
Learning Groupwise Scoring Functions
Using Deep Neural Networks

Qingyao Ai
CICS, UMass Amherst
Amherst, MA, USA
aiqy@cs.umass.edu

Xuanhui Wang
Google Inc.

Mountain View, CA, USA
xuanhui@google.com

Nadav Golbandi
Google Inc.

Mountain View, CA, USA
nadavg@google.com

Michael Bendersky
Google Inc.

Mountain View, CA, USA
bemike@google.com

Marc Najork
Google Inc.

Mountain View, CA, USA
najork@google.com

ABSTRACT
While in a classification or a regression setting a label or a value
is assigned to each individual document, in a ranking setting we
determine the relevance ordering of the entire input document list.
This difference leads to the notion of relative relevance between
documents in ranking. Themajority of the existing learning-to-rank
algorithms model such relativity at the loss level using pairwise or
listwise loss functions. However, they are restricted to pointwise
scoring functions, i.e., the relevance score of a document is computed
based on the document itself, regardless of the other documents in
the list. In this paper, we overcome this limitation by proposing gen-
eralized groupwise scoring functions (GSFs), in which the relevance
score of a document is determined jointly by groups of documents
in the list. We learn GSFs with a deep neural network architecture,
and demonstrate that several representative learning-to-rank al-
gorithms can be modeled as special cases in our framework. We
conduct evaluation using the public MSLR-WEB30K dataset, and
our experiments show that GSFs lead to significant performance
improvements both in a standalone deep learning architecture, or
when combined with a state-of-the-art tree-based learning-to-rank
algorithm.

CCS CONCEPTS
• Information systems→ Learning to rank;

KEYWORDS
Groupwise scoring functions; deep neural networks; listwise loss

ACM Reference Format:
Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, and Marc
Najork. 2019. Learning Groupwise Scoring Functions Using Deep Neural
Networks. In Proceedings of DAPA 2019 WSDM Workshop on Deep matching
in Practical Applications (DAPA ’19). ACM, New York, NY, USA, 7 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAPA ’19, February 15th, 2019, Melbourne, Australia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

1 INTRODUCTION
Ranking is at the heart of many information retrieval (IR) prob-
lems, including ad-hoc document retrieval, question answering,
recommender systems, and many others. Unlike the traditional
classification or regression setting, the main goal of a ranking prob-
lem is not to assign a label or a value to each individual document,
but to determine the relative preference among a list of them. The
relevance of the top ranked documents influences the perceived
utility of the entire list more than others [10]. Thus, the notion of
relativity is crucial in a ranking problem.

How to model relativity in ranking has been extensively studied,
especially in the learning-to-rank setting [25]. In this setting, a
scoring function that maps document feature vectors to real-valued
scores is learned from training data. Documents are then ranked
according to the predictions of the scoring function. To learn such
a scoring function, the majority of the learning-to-rank algorithms
use pairwise or listwise loss functions to capture the relative rel-
evance between documents [5, 7, 8, 39]. Such a loss guides the
learning of the scoring function to optimize preferences between
documents or an IR metric such as NDCG [6, 21, 34].

Though effective, most existing learning-to-rank frameworks
are restricted to the paradigm of pointwise scoring functions: the rel-
evance score of a document to a query is computed independently
of the other documents in the list. This setting could be less optimal
for ranking problems for multiple reasons1. First, it has limited
power to model cross-document comparison. Consider a search
scenario where a user is searching for a name of a musical artist. If
all the results returned by the query (e.g., calvin harris) are recent,
the user may be interested in the latest news or tour information.
If, on the other hand, most of the query results are older (e.g., frank
sinatra), it is more likely that the user wants to learn about artist
discography or biography. Thus, the relevance of each document
depends on the distribution of the whole list. Second, user interac-
tion with search results shows strong comparison patterns. Prior
research suggests that preference judgments by comparing a pair
of documents are faster to obtain, and are more consistent than
the absolute ratings [3, 24, 40]. Also, better predictive capability is

1It is interesting to note the connection of pointwise scoring to Robertsons’ probability
ranking principle (PRP) [33]. PRP states that documents should be ranked by their
probability of relevance to the query. While highly cited and influential, this principle
was recognized to be problematic by Robertson himself: “The PRP works document-
by-document, whereas the results should be evaluated request-by-request” [33].

DAPA ’19, February 15th, 2019, Melbourne, Australia Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, and Marc Najork

achieved when user actions are modeled in a relative fashion (e.g.,
SkipAbove) [4, 10, 11, 14, 23, 41]. These indicate that users compare
the clicked document to its surrounding documents prior to a click,
and a ranking model that uses the direct comparison mechanism
can be more effective as it mimics the user behavior more faithfully.

In this paper, we hypothesize that the relevance score of a doc-
ument to a query should be computed by comparison with other
documents at the feature level. Specifically, we explore a general
setting of groupwise scoring functions (GSFs) for learning-to-rank.
A GSF takes multiple documents as input and scores them together
by leveraging a joint set of features of these documents. It outputs
a relative relevance score of a document with respect to the other
documents in a group, and the final score of each document is com-
puted by aggregating all the relative relevance scores in a voting
mechanism. The proposed GSF setting is general as we can define
arbitrary number of input documents and any ranking loss in it.
We show that several representative learning-to-rank models can
be formulated as special cases in the GSF framework.

While it is easy to define a GSF, it is unclear how to learn such
a function from training data efficiently, as well as how to use
it to score a new list of documents during inference remains a
challenge. To solve these challenges, we propose a novel deep neural
network architecture in the learning-to-rank setting. We design
a sampling method that allows us to train GSFs efficiently with
back-propagation, and obtain a scalar value per document during
inference using a Monte Carlo method.

We evaluate our proposed models in a standard learning-to-rank
setting. Specifically, we evaluate GSFs using the LETOR data set
MSLR-WEB30K [30], in which the relevance judgments are obtained
from human ratings, and a pre-defined feature set is provided. We
show that our GSFs perform reasonably well by themselves and can
improve the state-of-the-art tree-based models in a hybrid setting
where the output of GSFs is used as a feature for tree-based models.

2 RELATEDWORK
Learning-to-rank refers to algorithms that try to solve ranking
problems using machine learning techniques. There is a plethora of
learning-to-rank work [5, 6, 8, 16, 22, 37], which mainly differs in
its definitions of loss functions. Almost all of them use the setting
of pointwise scoring functions. To the best of our knowledge, there
are only a few exceptions.

The first ones are the score regularization technique [13] and the
CRF-based model [31] that take document similarities to smoothe
the initial ranking scores or as additional features for each query-
document pair. When computing ranking scores, however, they
take only one document at a time and do not consider comparison
between features from different documents.

The second exception is a pairwise scoring function that takes a
pair of documents together and predicts the preference between
them [12]. We demonstrate that this pairwise scoring function can
be instantiated in the proposed groupwise framework, and compare
against it in our experiments.

The third exception is the neural click model [4] and the deep
listwise context model [2] that builds an LSTMmodel on top of doc-
ument lists. The neural click model summarizes other documents
into a hidden state and eventually uses a pointwise loss (e.g., log

loss) for each document. Such a pointwise loss is difficult to adapt
to the unbiased learning-to-rank setting [35], while our GSF models
can. The deep listwise context model is similar to our models in
terms of loss functions, but our GSF is more flexible as it can take
any document lists as its inputs, whether ordered or not.

Search result diversification is related to our GSF models since
it also takes into account subsets of documents through maximiz-
ing objectives such as maximal marginal relevance [9] or subtopic
relevance [1]. Recently, several deep learning algorithms were pro-
posed, with losses corresponding to these objectives [20, 38]. In
contrast to this work, the goal of our paper is to improve relevance
modeling through groupwise comparisons, but not diversity.

Pseudo-relevance feedback [26] is a classic retrieval method that
uses query expansion from the first-round top retrieved documents
to improve the second-round retrieval. Our GSFs consider document
relationship in the learning-to-rank setting, not in the retrieval
setting, and do not require two rounds of retrieval. We also do not
assume a pre-existing initial ordering of the document list.

Note that our work is complementary to the recently proposed
neural IR techniques [12, 17, 27–29]. While these techniques focus
on advanced representations of document and query text with the
employment of standard pointwise or pairwise scoring and loss
functions, our work focuses on the nature of the scoring functions
and the combination of multiple feature types while employing a
relatively simple matching model.

3 PROBLEM FORMULATION
In this section, we formulate our problem in the learning-to-rank
framework. Letψ = (q,D,Y) represent a user query string q, its list
of documents D, and their respective relevance labels Y . For each
document d ∈ D, we have a relevance label yd ∈ Y . Let Ψ be the
training data set. The goal of learning-to-rank is to find a scoring
function f that minimizes the average loss over the training data:

L(f) =
1
|Ψ|

∑
ψ ∈Ψ

l(ψ , f) (1)

Without loss of generality, we assume that f takes both q and D as
input, and produces a score sd for each document d ∈ D:

[s1, . . . , s |D |] = f (q,D).

The local loss function l(ψ , f) is computed based on the relevance
label list Y , and the scores produced by the scoring function f :

l(ψ , f) = l
(
Y , f (q,D)

)
(2)

The main difference among the various learning-to-rank algorithms
lies in how the scoring function f and the loss function l are de-
fined. While there is much work in different types of loss functions,
categorized as pointwise, pairwise or listwise loss [25], the majority
of work assumes a pointwise scoring function (PSF) that takes a
single document at a time as its input, and produces a score for
every document separately:

f (q,D) = [f (q,d1), ..., f (q,d |D |)]

We re-use f as the pointwise scoring function in this context for
brevity.

In this paper, we explore a generic groupwise scoring function
(GSF) to better compare documents at feature level. A GSF д takes

Learning Groupwise Scoring Functions
Using Deep Neural Networks DAPA ’19, February 15th, 2019, Melbourne, Australia

a group ofm documents and scores them together:

[r1, ..., rm] = д(q, [d1, ...,dm])

PSF is a special case of GSF whenm = 1. Intuitively, a requirement
for GSF д is to be invariant to the input document order. However, it
is not immediately clear on how to define f (q,D) based on function
д and how to learn д based on training data. This is what we are
going to address in the next section.

4 METHODS
4.1 DNN-based Scoring Function
Because GSF takes multiple documents as an input, the feature
vectors for GSF may be potentially exponentially larger than those
for PSF. Therefore, the scoring function д in GSF should have good
scalability and be easily applicable to different types of features
with large dimensionality. In this paper, we use deep neural net-
works (DNNs) as the building block for constructing the scoring
function д. Feed-forward DNN models have widely been used for
learning-to-rank problems (e.g., [15, 18, 42]). Compared to tree-
based models [16], they show better scalability in terms of input
dimensionality.

Let xd be the feature vector for a document d given a specific
query q. For simplicity, we use concatenation of feature vectors of
them documents as the input layer in the DNN-based implementa-
tion of д, while leaving the exploration of more sophisticated input
representations for future work. Specifically, let

h0 = concat(xd1 , ...,xdm)

and a multi-layer feed forward network with 3 hidden layers is
defined as

hk = σ (w
T
k hk−1 + bk), k = 1, 2, 3 (3)

wherewk and bk denote the weight matrix and the bias vector in
the k-th layer, σ is an activation function and we use the hyperbolic
tangent function in our paper:

σ (t) =
e2t − 1
e2t + 1

Our DNN-based function д is defined as

д(q, [d1, ...,dm]) = wT
o h3 + bo (4)

wherewo and bo are the weight vector and the bias in the output
layer. The output dimension is set asm in the output layer.

4.2 Groupwise Scoring Architecture
Given a set of training data Ψ, a straightforward approach to learn
a groupwise scoring function д is to concatenate all features of
documents in a document list D together, and build a DNN with
output size |D | as the relevance prediction of the whole list. In this
case, group sizem is set to be |D | and f (q,D) = д(q, [d1, ...,d |D |]).
Such an approach, however, has two drawbacks: (1) The learned
model is sensitive to document order; (2) The comparison is among
all documents and this can make it difficult to learn the useful local
comparison patterns. To overcome these drawbacks, we propose
to limit the comparison within small groups and make the model
invariant to the document order.

, , , , ,[q, d1, d2] [q, d1, d3] [q, d2, d1] [q, d2, d3] [q, d3, d1]S

g(q, d3, d2)

f(q, D)

… … … … … …

X X X

[q, d3, d2]

[q, D = {d1, d2, d3}]

Figure 1: An example of Groupwise Scoring Functions (GSF)
using permutations of size 2 in S for a D with 3 documents.
Query q appears in all groups.

Let the input of a GSF model consist of a document list D with
n documents. For simplicity, we assume that each D has exactly n
documents and n = |D |. Notice that such an assumption trivially
holds in the click data setting where the top-n documents per query
is used, or can be ensured with padding or sampling strategy. For
example, we can randomly sample n documents per query (without
replacement) to form a new list. When n = 2, such a sampling
strategy is similar to standard pairwise approaches where document
pairs of a query are formed as training examples.

Let πk be a list ofm documents that forms a group. In each group,
documents are compared and scored based on their feature vectors
to predict which documents are more relevant.

[r1k , ..., r
m
k] = д(q,πk) (5)

where r ik is the ith dimension of д(q,πk), and also the intermediate
relevance score for the i-th document in πk . Note that we use the
slightly different notation to make the following discussion easier.

The intermediate relevance scores from each individual groups
are accumulated to generate final scores for each document. As
we know, there are multiple (namely, n!/(n −m)!) permutations
with size m in a list with size n, which means that there are as
many possible inputs for a groupwise scoring function д in a list
of documents D. Let S = {π1,π2, ...,π |S |} be all the permutations
of the subset documents with sizem from D, then we compute the
final ranking score sd for a document d ∈ D as the accumulation of
intermediate relevance scores from each individual group as

sd =

|S |∑
k=1

m∑
i=1

1π ik=d
· r ik (6)

where 1π ik=d is an indicator function that denotes whether d is the
i-th document in πk . And the final output of a GSF model would be

f (q,D) = [s1, ..., s |D |]

An example of such f (q,D) with group size m = 2 and list size
n = 3 is shown in Figure 1.

4.3 Loss Functions
Intuitively, we can define any loss functions between the scores and
labels to train the GSF models. In this paper, we focus on a simple

DAPA ’19, February 15th, 2019, Melbourne, Australia Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, and Marc Najork

loss function for graded relevance, leaving other loss functions to
future studies.

Graded relevance is a multi-level relevance judgment and is com-
monly used in human-rated data sets. The loss for graded relevance
is generally defined over document pairs. We extend the commonly
used pairwise logistic loss for a list as

l(ψ , f) =
n∑
i=1

n∑
j=1

1yi>yj · log(1 + e
−(si−sj)) (7)

where yi > yj means the i-th document is more relevant than the
j-th document and the loss of a list is the sum of the loss of all pairs
in the list. Please note that whenm = 1, GSF is actually a pointwise
scoring function. In this case, the loss in Equation (7) boils down
to a pairwise loss function. However, it becomes a listwise loss for
the general GSF models whenm ≥ 2.

4.4 Training and Inference
While GSF extends traditional pointwise scoring functions (PSF) by
scoring each document according to their comparisons with others,
it also loses the property of PSF that each model only produces
one score for each document, which could cause multiple efficiency
issues in practice. In this section, we propose multiple sampling
strategies for the efficient training and inference of GSF models.

4.4.1 Speed Up Training. As shown in Equation (6), the final
ranking score f (q,D) of a GSF model is the aggregation of inter-
mediate relevance scores from all possible permutations of a group
with size m in a list with size n. Suppose that the computation
complexity of a DNN withm input documents is O(m), then such
a scoring paradigm has a complexity of O(m · n!/(n −m)!), which
is prohibitive in real systems. To speed up the training process, we
conduct the following group sampling to reduce the permutation
setS. For each training instance with document listD, we randomly
shuffle it before feeding into the model. Then, we only take the
subsequences (instead of subsets) of sizem from the shuffled input
to form S. In this way, we reduce the size |S| from n!/(n −m)! to
n subsequences: each starting at the i-th position and ending at
(i +m)-th position in a circular manner. This leads to a reduced
training complexity with O(mn) time. Also, because each d ∈ D ap-
pears in exactlym groups, all documents have equal probability to
be compared to others and to be placed as the j-th document in each
sublist πk . With enough training examples, the GSF trained with
our sampling strategy asymptotically approaches the GSF trained
with all permutations, and it is insensitive to document order.

4.4.2 Efficient Inference. At inference time, the desired output
is a ranked list. This can be done in a straightforward manner for
pointwise scoring functions, but becomes non-trivial for GSF. To
tackle this challenge, we propose our inference methods for the
following two scenarios: fixed list size and varying list size.

Inference with Fixed List Size. Given a fixed list size n′ at
inference time, the most straightforward solution to do inference
with GSF is to train the DNN model with the same list size n = n′.
Thus, the score f (q,d) for a document d can be directly computed
as f (q,d) = sd with Equation (6).

Inference with Varying List Size. When it is impossible to
make n = n′ or the list size at inference time cannot be determined

beforehand, it is hard to use the GSF architecture in training directly.
In this case, we extract the group comparison function д from GSF
and use it to do inference. For each document d in the inference list
D, we compute its score f (q,d) by the expected marginal score as

f (q,d) = Eπ ∈S,π i=d д(q,π)|i (8)

where the expectation is over all possible permutations of sizem
in S that contains document d , and д(q,π)|i is the i-th value of the
function output (also referred to as r i in Equation (5)). For example,
whenm = 2, f (q,d) can be rewritten as

f (q,d) =
1

2|D |

∑
d ′∈D

[
д(q,d,d ′)|1 + д(q,d

′,d)|2
]

The expectation in Equation (8) can be approximated effectively
by Monte Carlo methods [32]. For example, we can randomly sam-
ple a couple of documents and use the average over the sampled
documents. The larger the sample size is, the better this approxi-
mation becomes. In our experiments, we found that sample sizem
for group sizem is good enough. Thus the inference can be done
efficiently in O(mn) = O(n) sincem is a predefined constant.

In fact, the case for fixed list size is a special case of the varying
list size. When S contains all adjacent documents as groups, it is
equivalent to samplem groups for each document and the docu-
ment’s position varies from 1 tom in thesem groups. The score
of the document is proportional to the sum of the corresponding
values in thesem groups.

5 RELATIONSHIP WITH EXISTING MODELS
In this section, we discuss the relationship between the existing
learning-to-rank algorithms and our proposed models. There are
two important hyper-parameters for GSF: the list size n and the
group sizem. By varying n andm, we will show that several rep-
resentative algorithms can be formulated as special cases in our
framework.

5.1 Pointwise Scoring and Pairwise Loss
Pairwise loss functions with pointwise scoring functions are popu-
lar in learning-to-rank algorithms. In these algorithms, the scoring
function f takes a single document as input and outputs a single
score. The loss function l takes a pair of scores from two documents
and defines the loss based on the consistency between the scores
and the preferences of the two documents. In our GSF model, let
n = 2 andm = 1, d1 and d2 be the two documents in D, y1 and y2 be
the graded relevance judgments, and s1 and s2 be the output scores.
Then the logistic loss in our GSF model is

l(ψ , f) =

{
log(1 + e−(s1−s2)) y1 > y2
log(1 + e−(s2−s1)) y1 < y2

Such a loss is very similar to the one used in LambdaMART [6].
Other pairwise loss such as hinge loss used in RankingSVMs [21]
can be defined similarly as Equation (7).

5.2 Pointwise Scoring and Listwise Loss
A traditional listwise model uses a pointwise scoring function with
a listwise loss computed with all documents in the candidate list.

Learning Groupwise Scoring Functions
Using Deep Neural Networks DAPA ’19, February 15th, 2019, Melbourne, Australia

We show the connection between our method with a representative
traditional listwise method – the ListNet method [8].

In our GSF model, letm = 1 and n be the length of the list. Then
πk = [dk] and si is computed based on document di only and we
use si = f (xi) to denote it. The softmax loss is

l(ψ , f) = −

n∑
i=1

yi log
ef (xi)∑n
j=1 e

f (x j)

In the ListNet approach, a distribution over all the permutations
of the n documents is defined based on the scoring function, and
another one is defined using the labels. The loss is the cross en-
tropy between these two distributions. Because such a loss is not
computationally expensive, a simplified version is to consider the
marginal probability that a documentdi appears at the first position
in the two distributions over the permutations. The resultant cross
entropy loss is then:

l(ψ , f) = −

n∑
i=1

eyi∑n
j=1 e

yj log
ef (xi)∑n
j=1 e

f (x j)

5.3 Pairwise Scoring Functions
The pairwise scoringmodel is a recent model proposed by Dehghani
et al. [12] that predicts the preference between two documents based
on their features. As far as we know, this is the only published
learning-to-rank model that takes more than one document as the
input of its scoring function.

In the GSF model (see Section 4.1&4.2), let n = 2 andm = 2. Let
D = {d1,d2} be a pair of documents. Then

S = [π1,π2],π1 = [d1,d2],π2 = [d2,d1].

If we define the aggregation step (Equation (6)) as

si =
2∑

k=1
1π 1

k=di
· д(q,πk) (9)

where 1π 1
k=di

is an indicator function that denotes whether di is
the first document in πk , and use a sigmoid cross entropy loss as

l(ψ , f)=−
n∑
i=1

yi logpi + (1−yi) log(1−pi), pi =
1

1+e−si
(10)

then it is equivalent to [12]. However, there is a slight difference
between this pairwise input model and our GSF with n = 2,m = 2
(GSF(2, 2)). While [12] used only the first score from each group
(pair) of documents, our GSF uses the scores of all documents from
the two groups in Equation (6). In addition, our GSF model has
the following two mathematically attractive properties that are not
held by [12].

• Reflexive. When the input has two identical documents
d1 = d2, then s1 = s2 always holds.

• Antisymmetric. If [s1, s2] are scores for input [d1,d2], then
[s2, s1] are scores for input [d2,d1].

6 EXPERIMENTAL SETUP
To evaluate our proposed methods, we compare different types of
learning-to-rank models on a standard learning-to-rank dataset. In
this section, we describe our experimental design and setup.

Table 1: List of DNN models used in our experiments.

Pointwise Scoring Functions
RankNet,
GSF(2, 1)

GSF with n = 2 andm = 1. This model is comparable
to a standard neural network model with pointwise
scoring and pairwise loss, e.g., RankNet [5].

ListNet,
GSF(n, 1)

GSF with n andm = 1. This is closely related to the
existing models with pointwise scoring and listwise
loss, e.g., ListNet [8].

Pairwise Scoring Functions
GSF(2, 2) GSF with n = 2 andm = 2. This is a DNN model with

pairwise scoring and our proposed list loss functions.
Generic Groupwise Scoring Functions

GSF(n,m) The GSF model with list size n and group sizem.

6.1 Learning-to-Rank Models
The learning-to-rank models we compared in our experiments
include both DNN models and tree-based models.

6.1.1 DNN Models. Table 1 lists all the DNN models that we
considered in our experiments. We group these models based on
the input to their scoring functions as pointwise, pairwise, and
groupwise. In this table, GSF(2, 1)and GSF(n, 1) represent the exist-
ing DNN models with pointwise scoring functions in the current
literature. GSF(2, 2) is a GSF model that takes a pair of documents
in their scoring function, and GSF(n, m) is the generic represen-
tation of the GSF model with a list size n and a group sizem. We
instantiate n andm in our experiments.

All DNN models in this paper were built on the 3-layer feed-
forward network described in Section 3. The hidden layer sizes
of DNN are set as 256, 128 and 64 for h1, h2 and h3. We used the
TensorFlow toolkit for model implementations.

6.1.2 Tree-based Models. For tree-based models, we primarily
use the state-of-the-art MART and LambdaMART [6] models. Fur-
thermore, we also explore a hybrid approach in which predictions
of DNNmodels are used as input features for tree-based models. We
compare hybrid models with both standalone DNN and tree-based
models in our experiments.

6.2 Data Sets
The data set used in our experiments is a public LETOR data set
MSLR-WEB30K [30]. This is a large-scale learning-to-rank data set
that contains 30K queries. On average there are 120 documents
per query and each document has 136 numeric features. All the
documents are labeled with graded relevance from 0 to 4. We report
the results on Fold1 as a test set, while using the rest of the folds
for training.

On the LETOR data set, there aremore than a hundred documents
per query. Instead of setting the list size n to be the largest possible
number of documents per query, we conduct the following sampling
to form training data for DNN models. Given an n (2 and 5 used in
our paper), we randomly shuffle the list of documents for each query
and then use a rolling window of size n over the shuffled document
list to obtain a list of documents with size n. For robustness, we
re-shuffle ten times, and thus obtain a collection of training data
for DNN models.

DAPA ’19, February 15th, 2019, Melbourne, Australia Qingyao Ai, Xuanhui Wang, Nadav Golbandi, Michael Bendersky, and Marc Najork

Table 2: NDCG@5 (in percentage) on LETOR data using
RankNet, MART, LambdaMART, GSF variants, and the hy-
brid approach LambdaMART+GSF. ∗ denotes statistically
significant improvements over RankNet, and + denotes sig-
nificant improvements over all other models in the table,
both using t-test with α < 0.05.

(a) GSF
RankNet GSF(2, 1) GSF(2, 2) GSF(5, 1) GSF(5, 2)
32.28 40.40∗ 41.10∗ 41.10∗ 41.50∗

(b) LambdaMART+GSF
MART LambdaMART GSF(2, 1) GSF(2, 2) GSF(5, 1) GSF(5, 2)
43.51∗ 44.23∗ 44.51∗ 44.69∗ 44.60∗ 44.90∗+

6.3 Evaluation Metrics
We train the models on the LETOR dataset with the logistic loss in
Equation (7) given its graded relevance labels. The evaluationmetric
for this data set is the commonly used Normalized Discounted
Cumulative Gain (NDCG) [19]. In this paper, we use NDCG@5 that
truncates the cumulative sum to the top 5 positions. Significance
test are conducted based on student’s t-test.

7 RESULTS
In this section, we describe our experiment results in detail. We
compare GSF with pointwise scoring models and pairwise scoring
models with pairwise loss. And we also compare GSF with the
state-of-the-art tree models in both standalone and hybrid way.

Table 2 shows the results of different models on the LETOR
data set. For reproducibility, we use the learning-to-rank models,
RankNet, MART and LambdaMART as implemented in the open-
source Ranklib toolkit2, and report the actual value of NDCG@5
for each model.

In Table 2(a), we observe that all GSF models outperform
RankNet – another DNN-based learning-to-rank model – by a very
large margin. For the different variants of GSF, GSF(2, 2) is better
than GSF(2, 1), and GSF(5, 2) is better than GSF(5, 1), which indi-
cates that having a group sizem larger than 1 indeed improves the
performance of a GSF model.

In Table 2(b), tree-based models are more competitive than the
DNN models in standalone settings. However, we observe that the
hybrid LambdaMART+GSF models outperform the state-of-the-art
LambdaMART algorithm. For example, we achieve 1.5% improve-
ment using GSF(5, 2) over LambdaMART, a statistically significant
result. Also, in the hybrid mode, GSFs with m > 1 consistently
outperform the GSFs with m = 1. This, again, confirms that, in
general, a groupwise scoring function is better than a pointwise
scoring function.

8 CONCLUSION
In this paper, we went beyond the traditional pointwise scoring
functions and introduced a novel setting of groupwise scoring func-
tions (GSFs) in the learning-to-rank framework. We implemented
GSFs using a deep neural network (DNN) that can efficiently handle
large input spaces. We showed that GSFs can include several exist-
ing learning-to-rank models as special cases. We compared both
2https://sourceforge.net/p/lemur/wiki/RankLib/

GSF models and tree-based models based on a standard learning-
to-rank data set. Experimental results show that GSFs significantly
benefit several state-of-the-art DNN and tree-based models, due
to their ability to combine listwise loss and groupwise scoring
functions.

Our work also opens up a few interesting future research di-
rections: how to do inference with GSFs in a more principled way
using techniques in [36], how to define GSFs using more sophisti-
cated DNN like CNN, rather than simple concatenation, and how to
leverage the more advanced DNN matching techniques proposed
in [17, 27–29], in addition to the standard learning-to-rank features,
in our GSFs.

REFERENCES
[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.

Diversifying Search Results. In Proc. of the 2nd ACM International Conference on
Web Search and Data Mining (WSDM). 5–14.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning a Deep
Listwise Context Model for Ranking Refinement. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval (SIGIR
’18). 135–144.

[3] Paul N. Bennett, Ben Carterette, Olivier Chapelle, and Thorsten Joachims. 2008.
Beyond Binary Relevance: Preferences, Diversity, and Set-level Judgments. SIGIR
Forum 42, 2 (2008), 53–58.

[4] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A
Neural Click Model for Web Search. In Proc. of the 25th International Conference
on World Wide Web (WWW). 531–541.

[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proc. of
the 22nd International Conference on Machine Learning (ICML). 89–96.

[6] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report Technical Report MSR-TR-2010-82. Microsoft
Research.

[7] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to Rank
with Nonsmooth Cost Functions. In Proc. of the 19th International Conference on
Neural Information Processing Systems (NIPS). 193–200.

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
rank: from pairwise approach to listwise approach. In Proc. of the 24th Interna-
tional Conference on Machine Learning (ICML). 129–136.

[9] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based
Reranking for Reordering Documents and Producing Summaries. In Proc. of the
21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR). 335–336.

[10] Olivier Chapelle, Donald Metzler, Ya Zhang, and Pierre Grinspan. 2009. Expected
Reciprocal Rank for Graded Relevance. In Proc. of the 18th ACM Conference on
Information and Knowledge Management (CIKM). 621–630.

[11] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An experi-
mental comparison of click position-bias models. In Proc. of the 2008 International
Conference on Web Search and Data Mining (WSDM). 87–94.

[12] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proc. of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). 65–74.

[13] Fernando Diaz. 2007. Regularizing query-based retrieval scores. Information
Retrieval 10, 6 (2007), 531–562.

[14] Georges E. Dupret and Benjamin Piwowarski. 2008. A user browsing model to
predict search engine click data from past observations.. In Proc. of the 31st Annual
International ACM SIGIR Conference on Reseach and Development in Information
Retrieval (SIGIR). 331–338.

[15] Bora Edizel, Amin Mantrach, and Xiao Bai. 2017. Deep Character-Level Click-
Through Rate Prediction for Sponsored Search. In Proc. of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). 305–314.

[16] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of Statistics 29, 5 (2001), 1189–1232.

[17] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance
Matching Model for Ad-hoc Retrieval. In Proc. of the 25rd ACM International
Conference on Information and Knowledge Management (CIKM). 55–64.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
2013. Learning Deep Structured Semantic Models for Web Search Using Click-
through Data. In Proc. of the 22nd ACM International Conference on Information
and Knowledge Management (CIKM). 2333–2338.

Learning Groupwise Scoring Functions
Using Deep Neural Networks DAPA ’19, February 15th, 2019, Melbourne, Australia

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.

[20] Zhengbao Jiang, Ji-RongWen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie, and
Ming Yue. 2017. Learning to Diversify Search Results via Subtopic Attention. In
Proc. of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR). 545–554.

[21] Thorsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data.
In Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). 133–142.

[22] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proc. of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). 217–226.

[23] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately Interpreting Clickthrough Data As Implicit Feedback. In Proc. of
the 28th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR). 154–161.

[24] Waldemar W. Koczkodaj. 1996. Statistically accurate evidence of improved error
rate by pairwise comparisons. Perceptual and Motor Skills 82, 1 (1996), 43–48.

[25] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[26] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

[27] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match Using
Local and Distributed Representations of Text for Web Search. In Proc. of the 26th
International Conference on World Wide Web (WWW). 1291–1299.

[28] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. 2016. A Study
of MatchPyramid Models on Ad-hoc Retrieval. (2016). arXiv:1606.04648

[29] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.
2017. DeepRank: A NewDeep Architecture for Relevance Ranking in Information
Retrieval. In Proc. of the 2017 ACM Conference on Information and Knowledge
Management (CIKM). 257–266.

[30] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. (2013).
arXiv:1306.2597

[31] Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang, and Hang Li. 2008.
Global ranking using continuous conditional random fields. In Proc. of the 21st
International Conference on Neural Information Processing Systems (NIPS). 1281–
1288.

[32] Christian P. Robert and George Casella. 2005. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer-Verlag.

[33] Stephen E. Robertson. 1977. The probability ranking principle in IR. Journal of
Documentation 33, 4 (1977), 294–304.

[34] Michael Taylor, John Guiver, Stephen Robertson, and TomMinka. 2008. SoftRank:
OptimizingNon-smooth RankMetrics. In Proc. of the 2008 International Conference
on Web Search and Data Mining (WSDM). 77–86.

[35] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal
Search. In Proc. of the 11th International Conference on Web Search and Data
Mining (WSDM). 610 –618.

[36] Fabian L. Wauthier, Michael I. Jordan, and Nebojsa Jojic. 2013. Efficient Ranking
from Pairwise Comparisons. In Proc. of the 30th International Conference on
Machine Learning (ICML). 109–117.

[37] Fen Xia, Tie-Yan Liu, JueWang, Wensheng Zhang, and Hang Li. 2008. Listwise ap-
proach to learning to rank: theory and algorithm. In Proc. of the 25th International
Conference on Machine Learning (ICML). 1192–1199.

[38] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2016. Modeling
Document Novelty with Neural Tensor Network for Search Result Diversifica-
tion. In Proc. of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR). 395–404.

[39] Jun Xu and Hang Li. 2007. AdaRank: A Boosting Algorithm for Information
Retrieval. In Proc. of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR). 391–398.

[40] Peng Ye and David Doermann. 2013. Combining preference and absolute judge-
ments in a crowd-sourced setting. In ICML 2013 Workshop on Machine Learning
Meets Crowdsourcing.

[41] Emine Yilmaz, Manisha Verma, Nick Craswell, Filip Radlinski, and Peter Bailey.
2014. Relevance and effort: An analysis of document utility. In Proc. of the 23rd
ACM International Conference on Information and Knowledge Management (CIKM).
91–100.

[42] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.
Situational Context for Ranking in Personal Search. In Proc. of the 26th Interna-
tional Conference on World Wide Web (WWW). 1531–1540.

http://arxiv.org/abs/1606.04648
http://arxiv.org/abs/1306.2597

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Methods
	4.1 DNN-based Scoring Function
	4.2 Groupwise Scoring Architecture
	4.3 Loss Functions
	4.4 Training and Inference

	5 Relationship with Existing Models
	5.1 Pointwise Scoring and Pairwise Loss
	5.2 Pointwise Scoring and Listwise Loss
	5.3 Pairwise Scoring Functions

	6 Experimental Setup
	6.1 Learning-to-Rank Models
	6.2 Data Sets
	6.3 Evaluation Metrics

	7 Results
	8 Conclusion
	References

