
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.2000;12:363–373

Performance limitations of the
Java core libraries

Allan Heydon and Marc Najork∗,†

Compaq Computer Corporation, Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, U.S.A.

SUMMARY

Unlike applets, traditional systems programs written in Java place significant demands on the Java runtime
and core libraries, and their performance is often critically important. This paper describes our experiences
using Java to build such a systems program, namely, a high-performance web crawler. We found that our
runtime, which includes a just-in-time compiler that compiles Java bytecodes to native machine code,
performed well. However, we encountered several performance problems with the Java core libraries,
including excessive synchronization, excessive allocation, and other inefficiencies. The paper describes the
most serious pitfalls and how we programmed around them. In total, these workarounds more than tripled
the speed of our crawler. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: Java performance; Java class libraries; web crawling

1. INTRODUCTION

This paper describes our experiences using Java to build Mercator, a high-performance web crawler [1].
Web crawlers have many of the characteristics of classical systems programs: they run for days or
weeks at a time, use large amounts of memory, have significant I/O requirements, must perform well,
and need to be fault-tolerant. These requirements place very different burdens on the programming
libraries and runtime environment than Java applets do.

When we started this project in 1997, we were not sure if our Java runtime environment or the Java
core libraries were indeed suitable for such a systems program. In the process of implementing and
optimizing Mercator, we were pleased to find that the ‘just-in-time’ (JIT) compiler we used was quite
efficient. In the latest version of the crawler, only about one third of the CPU cycles are spent executing
compiled bytecode; the remaining cycles are spent in the Java runtime or executing native methods. As
a matter of fact, half of Mercator’s cycles are spent in the Unix kernel.

∗Correspondence to: Marc Najork, Compaq Computer Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto,
CA 94301, U.S.A.
†E-mail: najork@pa.dec.com

Received 1 August 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 15 November 1999



364 A. HEYDON AND M. NAJORK

However, we also discovered that in many places, the Java core libraries traded off performance
for ease of use. While this tradeoff is quite sensible for interactive applications such as applets, it is
problematic for classical systems programs. The focus of this paper is on the performance problems
we discovered in the Java core libraries, and the methods we used to overcome them.

The remainder of the paper is structured as follows. Section2 describes the tools we used to develop
and profile Mercator. Section3 describes its main characteristics, focusing on its system requirements.
The bulk of the paper, Sections4-6, enumerates the performance problems we discovered in the
Java core libraries, describes how we programmed around them where possible, and quantifies the
performance improvements that resulted. Finally, Section7 offers our conclusions.

2. OUR DEVELOPMENT TOOLS

The performance of any Java program depends on the compiler that produced its bytecodes, and on the
Java runtime under which it is run. A variety of tools are available for debugging the performance of
Java programs, such as Intel’sVTune[2], Intuitive Systems’OptimizeIt[3], KL Group’s JProbe[4],
and IBM’sJinsight[5]. In this section, we describe the development tools we use and their features for
measuring various performance properties of Java programs.

We use a standard Java compiler, namely, the Symantec Visual Cafe compiler. All of our coding,
compiling, and small-scale testing is done on Wintel PCs.

Our production runs and large-scale tests are done on multi-processor Alpha machines running
Compaq’s Tru64 Unix operating system. For all our runs on this platform, we use a prototype in-house
Java runtime calledsrcjava [6], which includes a JIT compiler that generates straightforward Alpha
machine code from Java bytecode with little optimization.‡ As of 14 September 1999, this runtime
holds the SPECjvm98 benchmark record by a substantial margin. One of srcjava’s strengths is that its
implementation of Java’s synchronization primitives (i.e. locks and condition variables) are both time-
and space-efficient. In the absence of lock contention, acquiring and releasing a lock takes only 23
machine cycles combined.

There are currently two versions of srcjava, one using an unmodified copy of Sun’s JDK 1.1.4 class
libraries, and the other using an unmodified copy of Sun’s JDK 1.2.2 class libraries. Some of the
inefficiencies we have discovered in JDK 1.1.4 have been eliminated in JDK 1.2.2; we mention those
cases explicitly.

Srcjava includes extensive performance debugging support. It has command-line switches for
measuring and reporting several aspects of a program’s runtime performance, including lock
acquisition and contention, garbage collection, heap allocation, and heap usage:

• Lock acquisition and contention. Srcjava can collect statistics about a program’s lock
acquisitions. It uses stack traces to identify acquisition sites. As a result, the samesynchronized
statement may produce multiple entries. For each acquisition site, srcjava prints the number of
lock acquisitions performed at that site. The synchronization data are printed at the end of the

‡srcjava has recently been publicly released as the Compaq Fast VM v1.2.1.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



JAVA CORE LIBRARIES LIMITATIONS 365

run. Srcjava can also collect and report information about lock contention, including the elapsed
time spent waiting on contested locks.

• Garbage collection.One cost of excessive allocation is increased garbage collection (GC).
Srcjava can print the elapsed time spent on each collection, as well as the total GC time.

• Heap allocation.Srcjava can print the number and total size of all allocations made over the life
of a program. For each allocation site (again identified by its stack trace), the output lists the type
of the allocated object, the number and total size of allocations at that site (both as an absolute
number of bytes and as a percentage of all allocations), and the site’s stack trace. The allocation
profile is printed at the end of the run.

• Heap usage.Srcjava provides two mechanisms for reporting on the contents of the heap. First,
it can print a type-based profile of the heap before and after each GC. This profile is rather flat,
but it can still be quite useful. The post-GC profile gives a profile of the live heap. Array types
are divided into different groups, based on their sizes (in bytes). Second, srcjava can produce a
more structured breakdown of the live heap based on reachability paths.

The other tool we use frequently for performance debugging is DCPI, the Digital Continuous
Profiling Infrastructure [7,8]. DCPI is a freely available profiling tool that runs on Alpha systems.
It uses counters built into the Alpha processor to profile code running in both user space and the kernel.
DCPI’s profiling overhead is quite low, typically 2–6%.

We use DCPI to get CPU cycle breakdowns of Mercator. By virtue of DCPI’s universal sampling,
we can simultaneously profile the srcjava runtime, compiled bytecode, and native methods, including
kernel routines. In addition to its profiling core, DCPI also includes tools for printing CPU cycle
breakdowns at various granularities, including whole images, functions, and individual instructions.

3. THE MERCATOR WEB CRAWLER

Mercator is a high-performance web crawler written in Java that can be configured to perform a variety
of tasks. For example, we have used it to collect statistics about the web, to perform random web
walks [9], and to save pages from the web. Mercator is a production quality artifact, and is part of
AltaVista Search Engine 3 [10].

We have used Mercator to download sizable portions of the web. For example, during a crawl in
April 2000, Mercator requested 336 million web documents over the course of 3 days, achieving an
average download rate of 125 documents/s and 2033 KB/s. This crawl was performed on a Digital
Ultimate Workstation with two 533 MHz Alpha processors, 2 GB of RAM, 118 GB of local disk, and
a 100 Mbit/s FDDI connection to the Internet.

Mercator is designed to be extensible and scalable. By extensible, we mean that Mercator is designed
in a modular way, with the expectation that new functionality will be added by third parties. We use
Java’s dynamic class loading facilities to load user-supplied modules at runtime. By scalable, we mean
that it should be able to crawl a web of indefinite size while using a bounded amount of memory. The
bulk of Mercator’s data structures are stored on disk; in production crawls, they often amount to tens
of gigabytes.

Mercator is highly multi-threaded, typically using 500 threads to fetch and process web pages in
parallel. Java’s support for multi-threading allows us to use synchronous socket operations, which

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



366 A. HEYDON AND M. NAJORK

significantly simplifies the code, and allows our crawling process to utilize all the processors of a multi-
processor machine. By comparison, other crawlers documented in the literature [11,12] are single-
threaded and achieve concurrent downloads via asynchronous I/O, which is somewhat awkward to
program.

Mercator’s I/O requirements are also indicative of a classical systems program. It uses TCP sockets
to download documents (with peak download rates of hundreds per second), UDP sockets to perform
domain name service (DNS) resolutions, and both sequential and random-access files to access its large
disk-based data structures.

For portability, Mercator is written in 100% pure Java. We run it on both Wintel PCs and Alpha
Unix workstations. It is a medium-sized Java program; its Java source files (including test classes and
comments) total 24 700 lines.

When crawling the World Wide Web, we found that the responsiveness of web servers fluctuates
greatly over time, making it hard for us to measure Mercator’s end-to-end performance in a repeatable
fashion. We therefore wrote a program that, from Mercator’s point of view, acts like an HTTP proxy,
but synthesizes web pages instead of actually fetching them. We used this ‘web synthesizer’ to
measure the end-to-end performance of the initial and optimized versions of Mercator. Overall, the
optimizations described in the following three sections more than tripled Mercator’s download rate.
One important caveat to this remark is that these optimizations were made in parallel with functional
enhancements to Mercator. However, if anything, these functional enhancements have increased
Mercator’s computational burden, so we believe the before-and-after performance comparisons we
draw in this paper are conservative.

4. EXCESSIVE SYNCHRONIZATION

Writing correct multi-threaded programs is far from trivial; it requires training and discipline [13].
Most programmers have not been exposed to programming with threads, and therefore lack the needed
experience. Presumably for this reason, the designers of the Java core libraries decided to minimize
the likelihood of race conditions by making many of the core classes thread-safe. This was done by
declaring the classes’ public methods to besynchronized. By doing so, they sacrificed performance for
ease of use, since many of the lock acquisitions that result from this approach are unnecessary.

In practice, this tradeoff can lead to large performance penalties. Using DCPI, we determined that
Mercator initially spent about 20% of its cycles on synchronization-related operations. Using srcjava’s
synchronization profiling support, we found that Mercator initially acquired an average of 2315 locks
per downloaded page. After we applied the optimizations described below, the fraction of cycles spent
on synchronization fell to 1.5%, and the average number of locks acquired per downloaded page fell
to 61.

4.1. StringBuffers

The over-synchronization problem is exacerbated if the class in question is a low-level class with
many clients. The best example is the classjava.lang.StringBuffer, all of whose public methods are
synchronized. Thejavaccompiler usesStringBuffersto implement the string concatenation operator+ .

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



JAVA CORE LIBRARIES LIMITATIONS 367

For example, the expression“foo”+“bar” is translated to:

new StringBuffer().append(“foo”).append(“bar”).toString()

Evaluating this expression results in three lock acquisitions (one for each of the method calls), even
though there is no potential for race conditions, since theStringBufferis not accessible to any thread.

To make matters worse,StringBuffersare used by many other low-level Java classes. For example,
up to JDK 1.1.5, the methodsInteger.toStringandLong.toStringuseStringBuffersto convert numbers
into strings. In so doing, they performn + 2 lock acquisitions, wheren is the length of the resulting
string. These methods in turn are called by overloaded versions of theStringBuffer.appendmethod. For
example, the expression“THX”+1138 usesInteger.toStringto convert 1138 into a string, resulting in
six lock acquisitions, and then performs three more acquisitions to compute the final result.

The previous example is by no means artificial. For example,InetAddress.getHostAddress, which
converts an IP address to a string, is implemented in exactly this way. As a result, converting the
address 172.18.229.100 into a string requires 27 lock acquisitions, all of which are unnecessary.

Concatenating strings and converting numbers and IP addresses to strings are common operations
in Mercator, soStringBuffersshowed up prominently in srcjava’s synchronization profile. To avoid
the unnecessary lock acquisitions introduced byStringBuffer, we implemented aFormatter class
that combinesStringBufferfunctionality with facilities for formatting various types (subsuming, for
instance,Integer.toString). The use ofFormatterssignificantly reduces Mercator’s lock acquisition
rate; it also avoids unnecessary heap allocations, as described below in Section5.

Sun could easily address these issues by providing an unsynchronized variant ofStringBufferin
addition to the synchronized version, and by changing the implementation of the string concatenation
operator+ (in the javaccompiler) to use this unsynchronized variant. Moreover, this unsynchronized
StringBuffer variant could safely be used in many places in the core libraries, such as in
java.util.Hashtable.toString,where theStringBufferis accessible from only one thread, thereby making
synchronization unnecessary.

As of JDK 1.1.6, the implementations of theInteger.toStringand Long.toStringmethods have
been changed to use an array of characters rather than aStringBuffer. Note that although these new
implementations cause no synchronization and require fewer function calls, they do perform an extra
character array allocation and copy compared to the original versions.

4.2. I/O streams

The java.io package provides a stream abstraction for performing byte I/O, and a reader/writer
abstraction for performing Unicode character I/O. Both abstractions are designed to be composable; for
example, the standard way to read a sequence of integers from a file is to compose aFileInputStream(to
access the file) with aBufferedInputStream(to avoid excessive kernel calls), which in turn is composed
with a DataInputStream(to convert bytes to integers).

The designers of thejava.iopackage decided to make some (but not all) I/O classes synchronized. In
particular, theread methods ofBufferedInputStreamand thewrite methods ofBufferedOutputStream
are synchronized. This design leads to fairly fine-grained locking, particularly when small amounts of
data are read or written at a time. An alternative design would be to leave the methods unsynchronized,
and to instead require clients to ensure single-threaded access. Of course, since the latter approach
places the burden of lock acquisition on the client, it requires more discipline. However, the benefit of

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



368 A. HEYDON AND M. NAJORK

the latter approach is that many lock acquisitions can be avoided, since the client can protect an entire
I/O transaction with a single lock acquisition.

Unfortunately, many methods of theDataOutputStreamclass write data to the underlying stream a
byte at a time. For example, the methodwriteLongperforms eight write operations to its underlying
stream. In the typical case where the underlying stream is aBufferedOutputStream, a single call
to writeLong results in eight lock acquisitions. Similarly, writing the ASCII representation of an
n-character string results inn lock acquisitions. TheDataInputStreamclass has exactly the same
problems.

ThePrintStreamclass is the standard way to write the string representation of a variety of types to
an underlying stream.§ As opposed toDataOutputStreams, PrintStreamswrite data to their underlying
streams in larger chunks. For example, callingPrintStream.printcauses a singlewrite operation on the
underlying stream. Unfortunately, thePrintStreamimplementation performs locking of its own. Using
theprint method to print a string causes six lock acquisitions within thePrintStreamimplementation
(and usingprintln causes 13 acquisitions), plus any synchronization performed by the underlying
stream.

The extra synchronization introduced by the core stream classes is not just an academic problem.
Like many systems programs, Mercator writes extensive logs. For example, it writes a line to a log for
every web page that it downloads. Using srcjava’s synchronization profile, we discovered that writing
one line to the log caused 67 lock acquisitions!

To work around the stream problems described above, we wrote aBufferedDataOutputStream
class that combines features ofPrintStream, DataOutputStream, and BufferedOutputStream. Our
BufferedDataOutputStreamclass is completely unsynchronized, placing the synchronization burden on
its clients. Using this class, writing a line to our download log requires only a single lock acquisition.
We also wrote an analogousBufferedDataInputStreamclass that provides similar benefits.

Sun could address these performance problems by providing an unsynchronized variant of the
BufferedInputStreamandBufferedOutputStreamclasses, and by improving the implementations of the
DataInputStreamand DataOutputStreamclasses to perform fewer calls on the underlying stream.
Although it is not documented in its API,PrintStream’s methods are thread-safe, so removing
synchronization altogether is likely to break existing clients that have relied on this undocumented
feature. However, only one lock acquisition is required to makeprint andprintln thread-safe.

4.3. Host name resolution

Any program that contacts sites on the internet whose identities are provided in the form of symbolic
host names must resolve those names into IP addresses. This process is known ashost name resolution,
and it is supported by thedomain name service(DNS). DNS is a globally distributed service in which
name servers refer requests to more authoritative name servers until an answer is found. Therefore, a
single DNS request may take seconds or even tens of seconds to complete, since it may require many
round-trips across the globe.

All common computing platforms provide standard routines for performing host name resolution. In
Java, these are thegetByNameandgetAllByNamemethods of theInetAddressclass.

§The Java core libraries appear somewhat schizophrenic with regards toPrintStreams: although officially deprecated, they are
still used for the standard output and error streams.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



JAVA CORE LIBRARIES LIMITATIONS 369

Mercator makes extremely heavy use of these methods. To avoid multiple downloads of the same
document, a web crawler must maintain a set of discovered URLs. When Mercator extracts a URL
from a web page, the URL is converted to a canonical form and then tested against the set. As part
of the canonicalization process, the host name is resolved. Hence, Mercator performs a host name
resolution for every link in every page it downloads. These requests are made in parallel by its 500
crawling threads.

Our initial measurements showed that host name resolution in Mercator was a severe bottleneck:
it accounted for 91% of each thread’s elapsed time. Upon studying the implementation ofInetAd-
dress.getByName, we discovered that it tries to avoid issuing costly DNS requests by caching the results
of previous resolutions. However, we also found that the cache is protected by a single lock, which is
held for the entire duration of the resolution. Hence, if one thread misses in the cache and therefore
must contact a name server, any other thread attempting to resolve a host name will block until the first
thread’s request completes, even if the second thread’s request could have been served out of the cache.

Our first attempt at rectifying this problem was to keep our own cache. The lock protecting our
cache is held only while accessing or updating the cache, butnotwhile callingInetAddress.getByName
in the event of a cache miss. As a result, host names that are contained in our cache can be resolved
immediately, even while calls toInetAddress.getByNameare in progress. Unfortunately, such calls
are still serialized by the lock inInetAddress. This optimization reduced the elapsed time spent by
each thread on DNS to 70%. Despite this improvement, host name resolution remained a bottleneck,
since the rate at which Mercator discovers new hosts outpaces the rate at which host names can be
sequentially resolved.

To overcome this problem, we implemented a DNS resolver in Java. Our resolver allows host
name resolutions to be performed in parallel. It does not useInetAddress.getByName, but instead uses
DatagramSocketsto issue DNS requests directly to a local name server. Using our own resolver reduced
the elapsed time spent by each thread on host name resolution to 14%.¶ More importantly, this change
significantly increased the crawler’s download rate.

Starting with JDK 1.2.2, Sun corrected the coarse-grained locking problem inInetAddress.get-
ByName: a lock is held only while interacting with the DNS cache, but not while performing a
name server transaction. However, it is worth noting that such transactions are done using the native
methodInetAddressImpl.lookupAllHostAddr, which most Unix JVMs implement using the standard
gethostbyname(3)function. Unfortunately, on many Unix systems (namely, those that use the BIND
library [14]), gethostbynameis synchronized by a single lock, and therefore single-threaded.

5. EXCESSIVE HEAP ALLOCATION

In Java, there are two costs associated with heap allocation. Aside from the direct cost of thenew
operation, there is also the cost of performing garbage collections (GC). The GC cost can be substantial,
especially if the program has a high allocation rate. Moreover, most current Java runtimes (including
srcjava) perform single-threaded, non-concurrent garbage collection. As a result, the garbage collection

¶Currently, when a worker thread processes a page, it extracts URLs from the page and canonicalizes them in sequence. We
could further reduce the elapsed time spent by each thread on host name resolution by performing these canonicalizations in
parallel.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



370 A. HEYDON AND M. NAJORK

penalty is increased on multi-processor machines, since all but one of the processors are idle during
collections.

Although we cannot easily measure the allocation cost, srcjava can report the elapsed time spent on
collections. Initially, Mercator allocated 19.4 KB on the heap per downloaded document, spending an
average of 257 elapsed microseconds per downloaded document on garbage collection. After making
the optimizations described below, the allocation rate was reduced to 3.6 KB per document, and the
elapsed garbage collection time was reduced to 61µs per document. Our findings agree with those of
Klemm, who found that Java programs often spend a lot of time performing allocations and object-to-
object copy operations, and who developed a set of guidelines for avoiding such operations [15].

One problem with the Java core libraries with respect to allocation is that many objects cannot
be reused. In some cases, it is possible to implement alternatives that allow object reuse. However,
there are other cases where this is not possible, primarily because important native methods have
been declared private, and are therefore inaccessible to any such alternative implementation. Given
our philosophy of writing 100% pure Java code, we ruled out the option of implementing our own
publicly accessible native methods.

FileInputStreamis one example of a class whose instances are not reusable. AFileInputStream
object is associated with a file when it is constructed, but there is no mechanism for reopening an
existingFileInputStreamon a different file. This means that the only way to access a different file
is to allocate a newFileInputStreamobject. An alternative version ofFileInputStreamthat avoids this
problem cannot be written because the native method for opening a file is private to theFileInputStream
class. The same remarks hold forFileOutputStreamsandRandomAccessFiles.

Similarly, a Socketobject is associated with a network connection at the time of its creation; it
cannot be reopened on a different connection. So, the only way to establish a new network connection
is to allocate a newSocketobject. Moreover, eachSocketallocation causes the allocation of 13 other
objects (consuming a total of 304 bytes perSocketon our runtime). Again, it is impossible to write an
alternative socket implementation because the native methods for establishing network connections are
all private toPlainSocketImpl. Obviously, a web crawler like Mercator establishes hundreds of network
connections per second. Due to the design of thejava.netpackage, these connections cause thousands
of unavoidable allocations per second.

Like FileInputStreamand Socketobjects, instances ofBufferedInputStreamare not reusable.
The BufferedInputStreamconstructor associates the stream with an underlying stream, and there
is no mechanism for reassociating it with a different underlying stream later. So, accessing a
new network connection viaBufferedInputStreamsrequires the allocation of both aSocketand a
BufferedInputStream, which in turn causes the allocation of a (potentially large) internal buffer.

However, unlikeFileInputStreamsand Sockets, it is possible to write an alternative version
of BufferedInputStreamthat promotes object reuse through anopen method, partly because
BufferedInputStreamhas no native methods. We have implemented two such alternatives. One is the
BufferedDataInputStreamclass mentioned in Section4.2; the other is a class calledRewindInputStream
that is used to read web pages from network connections and buffer them. At the beginning of a crawl,
we allocate oneRewindInputStreamobject per crawling thread. These stream objects (and their large
underlying buffers) are then reused throughout the life of the crawl.

Sun could foster object reuse by extending the stream and socket classes with methods for reopening
them. In theFileInputStream, FileOutputStream, andRandomAccessFileclasses, such methods already
exist, but are not declared public.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



JAVA CORE LIBRARIES LIMITATIONS 371

In the examples described so far, the design of some classes in the core libraries prevented
reuse of their instances. However, there are other classes, such asStringBuffer, whose instances
are easily reusable, but whose points of use are widely scattered throughout the program, making
it hard to identify an instance that can be reused. The same is true ofFormatter, our StringBuffer
replacement described in Section4.1. To promote reuse ofFormatter objects (and their internal
buffers), we maintain a pool of unusedFormatters. To avoid unnecessary synchronization when
checkingFormattersout of and back into the pool, we divide the pool into per-thread sub-pools. Once
Mercator reaches its steady state, no new Formatters are allocated.

6. OTHER PITFALLS
In addition to the synchronization and allocation overheads described above, we have also discovered
several other unrelated pitfalls in the Java core libraries.

• The java.io.RandomAccessFileclass is unbuffered, and no buffered variant is supplied. This
means that every single read or write operation on aRandomAccessFileincurs the cost of a kernel
call. To work around this problem, we wrote our ownBufferedRandomAccessFileclass. Our
implementation is a subtype ofRandomAccessFile, but it uses a buffering scheme that combines
the designs of Modula-3’s reader and writer abstractions [16]. Sun could provide a buffered
variant ofRandomAccessFilesimilar to ours as part of thejava.iopackage.

• Constructing a new instance ofjava.io.PrintStream is quite expensive: constructing a
PrintStream on our production runtime takes 750 times longer than constructing a
DataOutputStream. The cost ofPrintStreamconstruction is relevant because it is quite natural
to usePrintStreamsto write strings to sockets. Since a newSocketOutputStreamis created for
each TCP connection, and sincePrintStreamscannot be reopened on different streams, a new
PrintStreammust be allocated for each TCP connection.

After some investigation, we discovered that thePrintStream constructor allocates a
BufferedWriterand anOutputStreamWriter, which in turn allocate an 8K character array and
an 8K byte array, respectively. 70% of the time required to construct aPrintStreamcan be
attributed to these two array allocations. The vast majority of the remaining time is spent by
a call to thesun.io.CharToByteConverter.getDefaultmethod, which creates a converter from
Unicode characters to bytes.

We overcame this problem by allocating one instance of ourBufferedDataOutputStreamclass
(see Section4.2) per thread for the life of the crawl.BufferedDataOutputStreamshave anopen
method, which allows them to be reassociated with a different underlying stream. This method
allows each thread to reuse the sameBufferedDataOutputStreamfor all sockets it creates.

We were alerted to this problem by the poor performance of our synthetic proxy,
which was constructing a newPrintStreamon which to write the response to each newly
received HTTP request. After replacing thePrintStreams in our synthetic proxy with
BufferedDataOutputStreams, the rate at which the proxy could synthesize documents increased
by a factor of 2.75.

• There are cases in the core libraries where two operations have similar semantics, but drastically
different performance. For example, thejava.lang.Stringclass has six constructors for creating

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



372 A. HEYDON AND M. NAJORK

a string from a byte array. Four of them use byte-to-character converters to convert bytes to
Unicode characters, while the other two take an extra byte as an argument and use it as the higher-
order byte of each Unicode character. Despite the similarities of these constructors, the variants
that use converters are 10 to 40 times slower, depending on the Java runtime. In hindsight, it is
obvious why the constructors that perform conversions are more expensive; however, we think
this cost should be advertised in the class documentation.

In Mercator, converting byte arrays to strings is a common operation, since web pages are
downloaded as byte streams, but in the process of extracting links from HTML pages, parts of
the byte stream are converted to strings. When we inadvertently introduced uses of the expensive
constructor into the link extraction code, Mercator’s crawling rate dropped by a factor of 3.

• The java.netpackage provides networking facilities, including an implementation of the HTTP
protocol. Our very first version of Mercator made use of this HTTP implementation. However,
we soon discovered that it contains no provisions for specifying timeouts. As a result, an HTTP
request will hang indefinitely if the remote server fails to close the connection, thereby disabling
the calling thread. Surprisingly, such ill-behaved web servers are not uncommon. To work
around this problem, we wrote our own streamlined HTTP implementation. Our version uses
the java.net.Socketclass, whichdoesprovide methods for setting timeouts. Sun could remedy
this problem by adding methods to theURLConnectionclass for setting timeout values.

• Our initial implementation of Mercator usedjava.net.URLto represent URLs. However, we
found that URL creation was relatively costly. By implementing our own URL class,‖ we sped
up the URL creation process by 25–30%.

7. CONCLUSIONS

We have used Java to implement a classical systems program, namely, a high-performanceweb crawler.
We found that the Java language is well-suited to such a task. Its object-oriented model and its
package system support a modular programming style; its exception system makes it easier to build
robust applications; garbage collection prevents memory leaks, making it easier to write long-running
programs; and language-level thread support makes it easier to write multi-threaded programs. (Java
shares all of these attributes with Modula-3 [17], which has been our systems programming language
of choice up until now.)

By sampling the hardware performance counters of the Alpha processor, we discovered that our
system spends 63% of its cycles in the runtime or in native methods, and in fact 50% in the Unix
kernel. We conclude that for I/O-intensive applications (which in Java result in a large number of native
method calls), and in the presence of a reasonably good JIT compiler, Java is an attractive alternative
to traditional systems programming languages such as C.

However, we also discovered that the Java core libraries were designed for ease of use, not for
speed. We identified numerous performance problems within the core libraries. Two of the root

‖Using our own URL class made sense only because we had written our own HTTP implementation.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373



JAVA CORE LIBRARIES LIMITATIONS 373

causes are excessive synchronization and excessive memory allocation, but we also discovered other
inefficiencies. We were able to program around most, but not all, of these problems.

A cleaner solution would be to fix these problems in the core libraries themselves. For each of
the problems we described, we have outlined how Sun could address them. The remedies we have
proposed fall into three categories: providing unsynchronized variants of existing classes, improving
the implementations of existing methods, and extending existing classes with additional methods. All
the changes we have proposed are backward-compatible with the existing Java libraries.

Java’s use as a development language for server-side applications is becoming more and more
prevalent. The performance of such applications is often critical. One way to improve Java performance
is to develop fast Java runtimes, and indeed, much research is being done in this area. Although such
research is crucial, our experience shows that improving the performance of the core libraries is also
important. We hope that Sun will therefore devote more effort toward improving the performance of
the core libraries, and that it will augment the documentation of the libraries to highlight expensive
method calls. Java’s success as a systems programming language depends on it.

ACKNOWLEDGEMENTS

Thanks to Sanjay Ghemawat for creating the srcjava runtime, and to the DCPI team for developing DCPI.

REFERENCES

1. Heydon A, Najork M. Mercator: A scalable, extensible web crawler.World Wide Web1999;2(4):219–229. Baltzer Science
Publishers.

2. VTune Tool Home Page. http://developer.intel.com/vtune/analyzer/.
3. OptimizeIt Home Page. http://www.optimizeit.com/.
4. JProbe Home Page. http://www.klg.com/jprobe/.
5. Jinsight Home Page. http://www.alphaWorks.ibm.com/formula/jinsight/.
6. Sanjay Ghemawat. Srcjava Home Page. http://www.research.digital.com/SRC/java/.
7. Anderson JM, Berc LM, Dean J, Ghemawat S, Henzinger MR, Leung S-TA, Sites RL, Vandevoorde MT, Waldspurger CA,

Weihl WE. Continuous profiling: where have all the cycles gone?ACM Transactions on Computer Systems1997;
15(4):357–390.

8. Digital Continuous Profiling Infrastructure Home Page. http://www.research.digital.com/SRC/dcpi/.
9. Henzinger MR, Heydon A, Mitzenmacher M, Najork M. Measuring index quality using random walks on the Web.Proc.

of the 8th International World Wide Web Conference, May 1999; 213–225.
10. AltaVista Search Engine 3. http://solutions.altavista.com.
11. Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine.Proceedings of the 7th International World

Wide Web Conference, April 1998; 107–117.
12. Burner M. Crawling towards eternity: Building an archive of the World Wide Web.Web Techniques MagazineMay 1997;

2(5):37–40.
13. Birrell AD. An introduction to programming with threads.SRC Research Report 35, Digital Equipment Corporation,

Systems Research Center, January 1989.
14. Berkeley Internet Name Domain (BIND). http://www.isc.org/bind.html.
15. Klemm R. Practical guidelines for boosting Java server performance.Proceedings of the ACM 1999 Java Grande

Conference, June 1999; 25–34.
16. Brown MR, Nelson G. IO streams: abstract types, real programs.SRC Research Report 53, Digital Equipment Corporation,

Systems Research Center, November 1989.
17. Nelson G (ed.).Systems Programming with Modula-3. Prentice Hall, 1991.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:363–373


	1 INTRODUCTION
	2 OUR DEVELOPMENT TOOLS
	3 THE MERCATOR WEB CRAWLER
	4 EXCESSIVE SYNCHRONIZATION
	4.1 StringBuffers
	4.2 I/O streams
	4.3 Host name resolution

	5 EXCESSIVE HEAP ALLOCATION
	6 OTHER PITFALLS
	7 CONCLUSIONS

