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ABSTRACT
Personal search is concerned with surfacing content relevant to an
information need (as expressed by a query) from a user’s personal
information repository. Since personal corpora are typically much
smaller than public ones (particularly the web), recall is more of an
issue. Moreover, since documents are not shared among users, cross-
user interaction signals (such as co-clicked results for identical or
similar queries) cannot be leveraged in a straightforward manner.
When limited to a single user, interaction signals are typically
too sparse to be useful as labels or as features in learned ranking
functions.

Bendersky et al. [3] recently described a methodology for lever-
aging user interactions in the form of clicked search results in a
way that allowed them to aggregate interactions across the entire
user base of a personal search service, by projecting both queries
and documents into a shared, dense feature space, and training a
ranking function on these features using result clicks as relevance
judgments. Using clicks as relevance labels requires accounting for
the inherent selection bias in click logs, which can be measured
through short-lived result randomization experiments on a portion
of users [7, 12] or learned jointly with the ranking function [2, 13].

In the past several years there has been a lot of interest in training
machine-learned models in a federated fashion, suitable for on-
device training and inference [8]. To prevent leakage of personal
information, one can leverage ideas from differential privacy, where
noise is added to any training record proportional to the sensitivity
of that record [5]. Several recent works have studied the topic of
learning with differential privacy in a federated setting [1, 4, 6].
In the same time period there has been tremendous interest in
the IR community on privacy-preserving IR, manifested by three
workshops and two tutorials; see https://privacypreservingir.org
for a good overview.

Can we adapt the ideas from on-device learning using privacy-
preserving federated shared models to personal information re-
trieval? Fundamentally, ranked retrieval from personal corpora
involves three types of data, all of which are privacy sensitive:
documents (e.g. files, photos, messages, music, videos etc); queries
(including query reformulations and refinements over the course of
a search session), and implicit feedback such as click and attention
signals [9]. Much of the existing work in privacy-safe federated
learning has focused on marrying stochastic gradient descent-style
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optimizations with differential privacy (see e.g. [11]). Some portions
of the framework for jointly estimating position bias and training
a ranking function [13] (e.g. using gradient boosted decision trees
as a ranker) fit nicely into such a framework; other aspects (e.g. en-
forcing k-anonymity thresholds on query and document n-grams)
will require new research. The same holds true for other search im-
provements that involve learning, such as improving recall through
synonym expansions trained from query reformulations or result
co-clicks [10].

We hope that this abstract will inspire researcher in Information
Retrieval to explore this exciting new frontier of privacy-safe on-
device personal search.
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