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Abstract. The Information Retrieval community uses a variety of per-
formance measures to evaluate the effectiveness of scoring functions. In
this paper, we show how to adapt six popular measures — precision,
recall, F1, average precision, reciprocal rank, and normalized discounted
cumulative gain — to cope with scoring functions that are likely to as-
sign many tied scores to the results of a search. Tied scores impose only
a partial ordering on the results, meaning that there are multiple pos-
sible orderings of the result set, each one performing differently. One
approach to cope with ties would be to average the performance values
across all possible result orderings; but unfortunately, generating result
permutations requires super-exponential time. The approach presented
in this paper computes precisely the same performance value as the ap-
proach of averaging over all permutations, but does so as efficiently as
the original, tie-oblivious measures.

1 Introduction

One of the fundamental problems in Information Retrieval is the ranking prob-
lem: Ordering the results of a query such that the most relevant results show
up first. Ranking algorithms employ scoring functions that assign scores to each
result of a query, where the score is an estimate of the result’s relevance to the
query at hand. So, ranking the results of a query consists of assigning a score to
each result and then sorting the results by score, from highest to lowest.

Ranking algorithms are typically evaluated against a test collection consisting of
a set of queries. Each query in the test collection has a set of results, and the results
were arranged into a (partial or total) order by a human judge. In order to evaluate
a ranking algorithm, the algorithm is applied to the result set of each query, the
distance between the computed ranking and the “optimal” ordering determined by
the judge is measured, and the distances are averaged over the entire test collection.
Coming up with suitable distance metrics (or performance measures) has been the
subject of considerable research, and there are numerous such metrics.

Typically these performance measures assume that a ranking algorithm ar-
ranges the results of a query into a total ordering, i.e. that no two results to a
query have the same score. This assumption is reasonable for scoring functions
that map a rich set of features of the result document to a real-valued score, but

C. Macdonald et al. (Eds.): ECIR 2008, LNCS 4956, pp. 414 2008.
© Springer-Verlag Berlin Heidelberg 2008



Computing Information Retrieval Performance Measures Efficiently 415

it is less warranted for evaluating the performance of a single discrete feature,
e.g. page in-degree, click count, and page visits.

We stress that we are not concerned with evaluating the final results of a
ranking system, which will almost certainly combine many features into a real-
valued score, but rather the internals of such a system, where the performance of
individual, potentially discrete features needs to be assessed. A typical modern
search engine will use hundreds of features and combine the evidence provided
by these features using e.g. a neural network. An important first step in training
is feature selection, to restrict the number of inputs and avoid overfitting. A
natural approach is to treat each feature as a scoring function in its own right
and assess its performance under various IR metrics.

Despite the fact that performance evaluation of IR systems is a mature field
and that much thought has gone into devising appropriate measures to com-
pare different ranking systems, not much work has been done on adapting these
measures to evaluate the performance of ranking algorithms that impose only a
partial ordering on the result set. The impact of ties in ranked result sets on mea-
sures of retrieval effectiveness was first considered by Cooper [2], who proposed
expected search length as a performance measure robust to ties. Raghavan and
Jung [5] investigated the problem of ties in the context of precision and recall.
Their focus is on precision at varying levels of recall, and they develop approaches
that are sensible in the presence of ties. In contrast, our approaches focus on a
larger space of evaluation measures, including F1, RR, AP, and NDCG, but are
aimed at settings with fixed document cut-off values.

The simplest approach to dealing with the problem (which is in fact the
approach that was taken by TREC competitions; see for example [4]), is to ar-
bitrarily pick one of the valid (that is, well-sorted) orderings of a result vector
and evaluate it. However, in our own experiments on large-scale test sets for
web collections, and using scoring functions prone to produce tied results, we
found that different well-sorted permutations of result vectors can have appre-
ciably different performance values, large enough to affect the relative ordering
of several of the scoring functions we compared.

A more disciplined approach is to average over all possible orderings. A naive
realization of this approach to dealing with tied scores would entail generating
the possible orderings of a result set by generating all permutations of each
subset of tied results. This approach, while straightforward to implement, is
computationally very expensive; its time complexity is super-exponential to the
number of tied results. This is especially troublesome in cases where the distance
metric is the cost function of an optimization algorithm, such as a dynamic
optimization program to determine optimal parameters of a scoring function.

In this paper, we show how to compute six of the most popular performance
measures efficiently in the presence of tied scores. Our approach is arguably
superior to the two aforementioned approaches: It is completely deterministic
just like the second approach (and in fact produces precisely the same results),
and at the same time not substantially more expense to compute than the first
approach of computing the traditional measures for a single permutation. We
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have implemented all of the tie-aware measures described, and are routinely using
them as cost functions (i.e. the inner loop) of dynamic optimization systems.
The remainder of the paper is structured as follows: section 2ladapts six well-
established (and tie-oblivious) performance measures to handle result vectors
with tied scores in a robust and efficient manner. In section [3] we assess the per-
formance impact of tie-awareness. Finally, section [ offers concluding remarks.

2 Dealing with Tied Scores

We will now show how six standard performance measures can be adapted to deal
with ties in a robust, deterministic matter, while still being about as efficient as
the standard tie-oblivious definitions. The approach we take is to consider all pos-
sible consistent orderings, but rather than explicitly producing these orderings we
analytically derive their average, which in each case we can easily compute.

We will first introduce some mathematical notation to help us describe per-
formance measures, and then develop the tie-aware versions of these measures.

A typical ranking algorithm applies a scoring function s to all result docu-
ments retrieved in response to a query ¢, and sorts the results by decreasing
score. This produces a result vector V' = (vq, - -+, vy,), where s(v;) > s(v;41) for
all 1 <7 < n. Document v; is the highest-scoring result.

Scoring functions are evaluated using test collections of queries and associated
result sets, where the results have been labeled by human judges as to their
relevance. Labels can be binary (e.g. relevant or irrelevant), drawn from a small
range (e.g. excellent, good, fair, bad), or fine-grained enough to impose a total
ordering on the results (e.g. best, second-best, etc.). Five of the six performance
measures described in this paper assume that the judges have used a binary
labeling scheme, i.e. have marked the results in the test collection as relevant
or irrelevant to their associated query. We write rel(v;) to denote the relevance
of document v; in a result set; rel(v;) is 1 if v; is relevant to the query and
0 otherwise. In order to evaluate the performance of a scoring function s, we
iterate over the query/result-set pairs in a test collection, use s to rank the
results associated with each query, use a performance measure to quantify how
much the ranking imposed by the scoring function diverges from the assessment
of the human judges, and average these quantities over all queries in the test
collection. This approach is often called macro-averaging.

2.1 Precision

The precision measure [I] is based on the observation that users of an IR system
tend to peruse only the first k results of a search. It measures what fraction of
these k results are relevant to the query on average. The value k is commonly
called the document cut-off value. For the rest of the paper we assume that
k < n. The precision at k is defined as:

Lk
PQk(V) = f ZT@Z(W)
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In order to deal with ties, we introduce a tie-vector T = (t1,- -+, tym+1) whose
first element t; is 0 and whose remaining elements are the ending indices of the
m equivalence classes in V, so that V; = (v, 41,---,v,,,) all have the same
score. These classes need not have more than a single element, as in the case
that there is not a tie. We use the notations r; and n; to reference the number of
relevant and total elements in V;, respectively. We use R; to denote the number
of relevant elements that precede V; in V. Furthermore, we assume w.l.0.g. that
the document cut-off occurs in sub-vector V., or putting it differently, that k is
in the half-open interval (t.,t.1].

In order to compute the precision at k£ in the presence of ties, we sum up
the expected number of relevant results contained in each sub-vector V; of tied
results. For any sub-vector preceding V. (the sub-vector where the cut-off oc-
curs), the contribution is exactly the same as in the tie-oblivious case, since any
permutation of tied results does not change the number of relevant results in the
sub-vector. For any sub-vector succeeding V., the contribution is 0, since per def-
inition none of its results fall below the document cut-off. Finally, the sub-vector
V. contains n. results, r. of which are relevant, and it has k — ¢, “slots” within
the document cut-off window. So, V. contains on average (k — &), relevant
results. This leads to the following tie-aware definition of precision at k:

1 E— t 1 te E— t tetr
PQk(V) = ) (Rc + N rc) = (Z rel(v;) + N Z T@l(i))
i=1 ¢

¢ i=te+1

The time complexity for computing PQE(V) is O(k) in the tie-oblivious case,
since we only need to examine the first £ elements of the result vector V, and
O(tc+1) in the tie-aware case, since we need to scan the result vector up to and
including the sub-vector V. overlapping the document cut-off specified by k.

2.2 Recall

The recall measure [I] quantifies what fraction of all the relevant results was
ranked to fall within the first £ documents. The recall at k is defined as:

S rel(v;)
2oy rel(vi)

Recall can be adapted to results with tied scores in much the same way as
precision. Again, we sum up the contributions of each sub-vector V; of tied
results, i.e. the expected number of relevant results contained in each sub-vector.
But while precision normalizes this sum by the document cut-off value k, recall
normalizes it by the total number of relevant results in the entire result vector.
Neither normalization factor is influenced by permutations of results with tied
scores. So, we arrive at the following tie-aware definition of recall at k:

Ro+ (k—to)le St rel(vy) + o te S0 rel(i)

Ne

Z?:l rel(v;) B Z?:l rel(v;)

RQk(V) =

RQK(V) =
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The time complexity for computing RQk(V) is O(n) in both cases, since we
need to iterate over the entire result vector V to find out how many relevant
results there are in total. If the number of relevant results in V' is known, RQk(V)
can be computed in O(k) time in the tie-oblivious case and O(t.+1) in the tie-
aware case.

2.3 F1 Measure

A common combination of precision and recall is the F1 measure, defined as the
harmonic mean of precision and recall, which can be rewritten so as to avoid
division by zero in the absence of any relevant results:

2 25°% rel(v;)
Flak(V) = _ =
pab(v) + rany) Kt Ly rel(vi)

The denominator of the rewritten equation is independent of ties in V', and
the numerator is exactly as we have seen in both precision and recall. We thus
adapt F1 similarly, replacing Zle rel(v;) with R. + (k —tc),°, the average
number of relevant documents over all possible ties.

2(Re + (k —te) )
k+ >0 rel(v;)
The time complexity of computing the F1 measure is no more than precision or

recall in either case; the numerator can be computed in O(k) or O(t.41) time,
and the denominator, if unavailable, can be computed in O(n) time.

F1Qk(V) =

2.4 Average Precision

The average precision measure computes a precision for every relevant result in
a result vector, and averages these precision values. More precisely, the average
precision at k is defined to be:

SF L P@i(V)rel(v;)
Z?:l rel(v;) .

The numerator is the only quantity that has the opportunity to vary based on
the choice of ordering given ties. To simplify presentation, when considering a
position j, we will bind 7 to be the index of the tie that contains j; i.e. the value
of i such that t; < j <t;41. To analyze the average contribution of a position j
in a tie V;, we note that position j is relevant in a ' fraction of orderings. When
an element is relevant, the average number of relevant documents preceding it
in the tie is

APQK(V) =

" 1 times the number of available slots in the tie, j —¢t; — 1. We
thus define the tle—aware variant of AP as:

S (Rt G-ti-)ph+) !

e S relley)
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Computing PQi(V) and R; for increasing values of i does not require two
nested loops, but can be done in a single loop running from 1 to k. Hence,
the time complexity to compute APQL(V) is O(k) in the tie-oblivious case and
O(te+1) in the tie-aware case, since all of the terms in the above formulas can
be evaluated in a single pass through the first k or ¢.;1 elements.

2.5 Reciprocal Rank

The reciprocal rank measure [6] favors scoring functions that rank relevant results
highly. The value of the measure is inversely proportional to how far a user has
to go down the ranked list of results on average to find the first relevant result:

1 it 3 <k:rel(v) =1AVj<i:rel(vj) =0
RRQk(V) = {0 otherwise

The tie-aware variant requires attention only in the case where the first rele-
vant result in the partial order occurs in a tie with at least one other object. In
this case, we must determine the average value of 1 for the first relevant result
in that set of ties. Additionally, if this set of tied results crosses the imposed
document cut-off value of k, we must consider the possibility that all relevant
results are ranked beyond k, yielding no score at all.

To compute the tie-aware reciprocal rank, we first identify the first group V;
containing a relevant result. For each of the values j from ¢;+1 up to min(¢;41, k),
we compute the fraction of orderings in which the first relevant result occurs at
exactly that position. Multiplying this fraction by ; and accumulating over j
gives the correct answer.

We compute the fraction of orderings with the first relevant result at position
t;+x by computing for each ¢; 4 x the fraction of orderings whose first x elements
are irrelevant, and then computing the difference between adjacent fractions.
Taking those orderings whose first x elements are relevant, minus those whose
first z + 1 elements are irrelevant, gives the fraction whose first relevant element
is at x. The fraction f(x,r,n) of the orderings of r out of n relevant elements
for which the first z are irrelevant follows as simple recursive definition:

f1-r ife=1
f(z,r,n) = (1— " )f(x—1,rn) otherwise

Intuitively, each ordering that contributes to f(z — 1,r,n) will contribute to
f(z,r,n) if the next element is irrelevant, which occurs when none of the r
relevant results are chosen from the set of n — x + 1 remaining results.

Letting V; be the first group containing a relevant result,

min(ti+1,k:) .

RRGK(V) = 1 =t me)
Jj=ti+1 J

The time complexity for computing RRQk(V') is O(k) in the tie-oblivious
case, since it requires a linear scan of at most the first k& elements of the result
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vector V', and at most O(t.4+1) in the tie-aware case, as we need only scan as
far as the end of the last possible tied group. Once the first relevant group V; is
identified, the dynamic program takes O(n;) time to compute the fractions and
accumulate the weighted reciprocals, which is at most O(t.41).

2.6 Normalized Discounted Cumulative Gain

The discounted cumulative gain measure [3] assumes that judges have assigned
labels to each result, and accumulates across the result vector a gain function
G applied to the label of each result, scaled by a discount function D of the
rank of the result. A common example uses integer labels, the gain function
G(l) = 2! — 1, and discount funtion D(i) = We define the discounted

cumulative gain at k as follows:

1
log(1+12)*

k
DCGQK(V) =" G(label(v;))D(i)
i=1
We normalize DCGQk(V) into the range [0,1] by dividing by the DCV of an
“ideal” result vector I (produced by a hypothetical clairvoyant scoring function
that maximizes DCGQk(I)):

_ DCGak(V)
-~ DCGak(I)

NDCG can be adapted fairly easily to deal with ties, as the normalization
requires no special attention, and discounted cumulative gain is a simple sum
over the returned results. Notice that for each position in a tied group, the
average gain at that position is the average of the gain function across tied
elements. As the discount function is multiplicative, we need only multiply it by
this average gain at each position:

NDCGak(V)

m tit1 min(t;i41,k)
1
DOGaK(V) =Y S Gllabel(vy)) DGj)
i=1 i S j=ti+1

As mentioned above, the normalization step is independent of ties in a candidate
partial ordering, and is computed and applied as usual.

Computing NDCGQK(V) involves computing DCGQE(V) and computing
DCGQk(I). Computing DCGQL(V) takes O(k) time in the tie-oblivious case
and O(t.41) in the tie-aware case, as the average gain can be computed for each
V; in time O(n;), with the discounted gain accumulated for that group in a sim-
ilar amount of time. As DCGQE(()I) is independent of the ordering of V, its
computation time is unaffected.

3 Implementation

We have built C# implementationsﬂ of both tie-oblivious and tie-aware versions
of the performance measures described in this paper. We compared the wall-clock

! Available at http://research.microsoft.com/research /sv/tie-aware-measures
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running times of the tie-oblivious and tie-aware variants of each method. In order
to account for the effects of disk latency, we first loaded the vector of ranks and
scores for a test set of 28,043 queries into main memory. The scoring function used
was the in-degree of the web page. We found that for most of the performance
measures the overhead is negligible. The exception is reciprocal rank, where the
overhead is roughly 25%. Reciprocal rank is the only measure we considered that
can be computed without sorting the result vectors; consequently, the overhead of
the tie-awareness is much more noticeable, as it is not drowned out by the cost of
sorting.

4 Conclusions

This paper addressed the issue of defining deterministic performance measures
for scoring functions that are prone to assign identical scores to many results
in a result set. Our approach is inspired by the idea of evaluating the perfor-
mance of all possible well-ordered permutations of the result set and averaging
the performances, but it avoids the factorial time complexity that would go
along with such an approach, despite the fact that it produces precisely the
same performance values as averaging over all well-ordered permutations does.
We have applied our approach to six well-established performance measures: re-
call, precision, F'1, average precision, reciprocal rank, and normalized discounted
cumulative again. For these six measures, computing the tie-aware measures is
not appreciably slower than computing the standard, tie-oblivious performance
measures.
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