over 30% of email search
queries are issued in on-the-go settings. Example information needs
include order confirmations, coupon codes, links, event information,
and contact information of retailers or individuals. Swaminathan et al.
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(2017) argue that many of these information needs can be fulfilled more
effectively by a question answering system, rather than a ranked list of
results. This highlights the importance of question answering systems,
as discussed in Section 8.3, for mobile email search. Figure 8.2 provides
some illustrative examples of how Swaminathan et al. (2017) envision
such question answering system operating across a range of on-the-
go settings and devices: intelligent assistants, smart home appliances,
wearable devices, etc.

       
    

       

        

        
       

      
   

 
         
         

       
         

          
         

        
  

       
     

          
           

         
         

        
    

        
         
       

          
        

 
     
   

  
       

 

 
          
          

       
          

                 
              

              
               

    
              

       
        

   
  

       
     

        
         

   
         

          
        

         
      

  
           

          
      

        
            

     

       
      
         

          
           

      
        

        

Figure 8.2: Illustrative examples of email search in various on-the-go settings
(Swaminathan et al., 2017).

Triaging, organizing and composing emails and documents on mobile
devices is often uncomfortable and time-consuming. However, there is
a trend of increasing mobile email usage. For instance, according to a
recent survey by Watson Marketing (2018), half of all emails are read
today on mobile devices (with some geographical variations). Therefore
assistive features like the ones discussed in Section 6.4 have an ample
opportunity to boost user productivity on mobile devices. For instance,
Tata et al. (2017) report that accurate instant file suggestions can save
up to 50% time in accessing a file on mobile, as compared to standard
search or navigation. Therefore, assistive features that specifically target
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mobile productivity is an important future research direction.

8.5 Beyond Relevance Ranking

While relevance ranking (a.k.a. “the ten blue links”) is the bedrock of
modern web search engines, most of these search engines have moved
beyond purely relevance-based strategies, and consider many other
factors in constructing the search results page. In what follows, we
discuss some of these factors, and their applicability to email and other
personal content search scenarios.

For instance, most of the existing work in personal search assumes
the existence of a fixed user interface, where the search results are
ordered top-down in descending relevance or chronological order. Such
user interface — as repeatedly shown in prior work (Joachims, 2002;
Wang et al., 2016a) — is heavily prone to position bias, and the top
positions receive the majority of the clicks. More advanced presentation
layouts (Oosterhuis and de Rijke, 2018), better snippet design (Yue
et al., 2010) and online learning-to-rank that continuously adapts to
user feedback (Kveton et al., 2015) have all been proposed for correcting
position biases in prior work, and are promising exploration avenues in
the context of email search.

Another direction that has not seen much published work is merging
multiple personal corpora (emails, files, calendar events) on a single
results page, akin to the federated search setting that has been previously
explored in the web (Arguello et al., 2011) and enterprise (Arya et
al., 2015) search settings. Merging multiple result types may require
considering the overall presentation, diversity and relevance of the
presented search results in order to optimize the whole-page search
utility, which has been explored in depth in web search (Santos et al.,
2015; Wang et al., 2016b), and will undoubtedly lead to valuable user
experience improvements in the personal search setting as well.

Fairness is another emerging research topic in ranking models (Singh
and Joachims, 2018). As of this writing, there is no published work
on fairness in the context of personal content search. Even the simple
definition of ranking fairness in a setting like email search remains an
open problem.
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However, fairness definitely plays an important role in the setting of
personal communications. For instance, let us consider the case of email
as a two-sided market in the form of senders and recipients. Contact
recency and frequency have been shown to be important relevance
features in email search (Carmel et al., 2015), which may create and
reinforce an unfair advantage to information surfaced from a close-knit
group of contacts, and potentially exclude some less frequent contacts.
A fair email search engine will need to provide some guarantees that
all legitimate non-spam non-phishing communications have a chance
to be shown in search results, while still ensuring high relevance and
utility of search results. As email communications are at the center of
many of our personal and work-related activities, ensuring fairness of
information access in email search will have far-reaching implications.

8.6 Federated Learning

As discussed in Section 7.1, proper user data protection and privacy
are of utmost importance and should be at the top of researchers’
minds, when working with email and other personal content. A most
visible expression of public concerns regarding the use of private data
for research and development purposes is demonstrated by the recent
regulations by the European Parliament and Council of the European
Union (2016). These regulations stipulate large fines for violations of
user data protection and privacy policies. However, the paradigm of a
central server that has access to all the user data (e.g., search logs) —
a paradigm we take for granted for most of the research discussed in
this survey – is vulnerable to either unintentional or malicious breaches
of this regulation, even if server side encryption and anonymization are
applied.

One possible way to address these concerns is the federated learning
paradigm that has gained traction in recent years. In this paradigm,
the training data remains distributed over a large number of clients,
and is never seen by the central server in its entirety. Instead, each
client independently computes model updates based on its local data,
and communicates these updates to a server, which aggregates the
updates to compute a new global model. Konečný et al. (2016) provide
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a good overview of federated learning, and propose approaches for
improving client-server communication efficiency via structured and
sketched updates. The former reduce communication costs by requiring
them to have a certain pre-specified structure, while the latter applies
lossy compression to the updates. Client updates may also be further
anonymized via hashing and sub-samping (Apple, 2017).

Federated learning is an important future research direction for en-
hancing privacy in email search and discovery. Even if we set government
regulations aside, consumers and enterprise users may still be hesitant
to share the entirety of their private and personal data with a single
third-party, regardless of the provision of certain privacy guarantees. In
addition, local data storage will make server-side data attacks much
less harmful to user privacy.

Wider adoption of federated learning may also open the doors for
search and discovery experiences that work across multiple personal
content management silos, especially if they are operated by different
central third-parties. In addition, major tech companies are already
providing federated learning in some of their products (McMahan and
Ramage, 2017; Apple, 2017).

Najork (2018) lays out the important research questions that need
to be addressed to adapt the ideas from federated learning to personal
search, ranking and retrieval. Some of these questions are already start-
ing to be answered by researchers. For instance, Shao et al. (2019)
discuss a privacy-aware neural ranking method that replaces exact term
matches with soft matching using obfuscated kernel values and term
closures. Such a technique will allow the server to answer user queries
without leaking exact word frequencies and occurrences. Zhang et al.
(2016) discuss differential privacy applications for query log anonymiza-
tion.



9
Conclusions

In this survey, we have attempted to describe the unique challenges of
building systems for search and discovery in personal email collections,
which are inherently built for private content. Since our readers may be
more familiar with information retrieval systems for public corpora, such
as the web, our hope is that this survey will provide a fresh perspective
on some unique aspects of private content search. In Chapters 2 – 5
we provide an in-depth discussion of the major parts of the email
search engine, including its overall architecture (Chapter 2), search
interface (Chapter 3), mail corpus organization (Chapter 4), and query
understanding (Chapter 5).

In the latter parts of this survey, we go beyond search and discuss
assistive features. We cover both existing assistance features such as
content recommendation, activity prediction, and assisted composition
(Chapter 6), as well as emerging ones such as personal assistants, and
email access on mobile and wearable devices (Chapter 8). While these
chapters do not directly deal with ad hoc relevance search, they provide
some valuable lessons on how to improve the productivity of both
consumers and enterprise email users. We hope that these chapters will
showcase that – at least in some settings – the effort of explicit query
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formulation can be avoided by proactive and timely assistance. We also
highlight the fact that email is often tightly interconnected with other
types of personal content such as task lists, calendars, and personal
documents, and demonstrate how these connections make email search
and discovery more effective.

In Chapter 7 we discuss data privacy and data quality considera-
tions, which are of utmost importance in managing user data in email
search and discovery systems, and in designing models that learn from
user data. We discuss multiple privacy-preserving approaches includ-
ing de-identification, k-anonymity, differential privacy, and transparent
user controls to both mailboxes and search queries. As reusable test
collections annotated by objective assessors are difficult to obtain and
maintain, and private test collections are prohibitively costly to de-
velop, user interactions (such as clicks) are often used for training email
search ranking models. Therefore, we also discuss ways to correct bias
and aggregate sparse user interactions to improve the quality of user
interaction data used in email search and discovery research.

We hope that this survey helps to ignite interest in personal email
search and discovery in the research community. While the email com-
munication format has been with us for more than five decades now,
there is still much to be done to simplify and improve email access and
management in our everyday lives!
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